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Abstract
Gut microbial communities provide essential functions to their hosts and are known to influence both their ecology and 
evolution. However, our knowledge of these complex associations is still very limited in reptiles. Here we report the 16S 
rRNA gene faecal microbiota profiles of two lizard species endemic to the Balearic archipelago (Podarcis lilfordi and P. 
pityusensis), encompassing their allopatric range of distribution through a noninvasive sampling, as an alternative to previ-
ous studies that implied killing specimens of these IUCN endangered and near-threatened species, respectively. Both lizard 
species showed a faecal microbiome composition consistent with their omnivorous trophic ecology, with a high representa-
tion of cellulolytic bacteria taxa. We also identified species-specific core microbiota signatures and retrieved lizard species, 
islet ascription, and seasonality as the main factors in explaining bacterial community composition. The different Balearic 
Podarcis populations are characterised by harbouring a high proportion of unique bacterial taxa, thus reinforcing their view 
as unique and divergent evolutionary entities.

Keywords Faecal microbiota · Podarcis lilfordi · Podarcis pityusensis · Balearic Islands · Allopatric populations · Host-
microbiome interactions

Introduction

Recent advances in sequencing technologies and analyti-
cal methodologies are improving our understanding of the 
microbiome in host evolution [1]. Early evolutionary con-
ceptions considering animals and plants as autonomous enti-
ties are being challenged by the holobiont point of view, 
which also considers their numerous microbial symbionts 
and their genomes [2]. The sum of the genetic information 
of the host and its associated microbiota has been termed 
the hologenome [3, 4], whose variation can influence phe-
notypes upon which natural selection and/or genetic drift can 

operate [2]. Indeed, microbial communities can have a deep 
impact on host diversification by acting as environmental 
factors with selective effects [5], influencing many aspects 
of host evolutionary history such as adaptation to resource 
utilisation [6], resistance to pathogens [7], control of nutri-
ent inputs [8], tissue and organ development [9], life history 
strategy [10] and behaviour [11], among many others. The 
relevance of this interaction is such that the evolutionary 
history of host species cannot be fully understood without 
addressing the study of its associated microbiota. However, 
despite the effort made over the last decade to characterise 
microbial-host associations, we still know relatively little 
about the evolutionary and ecological processes shaping 
them, particularly in non-model and non-captive organisms.

The lizard species endemic to the Balearic Islands, 
Podarcis lilfordi and P. pityusensis, represent an interesting 
model to study host-microbiota associations since they are 
sister taxa with a nonoverlapping distribution, consisting of 
multiple allopatric populations restricted to coastal islands 
and islets of Mallorca, Menorca, and Cabrera in the case of 
P. lilfordi, and the main islands of Ibiza and Formentera in 
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P. pityusensis. Podarcis lilfordi became extinct on both the 
main Mallorca and Menorca islands due to the anthropic 
introduction of foreign predators and/or competitors [12, 13]. 
The feeding ecology of both species is well-known [14–17] 
and is marked by the scarcity and unpredictability of diet 
resources in their isolated habitats, which probably deter-
mined the adoption of omnivory [17]. Balearic lizards are 
active foragers exploiting a wide range of animal prey, plant 
tissues, carrion, and marine subsidies, showing even low 
levels of cannibalism of juvenile conspecifics [17]. On the 
other hand, the phylogeographic relationships of the group 
have also been profusely studied, revealing an evolutionary 
origin linked to eustatic sea-level changes associated with 
the reflooding of the Mediterranean at the end of the Messin-
ian Salinity Crisis that occurred 5.33 Ma ago [18–20]. The 
Menorca lineage represents the earliest cladogenetic event 
(2.6 Ma) within P. lilfordi, followed by the differentiation of 

the West Mallorca lineage (2.0 Ma), Cabrera (1.2 Ma), and 
the remaining populations in northern and southern Mal-
lorca islets [20] (see Fig. 1 for island configuration in the 
Balearic archipelago). Regarding P. pityusensis, the Ibiza 
and Formentera populations have been reported to be geneti-
cally distinct, with a divergence estimated to have occurred 
ca. 0.111–0.295 Ma ago [21].

Although lizards are a globally distributed and species-
rich group within vertebrates [22, 23], they have been largely 
overlooked in terms of gut microbiota [24]. More than 90% 
of such studies within vertebrate hosts have been carried out 
in mammal species, with reptiles being the least investigated 
group [25]. To date, a single study on the microbiota of the 
Balearic lizards has been addressed [26]. This work was 
focused on a very limited portion of the distribution of one 
of the species (seven Menorcan populations of P. lilfordi) 
and based on sex-biased sampling (30 males and 3 females) 

Fig. 1  Maps of the Balearic 
archipelago showing the loca-
tion of the sampled Podarcis 
lilfordi (blue arrows) and P. 
pityusensis populations (red 
arrows). Maps were obtained 
with Google Maps (Map data 
2020 Google) using the func-
tion “get_map” in the package 
“ggmap” version 3.0.0.902 in R 
version 3.6.3
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from a single season (summer) using methodologies that 
imply killing specimens of this endangered (IUCN) species. 
The study reported a significant effect of the geographical 
distribution (islet) in explaining the 13.5% of the bacterial 
community variation and a very low bacterial uniqueness 
in each lizard population, suggesting the retention of the 
ancestral mainland microbial pool and the occurrence of 
stochastic population processes as the main factors shaping 
the gut microbiota.

Here we aim to further explore the evolutionary his-
tory of these two endemic lizard species by using Illumina 
16S rRNA sequencing to characterise their faecal micro-
biota across different seasons of the year and through a 
sex-balanced and noninvasive sampling. Specifically, we 
address the following questions: (i) what is the gut bacterial 
composition of these two endemic species? (ii) Are there 
species-specific microbiome core signatures? (iii) Do micro-
bial communities mirror the allopatric distribution of their 
respective lizard populations? (iv) What is the degree of 
uniqueness of each Podarcis population from a microbiome 
perspective? (v) Do the microbiome communities reflect the 
trophic ecology of the host populations?

Materials and Methods

Sampling

The sampling design included 17 localities encompassing 
the distribution range of P. lilfordi and P. pityusensis in the 
Balearic archipelago (Fig. 1, Table 1, and Table S1a). A total 

of 242 faecal samples from P. lilfordi (140) and P. pityusen-
sis (102) were collected between the spring of 2016 and the 
autumn of 2017. Specimens were captured by noosing and 
fresh faeces were collected in absolute ethanol vials directly 
from the animals before releasing them back to their habi-
tats. Individuals were sexed based on the number and size of 
the femoral pores [27]. The samples were immediately pre-
served at 4 °C in the field and upon arrival at the laboratory, 
where they were stored at − 20 °C until DNA extraction.

DNA Extraction, 16S rRNA Library Preparation, 
and Sequencing

Total DNA was extracted from individual samples using 
the ISOLATE Fecal DNA kit (Bioline, London, UK) fol-
lowing the manufacturer protocol, and their concentrations 
were quantified using Qubit fluorometric quantitation (Ther-
moFisher, Foster City, CA, USA). For cost-effective reasons 
and given that our study seeks to describe the bacterial com-
position of each lizard population as a whole, samples from 
each island/islet with matching sex, season, and collecting 
year were pooled in equimolar concentrations, obtaining a 
final volume of 30 μl at 20 ng/μl per sample (see Table 1 for 
details on the number of faecal samples pooled per location). 
A total of 48 samples were submitted to the Roy J. Carver 
Biotechnology Center (University of Illinois, USA) for 
amplification of the V4 region of 16S rRNA in a microflu-
idic high-throughput multiplexed PCR platform (Fluidigm). 
The primer set 515F (5′-GTG CCA GCMGCC GCG GTAA-
3′) and 806R (5′-GGA CTA CHVGGG TWT CTAAT-3′) 
[28] were used, and CS1 and CS2 Fluidigm universal tags, 

Table 1  Sampling localities and associated metadata

Female Male Season Female Male Season

P. lilfordi CABRERA Cabrera Cabrera 6 7 Autumn 12 16 Summer
Esclatasang Esclatasang 4 4 Autumn 6 4 Summer
Na Foradada Na Foradada 2 5 Autumn 2 8 Summer

MALLORCA Dragonera Dragonera 9 8 Summer 2 8 Autumn
MENORCA Aire Aire - 1 Summer 5 5 Spring

Colom Colom 3 3 Summer 6 4 Spring
Porros de Fornells Porros - - - 4 6 Spring

P. pityusensis FREUS Alga Alga 2 3 Summer 5 5 Summer
Espardell Espardell 5 - Summer 7 6 Spring

FORMENTERA Formentera Formentera - - - 4 6 Spring
IBIZA Bleda Plana Bleda - 1 Summer - - -

Bosc de conillera Bosc 4 3 Spring - - -
Na Gorra Na Gorra 13 11 Summer 5 5 Spring
Sant Josep de sa Talaia St. Josep 1 2 Spring - - -
Ses Salines Ibiza 2 2 Spring - - -
Vaixell Vaixell - - - 5 3 Summer
Vedrà Vedrà - 2 Summer - - -
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barcode labels specific to each sample and Illumina adapt-
ers i5 and i7. The resulting amplicons were validated on a 
fragment analyzer (Agilent) using the HS NGS kit (DNF-
474–33). Sequencing was conducted on an Illumina MiSeq 
v2 platform yielding 2 × 250 bp paired-end reads.

Sequence Analyses

QIIME2 version 2020.2 [29] was used for read demultiplex-
ing and subsequent filtering and denoising using the DADA2 
pipeline [30]. Sequences were grouped into amplicon 
sequence variants (ASVs or 100% identity OTUs), and the 
taxonomic assignment was performed using the q2-feature-
classifier plugin with a pre-trained naive Bayes classifier 
[31] implemented in QIIME2 against the SILVA database 
release 132 [32]. ASVs identified as chloroplasts or mito-
chondria, and those with undetermined phylum annotation 
were excluded for downstream analyses. Sequences were 
aligned with MAFFT [33] under the default FFT-NS-1 algo-
rithm, and a phylogenetic tree was inferred with FastTree 
[34] using the QIIME2 plugin align-to-tree-mafft-fasttree.

Datasets

To avoid comparing samples from different seasons and to 
dissect the potential effect of the host lizard species (P. lil-
fordi / P. pityusensis) and geography (islet) on the faecal 
microbiota, we subdivided the data into three datasets by 
collecting seasons: spring, summer, and autumn. In addi-
tion, we further explored the data by analysing those sam-
ples with matching collecting seasons: spring + summer 
dataset [Espardell (Fig. 1f), Na Gorra (Fig. 1e), Aire and 
Colom (Fig. 1b)], and summer + autumn dataset [Dragonera 
(Fig. 1d), Cabrera, Esclatasang and Na Foradada (Fig. 1g)].

Diversity Analyses

Rarefaction curves were explored using the rarecurve func-
tion implemented in the R package vegan [35]. The ASV 
table was rarefied using the rarefy_even_depth option in the 
R package phyloseq [36] by subsampling the data to the 
even depth defined by the minimum number of sequences 
per sample. This value was set to 10,815 in the P. lilfordi 
dataset and 19,159 in the case of P. pityusensis. When ana-
lysing the dataset of both species combined, the lowest value 
was chosen.

Alpha diversity was measured through the estimation of 
the absolute number of observed ASVs, Shannon and Simp-
son indexes in phyloseq, and Faith’s phylogenetic diversity 
(PD) in the picante R package [37]. Differences in terms of 
alpha diversity at both inter- and intra-specific levels were 
assessed using the Kruskal–Wallis test.

Although the pooled nature of the samples erases the 
interindividual variability within each island/islet, we car-
ried out exploratory beta diversity analyses as a proxy to 
understand the extent of change in bacterial community 
composition across lizard populations. To delve into it, we 
performed a permutational multivariate analysis of variance 
(PERMANOVA) using the adonis function implemented 
in the vegan package and based on both unweighted and 
weighted UniFrac and Bray–Curtis distance matrices [35]. 
Specifically, we tentatively explored potential correlations 
between community microbiota distances and the categori-
cal variables associated to our samples, namely species, sex 
and islet. The later variable was also explored at a broader 
scale by assigning each sampling locality (i.e., islet/popula-
tion) to a main island district in the Balearic archipelago 
(Mallorca, Menorca, Cabrera, Ibiza, or Formentera). The 
unweighted UniFrac matrices were also used to perform 
PCoA ordination analyses. Finally, we tested for correla-
tion between the variable number of faecal pellets pooled per 
sample and microbiome community composition distances 
(Unweighted and Weighted UniFrac matrices) by conducting 
Mantel tests based on the Spearman correlation method and 
performing 9999 replicates.

Core Microbiota

Shared microbiome taxa were independently investigated 
for each one of the two lizard species with the core members 
function of the microbiome R package [38], setting the prev-
alence threshold at 90%. The intersection of the resulting 
sets was interpreted as the core of the lineage P. lilfordi + P. 
pityusensis, and their differences were, respectively, con-
sidered the core signature of each one of the two Podarcis 
species.

Uniqueness and Shared Microbial Taxa

UpSetR package [39] was used to calculate both unique and 
shared ASVs by population and/or species.

Results

Sequence Summary

We obtained 16S rRNA sequence data from 48 faecal pools 
representing 140 specimens of P. lilfordi and 102 of P. 
pityusensis (Fig. 1 and Table 1). After the quality filtering 
stage and the removal of features identified as chloroplasts, 
mitochondria, or Eukaryota and those with undetermined 
phylum annotation, the dataset was reduced to 3,488,522 
high-quality reads with an average value of 72,678 reads 
per sample (range = 11,107–336,352). The reads could be 
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ascribed to 3542 ASVs representing 20 phyla, 41 classes, 
93 orders, 190 families, and 425 genera of microbiome taxa. 
A total of 369 ASVs were unique to P. lilfordi and 766 to P. 
pityusensis. The sampling depth values used in the rarefac-
tion analyses allowed us to get most of the diversity of the 
samples, as shown by the asymptotic trend of the resulting 
curves (Fig. S1). The taxonomy of rarefied and the non-
rarefied ASV tables are provided as Table S1b, c, and d.

Bacterial Taxonomic Composition

The taxonomic distribution of the bacterial assemblages was 
variable among samples (Figs. 2, S2, S3, S4 and Table S2). 
Four phyla (Fig. 2 and Fig. S2) represented altogether 95% 
of the microbiota (Table S2): Bacteriodetes (average = 33%; 
range = 21.3–49.1%), Firmicutes (average = 45.1%; 
range = 33.4–59.9%), Proteobacteria (average = 8.9%; 
range = 0.6–34.5%), and Tenericutes (average = 7.6%; 
range = 0.1–14.9%).

The faecal microbiota of both lizard species was 
dominated by two orders (Fig. S3): Clostridiales (aver-
age = 38.2%; range = 14.2–56.2%; Firmicutes) and Bac-
teroidales (average = 33.1%; range = 21.5–48.8%; Bac-
teroidetes). Families Bacteroidaceae (average = 16.9%; 
range = 4.6–27.4%) and Rikenellaceae (average = 6.4%; 

range = 0.5–16.6%) showed the highest relative abundance 
within Bacteroidetes, while Lachnospiraceae.

(average = 13%; range = 2.1–33.9%), Clostridiales 
vadinBB60 group (average = 10.4%; range = 0.1–23.9%), 
and Ruminococcaceae (average = 8.5%; range = 2–16.9%) 
were the most abundant within Firmicutes.

Alpha Diversity

Faecal samples from P. lilfordi and P. pityusensis showed 
similar average alpha diversity values (Table 2) with no sig-
nificant differences between both lizard species (Table S3). 
At the population level, most indicators reported Es Vedrà as 
the location with the highest average microbiome diversity 
values, followed by Na Gorra, Bosc, Espardell, and Formen-
tera, all of them belonging to P. pityusensis. Oppositely, two 
P. pityusensis populations received the lowest diversity val-
ues (Bleda and Vaixell). Podarcis lilfordi populations were 
scored with relatively moderate values for all indexes, stand-
ing out Na Foradada, Cabrera, and Esclatasang as the most 
diverse locations, while the Menorcan populations of Colom 
and Porros islets received the lowest alpha diversity values 
(Table 2).

When considering only samples collected in the same 
season and lizard species, all datasets showed similar 
average diversity indexes (Table 2) and no significant 

Fig. 2  Microbiota composition at the phylum level per sample
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differences among samples within the same dataset 
(Table S4). However, inter-dataset comparisons revealed 
significant differences in terms of alpha diversity indi-
ces (observed number of ASVs, Chao1, and phylogenetic 

diversity) between the spring samples of P. lilfordi and 
those of P. pityusensis (Table S3 and Fig. 3), being P. lil-
fordi the species exhibiting the lowest diversity values 
(Table 2; Fig. 3).

Table 2  Mean (minimum–maximum) P. lilfordi and P. pityusensis alpha diversity indexes by population

Species Localization Dataset (by 
Island/Islet)

Shannon Chao1 Observed Simpson PD

P. lilfordi CABRERA 
ARCHIPEL-
AGO

Cabrera 4.87 (4.65–5.32) 426.18 (314.14–
704.03)

408.75 (311–
649)

0.98 (0.98–0.99) 19.87 (16.53–
27.34)

Esclatasang 4.88 (4.80–5.00) 338.55 (306.00–
388.52)

336 (306–383) 0.99 (0.98–0.99) 19.28 (18.31–
21.01)

Na Foradada 4.93 (4.31–5.19) 487.91 (270.94–
634.00)

462.50 (270–
592)

0.98 (0.97–0.99) 22.82 (17.18–
26.42)

MALLORCA Dragonera 4.69 (3.72–5.09) 378.77 (156.00–
536.46)

362.75 (156–
495)

0.97 (0.93–0.99) 18.23 (10.48–
22.94)

MENORCA Aire 4.72(4.50–4.96) 280.62 (201.00–
331.00)

279.67 (201–
331)

0.98 (0.98–0.99) 15.72 (12.63–
17.94)

Colom 4.41 (4.12–4.61) 339.89 (253.05–
435.49)

308 (241–362) 0.97 (0.97–0.98) 15.40 (12.95–
17.79)

Porros 4.48 (4.14–4.82) 316.50 (310.78–
322.23)

310.50 (303–
318)

0.97 (0.96–0.98) 15.16 (14.96–
15.36)

P. pityusensis FREUS Alga 4.84 (4.72–5.01) 483.15 (313.24–
733.46)

440.50 (310–
637)

0.98 (0.98–0.98) 20.89 (17.15–
26.57)

Espardell 4.96 (4.78–5.05) 512.11 (442.57–
610.94)

466.33 (432–
517)

0.98 (0.98–0.99) 20.75 (19.64–
21.88)

FORMENTERA Formentera 4.97 (4.90–5.03) 397.42 (375.34–
419.50)

393.50 (375–
412)

0.99 (0.99–0.99) 19.46 (18.90–
20.01)

IBIZA Bleda 3.56 194.08 186 0.92 10.44
Bosc 5.01 (4.99–5.04) 520.61 (507.70–

533.53)
486 (478–494) 0.99 (0.99–0.99) 20.85 (19.72–

21.97)
Ibiza 4.53 (4.47–4.59) 515.18 (425.65–

604.71)
452.50 (411–

494)
0.97 (0.97–0.97) 21.6 (21.39–

21.81)
Na Gorra 5.24 (5.05–5.41) 539.22 (452.37–

652.80)
518.75 (444–

611)
0.99 (0.98–0.99) 24.37 (22.56–

26.51)
St. Josep 4.48 (4.22–4.73) 265.7 (264.25–

267.14)
264 (261–267) 0.98 (0.97–0.98) 14.41 (14.06–

14.75)
Vaixell 4.17 (3.64–4.70) 285.03 (241.06–

329.00)
279.50 (238–

321)
0.93 (0.89–0.98) 16.19 (13.75–

18.63)
Vedrà 5.19 799.57 687 0.99 27.31

Dataset (by Season)
P. lilfordi Spring 4.62 (4.14–4.96) 324.15 (309.32–

361.7)
314.67 (296–

333)
0.98 (0.96–0.99) 15.95 (14.97–

17.94)
Summer 4.78 (4.13–5.32) 402.81 (201.00–

704.03)
381.36 (201–

649)
0.98 (0.97–0.99) 19.43 (12.63–

27.34)
Autumn 4.74 (3.72–5.19) 373.04 (156.00–

634.00)
361.13 (156–

592)
0.98 (0.93–0.99) 18.80 (10.48–

26.42)
P. pityusensis Spring 4.83 (4.22–5.11) 446.76 (264.25–

610.94)
419.33 (261–

517)
0.98 (0.97–0.99) 20.03 (14.06–

22.57)
Summer 4.75 (3.64–5.41) 475.11 (194.08–

799.57)
438.91 (186–

687)
0.97 (0.89–0.99) 20.50 (10.40–

27.30)
Dataset (by Species)
P. lilfordi all P. lilfordi 

samples
4.73 (3.72–5.32) 374.40 (156.00–

704.03)
358.88 (156–

649)
0.98 (0.93–0.99) 18.40 (10.48–

27.34)
P. pityusensis all P. pityusensis 

samples
4.79 (3.56–5.41) 460.32 (194.08–

799.57)
428.70 (186–

687)
0.98 (0.89–0.99) 20.26 (13.75–

26.51
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Beta Diversity

Mantel tests for correlation between differences in terms 
of the number of faecal pellets pooled on each sample and 
microbiome community distances yielded non-significant 
results regardless of whether the analyses were based on 
the Unweighted or the Weighted UniFrac matrices from 
the entire dataset (i.e., all 48 samples) or from each of the 
subsets by season (spring, summer, and autumn datasets) 
(Table S5a–i, Table S6). We therefore tentatively explored 
if the microbiota community composition from the analysed 
pooled samples varied across species, island/islet, main 
island district, season and/or sex. PERMANOVA analyses 
yielded significant microbiome composition differences 
between the two lizard species and, also, in relation to the 
geographical distribution of the samples, regardless the col-
lecting season and of whether the analyses were based on 
weighted or unweighted UniFraq matrices (Table 3). Among 
the significant variables, island/islet was reported as the most 
important source of variance in explaining bacterial commu-
nity composition, with R2 values ranging from 0.36 to 0.48, 

followed by the main island district variable (R2 range: 0.06 
to 0.21). When analysing the datasets conformed by sam-
ples with matching collecting seasons (i.e., spring + sum-
mer and summer + autumn datasets), PERMANOVA tests 
consistently retrieved the species, the island/islet, and the 
main island district as significant variables in explaining 
the microbial community composition of the samples, and 
in addition both the season variable and the interaction of 
population:season were also retrieved as significant in some 
of the analyses (Table 3).

The ordination analysis of the bacterial community dis-
tances by island/islet and species through principal coor-
dinate analysis (PCoA) based on the unweighted UniFrac 
matrices from the samples collected in the same season of 
the year resulted in the clustering of the samples from the 
same location with few exceptions (Fig. 4).

Core Composition

The number of core ASVs present in at least 90% of the 
samples of P. lilfordi and P. pityusensis was, respectively, 
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24 and 27, 13 of which were shared between both species 
(Table S7a, b). Exclusive P. lilfordi core ASVs included 
species from genera Alistipes, Anaeroplasma, Bacteroides, 
Desulfovibrio, Helicobacter, and Parabacteroides, while 
P. pityusensis unique core taxa were represented by ASVs 
from genera Bacteroides, Coprococcus 3, Dielma, Erysip-
elatoclostridium, Eubacterium, Odoribacter, Parabacte-
roides, Robinsoniella, and Romboutsia. The shared core 
taxa between both species comprised 3 phyla, 4 classes, 4 
orders, 7 families, and 7 genera. Bacteroides were the most 
abundant genera, followed by Odoribacter. The common 
core species was Desulfovibrio desulfuricans.

ASV Uniqueness

We explored the presence/absence of population-specific 
ASVs/taxa (Table 4). A total of 2042 ASVs were found in P. 
lilfordi, while 2384 were detected in P. pityusensis. Within P. 

lilfordi, ASV uniqueness at the population level ranged from 
13.8 to 32.77% (Aire and Porros, respectively). Consistently, 
P. pityusensis also showed a high proportion of population-
specific ASVs (range 7.02 to 25.17%; St. Josep and Vaixell, 
respectively). In total, we detected 1050 population-specific 
ASVs in P. lilfordi and 1126 in P. pityusensis.

Discussion

Non‑Destructive Sampling as an Alternative 
to Killing Threatened Podarcis Lizards 
for Microbiome Analyses

Here we report the first characterisation of the Podarcis pit-
yusensis faecal microbiota and expand the geographic sam-
pling of P. lilfordi (Baldo et al. [26] only analysed Menorcan 
populations) through a noninvasive approach that avoids 
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Fig. 4  Principal coordinate analysis based on the unweighted Uni-
Frac microbiome distances from the five analysed datasets (see main 
text for details) highlighting the effect of sample source (dot colours) 
and lizard species (dot shapes). The sex of the samples (M = males; 

F = females) and their respective collecting years (16 = 2016; 
17 = 2017) are indicated in the text labels accompanying de dots (e.g., 
M-16 stands for males sampled in 2016)



1573Faecal Microbiota Divergence in Allopatric Populations of Podarcis lilfordi and P…

1 3

killing specimens. Although our results and those reported 
by Baldo et al. [26] from guts of killed Podarcis individu-
als could be affected by the implementation of different 
Illumina platforms (v2 vs v3), the length of the sequenced 
fragments (2 × 250 vs 2 × 300), and target 16S rRNA region 
(V4 vs V3-V4), the comparison between matching localities 
from both studies (Aire, Colom, and Porros) yields similar 
results at major taxonomic levels (this study/[26]/shared: 
phyla 16/12/12, classes 26/25/14, orders 59/37/25, families 
101/50/30, genera 179/68/37). Although the different meth-
odologies implemented in both studies make it difficult to 
carry out differential abundance analyses, comparing our 
results to past studies of the same lizard species shows that 
faecal samples can recover a high proportion of the taxa seen 
in gut samples. Faecal sampling has been used in microbiome 
studies on reptiles (e.g., [40–42]) and has been demonstrated 
to provide a comprehensive understanding of their hindgut 
bacterial communities [24]. Consistently, our findings rein-
force this view and suggest that there is no need to kill lizards 
to characterise their microbiota at least at high taxonomic 
levels, which is even more relevant when dealing with species 
included in the IUCN Red List, such as the Balearic lizards 
P. lilfordi (endangered) and P. pityusensis (near threatened).

The Faecal Microbiota of the Balearic Podarcis

Most lizard species are regarded as primarily feeding on 
invertebrates (e.g., [43, 44]), and less than 2% of the species 

are known to exploit plants as their sole food source [45]. 
However, many species do consume plant tissues under con-
ditions of prey scarcity, a behaviour that is more frequently 
observed in island taxa (see [46] and references therein), 
including the Podarcis species endemic to the Balearic archi-
pelago [16, 47]. Even though herbivory is rare among rep-
tiles, they are known to perform hindgut fermentation either 
in the cecum or in the large colon/intestine, as also occurs in 
many lineages of mammals and birds [48, 49]. Indeed, there 
exists evidence of rapid adaption to plant diet through the 
acquisition of cecal valves, which slow down food flow and 
act as fermenting chambers in other Podarcis lizard species 
from the Mediterranean [50]. Like other vertebrates, reptiles 
lack the endogenous glycoside hydrolases needed to effec-
tively hydrolyse and to ferment the complex plant polymers 
found in celluloses and hemicelluloses [51], and therefore 
rely on specialised bacterial communities [52]. Previous 
studies on the gastrointestinal microbiota of herbivore rep-
tiles have reported a high prevalence of cellulolytic bacteria 
belonging to the phyla Bacteroidetes and Firmicutes (e.g., 
[24, 52, 53]), a pattern that is also matched by our results. 
Most Firmicutes taxa detected in the faecal microbiota of 
both P. lilfordi and P. pityusensis belong to class Clostridia 
order Clostridiales, a lineage of bacteria that includes most 
Firmicutes in both mammalian and reptilian herbivores [53]. 
Within Clostridiales, our results are highly represented by 
families Lachnospiraceae and Ruminococcaceae, both typi-
cally found in the gut microbiota of animals and known to 
decompose complex plant material [54]. Examples of Rumi-
nococcaceae genera reported here with known implications in 
fibre digestion include Oscillospira and Ruminoccocus [55], 
represented in our dataset by 4 and 26 distinct ASVs, respec-
tively (Table S1). Regarding Bacteroidetes, both Podarcis 
species showed a high proportion of microbes from families 
Bacteroidaceae, Porphyromonadaceae, Rikenellaceae, and 
Odoribacteraceae, all of them previously reported from the 
gut microbiota of reptiles with herbivorous habits (e.g., [26, 
40, 56]). Within Bacteroidaceae, our results have reported 
the presence of 104 different ASVs from genus Bacteroides 
(Table S1), a lineage of active degraders of plant material 
[57, 58]. The gut microbiotas of P. lilfordi and P. pityusensis 
also include bacterial lineages that are consistent with their 
omnivorous ecology. This would be the case of the mem-
bers of phylum Deferribacteres, which seem to be absent in 
the microbiota of generalist herbivorous lizards but is found 
in species that exploits both animal preys and plants [24], 
or the Clostridiales vadinBB60 group, a Firmicutes line-
age with a high prevalence in carnivorous reptiles [59]. The 
relatively low prevalence of Actinobacteria and Proteobac-
teria in Podarcis samples is consistent with previous reports 
from other lizard species [24]. Within the latter our results 
report the presence of 20 distinct ASVs from Desulfovibrio 
(Table S1), a genus whose abundance has been correlated 

Table 4  Proportion of uniqueness and shared OTUs by the studied 
Podarcis populations

P. lilfordi CABRERA Cabrera 836 163 (19.50) 80.50
Esclatasang 703 139 (19.77) 80.23
Na Foradada 944 236 (25.00) 75.00

MAL-
LORCA 

Dragonera 750 129 (17.20) 82.80

MENORCA Aire 558 77 (13.80) 86.20
Colom 625 150 (24.00) 76.00
Porros 476 156 (32.77) 67.23
Total 2042 1050

P. pityuse-
nsis

FREUS Alga 940 210 (22.34) 77.70

Espardell 869 160 (18.41) 81.59
FORMEN-

TERA
Formentera 579 66 (11.40) 88.60

IBIZA Bleda 186 16 (8.60) 91.40
Bosc 693 67 (9.67) 90.33
Ibiza 719 151 (21.00) 79.00
Na Gorra 988 198 (20.04) 79.96
St. Josep 399 28 (7.02) 92.98
Vaixell 453 114 (25.17) 74.83
Vedrà 687 116 (16.89) 83.11
Total 2384 1126
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with fibre digestion [60] and that may play an important role 
in herbivorous lizards [24].

Species‑Specific Microbiome Signatures

Our exploratory beta diversity analyses pointed to significant 
differences in bacterial community composition between P. 
lilfordi and P. pityusensis samples regardless of the dataset 
(spring, summer, or spring + summer) and the input matrix 
(weighted or unweighted UniFrac) (Table 3). Such differ-
ences are also evident at the level of alpha diversity, where 
we have found significant differences between samples of 
both species collected in spring, being P. pityusensis the 
species exhibiting the highest diversity values. Although 
these results should be interpreted with caution due to the 
pooled nature of the samples, there is evidence that micro-
biota analyses based on mixed samples are a viable measure 
to consider in population-level studies, providing estimates 
of the community-level diversity that are highly correlated 
with diversity estimates using individually sequenced sam-
ples [61–66]. The core microbiomes of both Podarcis spe-
cies intersected in 13 ASVs from several genera commonly 
found in the gut communities of other lizard species (Alis-
tipes, Bacteroides, Breznakia, Desulfovibrio, Odoribacter, 
Oscillibacter, Parabacteroides, and Ruminococcaceae 
UBA1819; e.g.,[67–69] and also showed a symmetric dif-
ference consisting of bacterial taxa with high prevalence 
levels in either P. lilfordi or P. pityusensis. In the former we 
detected 11 species-specific core taxa that could be classi-
fied to genus (Alistipes, Anaeroplasma, Bacteroides, Bac-
teroides, Desulfovibrio, Rikenellaceae dgA-11 gut group, 
Helicobacter, and Parabacteroides). Taxa from these genera 
were also identified as core members of P. lilfordi gut micro-
biota by [26] excepting Alistipes, Breznakia, Oscillibacter, 
Ruminococcaceae UBA1819, and Rikenellaceae dgA-11 gut 
group. Podarcis pityusensis also showed a distinctive core 
taxa assemblage consistent with bacteria genera commonly 
found in the gut microbiome of other lizard species (Bac-
teroides, Coprococcus 3, Dielma, Erysipelatoclostridium, 
Eubacterium, Odoribacter, Parabacteroides, Robinsoniella, 
and Romboutsia) [42, 67, 70]. All these findings are con-
sistent with the long-term geographic isolation of both P. 
lilfordi and P. pityusensis lineages that started ca. 5.33 Ma 
ago and subsequent geographical, ecological and evolution-
ary divergence [20].

Factors Shaping the Faecal Microbiota 
of the Balearic Podarcis Lizards

Extant P. lilfordi populations are restricted to coastal islands 
and islets of Mallorca, Menorca, and the Cabrera archipel-
ago, which acted as refugia after the extinction of main-
land populations ca. 2000 years ago due to the anthropic 

introduction of predators and competitors [12, 13]. Such iso-
lation could be even older according to Holocene sea-level 
data from the western Mediterranean Sea [71]. Therefore, 
each islet would constitute a particular evolutionary scenario 
with an independent demographic history and linked to dif-
ferent ecological conditions. Indeed, both morphological 
and genetic differentiation of P. lilfordi populations have 
led to consider them as independent evolutionary signifi-
cant units [72]. In this regard, our results suggest that the 
allopatric status of the Balearic Podarcis populations could 
also have shaped their gut microbiota. Our exploratory PER-
MANOVA analyses retrieved the islet adscription and main 
island district as the main factor in explaining bacterial com-
munity composition. Consistently, each individual popula-
tion showed a high proportion of non-shared ASVs (e.g., up 
to 32.77% of the ASVs found in the Porros population were 
exclusive from this islet). This result is even more significant 
if we consider that rarefaction curves of the samples reached 
the plateau stage, thus ensuring that comparisons are based 
on a comprehensive view of their respective ASV diversity. 
All these results reinforce the consideration of every single 
Podarcis population as a unique evolutionary entity hosting 
a singular gut microbiota.

PERMANOVA analyses based on datasets confirmed 
by samples from populations with matching collecting sea-
sons: (spring + summer and summer + autumn) allowed us 
to estimate the effect of the seasons on the gut microbiota 
of the Balearic Podarcis. In general, samples from the same 
population (island/islet) and collecting season showed simi-
lar composition in terms of microbial communities. In this 
regard, the seasonality of food has been demonstrated to 
partially affect the diet composition of P. lilfordi lizards [73]. 
Resources availability is usually higher in spring when both 
arthropod prey and plants are abundant, while summer is 
characterised by the consumption of vegetal tissues and 
ants, and autumn is marked by food scarcity [73, 74]. Previ-
ous studies have shown diet composition affects the lizard’s 
gut microbiota [68]. Our results not only point in the same 
direction but also highlight the importance of the interaction 
between the specific islets and the seasons of the year, thus 
suggesting that the different Balearic Podarcis populations 
inhabit unique ecological scenarios.

The evolutionary history of Podarcis in the Balearic 
archipelago is marked by the occurrence of allopatric 
processes leading to the extant isolated populations that 
exhibit genetic, morphological, ecological, and ethologi-
cal differences, in many cases unique to one population 
[72]. Such isolation is likely to have impeded both the 
gene flow between populations and the dispersal of gut 
symbionts, thus favoring the parallel divergence of the 
hosts and their gut microbiota. This divergence process 
could have been reinforced by a housing effect similar to 
that reported from other animal groups where genetically 
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divergent individuals/species inhabiting the same place 
share more bacteria taxa than individuals living apart 
[75, 76]. In this regard, the consumption of conspecifics 
(cannibalism) reported in P. lilfordi [17] could facilitate 
horizontal gut microbiome transmission among sympatric 
individuals as proposed for other organisms [77]. Envi-
ronmental bacteria acquired from prey and plant material, 
or even from coprophagy, are also known to constitute 
an important fraction of the gut microbiome in lizards 
[24, 78], which is an islet system that could contribute to 
homogenizing the bacterial communities of the individu-
als. In addition, vertical transmission of gut microbiota 
during birth has been demonstrated in other lizard spe-
cies [79]. In turn, microbial communities could drive host 
evolution by influencing key aspects such as adaptation to 
resource utilisation and behaviour [5, 6, 11], thus consoli-
dating the divergence between lizard lineages/populations. 
All of the above suggest that allopatric divergence of hosts 
coupled with both the limited dispersal of gut symbionts 
and the ecological idiosyncrasy of their isolated habitats 
could have shaped the faecal microbiota of these two spe-
cies of endangered lizards of the Balearic Islands.
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