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Abstract
Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the 
ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, 
including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their 
activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly 
dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary 
with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic compo-
nents adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial 
ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to 
provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The 
review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities 
along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprec-
edented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key 
research directions that could shape the future of basic and applied research into the soil microbiome. This review has led 
us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks 
and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking 
their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for 
dealing with alleviating problems like rapid climate change.
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Introduction

Soil is the most substantial pool of biological diversity and 
organic matter on terrestrial land that reinforces a huge 
range of processes important for life sustenance on Earth 
[28, 102]. It is still conceivably the least comprehended 

and acknowledged of Earth's environment. Soil accounts 
for denser biodiversity per unit territory than observed 
anywhere aboveground and it is a hub for biological and 
molecular interactions [6, 139]. With their subterranean 
networks, soil is firmly connected to aboveground networks 
through multi-trophic communications, nutrient cycling, and 
plant–soil feedback. It is also responsible for administer-
ing the functioning of ecosystems and working toward eco-
system services [7, 36]. Soil microscopic biomass matches 
or even in some cases exceeds the aboveground biomass, 
with soil frequently containing greater than a thousand 
kilograms of microscopic biomass carbon per hectare [9, 
25]. The scientific world and the common man are more 
concerned about the macroscopic environment, and much 
lesser is known about the microscopic biota that is hid-
den in the heterogeneous soil, although these organisms 
along with plants, rule the Earth’s living biomass [9, 46]. 
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Understanding the composition of soil microscopic biota 
and their functional role is increasing gradually with the 
advancement in sequencing techniques [46]. With this pro-
gressive understanding of soil microscopic biodiversity, it is 
required to investigate a variety of soil functions supported 
by an unknown catalogue of organisms that have a strong 
involvement in soil functions, along with other ecosystem 
services [13, 122]. The soil microbiome is also involved in 
climate change processes and regulation of greenhouse gas 
emissions [46, 100]. The recent soil microbiome insights 
with huge prospects are anticipated from all fields of life.

To decipher the current state of knowledge available 
for soil microbiome and understanding the trend in soil 
microbiome study, we performed a systematic literature 
search using the Clarivate Web of Science Core Collec-
tion on 22.7.2021 following with combination of keywords 
as—*soil* AND microbiom* OR *soil* AND biota* OR 
*soil* AND *biodiversit* ranging from a period of 2005 
to 2021. This time period was chosen due to introduction 
of sequencing-by-synthesis technology was introduced by 
454 Life Sciences in 2005, [90]. This technology eventually 

revolutionized the field of soil microbiome in years to fol-
low and continues to do so. To narrow it down, document 
types under book chapters, editorial managements, reviews, 
books, news items, book reviews, reprints, retracted publica-
tions, biographical items, and retractions were removed from 
the searched results, yielding 21,745 studies. This list was 
further screened manually to remove ones focusing only on 
culturable microbial diversity or the ones studying only soil 
macro-invertebrates or plants or unrelated topics etc. This 
led to a final list containing 7434 studies and now we could 
say with authority that the scientific community has started 
to take more and more interest into the subject of soil micro-
biome in the recent years Fig. 1.

The presence and role of soil microbiome remains under-
stated in soil processes, which could be possibly due to the 
notion of it being ecologically redundant [36]. Many basic 
physiological and behavioral aspects of soil organisms; their 
interactive biotic relationships among themselves or with the 
above soil biota; their responses to the different abiotic and 
biotic factors; their spatial and temporal patterns and func-
tional roles concerning soil niche—are regularly ignored or 

Fig. 1  Publication trend of scientific articles in the field of soil 
microbiome over time [A] Numbers of scientific articles published 
in the field of the soil microbiome since advent of next generation 
sequencing in 2005. Molecular techniques include FISH, qPCR, 
DGGE, RFLP, RAPD, amplicon-based next-generation sequencing, 
and shotgun metagenomics. Other methods include BIOLOG, PLFA, 
CLPP, FAME, and methods like Oostenbrick extraction, sugar flota-
tion, Baermann funnel, and Tullgrens method followed by micros-
copy and enumeration [B] Number of scientific articles published 
under different terrestrial; natural or man-made ecosystems through-

out the years. Agricultural sites include plantations, vineyards, 
orchards, arable lands, farmlands, and pastures; experimental soil 
including greenhouse or laboratory experiments, forensics soil sam-
ples, landfills, ore mines, etc.; rhizospheric soil include rhizosphere, 
rhizoplane and phyllosphere [most of the studies featuring rhizos-
pheric soil also studied bulk soil]; deserts including arid or semi-
arid regions; grasslands including savannahs, meadows, etc.; varied 
includes publications studying more than two different sites in a sin-
gle study. [C] Numbers of scientific articles published in the field of 
the soil microbiome distributed on the basis of the organism studied
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less explored as compared to the above ground biodiversity 
[46]. The aim of this review is to provide a critical evalua-
tion of the work on the soil microbiome, especially since the 
advent of the NGS techniques. The novelty of this review 
lies in the systemic review of literature used above, wherein 
the details of tools used are explored over the period of time 
to discover the unexplored entity. The review also focuses 
on potential threats to soil microbiome. It also talks about 
the impact of climate change on the soil microbiome that is 
one of the urgent topic of the present times. This review is 
a sincere effort to combine the information about the cur-
rent status of soil microscopic biome comprehensively and 
holistically, coupling soil assembly and biological processes 
with the current experimental and theoretical knowledge to 
improve predictive capacities. This improved understanding 
of soil biodiversity could be resourceful to supply plausi-
ble answers for the reported soil microbiome responses to 
environmental deviation like climate change. It is necessary 
to recognize and understand the functioning of this micro-
scopic biome to build sustainable management of the soil 
and enrich the ecosystem along with its services.

Factors affecting soil microbiome

The richness and diversity of the soil microbiome are coor-
dinated with the functioning of ecosystems and its compo-
sition within the soil environment relies on both chemical 
and physical properties of soil along with the anthropogenic 
factors that affect them [36]. The range of soil conditions 
affecting the organisms inhabiting are called edaphic factors, 
and they are part of abiotic factors.

The structure of the soil microbiome is affected largely 
by the edaphic properties and is the basic ecological filter 
[24]. Factors like soil structure influences the development 

of mesofauna, due to the high number of micropores in clay 
molecules, which in turn hampers the predatory activity of 
microorganisms. Similarly, distinctive types of soil biota 
have their very own inclinations for pH and it is observed 
that soil pH is significantly correlated with the development 
of a specific set of the soil microbiome. For instance, lim-
ing of acidic soil often results in shifts in the composition 
and abundance of soil microbiome including bacteria, fungi, 
archaea, nematodes, annelids, and microarthropods, as there 
is a significant increase in pH and nutrient concentrations 
[56]. With an increase in pH, the soil bacterial-to-fungal 
ratio and nematode abundance increase as well [142]. Lim-
ing does not significantly influence the diversity of mites 
and collembolans, but a slight variation in the species com-
position speaks about the increase in dependent species and 
subsequently decreases in abundances [18]. Protists, on the 
other hand, which span the majority of microscopic eukary-
otes, are only marginally influenced by pH [10].

Bacterial phyla such as Actinobacteria, Gemmatimona-
detes, β and δ-Proteobacteria, Chloroflexi, and Nitrospirae 
strongly correlate with soil pH and favor distinct optimal pH, 
which eventually shapes the microbial structure and diversity 
in soil along with the other factors as shown in Fig. 2 [7]. For 
bacteria, edaphic factors like soil pH and other soil nutrient 
concentrations strongly regulate its taxonomic diversity and 
composition due to the facilitation of nutrient accessibility 
in the soil, whereas in the case of fungi, climatic variables 
such as mean annual precipitation seem to have an upper 
hand over pH when explaining the diversity [7]. As change 
in climatic condition, like when  CO2 is elevated enhances 
the abundance and activity of mycorrhizal fungi in relation 
to the production of spore-bearing structures, the fungal 
abundance increases.

The moisture content affects the microbiome as water 
availability is very important for maintaining the microbial 

Fig. 2  Abiotic and biotic fac-
tors affecting soil bacterial 
and fungal communities. The 
scale here is based on a global 
study by Bahram et al., 2018 
https:// doi. org/ 10. 1038/ s41586- 
018- 0386-6 where they used 
metagenomics and metabarcod-
ing to study topsoil samples 
[189 sites, 7,560 subsamples] 
for bacterial and fungal distribu-
tion and abundance on a latitu-
dinal gradient. Abbreviations: 
MAT-mean annual temperature; 
MAP-mean annual precipita-
tion; PET- potential evapotran-
spiration; NPP-net primary 
production

671Unboxing the black box—one step forward to understand the soil microbiome: A systematic review

https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-6


1 3

life and helps in their mobility in soil, dissolution of nutri-
ents, and diffusion of gases [153]. Soil moisture was found 
to be influential in shaping the protistan community com-
position. Soil type and structure also affect the commu-
nity composition of the soil microbiome with lighter soil 
structure favoring the growth of bacteria [41, 128]. Soil 
with clay molecules and a large number of micropores are 
found to limit the growth of mesofauna, which protect the 
microbes from predation [94]. Soil nutrient concentration 
such as carbon content and C/N ratio plays a pivotal role 
in managing the diversity and structure of the soil micro-
biome [114, 157].

The functional role of soil microbiome

Soil microbiome plays a varied role in the terrestrial envi-
ronments and understanding these can assist us in predicting 
the range of impacts, they may have on both natural and 
managed ecosystems Table 1. Soil microbiome is answera-
ble for the mineralization of organic matter and nutrient dis-
charge [61, 139] with groups like protozoans and nematodes 
assuming an essential job in the predation of soil microflora. 
These expand microbial respiration and stimulate nutrient 
mineralization like phosphorus [68]. The litter decompo-
sition rate is chiefly directed by climatic conditions, i.e., 

Table 1  Functions performed by soil microbiome

Organisms Functional
Group

Representative
Member/s

Major Functions References

Mesofauna Soil invertebrates Collembola, Enchytraeids Aboveground shredding of litter
Development of soil structure
Decomposition and carbon 

cycling

[42, 95]

Mainly bacteria and fungi Decomposers Mycorrhizal Fungi, 
β-proteobacteria

Retain nutrients in their biomes
Synthesis of SOM
Decomposition of SOM
Carbon sequestration
Emissions of  CO2 and  CH4
Enhance plant growth
Promote disease

[50, 55, 63, 66, 100]

Heterotrophic and auto-
trophic bacteria, fungi

Nutrients transformers Nitrosomonas, Pseudomonas, 
Endophytes

Cyanobacteria

Nitrification and denitrification
Phosphorous solubilization
Nutrient cycling
Add organic matter to soil
Nitrogen fixation
Soil stabilizers
Microbial residues stabilizer
Breakdown of nutrients

[29, 82, 111, 145]

Nitrogen-fixing bacteria Nitrogen fixers Rhizobium Converting atmospheric N to 
amides and ammonium ions

Nitrogen fixation

[84]

Meiofauna Biological Indicators Nematodes, Protozoans Decomposition of organic matter
Nutrient cycling
Soil quality
Stimulate and control the activity 

of bacterial populations
Control many disease-causing 

pests

[83, 107]

Microscopic Eukaryotes Bio-indicators Protists Energy transfer
Key job as being consumer feed-

ing bacteria, fungi and other 
small eukaryotes in food web

Improving soil quality

[10, 45]

Soil Mineralization Protozoa Regulate bacterial populations
Release plant available nitrogen 

and other nutrients when feed-
ing on bacteria

[59]

Archaea Soil nitrifiers
Nutrient Transformers

Ammonia oxidizing archaea
Crenarchaeota

Soil nitrification
Ammonia oxidation
Carbon and nitrogen turnover
Nitrification process

[59, 151]
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temperature and precipitation, at large spatial scales, while 
at a minor spatial scale, nutrient contents are more important 
[93]. However, eventually, soil organic matter [SOM] and 
litter disintegration are ruled by biotic activities [72]. There 
are numerous functional jobs that soil microbiome performs 
while balancing the ecosystem as described in Table 1 and 
sub-sections below.

Role of the soil microbiome in managing SOM and C 
sequestration

Soil microbiome with plant diversity is a huge participant in 
carbon storage and sequestration; they serve plentiful roles 
in the pedosphere, critical for the formation and turnover of 
SOM [130] to fulfil their needs of nutrient and energy for 
their growth and maintenance [81]. The prime way that C 
is stored in soil is in the form of soil organic matter [SOM] 
with around 80% of C in stable fractions of SOM is con-
stituted of microbial residues and exudates [132, 147]. It 
shows that soil microbial biomass [SMB] holds a binary 
role in SOM turnover, balancing SOM mineralization and 
stabilization. A diverse range of organisms underwrite sig-
nificantly to the living microbial mass of SOM [98], and the 
rate of degradation of organic matter is controlled by the 
microbiome and the abiotic factors like soil pH and tempera-
ture and in turn controls the microbial activity [149]. SOC 
storage is also affected by soil microbiome, influencing the 
soil structures, e.g., the burrowing activity of earthworms 
and enchytraeids is changed due to soil macro-porosity [33, 
62, 116]. Other than earthworms, millipedes [136, 148], soil 
meiofauna such as mites, springtails, and enchytraeids are 
found to protect the OM from soil aggregation via fecal pel-
lets which hold a huge amount of C in soil ecosystems [134, 
135]. Predation by protists leads to a decline in the total bac-
terial biomass [30], an increase in the nutrient turnover, and 
overall stimulation of the soil microbiome [43]. Prokaryotic 
components of the microbiome like archaea carry out the 
two essential metabolisms for nutrient cycling globally, i.e., 
methanogenesis- and sulfate-dependent anaerobic methane 
oxidation [106]. In conclusion, the soil microbiome plays a 
huge role in the functioning of the ecosystem and performs 
different activities in partial fulfilment of it as discussed in 
Table 1 that mentions the representative taxa and the type 
of functions they perform.

Role of the soil microbiome in nutrient cycling

In the soil ecosystem, the nutrients are involved in a myriad 
of chemical and biochemical reactions, which are largely 
mediated by the soil microbiome. Soil microorganisms are 
acknowledged to support a plethora of functions related to 
carbon [C] cycling [140]. The balance between respiration 
and photosynthesis is dominant in C cycles on terrestrial 

systems. The atmospheric C in form of  CO2 is fixed in soil 
by photo and chemoautotrophic microbes through Cal-
vin cycle with the key enzyme ribulose 1,5-bisphosphate 
carboxylase/oxygenase or RuBisCO, [154] Phototrophic 
microbes from α- β- and γ-Proteobacteria and Cyanobacte-
ria actively fix atmospheric C from the soil using the Cal-
vin Cycle [143]. Chemoautotrophic members from bacte-
rial phyla such as α- Proteobacteria, Actinobacteria, and 
Chloroflexi have been actively seen to fix the atmospheric 
 CO2 in atmospheres like grasslands under dark conditions 
[143, 151], whereas chemoautrophic methanogenic archaea, 
acetogenes [86], can fix the atmospheric  CO2 with inputs of 
exogenous  H2 in paddy fields. In the soil C cycle, the role of 
mycorrhizal fungi is also important ranging from obligate 
symbionts like [AMF] that can solitary obtain carbon from 
the host plant to facultative symbionts like the ectomycor-
rhizal fungi [ECM] that can also mineralize organic carbon. 
Soil microbiome indisputably impacts the C cycle due to 
acts like the decomposition of litter, wherein the surface area 
increases. This allows the microbes to colonize more [52], 
followed by gathering of organic matter and stimulation of 
microbial activities [52]. Another important biogeochemical 
cycle is nitrogen cycle, where bacteria, archaea, and fungi 
help in converting the organic nitrogen into ammonium form 
by attacking the decaying plants and animals, i.e., the first 
step in the nitrogen cycle termed as ammonification [109]. 
After ammonification, specialized group of bacteria, and 
archaea, take over the chemical processes, like ammonia-
oxidizing bacteria [AOB] and ammonia-oxidizing archaea 
[AOA], runs the nitrification process, thereby converting 
ammonia to nitrites and nitrates. β- and γ- Proteobacteria, 
Nitrospirae, and members of phylum Thaumarchaeota pos-
sess representative microbes involved in the process of nitri-
fication [138]. On the contrary, few soil prokaryotes like 
diazotrophs have an enzyme called dinitrogenase, which 
converts soil inorganic and organic nitrogen into ammonia, 
followed by nitrite and nitrate [34].

Another major growth-limiting nutrient is phosphorus. 
Soil phosphorus is washed off to the environment via differ-
ent means like runoff or leaching, resulting in agricultural 
issues mainly delay in crop maturity, the decline in seed 
quality, and low crop yield, due to insufficient soil P, and this 
is due to mineralization by soil microbes like bacteria [67]. 
Soil microbes like bacteria, archaea, and fungi help in solu-
bilization and mineralization of P. Protozoans, nematodes, 
and other mesofauna help in immobilization of this available 
P and convert them to organic form [121]. AMF is also effi-
cient in P uptake from soil and delivering it to plants [15].

Threats to soil microbiome and biodiversity

As of now, soil and their biomes are being undermined 
by debasement brought about by global environmental 
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and climatic changes. The condition is again worsened by 
anthropogenic activities including changes in land use, pol-
lution, and the introduction of new invasive species in newer 
environments, with possibly far-reaching impacts on Earth's 
biological systems [27]. One of the biggest threats is human 
intervention. Since the inception of agriculture, humans have 
rehabilitated the plant's local diversity by clearing land and 
growing selected plant species [27]. Additionally, pollut-
ants entering the soil as a result of activities like oil spills 
and mining are also influencing the soil microbiome and the 
enormous ecosystem functions, offered by the soil [152]. 
Additionally, this belowground diversity can also be heavily 
impacted by physical disturbances of soil like compaction, 
erosion, sealing, habitat fragmentation, and other activities.

In recent decades, worldwide climate change has glob-
ally modified precipitation and temperature systems, which 
is affecting soil biodiversity both directly and indirectly 
through their influence on plant diversity and primary pro-
ductivity [150]. Attention to soil biodiversity and its utilitar-
ian significance will empower the advancement of economi-
cal administration practices, for which we will need a better 
understanding of the possible threats to soil biodiversity. 
Listed below are a few possible threats to the soil biodiver-
sity –

Invasion of alien or exotic species

In natural ecosystems, different species have evolved 
together in such a way that usually no single species can 
overpower the system and hence they coexist. Then, there 
are invasive species, which are well known to pose risk to 
species diversity globally, and can be one of the reasons 
responsible for endemic biodiversity losses [118]. Biological 
invasion by alien species can have a remarkable impact on 
soil biodiversity and are of two types- invasive plants and 
invasion of the soil microbiome. Recent examinations have 
suggested that invasion by alien plants generally modifies 
the soil microbiome [155]. Although the effects vary with 
individual invasive plants and can have their distinct effect 
on the soil chemistry and structure, there could be cases 
where an invasive plant species with comparatively higher 
root biomass than local plants can release more nutrients and 
organic carbon to the surrounding rhizosphere. This even-
tually provides a stage for local soil microbes to flourish 
and can initiate positive feedback that promotes the inva-
sive species. To cite one example, Prosopis juliflora, the 
Latin American tree which is tolerant to high temperatures 
and salinity stress, invaded semi-arid locations of Africa 
producing organic substances that are found to be toxic 
to the native plants due to allelopathic effects [69, 89]. To 
add upon, it can host native nitrogen-fixing bacteria, like 
Rhizobium and Bradyrhizobium bacteria once the conditions 
further improved. Another example of plant invasion is by 

the weed Conyza canadensis, which had contrasting effects 
on different groups of soil fungi. A decrease in abundance 
of Ascomycota and Chytridomycota was observed in con-
junction with an increase in the numbers of phylum Glom-
eromycota [155] at different degrees of invasiveness by the 
weed. Invasive plants also considerably influence the cata-
bolic diversity of the soil microbes via their effect on the 
soil enzymatic activities, which illustrates the connection 
between litter decomposition, availability of nutrients, and 
rhizospheric microbial activity [31, 73] but each invasive 
plant species will have their own idiosyncratic effects on 
the soil microbiome not reproducible by other aliens [47].

Organisms like ants and soil-dwelling flatworms, or 
fungal pathogens can also invade the soil microbiome. The 
intrusion of outsider’s microbiome in the new environment 
can meticulously affect their hosts and beneficiary ecosys-
tems [48, 120]. Invasion of soil microbiome particularly 
with ecosystem engineers like earthworms can have a dra-
matic impact on the recipient ecosystems. They can lead 
to a significant decline in native soil invertebrate diversity 
like in collembolans and oribatid mites, significant decline 
in mycorrhizal fungal colonization as well as homogeniza-
tion of the microbial communities across the soil layers by 
bioturbation which was observed [35].

The biological systems generally inclined to serious 
effects of invasive species are those that have been separated 
geographically for an exceptionally prolonged period. For 
example, islands, because their local species can be highly 
different from the exotic species. One such example is inva-
sions of rats on off-shore islands in New Zealand, which lead 
to extensive and cascading effects on island soil saprophytic 
communities accompanied by significant decrease in popula-
tions of enchytraeids, bacterivore nematodes, rotifers, and 
collembolans [40]. Such results exhibit that alien species as 
predators can indirectly induce strong shifts in soil micro-
biome through disruption in several trophic levels and local 
interaction pathways in soil.

Pollution

Soil is a tremendously complex environment that provides 
food, water, shelter, and air to the organisms inhabiting. Due 
to this property, pollutants that end up in the soil can have 
immediate effects on soil biodiversity [44]. Soil pollutants 
that are commonly seen are pesticides, heavy metals, high 
salt concentrations, oils, and fertilizers. Pollutants at a large 
range can end up in soil via varied routes like atmospheric 
fall, through waste disposal, industrial activities, accidental 
oil spills, and can have a far-reaching impact on the soil 
functioning.

Widespread pollutants as heavy metals [metal with a 
density ≥ of 5 g  cm−3] are linked to toxicity and pollution. 
Heavy metals like copper, iron, and zinc are important for 
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the physiological functioning of microbes to a given limit 
or else they become toxic, when present in high concentra-
tions and their contamination leads to a decline in microbial 
biomass while enriching the heavy metal resistant microbial 
populations [97]. Amongst these, copper is reported to be 
one of the most common soil contaminants that can alter 
the community structure of many organisms like bacteria, 
archaea, and fungi [20] as it affects the various cellular 
enzymes and the proteins that are involved in the energy 
metabolism [144].

Agrochemicals like herbicides, insecticides, and chemi-
cal fertilizers are often used prudently, but still found to 
adversely affect the soil microbiome [92]. These chemicals 
are often applied to the field directly or sprayed on the soil 
strata and are hazardous for the non-targeted soil-borne 
organisms, which are assumed beneficial or commensal 
[103, 110]. Over 95% of the applied herbicides and 98% 
of insecticides influence the non-targeted soil organisms 
and soil, which unfavorably affects the soil microcosms 
involving, soil microscopic fauna in field networks and 
soil biological system [58, 60, 85]. Correspondingly, a few 
investigations have stated that various pesticides quell soil 
enzymatic activities, which ultimately influence the nutrient 
status of soil.

Acid rain and overloading of nutrients

Acid rain is a mixture of both wet and dry material depo-
sition from the atmosphere containing a higher amount of 
sulfuric and nitric acids. It mainly works by increasing soil 
acidity, affecting the microbes like bacteria and fungi, which 
further disrupt the organic matter transformed into nutrient 
forms. Among mesofauna, Collembolans and mites are sen-
sitive to high acidity [146], while others such as enchytraeids 
are more resilient to high acidity. Communities of earth-
worms especially like Eisenia fetida are also affected by 
the soil acidification because earthworm do not survive at 
very acidic pH; instead, they need a continuous calcium 
supply. The change in pH is inversely proportional to the 
concentration of ionized calcium [75]. By directly decreas-
ing the soil pH, acid rain helps in increasing the count of 
acid-tolerant soil fauna and vice versa. This in totality alters 
the soil microbiome [146] in conjunction with an increase 
in the soil bulk density thereby decreasing the movability 
and availability of  H2O/O2, which further modifies the soil 
microbiome and affects the soil's ecological function and 
processes. Acid rain also has negative effects on the plants, 
e.g., by increasing the soil acidity, aluminum is allowed to 
get solubilized and its free organic form which is toxic to 
the plant roots, which subsequently locks up phosphate and 
meanwhile starts reducing the concentrations of the essential 
plant nutrients. However, it is seen that in such case, ecto-
mycorrhizal fungal species present on the root surfaces of 

some trees help them with the supply of soluble calcium to 
the soil that are subjected to acid rains [108].

Soil globally receive nutrients in different ways, either 
through natural processes or human activities, although 
human activities produced a large number of nutrients, e.g., 
P and  N2 inputs are exceptionally high via agricultural lands 
due to the application of fertilizers. A significant plant com-
munity shift is observed over time in non-agricultural soil 
due to the excessive addition of nutrients. Nutrient flooding 
leads to change in the soil pH and shifts the carbon dynamics 
belowground due to changes in amounts and types of organic 
carbon, derived from plants and litter that are mineralized to 
carbon dioxides via microbial activities [108]. When soil are 
 N2 or P amended or overloaded, the abundance of mycor-
rhizal fungal taxa usually declines and the growth of cyano-
bacterial taxa is inhibited [108]. One of the direct impacts of 
nutrient overloading on soil microbiome includes a reduc-
tion in the relative abundance of nitrogen-fixing bacteria and 
an increase in the taxa responsible for denitrification or nitri-
fication process [108]. In general, addition of nutrients tends 
to encourage the taxa that have high demands for  N2 and 
P and shift bacterial and fungal communities due to these 
cascading effects, thereby affecting the soil food web. This 
elevated nutrient soil profile is also known to impact the soil 
C cycle as it is generally observed that the decomposition of 
organic matter via microbes is lowered down when nitrogen 
is used as an amendment in soil. This is accompanied with 
a decline in the size of soil microbial biomass; however, the 
responses differ throughout different sites.

Given the myriad connections among plants and subter-
ranean biota, one of the essential mechanisms through which 
nutrient alterations impact soil microbiome is by changing 
plant production and plant network types [113]. For instance, 
the addition of nutrients often supports the growth of weedy 
plants, which is one of the producers of high-quality litter, 
inhibiting the growth of microbial taxa that are specialized 
in the decomposition of recalcitrant litter affecting the soil 
micro and mesofauna in various ways.

Intensive agriculture practices

Effects of agriculture on soil microbiome are highly variable 
depending on the management system adopted. For instance, 
there are two types of agricultural systems—low input sys-
tem or farming utilizes internal resources and tries to mini-
mize the use of production inputs like purchased organic 
fertilizers and other is high input systems and utilizes huge 
equipment and commercial fertilizers, mostly for monocul-
ture plantations using the conventional pattern often known 
as farming systems which utilize the synthetic fertilizers [11, 
78]. A significant reduction in soil community diversity is 
generally observed in highly managed systems, while the 
diversity is mostly conserved in the lower input systems 
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[37]. For example, the soil microfaunal, mesofaunal, and 
fungal community diversity is severely affected by the con-
version of native forests to rubber monoculture plantations 
[133, 137]. Monocultures as rubber, palm, or even maize 
are generally accompanied by a progressive increase in soil 
bulk density and suffer from soil compaction in the top layer 
of soil. This affects the microbial community, which in turn 
were to be predated upon by soil micro- and mesofauna like 
protists and nematodes. Physical disturbance in soil due to 
compaction reduces niche availability for several microar-
thropods, annelids, and others soil dwellers, and this might 
further reduce the soil microbiome abundances [79, 99]. 
Monocultures seem to favor fast-growing fungal phyla like 
Ascomycota, and slow-growing fungal groups belonging 
to Basidiomycota seem to be adversely affected by physi-
ochemical changes in the monocultures. As with these high 
input systems, there is more soil disturbance, soil manage-
ment practices dictate removal of leaf litter and roots, and 
regular application of fertilizers and pesticide might cause 
a perturbation of soil, negatively affecting slow growers like 
Basidiomycota [137]. Bacterial pathways are more favored 
in the high input systems ruled by the opportunistic bacte-
rial feeding nematodes; on the contrary, low-input systems 
indulge fungal pathways dominated by the fungal feeding 
fauna-like termites. Protists are also negatively affected by 
the conversion of the rain forest to other plantations, whereas 
there is an increase in bacterial diversity [12, 124, 127]. 
Abundance of root-associated microbiota such as arbuscular 
mycorrhizal fungi [AM] as well as their network connectiv-
ity tends to be drastically affected by intense agricultural 
practices and is more preserved under low input systems 
such as organic farming [8].

A significant alteration in the soil, especially linked to 
soil structure, soil organic content, water-holding capacity, 
and porosity, causes soil tillage. The influence of tillage on 
the soil microbiome is highly variable, dependent on the 
soil characteristics and the type of tillage system [80]. There 
are three main tillage systems known- conventional tillage, 
i.e., plowing that breaks down the soil thereby destroying 
the soil structure and burying the crop residues, causing the 
most significant impact on soil-dwelling organisms [125]. 
The second type is the minimum tillage system, i.e., char-
acterized by a reduction in tillage area and the last one is 
the no-tillage system, where the soil surface is relatively 
undisturbed and providing a comparatively stable habitat. It 
is seen that bacteria are more favored by conventional tillage 
systems, which in turn expect protists also to be favored as 
bacteria are their main source of food [156]. Collembolans 
are generally inhibited due to disturbances created by tillage 
depending on the type of environment and contrary mites 
showcase a wide range and more severe responses [16, 21, 
70]. A study revealed that intensive agriculture is responsi-
ble for a reduction in soil biodiversity across Europe. In the 

study, four agricultural regions across Europe were exam-
ined for the effect of land-use intensity formulated based on 
structural diversity among the groups along with the body 
mass of the soil fauna. It was found that the species richness 
of collembolans, earthworms, and orbatid mites was affected 
negatively with increasing land-use intensity due to the sig-
nificant effect of food web diversity [141].

Climate change

A long-term change in the average weather patterns or ‘cli-
mate change’ can have long-term effects on the soil micro-
biome and biodiversity. Temperature,  CO2 level, and soil 
moisture content can be altered by climate change, thereby 
influencing soil biodiversity [51]. Climate change impacts 
the networking between the soil microbiome, by influencing 
its stability with different ecosystems behaving differently 
to each stimulus [63]; for example, under soil warming, the 
soil microbial populations increase by 40 -150% [63, 129].

There are various responses that soil microbiome uses to 
survive with the environmental conditions that are drasti-
cally changing, few of them are-

• Elevated CO2 [eCO2]—Many studies have reported the 
microbiome shifts with  eCO2 [63, 77]. A regional scale 
study in Australian grasslands showed that the microbial 
diversity [archaea, bacteria, and fungi] was significantly 
influenced by eCO2 over some time when exposed to 
[ambient + 550 ppm] concentrations of atmospheric CO2 
and higher temperatures [ambient + 2 °C] [53]. Changes 
in functions performed by soil microbiome under eCO2 
could be analyzed through quantification of the gene 
abundances in the metagenomes particularly genes 
responsible for decomposition, nitrogen fixation [63]. It 
is also very essential to understand how vital environ-
mental factors like temperature, nutrients, and precipita-
tion interacts with  eCO2 and this can help forecast the 
response of soil microbiome to  eCO2.

• Increased temperature- Depending upon the biome, the 
response of high temperature varies on the soil micro-
biome. For example, warming effects on soil biodiver-
sity show weaker responses in arid ecosystems, whereas 
in the Arctic regions the responses are quite prominent 
accompanied by a significant increase in the soil popu-
lations [131]. In grassland communities, a small incre-
ment in temperature has a clear impact on soil fauna 
participating in root growth [108]. Studies even revealed 
that warming has a striking influence on the soil fungal 
communities under different systems, causing either sup-
pression or stimulation of fungal biomass and its activ-
ity considering the difference in vegetation and the soil 
moisture [2, 3, 17, 96]. As for bacteria, members from 
Acidobacteria and Actinobacteria were found to be in 
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higher proportions as compared to other bacterial phyla 
due to soil warming effects [123]. Although many models 
on climate predict that an increase in soil respiration and 
decrease in soil storage is found to have positive feedback 
as a result of warming, but is largely dependent on the 
ecosystems [39, 54].

• Permafrost thaw- Permafrost thaw of the Arctic soil is 
the most severe outcome of global warming. On Earth, 
around 20% of the terrestrial surface is occupied by per-
mafrost soil, which is the vast reservoir of carbon that 
will represent the future allocation of carbon from the 
biosphere to the atmosphere [57]. The common feature of 
permafrost thaw is a change in soil moisture that largely 
manages the soil microbial activity [76]. Despite the 
indifferent conditions, permafrost is known to harbor 
a huge range of microbiota and especially prokaryotes 
and fungi with elevated functional diversity along with 
a huge number of unknown taxa [4, 38]. Few studies 
suggest that the response of microbial communities is 
significantly affected by the rise in temperature, which 
ultimately leads to change in ecosystem functioning [87]. 
Several metagenomic studies disclosed that the structure 
of the microbial community and functional capabilities in 
permafrost are different from those present in the active 
layer as compared to the permafrost microbiome that 
changes rapidly upon thawing [87, 104].

• Drought- In mesic grasslands, droughts are considered 
to be the main outcome of climate change [19]. The ris-
ing drought conditions are anticipating in the decreasing 
microbial functions, which are essential for the sustain-
ability of ecosystems. Drought can endure high impacts 
on the soil microbiome in grassland ecosystems, due to 
the shift in vegetation to more drought-tolerant plant spe-
cies and their consequent preference for various root-
associated microbes [32, 105]. Both bacterial and fungal 
networks respond differently to drought, in which bacte-
rial networks were observed to be strongly impacted by 
drought over fungal networks, which may be due to their 
ability to tolerate a broad range of environmental condi-
tions [26].

Challenges and prospects in unboxing 
the black box of soil microbiome

We have seen exceptional advances and insights into the 
understanding of the soil microbiome in the last decade, 
driven by improvements in the NGS technologies. This aug-
mented understanding of soil microbiome research is accom-
panied by a wealth of data, which has led us to understand 
microbial communities like never before, including their 
interactions and effects in soil, with recent studies even try-
ing to explore and predict these microbial networks at global 

scales [49, 88]. Despite the great progress achieved in elu-
cidating the taxonomical diversity, their application in soil 
ecology remains tough. First, many of the biogeochemical 
processes are not the product of a single metabolic pathway 
but the product of multiple interconnected pathways that can 
be carried out by a wide range of taxa [112]. Second, the 
large number of individual genes like 16S and 18S rRNA 
and functional genes from dormant microscopic organisms 
may startle efforts to link functional processes to specific 
soil microbiome. Third, there are methodological concerns 
associated with linking specific taxa to particular metabolic 
processes; these consist of difficulties with accurate gene 
annotation [126], and the rapid turnover of transcripts, 
proteins, and metabolites [64]. Fourth, sequencing-based 
methodologies, which are extensively used to enumerate 
the abundances of taxa or functional genes in soil usually, 
offer mostly information about the relative abundances of 
taxa or genes and not their absolute abundances. Different 
taxa, genes, and their products are likely to be associated 
with different soil processes, and to examine this, different 
approaches are used to examine or to quantify the given set 
of gene responsible for that particular function [46]. And 
even if there is a direct relationship between the taxon and 
the process of interest, there is a need to understand the envi-
ronmental constraints responsible for the taxa of interest. 
For instance, definite bacterial methane oxidizers can have 
different substrate affinities, in any event, when they become 
under controlled laboratory conditions [71].

In order to fine tune the understanding of this process, it 
is necessary to emphasize on each of these points result in 
much better understanding of the field and scope in future 
for numerous applications. It is attempted to narrow down 
approaches which could fine tune the efforts in exploring and 
understanding the soil microbiome efficiently.

As per the globally accepted standards for the soil micro-
biome field conceptualized in 2020 [5] by National Insti-
tute for Biological Standards and Control [NIBSC] for gut 
microbiome analysis by next-generation sequencing, this 
would potentially improve development of methods, reduce 
and check submissions of inaccurate findings, and allow for 
effective exchange of results among peers, globally. Further-
more, standards can open up inventions in the soil microbi-
ome turf, as they disprove the obligation for everyone to use 
the same protocol as long as users corroborate their protocol 
with respect to the global standards [22].

Identification of interlinks between the diverse soil micro-
biome and their functional capabilities has always been dif-
ficult as only a small fraction of the soil-inhabiting taxa 
can be cultivated in the laboratories, where investigative 
experiments yielding detailed results can be obtained. This 
could be resolved by several methods like qPCR, amplicon 
sequencing, metagenomics, metabarcoding, and metatran-
scriptomics. Extensive efforts put into culturable isolation 
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of soil microbes which are more responsive to cultivation 
especially from particular niches [91]. Genome sequencing 
and characterization of such isolates would be much easier 
and would provide much better insights in conjunction with 
the metagenomics data to answer pertinent ecological ques-
tions. Secondly, setting of simulated simplified microbiome 
experiments of much complex natural environments and 
studying them through the help of “OMICS” would yield 
insightful results and a better understanding of the problem. 
This could help us in manipulating the soil network to a 
lower level of complexity that is much easier to compre-
hend and might help us in observing the big picture [1]. 
This in conjunction with the metagenomic data of the origi-
nal microbiome could help foresee the functional capacities 
of respective microbes and their role in the different bio-
processes and ultimately toward the ecosystem functioning 
[115, 117]. Thirdly, development of functional annotation 
techniques instead of amplicon based sequencing which can 
only determine relative abundances of taxa or genes and not 
their absolute abundances without any knowledge of func-
tional profiles in the studied environments [23].

Amplicon-based sequencing of marker genes [16S rDNA, 
18S rDNA, or ITS regions] have always been plagued by 
insufficient taxonomic resolutions due to inability of the 
present sequencing to sequence the whole gene. New long-
read sequencing technologies like PacBio circular consensus 
sequencing and loop genomics synthetic long-read sequenc-
ing technology [sFL16S] can sequence the entire marker 
gene such as 16S rRNA gene [14, 65]. These techniques 
could overcome the microbial misidentification caused by 
previous approach’s inability to sequence the whole marker 
gene and could correctly classified to the sub-species clades 
[14, 65]. These techniques could in turn generate high qual-
ity sequences from the unculturable environmental organ-
isms, which can then help in developing robust databases 
including such environmental sequences. This would even-
tually reduce hitches where a huge extent of bacterial and 
archaeal taxa found in soil have taxonomic marker gene 
sequences that do not match to those found in reference 
databases [119].

Conclusion

There is no deficiency of information gaps that limit our 
comprehension of the soil microbiome and their respec-
tive roles in the soil environment. Indeed, even an answer 
to an inquiry as straightforward as 'what is the normal age 
time of soil microbes?' stays obscure. The nature, composi-
tion and complexity of soil microbiome and its interaction 

with other biotic and abiotic components are the key for 
future research applications. These applications include soil 
analytical studies for crop improvement, in agriculture and 
ecological studies for eco-restoration as well as geological 
studies for different types of land use pattern. There is no 
deficiency of information gaps that limit our comprehen-
sion of the soil microbiome and their respective roles in 
the soil environment. There are huge number of developing 
methodologies that can be and are being utilized to addition-
ally investigate the phylogenetic and functional jobs of the 
soil biota. Harnessing this perspective of the soil biota and 
microbiome could possibly provide us with replies that can 
deliver us innovative solutions for present environmental 
challenges. Understanding the soil biodiversity at the level 
of taxonomic and functional attributes and its collective net-
working with the ecosystem functions is of utmost impor-
tance. For instance, to check the imbalances in soil and for 
monitoring soil quality, soil biodiversity should be consid-
ered as one of the key indicators. More efforts must be given 
toward developing management practices that will benefit 
soil biodiversity and resulting in improved restoration strate-
gies. More specific, durable, and accurate technologies and 
methods are required to be developed for analyzing the soil 
microbiome and understanding the unknown facts about 
microbe–material interaction in soil.
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