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Abstract
Toxic cyanobacterial blooms represent a natural phenomenon caused by a mass proliferation of photosynthetic prokaryotic 
microorganisms in water environments. Bloom events have been increasingly reported worldwide and their occurrence can 
pose serious threats to aquatic organisms and human health. In this study, we assessed the microbial composition, with a 
focus on Cyanobacteria, in Lake Varese, a eutrophic lake located in northern Italy. Water samples were collected and used 
for obtaining a 16S-based taxonomic profile and performing a shotgun sequencing analysis. The phyla found to exhibit the 
greatest relative abundance in the lake included Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota. In the 
epilimnion and at 2.5 × Secchi depth, Cyanobacteria were found to be more abundant compared to the low levels detected at 
greater depths. The blooms appear to be dominated mainly by the species Lyngbya robusta, and a specific functional profile 
was identified, suggesting that distinct metabolic processes characterized the bacterial population along the water column. 
Finally, analysis of the shotgun data also indicated the presence of a large and diverse phage population.
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Introduction

Cyanobacteria are photosynthetic bacteria that are mostly 
found in freshwater systems. Due to their long evolution-
ary history, they have adapted to climatic, geochemical and 
anthropogenic changes. They have a key role in geochemical 
cycles together with picoplankton and other microorganisms 

belonging to the microbial loop and are also involved in 
maintaining the environmental balance and the biodiversity 
of microorganisms. The increasing anthropogenic eutrophi-
cation and climate changes are contributing to the intense 
proliferation of Cyanobacteria in waterbodies, resulting in 
bloom formations [1]. Global warming is expected to inten-
sify this phenomenon; indeed, the predicted increase in air 
and water temperature and the frequent rainfall events alter-
nated with longer periods of drought may favour the water 
stratification in waterbodies and the dominance of cyanobac-
terial blooms [2]. The dynamics of bloom events are not yet 
fully understood; however, it is generally accepted that exter-
nal factors, such as water temperature, nutrient loading and 
light intensity, can influence the potential of their occurrence 
[1]. In addition to environmental elements, biotic interac-
tions between Cyanobacteria and heterotrophic bacteria may 
also influence the bloom dynamics [3, 4]. These microbial 
interactions are still little explored but seem to play posi-
tive (e.g. nutrient exchange, including vitamins) or negative 
roles (e.g. cyanolytic properties) in the cyanobacterial pro-
liferation [5–9]. For decades, scientific studies were mainly 
restricted to addressing the influence of physico-chemical 
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parameters (e.g. nutrients, pH and temperature) on the 
blooms without focusing on variations in the composition 
of the microbial community during a bloom outbreak. Gen-
erally, Cyanobacteria grow faster at high temperature deter-
mining a cyanobacterial dominance in temperate waterbod-
ies where the vertical stratification, one of the main physical 
parameters, is intensified, leading to the occurrence of algal 
bloom events [10–13]. Phosphorus (P) and nitrogen (N) are 
also considered among the main factors responsible for the 
cyanobacterial proliferation [14, 15]. Indeed, eutrophica-
tion can result in algal bloom formations with a consequent 
increase in water turbidity and odour problems caused by the 
decomposition of algae. During a bloom, Cyanobacteria can 
also produce harmful toxins that can render water unsafe, 
cause fish mortality and affect human health [1]. Consid-
ering the ecological, economical and human health nega-
tive impacts of cyanobacterial blooms, their monitoring is 
crucial for an effective lake management, wherefore several 
predictive models have been already developed for forecast-
ing cyanobacterial blooms in waterbodies [16]. Advances in 
sequencing technologies applied to environmental samples 
have improved our knowledge on the taxonomic composi-
tion of cyanobacterial communities, providing information 
on their relative abundance and their functional profile [17]. 
To date, many studies have been performed on Cyanobac-
teria using 16S sequencing with the aim to investigate the 
microbial community associated with blooms and factors 
promoting these events [18–23].

In this study, we used a sequencing approach to character-
ize the microbial community composition, with a focus on 
Cyanobacteria, in the Lake Varese (Italy) during two bloom 
events which occurred in two consecutive years. Lake Varese 
is considered one of the first and most evident examples of 
eutrophication in Europe [24]. The eutrophication process, 
in this lake, accelerated in the 1950s and was mainly caused 
by urban development and fertilization practices in agri-
culture. Initially classified as hypertrophic lake, following 
remedial actions aimed at reducing the P loading, Lake Var-
ese is now in eutrophic status with bloom events occurring 
every year during the summer and early autumn [24–26]. 
Phytoplankton studies in Lake Varese were carried out only 
occasionally and first analyses revealed summer blooms 
associated with many genera of Cyanobacteria such as 
Oscillatoria, Anabaena, Aphanizomenon, Gomphosphaeria, 
Leptolyngbya and Microcystis [27–29]. However, a metagen-
omic approach has been never used before for providing a 
more comprehensive understanding on the composition of 
the microbial community in this lake. Information on the 
vertical distribution of bacteria and their functional profiles 
along the water column during blooms in Lake Varese is still 
missing. During summer 1997, a toxic algal bloom reported 
in this lake was characterized by the presence of a filamen-
tous cyanobacterium, Planktothrix spp. FP1 strain, found to 

be responsible for the production of potent neurotoxins caus-
ing the human syndrome paralytic shellfish poisoning (PSP) 
[30]. Here, we present the first assessment of the microbial 
community composition in Lake Varese during cyanobacte-
rial bloom events that occurred in the years 2016 and 2017, 
using a metagenomic approach. We also looked at the func-
tional profile associated to the bacterial populations detected 
at the different water depths.

Materials and Methods

Study Area

Lake Varese (45°49′N; 8°44′E) is situated in northern Italy 
at the feet of the Alps mountain range at a mean altitude 
of 236 m above sea level (Fig. 1). It is a warm monomictic 
and eutrophic shallow lake, with a mean depth of 11 m, a 
maximum depth of 26 m, a surface area of 14.8  km2 and a 
theoretical renewal time of 1.7–1.9 years [25, 31].

Sample Collection and Processing

Water collection was performed in Lake Varese at coordi-
nates 45°49′0.738N/008°43′0.190E, corresponding to the 
deepest region of the lake with a maximum depth of 26 m, 
and indicated in Fig. 1 by a red dot. The collected samples 
were stored in thermic containers for the transport to labo-
ratory facilities and immediately prepared for downstream 
analysis. To evaluate the dynamics of the microbial commu-
nity in the lake, sampling campaigns were carried out mainly 
during the summer period and on a weekly basis, during two 
consecutive years (from 31 August to 5 October in 2016 and 
from 19 July to 4 October in 2017). Water samples were 
taken at 3 different water column depths: 0.5 m from surface 
(Epi depth, E), 13 m (Meso depth, M) and 2.5 times the 
Secchi disk depth (named in the paper as S). The euphotic 
depth was determined as 2.5 times the Secchi disk depth or 
the region where photosynthetically active radiation (PAR) 
was larger than 1% of the radiation determined immediately 
below the water surface. E samples represent the region with 
the highest oxygen and radiation exposure and M samples 
refer to the near anoxic region, where temperature and radia-
tion are low. Secchi disk depth was determined using a Sec-
chi disk. Part of the campaigns was performed by the depart-
ment of the Regional Environmental Protection Agency of 
Lombardia (ARPA) which kindly provided us data and water 
samples for analysis.

Vertical profiles measuring physico-chemical param-
eters including pH, conductivity (CD), oxidation–reduc-
tion potential (ORP), PAR, dissolved oxygen (DO), oxygen 
saturation (OS) and water temperature (WT) were collected 
using a multi-parametric probe (Hydrolab DS5, Corr-Tek).

Metagenomics Analysis to Investigate the Microbial Communities and Their Functional Profile… 851



Chlorophyll a, Cyanotoxins Analysis and Water 
Chemistry

A volume of 500 mL and 1 L of each water sample was 
filtered by GF/C membranes (Whatman) for chlorophyll a 
(Chla) analysis. Filter membranes were folded, protected 
from light and stored at − 20 °C for a maximum of 1 day. 
For spectrophotometric analysis, 14 mL of methanol was 
added to each filter and samples were boiled at 70 °C for 
near 5 min (for the extraction of Chla) and centrifuged for 
7 min at 3500 rpm as described in [32], with slight modifi-
cations. The optical density (OD) was measured at 665 nm 
and 750 nm. Chla content was determined by the following 
equation [32]:

where v is the added volume of methanol, d is the dilution 
factor (when applicable), P is the cuvette path in centimetres 
and V is the filtered water sample in litres.

Cyanotoxins concentrations (Microcystins, MCs; 
Saxitoxi, SX; and Anatoxin, AX) were quantified by 
enzyme-linked immunosorbent assay (ELISA) technique. 
Water samples were stored in glass vials at − 20 °C until 
analysis. Toxins quantification was performed using 
commercial kits (Abraxis, USA) according to supplier’s 
instructions.

Nutrients in the JRC laboratory were analysed with 
a Dionex ion chromatography system consisting of two 

Chla(�g∕L) = [13.9 ∗ (OD665nm − OD750nm) ∗ v ∗ d]∕P ∗ V

pre-column-column-suppresser systems followed by 
electrochemical detection  (NO3

− limit of detection_
LOD = 0.049 mg/L, limit of quantification_LOQ = 0.086 mg/L; 
 NH 4

+ LOD = 0 .02   mg/L,  LOQ = 0 .02   mg/L; 
 SO4

2− LOD = 0.002  mg/L, LOQ = 0.004  mg/L; total P_
LOD = 0.05  mg/L) [33]. The analytical columns used 
were, for the cations, an IonPac CS15 with a guard col-
umn IonPac CG15 (column temperature of 45 °C) and, 
for the anions, an IonPac AS9 and a guard column IonPac 
AG9 (column temperature of 25 °C). The ion suppresser 
after the column increases the sensitivity by lowering the 
background noise. The solvent eluents (kept under Helium 
pressure — 6 bars — to eliminate oxygen) were methane-
sulfonic acid (20 mM) for the cations, and  Na2CO3 (9 mM) 
for the anions, and a flow of 0.3 mL/min at approx. 1000 
psi. Injection volume was 25 µL or 10 µL. In the BO labora-
tory, total P was measured according to the internal method 
MI-122 rev 8 2015. The method is based on the property 
of orthophosphate ions to react in an acidic environment 
with molybdate and antimonyl ions to form a phospho-anti-
monyl-molybdate reducible by ascorbic acid; the reduced 
heteropolyacid, containing hexa and tetravalent molybde-
num, is soluble and shows a characteristic blue color: the 
final photometric determination is carried out at 800 nm. 
Organic phosphorus must be previously transformed into 
orthophosphate by hot oxidation with persulphate. The 
determination of the P concentration is performed through 
the use of the LCK 349 cuvette test (Hach Lange).

Fig. 1  Location of the Lake 
Varese and lake bathym-
etry. The red dot in the 
figure indicates the deep-
est region of the lake where 
the samples were collected 
(45°49′.738N/008°43′.190E). 
The red circle in the upper map 
indicates the location where the 
Lake Varese is situated
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DNA Extraction

For DNA extraction, aliquots of 250 mL or 500 mL of 
water were filtered through 0.22 µm nitrocellulose fil-
ter membranes (GSWP, Whatman). Filters were stored 
at − 20  °C (or − 80  °C for longer storage) until use. 
DNA extraction was performed according to the proto-
col described in Kisand et al. [34] except for the lyticase 
incubation. Briefly, each frozen filter was thawed, incu-
bated in 5 mL of 50 mM  KH2PO4 buffer (pH 7.5) and 
shaken overnight (160 rpm) at 4 °C. The following day, 
the  KH2PO4 buffer was recovered and filters were trans-
ferred to a tube with 3 mL of fresh 50 mM  KH2PO4 to 
be sonicated at 60 °C for a total of 15 min. Filters were 
discarded, and sonicated and not sonicated buffers were 
pulled together and then shaken for 3 h at 30 °C with 533 
µL lysozyme (100 mg/mL in DEPC water, Sigma Aldrich) 
and 7.7 µL β-mercaptoethanol (Sigma-Aldrich). Samples 
were frozen at − 20 °C, thawed and centrifuged at 4 °C for 
20 min at 14.000 rpm. The DNA was extracted using the 
DNeasy blood and tissue kit (Qiagen) following the man-
ufacturer’s instructions. DNA was quantified by meas-
urements with both Nanodrop and Qubit (Thermofisher). 
DNA concentrations measured with the two instruments 
ranged from 18.6 to 48.6 ng/µL (Nanodrop) and from 13.7 
to 48.8 ng/µL (Qubit). Purified DNA samples were sub-
jected to 16S sequencing and shotgun analysis.

16S and Shotgun Sample Preparation 
and Sequencing

16S amplicons and total community genomic DNA were 
sequenced at Cemet GmbH (Tubingen, Germany). 16S 
V3–V4 amplicons were generated from 10 ng of DNA 
using forward primer S-D-Bact-0341-b-S-17 (5′-CCT 
ACG GGNGGC WGC AG-3′) and reverse primer S-D-
Bact-0785-a-A-21 (5′-GAC TAC HVGGG TAT CTA ATC 
C-3′) [35]. Only for the 2016 16S samples, two inde-
pendent extractions and amplifications were carried out 
to explore variability of technical replicates. Library 
generation was performed according to the recommen-
dations given by Illumina. Amplicons were sequenced 
as 2 × 250 bp read pairs on an Illumina Miseq instrument 
using MiSeq Reagent Kit v2. A minimum of 22,000 read 
pairs were generated per 16S samples. Shotgun genomic 
data was generated as 2 × 100 bp read pairs (2016 dataset) 
and 2 × 150 bp read pairs (2017 dataset) on an Illumina 
HiSeq instrument. An overview on shotgun read num-
bers and filtering is provided in Supplementary Online 
resource 1: Supplemental Table S1. Library preparation 
was performed according to the Illumina Nextera XT 
protocol.

16S and Shotgun Data Analysis

16S Data For the 16S data, after removal of primers, the 
read pairs were initially filtered by trimmomatic v0.38 [36] 
applying a minimum length-cutoff of 245 bp and a mini-
mum average (Avg) quality values of 30. Read pairs were 
then combined into complete amplicon using FLASH v2.0 
[37]. The resulting merged read pairs were then filtered 
omitting sequences shorter than 350 nucleotides. Average 
overall length of merged read pairs was 413.5 (median 412), 
minimum 351 and maximum 480 (Online resource 1: Sup-
plemental Table S2).

16S amplicons were then rarefied to 22,000 merged read 
pair sequences using usearch [38] and clustered into opera-
tional taxonomy unit (OTUs) at 97% sequence identity. 
Taxonomic assignment was then performed using the 
usearch SINTAX algorithm [39] against the GTDB [40] 
release95 ssRNA archaea and bacteria database (https:// 
data. ace. uq. edu. au/ public/ gtdb/ data/ relea ses/ relea se95/ 
95.0/). OTUs clustering and heatmaps were generated 
using the heatmap.2 function in ggplot2 (CRAN reposi-
tory: https:// cran.r- proje ct. org/ web/ packa ges/ ggplo t2/ 
index. html) from the R language (https:// www.r- proje ct. 
org/ found ation/). Clustering was performed with heat-
map.2 default parameters (complete agglomeration using 
the Euclidean measure to obtain a distance matrix). For 
bubble plots displaying the relative abundance of the 16S 
amplicons from the 2016 samples, values were averaged 
across the two replicates.

Shotgun Data Shotgun read pairs were filtered with trim-
momatic v0.38 [36] applying a minimum length-cutoff of 
90 bp (2016 dataset) and 140 bp (2017 dataset) and a mini-
mum Avg quality value of 28. Reads were filtered by trim-
momatic as pairs in order to allow also running Kraken2 [41] 
for taxonomic binning in paired read mode using a pre-com-
piled version Kraken2 format of the GTDB database avail-
able at https:// bridg es. monash. edu/ proje cts/ Metag enomi cs_ 
Index_ Corre ction/ 65534. Assembly of shotgun read pairs 
into contigs was performed with MegaHit v1.2.9 using 
default parameters [42]. For each sample, the set of contigs 
obtained by MegaHit with length ≥ 5000 was confronted 
with a BLASTN database containing contigs from all other 
samples. Examination of the BLASTN search results was 
performed filtering out matches with ≥ 99% sequence iden-
tity and with a match length covering at least 50% of the 
query contig. MegaHit reports a multiplicity value for each 
contig representing the average coverage by reads for each 
contig. In order to normalize for the total number of read 
pairs in each sample, multiplicity values of the BLASTN hits 
selected with the above criteria were adjusted accordingly. 
All contigs obtained were also confronted with a BLASTN 
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database containing all GTDB genomes filtering out matches 
with at least 90% identity over 10,000 nucleotides.

Functional annotation of shotgun reads was performed, 
due to limited computing resources, on 2 million randomly 
selected reads from each sample using DIAMOND [43] and 
the bacterial subsection of the NCBI nr database. Results 
from DIAMOND were then imported into MEGAN6 CE 
[44] and analysed using the SEED database [45]. In par-
ticular, variations in relative abundances associated to gen-
eral pathways or to specific metabolic functions have been 
investigated using the SEED subsystems level 1 and level 
2, respectively. Level 1 subsystems describe a specific bio-
logical process (similar to a pathway) or structural complex 
while level 2 subsystems describe the individual components 
of the level 1 process.

Reliability of read pair assignment to the Lyngbya robusta 
species by Kraken2 was estimated in the following way: the 
Lyngbya robusta (Limnoraphis robusta CS-951) genome 
assembly GCF_000972705.2 (ASM97270v2) was down-
loaded from NCBI, and the genome assembly contigs were 
merged into one contiguous sequence (7,314,117 nucleo-
tides) and converted into a BLASTN database. Sequences 
of read pairs that had been assigned to Lyngbya robusta in 
the Kraken2 output files were extracted and assembled with 
MegaHit. The resulting contigs were then confronted with 
the BLASTN Lyngbya robusta database. A custom-written 
perl script then filtered the BLASTN output accepting, for 
each match start position, only the hit with the highest per-
cent identity. In addition, the script also collected all regions 
of the merged Lyngbya robusta genome assembly that were 
covered by hits from the MegaHit contigs.

To prepare contigs for a MetaBat2 [46] analysis, all shot-
gun read pairs from the 2017 E samples were assembled 
with MegaHit and read pairs from the individual samples 
were aligned to the assembled contigs using bowtie2 [47]. 
Resulting bam files were then processed with MetaBat2 
obtaining binned contigs. The same procedure (bowtie2 
mapping and MetaBat2 binning) was then applied also to the 
shotgun data from the 2017 S and M samples and separately, 
to all 2016 samples. MegaHit analysis of all 2016 and 2017 
(or only 2017) shotgun samples together was not possible 
due to limiting (memory) computing resources. Details of 
all MetaBat2 are available in Online resource 2: file var-
eselake_2.xlsx. N50 values provided indicate the length 
of that contig within the bin where about 50% of the com-
plete bin length is covered, after ordering the contigs from 
longest to shortest. Assignment of MetaBat2 bins to known 
GTDB genomes/genome assemblies was then performed 
with BLASTN accepting hits of at least 1500 nucleotides 
with at least 90% identity. Completeness of MetaBat2 bins 
was performed with checkm [48] and further annotation of 

bins was performed with GTDBtk [49]. Estimate of phage 
content of the MetaBat2 bins was done with virsorter2 [50].

Network co-occurrence was performed with Cytoscape 
[51] and Conet [52] using the Kraken2 results from the 2017 
shotgun data at the genus level.

All processing was performed on a workstation with one 
Xeon CPU (8 hyper-threads) and 48 Gb RAM.

Redundancy Analysis

The Canoco 5 version [53] was used to run the analysis. 
Data were compositional with a gradient 2.1 SD units long, 
so linear method was preferred. Data from 16S sequenc-
ing were log-transformed and the taxa which relative abun-
dance was > 1% were selected. Both axes were significant 
when p < 0.05.

Results

Physico‑Chemical and Inorganic Chemical 
Parameters

In 2016 and 2017, six and eight sampling campaigns were 
performed at Lake Varese, respectively. During the 2016 
study period, the 2.5 × Secchi depth (S), which is a good 
proxy to estimate the euphotic depth, varied between 7.6 and 
13 m (see Table 1). Range and Avg of the physico-chemical 
parameters measured during the sampling campaigns (WT, 
CD, DO, OS, PAR, ORP and pH) are reported in Table 1.

Generally, a uniform physico-chemical pattern was 
observed across all three depths during the sampling period. 
At the greatest depth (M), WT showed lower values com-
pared to an Avg temperature of 22.7 °C recorded at the sur-
face (E) and the CD was minimum at the surface (242 µS/
cm at 25 °C) and maximum at the M depth (323 µS/cm at 
25 °C). In the selected study period, the water column was 
stratified as evidenced by the DO levels measured at the 
different depths. The OS was observed to decrease along 
the water column, with values always equal to 0% at the M 
depth and PAR showed a fluctuation particularly at E depth 
(Online resource 1: Supplemental Table S3). The pH was 
generally alkaline with highest values around 8 measured 
at E depth. Similar values for physico-chemical parameters 
were observed in 2017 (see Table 1 and Online resource 1: 
Supplemental Table S4). No measurements were performed 
on 19/7/2017 and 26/7/2017 due to technical problems with 
the probe. Nutrients were also measured in Lake Varese: 
levels for nitrate were below the LOD (LOD = 0.049 mg/L) 
in most of the samples analysed, ammonia was less pre-
sent in the surface but more abundant in the anoxic bottom 
(0.3–0.8 mg/L) and, in September 2016, total P ranged from 
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0.06 to 0.26 mg/L at E depth (Online resource 1: Supple-
mental Table S5).

Chlorophyll a and Cyanotoxins Analysis

Chla concentration was found to be generally higher in 
both E and S than M depth (Fig. 2a, Table 1 and Online 
resource 1: Supplemental Table S6). In 2016, the highest 
Chla levels, exceeding the value of 14 µg/L, were observed 
in S samples, while Chla analysis at E depth revealed a peak 
value close to 13 µg/L on the 21st of September (Fig. 2a 
and Online resource 1: Supplemental Table S6). During the 
2017 campaign, Chla content observed in the epilimnion 
was alternately higher or lower than the concentrations 
detected at S depth (Fig. 2a and Online resource 1: Supple-
mental Table S7). Peak values were reported on 2/8/2017 
(M), 9/8/2017 (E) and 30/8/2017 (S) (Fig. 2a and Online 
resource 1: Supplemental Table S7).

In 2016, levels of the cyanotoxins MCs, SX and AX 
were measured by ELISA in raw water samples, reveal-
ing the intra- and extracellular amount that was present in 
water at the time of sampling. MCs content exceeded the 

value of 0.35 µg/L only on the 21st of September in both E 
(0.40 µg/L) and S samples (0.46 µg/L) (Fig. 2b). In all other 
sampling dates, MCs concentration was higher in E samples 
than in M and S samples, with values ranging from 0.26 to 
0.40 µg/L (Fig. 2b).

SX concentration was below the detectable level 
(< 0.020 µg/L) in most of the samples analysed (data not 
shown). A low SX content was detected in only two sam-
ples found positive and corresponding to the E samples 
collected on 14th (0.021  µg/L) and 28th of September 
(0.020 µg/L). No AX levels were detected during the cam-
paigns (LOD = 0.1 µg/L, data not shown).

16S Analysis

Community Composition of Main Phyla

Microbial community composition was analysed by 16S 
sequencing in water samples collected during the two 
sampling campaigns (2016 and 2017) at the three differ-
ent depths: E (0.5 m), S and M (13 m) (the M depth cor-
responded to the S depth on 31/8/2016 and 5/10/2016). To 

Fig. 2  Chlorophyll a (Chla) and 
total Microcystins (MCs) con-
tent in raw samples collected in 
Lake Varese. a Chla concentra-
tions, in µg/L, measured during 
the sampling dates (x axis) at 
the surface (E), 2.5 × Secchi 
disk depth (S) and 13 m depth 
(M). b Total MCs content meas-
ured by ELISA and detected 
across the study period (dates 
reported on the x axis) at the 
surface (E), 2.5 × Secchi disk 
depth (S) and 13 m depth (M). 
Results are expressed as means 
of three replicates and standard 
deviation bars are indicated for 
each sampling point
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assess the variation in the microbial community in Lake Var-
ese, a first global and unbiased view was obtained by clus-
tering OTUs [54] counts (Online resource 1: Supplemental 
Fig. S1) from samples collected during the two sampling 
campaigns. Four main clusters were readily visible: cluster 
1 present in all samples, clusters 2 and 4 present in M and 
some S samples and cluster 3 present in E and S samples 
(Online resource 1: Supplemental Fig. S1). A closer inspec-
tion of the taxonomies (phylum level) present in each clus-
ter did however not reveal dominant phyla. In addition, the 
analysis also indicated the high reproducibility of replicate 
samples collected during 2016.

Taxonomic binning was then obtained by randomly 
choosing 22,000 amplicons from each sample, clustering 
amplicons into OTUs at 97% sequence identity and assign-
ing taxonomies through application of the usearch Sintax 
algorithm [39]. Rarefaction analysis of OTUs indicated 
an essentially complete overview on the community com-
plexity for all the samples (Online resource 1: Supplemen-
tal Fig. S2). Highest diversity was present in the 2016 M 
samples, while 2017 E samples showed lowest complexity 
(Online resource 1: Supplemental Fig. S2).

Microbial Community Structure Based on 16S Amplicons

Between 84 and 95% of OTUs were successfully assigned 
at the phylum level, revealing an overall relatively constant 
profile, with some fluctuations across samples and seasons. 
Taxonomic analysis at phylum level showed that, in most 
of the samples, Proteobacteria was the predominant taxo-
nomic group followed by Actinobacteriota, Cyanobacteria 
and Bacteroidota (Online resource 1: Supplemental Fig. S3). 
A unique peak of Bdellovibrionota, a bacterial predator pre-
sent in lakes [55], was found in one of the 2016 S samples 
(Online resource 1: Supplemental Fig. S3). Proteobacteria 
dominated the profile in all E and M samples collected in 
both 2016 and 2017. In the dataset 2016, Cyanobacteria 
showed lower abundance in M samples compared to the 
other two depths and were found to be the most abundant 
community in S samples collected during three sampling 
campaigns in September 2016 (7/9/2016, 14/9/2016 and 
28/9/2016) (Online resource 1: Supplemental Fig. S3). In 
the same month, the cyanobacterial relative abundance at 
E depth exceeded the value recorded at S depth only on the 
21st of September. That abundance was found to be above 
all the cyanobacterial content observed in 2016 at E depth. 
Metagenomic data from 2017 suggested that Lake Varese 
experienced a continuous cyanobacterial bloom during the 
study period, as also confirmed by the visual inspection. In 
datasets 2016 and 2017, the phylum Desulfobacterota was 
identified at percentages above 1% in all 2016 M samples 
and in three S samples (28/9/2016, 9/8/2017 and 4/10/2017) 
(Online resource 1: Supplemental Fig. S3).

At the genus level, the fraction of OTUs assigned to a 
specific taxonomy varied considerably, with values from 
only 20 up to 60%, thus providing only a partial snapshot of 
a more detailed taxonomic composition. As expected, fluctu-
ations in the profile were much more pronounced compared 
to data at phylum level, both between seasons and between 
samples obtained at different depths. Planktophila, Fonsi-
bacter and Nanopelagicus, three of the most ubiquitous and 
abundant freshwater bacterial genera, showed great variabil-
ity at the three different depths with E samples usually show-
ing the highest levels detected among all samples (Fig. 3). 
Analyses at the genus level allowed to more precisely char-
acterize the unique peak of Bdellovibrionota observed at the 
phylum level in the dataset 2016 (Supplemental Fig. S3), 
as belonging to the genera Silvanigrella (Fig. 3), accord-
ing to the GTDB database classification. Microcystis was 
detected at very low levels in all samples (Fig. 3). In this 
study, the cyanobacterial phylum was mainly represented 
by the genus Limnoraphis (also known as Lyngbya), which 
is described to form blooms in freshwater environments [56, 
57] (Fig. 3). Methanotrophs and methylotrophs like Methy-
lomonas, Methylobacter and Methylopumilus were also 
detected (Fig. 3).

To verify how environmental variables affect taxa distri-
bution derived from 16S sequencing analysis, a redundancy 
analysis (RDA) was carried out (Fig. 4). RDA summarizes 
part of the variation in taxa composition explained by envi-
ronmental variables. The first two axes in both RDAs were 
significant (p < 0.05) and they explained 80% of cumulative 
variations and 97% of fitted cumulative variation. It means 
that the selected environmental variables well explain the 
species distribution.

Surface water layers (E and S) were characterized by 
higher temperature, pH, ORP and OS than the M layer, 
where only CD was high. These parameters all correlated 
well with the positive side of the first axis in 2016 and with 
the negative side of the first axis in 2017. Most of the taxa 
were significantly correlated with the environmental param-
eters, either directly or indirectly. Only Planctomycetota and 
Verrucomicrobiota in 2016, and Proteobacteria in 2017 did 
not have significant correlations.

Shotgun Metagenomics

Microbial Community Structure Based on Shotgun Data

Using the Kraken2 algorithm in combination with the 
GTDB release89 database, between 14 and 29% of the 
shotgun reads, analysed as read pairs, could be classified 
at the phylum level, reproducing relatively well the profile 
obtained by the 16S data. Supplemental Fig. S4 (Online 
resource 1) shows the phylum level analysis of the shotgun 
reads. Shown values represent, for each taxa, the relative 
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Fig. 3  Community composition at the genus level as determined from 
the 16S data. The community composition is shown for all the water 
samples collected during the sampling period in Lake Varese at the 
three different depths (Epi (E), 0.5 m; 2.5 × Secchi (S) and Meso (M), 
13 m). Samples were sequenced for 16S rRNA (V3–V4 region) and 
analysed at the genus level. Secchi depths were measured at each 

site using a Secchi disk and values multiplied by 2.5. The M depth 
corresponded to the S depth on 31/8/2016 and 5/10/2016. For 2016 
replicate samples, the average value is shown. Circles shown repre-
sent percent values within the fraction of taxonomy assigned shotgun 
sequences (circles shown at the top right of the figure represent exam-
ple percent values)

Fig. 4  Redundancy analysis (RDA) of the 16S data 2016 and 2017 
at phylum level. RDA triplot with 16S taxa (solid lines) with abun-
dance > 1%, environmental variables (dotted lines) and samples col-
lected from August 31st, 2016, to October 5th, 2016 (a), and from 
August 2nd, 2017, to October 4th, 2017 (b). Black circles are samples 
from the Meso layers, diamonds are samples from the 2.5 × Secchi 
layers, black squares are samples from the Epi layers. Abbreviations 
of environmental variables are as follow: pH, conductivity (CD), oxi-

dation reduction potential (ORP), oxygen saturation (OS) and water 
temperature (WT). Abbreviations of taxa are as follow: Actinobacte-
riota (Act), Bacteroidota (Bac), Bdellovibrionota_B (Bde.B), Chloro-
flexota (Chl), Cyanobacteria (Cya), Desulfobacterota (Des.Ba), Des-
ulfuromonadota (Des.mo.), Firmicutes_A (Fir.A), Patescibacteria 
(Pat), Planctomycetota (Pla), Proteobacteria (Pro), Verrucomicrobiota 
(Ver)
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abundance (percentage) with respect to all shotgun reads 
for which a phylum level classification had been obtained. 
In the E samples, the 2016 results indicate highest levels 
of Cyanobacteria on 14/9/2016 and 21/9/2016 (in the 16S 
data, the peak at E depth was on 21/9/2016, Online resource 
1: Supplemental Fig. S3), while for S samples, a peak in 
cyanobacterial content was registered on 14/9/2016 (Online 
resource 1: Supplemental Fig. S4) and shotgun data con-
firmed the low levels of Cyanobacteria in the M region. Like 
for the 16S data, in 2017, the cyanobacterial abundance in 
the epilimnion suggested a continuous bloom from July to 
August, showing a drop starting from September as sug-
gested from visual inspection. The low presence of Cyano-
bacteria at the M depth was also confirmed in 2017. In both 
the 2016 and 2017 dataset, some variations of the overall 
microbial composition were also observed for Proteobacte-
ria and Actinobacteriota (Online resource 1: Supplemental 
Fig. S4). The absence of the Bdellovibrionota peak reported 
in 16S analysis could be due to the fact that a partial Silvani-
grella genome assembly (GCA_014281055 NCBI Genome 
database) has only been generated very recently.

At the genus and species level, only a small fraction 
of shotgun reads, less than 5% could be classified thus 
allowing only a very limited view into the complexity of 
the bacterial community at this level. However, at least 
at the qualitative level, some additional information was 
extracted. Lyngbya was the dominant cyanobacterial 

genera with Lyngbya robusta (Limnoraphis robusta) being 
the most abundant species (Fig. 5 and Fig. 6). This spe-
cies was already observed in other lake bloom events [58, 
59]. Microcystis was generally present at low level in 2017 
(Fig. 5) and genera like Synechococcus and Snowella were 
also detected in our samples. Planktophila, Fonsibacter 
and Nanopelagicus were among the most abundant bacte-
rial genera detected at E depth across all samples (Fig. 5). 
Analyses at species level revealed that the occurrence of 
these genera was mainly attributed to the species Plankt-
ophila vernalis, Fonsibacter ubiquis and Nanopelagicus 
sp001437855 (Fig. 6). Sequences corresponding to Sul-
furitalea hydrogenivorans, a sulphur-oxidizing species 
previously isolated from stratified freshwater lakes [60], 
were found to be generally greater in the mesolimnion 
compared to the other depths (Fig. 5 and Fig. 6). OTUs 
belonging to Thiodictyon syntrophicum [61], another spe-
cies involved in sulphur oxidation, were also identified 
in both M and S samples (Fig. 5 and Fig. 6), as well as 
Chlorobium which is a photoautotrophic sulphur oxidizer 
(Fig. 5 and Fig. 6). This is consistent with the negative 
ORP values and anoxia at the bottom of the lake (Online 
resource 1: Supplemental Tables S3 and S4) which could 
allow the biological production of reduced species of sul-
phur from oxidized species as sulphate (Online resource 
1: Supplemental Table S5), available for the metabolism 
of autotrophic sulphur oxidizers.

Fig. 5  Community composition 
at the genus level as deter-
mined from the shotgun data. 
The community composition 
is shown for all water samples 
collected during the sampling 
period in Lake Varese at the 
three different depths (Epi (E), 
0.5 m; 2.5 × Secchi (S) and 
Meso (M), 13 m). Samples were 
analysed for shotgun sequenc-
ing. The figure shows variations 
in the microbial community 
at the genus level. Secchi 
depths were measured at each 
site using a Secchi disk and 
values multiplied by 2.5. The 
M depth corresponded to the 
S depth on 31/8/2016. Circles 
shown represent percent values 
within the fraction of taxonomy 
assigned shotgun sequences 
(circles shown at the top right 
of the figure represent example 
percent values)
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To complement the taxonomy-focused Kraken2 analysis, 
shotgun read pairs from all individual samples were submit-
ted to MegaHit for contig assembly. Maximal length and 
total number of the assembled contigs varied considerably 
between samples (maximal length from 42,318 to 821,984, 
number of contigs from 63,170 to 475,171) (Online resource 
1: Supplemental Table S8). Presence of highly similar con-
tigs (longer than 5000 nucleotides, 99% sequence identity, 
match longer than 50% of query length) across all sam-
ples was then examined with BLAST searches (Online 
resource 1: Supplemental Table S9). Putative assignment 
of contigs to known GTDB genomes was also performed 
through a BLAST search (Online resource 1: Supplemental 
Table S10). Contigs matching the Lyngbya robusta genome 
(Limnoraphis robusta CS-951; NZ_LATL02000001.1; 
assembly GCF_000972705.2) were detected in many sam-
ples with the highest estimated abundance (MegaHit contig 
coverage) in the 30/8/2017 E sample, like in the Kraken2 
analysis (Online resource 1: Supplemental Table S9). For the 
2016 samples, with a lower number of read pairs, no contig 
with length > 10,000 nucleotides and a sequence similarity 
higher than 90% to Lyngbya robusta was detected.

An additional analysis was then performed with all read 
pair sequences that were assigned to Lyngbya robusta by 
Kraken2. The read sequences were subjected to a MegaHit 
assembly run and the resulting contigs (Online resource 
1: Supplemental Table S11; 2124 contigs with length 
200 to 78,260, N50 14,006 and total length 7,208,187 
nucleotides) were confronted with the GTDB genome 

database. A large portion of the contigs matched to Lyng-
bya robusta assembly as the best hit, with generally high 
sequence identity values (Online resource 1: Supplemental 
Table S11). All these results indicated that the Kraken2 
taxonomy assignment, although most likely not perfect and 
less reliable at the lower ranks, had correctly identified a 
Lyngbya species closely related to Lyngbya robusta.

Finally, shotgun read pairs from the 2017 E, 2017 M 
and S and from the 2016 E, M and S samples were ana-
lysed with MetaBat2. Out of the 114 bins obtained for the 
2017 E samples, only a small portion (total of 30) could 
be related to GTDB genomes (Online resource 1: Supple-
mental Table S12). The best annotated bin corresponded 
again to Lyngbya robusta (Limnoraphis robusta) with an 
estimated completeness of 98% (obtained by checkm) and 
an overall nucleotide identity of 96.35% determined by 
GTDBtk (Online resource 2). Instead, for the 2016 sam-
ples, Lyngbya robusta (Limnoraphis robusta) was present 
only with low relative abundance (Online resource 1: Sup-
plemental Table S13 and Online resource 2).

A final analysis using virsorter2 revealed that a large 
portion of the sample metagenomes, in particular Meta-
Bat2 bins with a relatively small overall length, are rep-
resented by phages (Online resource 1: Supplemental 
Tables S12 and S13), often corresponding to MetaBat2 
bins with the highest relative abundance values. Complete 
results are available in Online resource 2. However, com-
parison of the “phage bins” with known phage sequences 

Fig. 6  Community composition 
at the species level as deter-
mined from the shotgun data. 
The figure shows variations in 
the microbial community at the 
species level. For details, refer 
to the legend of Fig. 5
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using DIAMOND did not allow to more precisely identify 
their taxonomy (Online resource 2).

Functional Profile

Functional profiling of the shotgun samples, obtained by a 
DIAMOND blastx search against the bacterial subsection of 
the NCBI nr database and MEGAN6 mapping to the SEED 
database [62], showed, at the SEED level 1, an overall rather 
constant profile during the 2016 and 2017 seasons (Online 
resource 1: Supplemental Fig. S5).

Instead, changes in the composition of metabolic func-
tions occurred at the SEED level 2 (Fig. 7). In particular, the 
low cyanobacterial levels observed at the M depths (Online 
resource 1: Supplemental Fig. S4) appear to be associated 
with a distinct functional profile compared to samples col-
lected at E and S depths. Only two S samples (27/9/2017 and 
4/10/2017) followed a similar pattern as M samples, prob-
ably due to the high sampling depth (8.75 and 11 m, respec-
tively). Samples collected at E depth showed no marked 
differences in their functional profiles compared to most of 
the S samples (Fig. 7).

Looking at the M pattern, most of the metabolic functions 
were little represented at this water depth compared to the E 
and S regions. One abundant function at M depth, less pro-
nounced compared to the other profiles, involves diguanylate 
cyclase phosphodiesterase (DGC-PDE) domains (GGDEF 
& EAL) comprising a PAS/PAC sensor. Previous studies 
have described the role of DGC’s in cyclic dimeric GMP 
(c-di-GMP) synthesis [63], a second messenger implicated 

in regulating different processes in bacteria (e.g. biofilm 
formation and virulence etc.) and its hydrolysis is mediated 
by phosphodiesterase (PDEs) [63]. In Cyanobacteria, high 
levels of intracellular c-di-GMP have been associated to a 
reduced cellular buoyancy [64]. Tuckerman et al. described 
a DGC protein controlled by oxygen in Escherichia coli 
[65]. Oxygen, as a pivotal ligand, was also found in Ace-
tobacter xylinum by Chang et al. [66] as a switch off for 
cellulose synthesis in biofilm production as well as in the 
pathogen Bordetella pertussis with a similar function [67]. 
It is likely that the modulated expression of the DGC/PDE 
activity observed at the different water depths influences 
the cyanobacterial distribution in the water column or the 
activation of biofilm production in an oxygen scarce environ-
ment such as the M depth. Only a few reads matched genes 
related to the photosystem II process (e.g. photosystem II 
protein D1; see Fig. 7) and the highest relative abundance 
was identified in reads assigned to the periplasmic nitrate 
reductase (Nap) precursor, to the CoB-CoM heterodisulfide 
reductase subunit A (HdrA) and sulphate permease (SulP) 
activities. Nap is a protein expressed only in Proteobacteria 
[68], the predominant phylum at all depths, and its activity 
is associated to the reduction of nitrate [69–71], while the 
modulation in the CoB-CoM HdrA and SulP may indicate 
a role in methanogenesis and sulphate reduction activities, 
respectively [72].

Furthermore, examination of the Lyngbya robusta 
genome annotation revealed an extended region compris-
ing nitrogenase and nitrogen-fixing genes conserved in the 

Fig. 7  Functional profile (SEED level 2) of the microbial commu-
nity (shotgun samples). A representation of the SEED level 2 func-
tional profiles as determined by MEGAN6 from DIAMOND blastx 
searches. Circles shown are proportional to the number of matches 

against the indicated SEED level 2 class. The figure shows the SEED 
functions with more than 2000 matches across all samples and with 
an at least threefold difference between the maximum and minimum 
values observed. E stands for Epi, M for Meso and S for 2.5 × Secchi
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MetaBat2 bin closely related to Lyngbya robusta (Online 
resource 1: Supplemental Table S14).

Discussion

The aim of this study was to investigate the microbial 
community composition in Lake Varese and temporal 
and spatial changes during the bloom events, captured in 
the sampling campaigns performed in 2016 and 2017. In 
2016, metagenomics 16S analysis revealed that major dif-
ferences in the bacterial community composition during 
the study period were concentrated more in the S depth 
area compared to the E and M zones. Cyanobacteria were 
highly abundant particularly in the surface layers (E and 
S depths), with low levels recorded in M samples, as con-
firmed as well by the RDA analysis (Fig. 4 and Online 
resource 1: Supplemental Fig. S3 and S4). Indeed, the vis-
ual inspection of the water during the sampling campaign 
indicated that the bloom was characterized by a green dis-
coloration of the water due to large growth of cyanobacte-
ria and it was very dense. These data would then suggest 
that Cyanobacteria were likely responsible for the bloom 
and the Chla peak observed in September 2016 (Fig. 2a). 
However, a complementary 18S metagenomics sequencing 
and a microscopy analysis would be recommended in order 
to discard a possible contribution of phototrophic eukary-
otes during blooms in 2016 and 2017. A complementary 
analysis of the shotgun data using plant sequence data did 
not reveal a significant presence of algae (data not shown).

Looking at the community composition, the 16S 
metagenomic analysis revealed that Actinobacteriota, Pro-
teobacteria, Bacteroidota and Verrucomicrobiota were the 
four phyla also dominating the community profile at all the 
three depths (Online resource 1: Supplemental Fig. S3) in 
accordance with the reported presence of bacteria belong-
ing to these phyla in the bloom community [73–77]. In 
2017, oscillations in cyanobacterial abundance and their 
visual observation in water indicate that Lake Varese expe-
rienced a continuous cyanobacterial bloom until a reduc-
tion starting from September. The microbial community 
observed at the three water depths was dominated by the 
same phyla already detected in 2016 (Proteobacteria, Act-
inobacteriota, Cyanobacteria and Bacteroidota). 16S data 
showed that the cyanobacterial abundance in 2017 was 
confined to the epilimnion (Supplemental Fig. S3) and in 
the RDA analyses, cyanobacteria were more correlated 
to surface samples (E depth) showing higher values for 
the physico-chemical parameters OS, WT and pH in 2017 
than in 2016.

Since only small changes in the microbial community 
population were observed at the M depth during the 2016 
campaigns, only one sample was analysed for 16S at this 

depth in 2017, while three samples were selected for the 
shotgun analysis. Phylum-level classification of the shot-
gun dataset for 2016 and 2017 reproduced relatively well 
the profile obtained by the 16S data. The overall differ-
ences observed in the samples are not surprising since the 
two sequencing methods are based on different methodo-
logical approaches, which can influence the data analy-
sis. Although only a small fraction of shotgun reads was 
annotated at the genus and species level, Lyngbya robusta 
was identified for the first time in Lake Varese, represent-
ing the dominant cyanobacterial species, in particular in 
the 2017 samples (Fig. 6), by direct taxonomic binning 
and through metagenomic contig assembly. Other species, 
mainly detected at E depth, included Planktophila verna-
lis, Fonsibacter ubiquis and Nanopelagicus sp001437855 
(Fig. 6). Lyngbya robusta is a species involved in nitrogen 
fixation [57, 78–80] and its blooms have been observed 
in freshwater waterbodies including Lake Atitlan (Gua-
temala) where concentrations of  NO3

− and  NH4
+ were 

indicative of a N limitation, as also observed in Lake 
Varese, where these values were found to be below the 
LOD in most of the samples analysed (Online resource 
1: Supplemental Table S5) [58]. While no reads assigned 
to the nitrogenase activity were detected by the SEED 
analysis (Fig. 7), examination of the Lyngbya robusta 
genome annotation revealed an extended region com-
prising nitrogenase and nitrogen-fixing genes conserved 
in the MetaBat2 bin closely related to Lyngbya robusta 
(Online resource 1: Supplemental Table S14). The het-
erotrophic bacteria identified in Lake Atitlan during these 
bloom phenomena included phyla also detected in Lake 
Varese such as Actinobacteria, Bacteroides, Proteobacte-
ria and Firmicutes [79] whose putative role was mainly 
associated with an increased nitrogenase activity. In the 
same lake [79], analysis of the nihF gene profile indicated 
other potential nitrogen-fixing bacteria to be present, for 
example genus Methylomonas, also reported in Fig. 3. The 
nutrient content measured in Lake Varese could explain 
the competitive advantage of Lyngbya robusta over other 
cyanobacteria species such as Microcystis, a non-diazo-
trophic cyanobacteria which use  N2-fixing cyanobacteria 
as a source of nitrogen [81]. The same mechanism could 
explain the presence in 2016/2017 samples of other non-
diazotrophic cyanobacteria like Synechococcus and Plank-
tothrix, which could be also dominant or co-dominant with 
nitrogen-fixing cyanobacteria [82–85]. Like these genera, 
Microcystis can be just as abundant as  N2-fixing cyanobac-
teria under N-limited conditions [86, 87]. In the shotgun 
analysis, values of relative abundance observed on some 
dates in 2016 at E depth were similar between Lyngbya 
and Microcystis, while in 2017, very low levels of Micro-
cystis were detected in most of the samples (Fig. 5). In 
the literature, there is no evidence showing that Lyngbya 
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robusta is a MCs-producer cyanobacterium. Their produc-
tion most likely involve the genus Microcystis which is a 
well-known producer of these toxins [1] and has been also 
detected in the shotgun data (Fig. 5). Other cyanobacteria 
like Planktothrix could contribute to the MCs production 
[1]. Planktothrix was previously identified in Lake Varese 
during a bloom event [30] and was also found in the shot-
gun analysis (at the genus and species level), although at 
very low levels of relative abundance (< 1%).

The functional profile of the microbial community 
showed that during the two annual campaigns, most of the 
E and S samples had a similar abundance of reads assigned 
to the different biological processes (Fig. 7). Lack of marked 
changes in functional genes was probably due to the lim-
ited variations in taxonomic composition of the bacterial 
community at the higher taxonomic ranks. However, a spe-
cific pattern was found to be associated with all M samples 
analysed and two S samples (27/9/2017 and 4/10/2017) 
collected at high depth (8.75 and 11 m, respectively). The 
functional profile identified in these samples may reflect 
a community composition characterized by low levels of 
Cyanobacteria. A low relative abundance of reads assigned 
to the photosystem II process (photosystem II protein D1; 
see Fig. 7) is notable in M and some S samples and can be 
explained by the low representativeness of Cyanobacteria at 
high water depths where light radiation is scarce.

The high relative abundance of genes involved in the Nap 
precursor activity (Fig. 7), which is associated to the reduc-
tion of nitrate during nitrate respiration [69–71], could be 
due to the selective presence of the Nap protein in Proteo-
bacteria [68], a phylum highly present at M depth, and by the 
lack of oxygen detected in the mesolimnion (Table 1, Fig. 7, 
Online resource 1: Supplemental Tables S3 and S4, Supple-
mental Fig. S4). In addition, the presence of ammonia up to 
0.831 mg/L in the M anoxic environment (Online resource 
1: Supplemental Table S5) supports nitrate reduction. The 
relative abundance of reads assigned to the CoB-CoM HdrA 
activity was observed to be high at M depth (Fig. 7) and 
may indicate methanogenesis functions even though Archaea 
have not been identified through shotgun. Although Hdr 
has been detected only in methanogenes [72], homologous 
proteins show a widespread distribution and the “bacterial 
heterosulfide” Dsrc has been detected in Desulfovibrio spp. 
[88]. In this study, Desulfovibrio spp. (classified under the 
phylum Desulfobacterota) were found in high abundance at 
M depth (Online resource 1: Supplemental Fig. S3) where 
oxygen was absent, and negative values for the ORP were 
found (Online resource 1: Supplemental Table S3). Des-
ulfobacterota are anaerobic bacteria which gain energy by 
sulphate reduction or sulphur disproportionation [89, 90]. 
Interestingly, an activity which is highly represented in all 
M samples and can be related to the sulphate reduction pro-
cess involves the SulP family (Fig. 7), found to be active in 

Desulfobacterota [91]. In this functional mechanism, sul-
phate has to be imported inside the cell and then activated 
with adenosine triphosphate (ATP) in order to be reduced 
to sulphide by the sulphate respiratory pathway [92]. In the 
shotgun datasets, reads corresponding to sulphur-oxidizing 
bacteria, Sulfuritalea hydrogenivorans, Thiodictyon syn-
trophicum and Chlorobium, were also detected (Fig. 6). 
Thiodictyon spp. were already found throughout the anoxic 
zones of water column in a freshwater lake [93], and the 
strain Sulfuritalea hydrogenivorans sk43H was identified in 
stratified lakes [60]. Sulfuritalea hydrogenivorans, the major 
planktonic sulphur oxidizer detected at M depth, is faculta-
tively anaerobic but an autotrophic growth is also observed 
under anoxic condition in which hydrogen, elemental sul-
phur and thiosulphate are used as electron donor, and nitrate 
as electron acceptor [94]. Moreover, the genus Sulfuritalea 
is known to express the dsrA gene encoding dissimilatory 
sulphite reductase [95]. We also detected methanotrophs and 
methylotrophs (Methylomonas, Methylobacter and Methyl-
opumilus) in our samples, which are bacteria that use meth-
ane and single carbon compounds (i.e. methanol), respec-
tively, as energy source [96].

Overall, the results of this study reveal the potential of 
high-throughput sequencing (HTS) in obtaining a snapshot 
of the bacterial community structure, only partially inves-
tigated during previous studies performed in Lake Varese, 
providing more details regarding the temporal and spatial 
modulations during bloom events. In particular, the HTS 
approach allowed to identify for the first time Lyngbya 
robusta as the cyanobacterial species mainly responsible for 
the bloom. Further analyses aimed at correlating the relative 
abundance of cyanobacteria obtained by HTS with absolute 
quantitative data from microscopy analysis (or from other 
techniques like quantitative Polymerase Chain Reaction) will 
be necessary to confirm Lyngbya robusta as the most abun-
dant species in this lake.

In addition, more investigations will be required to 
elucidate the relationships between Lyngbya robusta and 
cyanobacterial-associated or free-living communities of 
heterotrophic bacteria in this lake, including the possible 
contribution of the observed modulations in microbial func-
tional profiles to the Lyngbya robusta bloom. In order to 
better understand the role of heterotrophic bacteria in the 
dynamics of cyanobacterial blooms, several studies have 
adopted a co-culture system, which however is not fully 
representative of the natural environment [7, 8, 97, 98]. The 
co-occurrence of heterotrophic bacteria and prokaryotic phy-
toplankton at species level is difficult to assess and compare 
to other studies since it is well known that only a relatively 
small amount of 16S or shotgun data at the species level 
can be taxonomically classified. For what concerns phy-
toplankton, comparison of shotgun reads (using Kraken2) 
with the Genbank plant section, diatom genomes and green 
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algae genomes, allowed only a very low fraction of reads 
(< 0.1%) to be classified as phytoplankton. However, we can-
not a priori exclude its presence because the analysis might 
be biassed by a still very sparse level of genome sequence 
information concerning these organisms. Samples for a 
complementary microscopy analysis are unfortunately not 
available but might have indicated how deep the shotgun 
approach can provide a snapshot of the complete commu-
nity, with presently available genome sequence informa-
tion. For bacteria, co-occurrence network analysis (Online 
resource 1: Supplemental Fig. S6) of the 2017 Epilimnion 
genus level data (genera with ≥ 1% relative abundance) 
indicates a single positive interaction between Lyngbya and 
Limnohabitans and both positive and negative interactions 
between Microcystis and a number of poorly characterized 
genera. At 2.5 × Secchi depth (genera with ≥ 1% relative 
abundance), the interaction network is more complex with 
both Lyngbya and Microcystis involved in numerous positive 
and negative interactions (Online resource 1: Supplemen-
tal Fig. S6). Evidence of heterotrophic bacteria degrading 
microcystin are reported by Christoffersen et al. [99] with-
out presenting analysis of phylogeny, while their role in the 
production and degradation of Microcystis cyanopeptides is 
reported by Briand et al. [100] including a phylum micro-
bial classification. At the genus level, some heterotrophic 
bacteria present with low (< 1%) relative abundance in our 
analysis have been shown to enhance (e.g. Flavobacterium 
and Pseudomonas) but also inhibit (e.g. Flavobacterium) 
Microcystis growth while Pseudomonas has been described 
to have a cyanolytic capacity [101]. While our results have 
revealed a metagenome with a highly complex composition, 
including significant amounts of phages, they also show that 
a large portion of the metagenome still remains unclassi-
fied, even at higher taxonomic ranks, due to the presently 
still limited number of complete (or nearly complete) bac-
terial genomes and genome assemblies. From these results, 
it appears that also phages, with a rapidly growing number 
of known genomes [102], should be included in standard 
shotgun analysis methods such as Kraken2. We also identi-
fied for the first time a specific functional profile at M depth 
and, less frequently, in S samples suggesting that distinct 
metabolic processes characterize the bacterial community 
along the water column in Lake Varese. In particular, we 
observed that, among the modulated pathways, sulphur and 
nitrogen cycles are active processes in this lake, particu-
larly in the M zone, characterized by poor or null oxygen 
content. In conclusion, the genetic and functional profile of 
the microbial community together with other components of 
the microbiome, and data on water nutrients and pollutants 
content could provide a more solid ground to understand the 
bloom dynamics, and later on, to contribute to the modelling 
studies for earlier prediction.
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