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Abstract
The world is constantly facing threats, including the emergence of new pathogens and antibiotic resistance among extant 
pathogens, which is a matter of concern. Therefore, the need for natural and effective sources of drugs is inevitable. The 
ancient and pristine ecosystems of caves contain a unique microbial world and could provide a possible source of anti-
microbial metabolites. The association between humans and caves is as old as human history itself. Historically, cave 
environments have been used to treat patients with respiratory tract infections, which is referred to as speleotherapy. 
Today, the pristine environment of caves that comprise a poorly explored microbial world is a potential source of antimi-
crobial and anticancer drugs. Oligotrophic conditions in caves enhance the competition among microbial communities, 
and unique antimicrobial agents may be used in this competition. This review suggests that the world needs a novel and 
effective source of drug discovery. Therefore, being the emerging spot of modern human civilization, caves could play a 
crucial role in the current medical crisis, and cave microorganisms may have the potential to produce novel antimicrobial 
and anticancer drugs.
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Introduction

Globalization and amplified movement, mainly air travel, 
have increased the ease of disease transmission locally 
and among continents. The recent Zika virus outbreak 
in the United States of America (USA), for instance, has 
been ascribed to the upsurge in air travel from infected 
areas to Brazil airports, spreading both the incidence and 

geographic range of the virus. There is still no treatment 
for Zika virus infection or its associated diseases [1]. In 
2003, the outbreak of severe acute respiratory syndrome 
(SARS) in more than 20 countries and the recurrent Ebola 
outbreak in Central Africa showed that a new and existing 
disease could quickly become a substantial international 
health crisis [2]. Similarly, the Middle East respiratory 
syndrome coronavirus (MERS-CoV) has been reported in 
dromedaries in many countries of the Middle East, Africa, 
and South Asia. As a whole, 27 countries in the Mid-
dle East, Europe, North Africa, America, and Asia have 
reported MERS-CoV cases since 2012, causing 858 deaths 
[3]. Between 2012 and 30 June 2018, 2229 laboratory-
confirmed cases of MERS-CoV infection were reported, 
with 83% of the cases occurring in the Kingdom of Saudi 
Arabia [4].

Similarly, the ongoing coronavirus disease 2019 (COVID-
19) pandemic has been likened to a bulldozer, capable of 
causing widespread severe illness and deaths with terrify-
ing speed and affecting individuals without discrimination 
[5]. Although some drugs and vaccines, including Pfizer, 
Moderna, Sinopharm, and Sinovac, have been introduced 
or are under investigation, there is no definite treatment 
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for COVID-19. In short, there is no standard treatment for 
COVID-19 infection, and supportive treatment is the only 
strategy. The emergence of new pathogens have caused epi-
demics and global pandemics at different times (for example, 
the Nipah virus in Malaysia in 1998 [6], Plague in Alge-
ria and Libya in 2003 and 2009 [7], H1N1/09 virus global 
pandemic in 2009 [8], MERS-CoV in 2009 [9], Zika virus 
2015 in the Americas [10], and SARS-CoV-2 2019 global 
pandemic [9]) and posed major threats to public health, 
the economy, tourism, and trade. At present, COVID-19 
has infected 216.2 million people with a total mortality of 
4.499 million (28 August 2021. https:// www. world omete rs. 
info/ coron avirus/). This has greatly negatively affected the 
world’s public health, economy, tourism, trading, and other 
aspects. Nonetheless, drug development is a key strategy to 
prevent epidemics of infectious diseases, in order to reduce 
morbidity and mortality. Most of the typical options that 
guide drug manufacturing require years of development and 
are inadequate to deal with the ongoing outbreak. Therefore, 
in the modern world, it is crucial to explore natural and more 
effective sources of drugs.

Another aspect of the public health crisis is microbial 
resistance to antibiotics. Antibiotic resistance occurs when 
microbes alter their response to drugs and adopt strategies 
to defeat drugs. Although antibiotic resistance is a natural 
phenomenon, the misuse and overuse of antibiotics could 
accelerate this process. It is estimated that 34.8 billion doses 
of antibiotics have been used by humans every year, and the 
global consumption grew by 65% from 2000 to 2015 [11]. 
In the United Kingdom alone, nearly 20% of antibiotics 
were unnecessarily prescribed. Similarly, in the USA, this 
number increased by 33% [12]. The World Health Organiza-
tion (WHO) has reported that 17% of the falsified or sub-
standard medicines are antibiotics, which further leads to 
drug resistance [4]. Current antibiotics mainly target the 
important functions of bacteria, including the synthesis of 
proteins, nucleic acids, cell walls, plasma membranes, and 
metabolic pathways. Nonetheless, bacteria can develop anti-
biotic resistance by mutating targets, pumping drugs out, 
or deactivating antibiotics [13]. According to the WHO, 
antibiotic resistance is one of the top ten threats to human 
public health. It has been estimated that by 2050, infec-
tions due to antibiotic resistance may cause 10 million 
infections every year and could impose a burden of 100 
trillion dollar to the world economy [14]. The number of 
antibiotic-resistant bacteria strains is increasing, but very 
few new antibiotics are being developed. Therefore, there 
is an urgent need for novel antibiotics in the near future to 
prevent public health crises.

The history of antibiotic development indicates a race 
between innovation and resistance. The time frame of 
the emergence and development of clinical drug resist-
ance depends on several factors, including the dosage 

of antibiotics, the recommended frequency, the sub-
therapeutic amount of antibiotics used against resistant 
microorganisms, the origin of the existing resistance 
mechanisms, and the mutation numbers [15, 16]. Micro-
bial resistance to each major class of natural and syn-
thetic antibiotics has developed from 1 to 10 years [17] 
after first approval for clinical use. Therefore, resistance 
is not a matter of “if,” but a matter of “when.” Once a 
novel antibiotic is approved for substantial clinical use, 
its lifetime begins to count down and resistant microbes 
emerge [18]. Once antibiotic-resistant germs cause infec-
tion, treatment becomes more difficult or even impos-
sible. Sometimes, infections caused by antibiotic-resist-
ant bacteria require prolonged hospitalization, further 
follow-up of doctor visits, costly and toxic alternatives, 
and more preventable deaths. Due to the use of anti-
microbial agents in the medical sector, several aspects 
of antimicrobial resistance have been published. Many 
reports refer to the development of microbes resistant 
to different antibiotics, the rate of antibiotic resistance, 
and study the minimum inhibitory concentration (MIC) 
of different drugs [19]. Antibiotics used clinically have 
a limited shelf life, which is selected for bacteria with 
intrinsic or acquired resistance mechanisms. However, 
such bacteria are not common (e.g., 1 in  108), and in the 
presence of particular antibiotics, drug-resistant bacteria 
multiply in large numbers [20].

The Centers for Disease Control (CDC) estimates that 
in the USA, 2.8 million people are infected with antibiotic-
resistant fungi or bacteria every year, and over 35,000 peo-
ple die [21]. Antibiotic-resistant bacteria can infect people 
of all ages, making antibiotic resistance one of the most 
crucial public health concerns. Several advances in medi-
cine depend on their capability to fight infections through 
the use of antibiotics, such as organ transplants, cancer 
therapy, joint replacements, and treatment of chronic dis-
eases, including asthma, diabetes, and rheumatoid arthritis 
[21]. Further emergence of microbial resistance is expected 
due to the damage to the environment caused by anthropo-
genic activities (such as glacier melting caused by global 
warming), which may unlock ancient microbes and cause 
direct infection or interact with nonpathogenic microbes, 
which may be transformed into deadly antibiotic resistant 
pathogens [22]. Our previous review concluded that the 
world should be prepared in the forms of pedagogy, vac-
cine, and antibiotics development against the emergence of 
new pathogens and antibiotics resistance war [22]. Now, the 
question is, how can we prepare for such crisis? One possi-
ble solution is to isolate natural antibiotics from the pristine 
environments, including glaciers, hydrothermal vents, deep-
sea trenches, etc., where microbes produce unique metabo-
lites to adapt to the hostile conditions. These metabolites 
can be used as antimicrobial and biomedical agents. One 
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such pristine environment is the cave ecosystems. This 
review focuses on the need for effective and reliable drugs 
and describes the cave ecosystems that were once homes 
and hospitals for prehistoric humans, and now they are 
an important potential source of biomedical and antimi-
crobial agents. In addition, how to use modern molecular 
techniques to explore the cave microbial world is discussed.

Cave ecosystems

A cave is a completely dark, natural underground hollow 
space with constant temperature, high humidity, low pres-
sure, low oxygen concentration, and a nutrients-limited 
ecosystem [23]. Caves are present worldwide in different 
geographical conditions (Fig. 1). Caves are formed by vari-
ous geological processes, such as chemical reactions of dif-
ferent compounds, rock dissolution, cave rock weathering, 
glacier melting, and corrosion of rocks by water, tectonic 
forces, atmospheric influences, microorganisms, and also by 

anthropogenic excavation [24]. Caves are divided into three 
zones based on light penetration: entrance zone, twilight 
zone, and dark zone (Fig. 2). The entrance zone is similar to 
the outside environment, with a length of approximately 5 m, 
receiving full sunlight where photosynthetic life (plants) 
exists, and the temperature varies with the outer environ-
ment. In the twilight zone, there is less light penetration with 
a length of 10 − 20 m, where photosynthetic activities halt, 
and no plants survive in this zone. The temperature remains 
constant but occasionally fluctuates with the aboveground 
weather. The dark zone is completely dark with constant 
temperature throughout the year.

There are many types of cave locations, such as aquatic 
caves, terrestrial caves (e.g., ice caves, lava caves), and sea 
caves [23, 25, 26]. Most reported caves are composed of 
limestone, gypsum, and dolomite rocks [27]. In addition 
to calcite, other interesting minerals reported in caves are 
aragonite, similar to calcium carbonate  (CaCO3), but not as 
common as  CaCO3, and mainly found in intricate needles 
called anthodites [28]. Selenite was also reported in some 

Fig. 1  Cave environments reported worldwide in different geographical locations
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caves in small concentrations [27]. Sodium and magnesium 
sulfates are also found in some cave systems [29]. Other 
minerals, including limonite, goethite, calcium nitrites, bar-
ite, celestite endellite, and attapulgite, are also found in cave 
environments [30]. The largest cave in the world is Mam-
moth Cave, which is located in Kentucky, USA. It is a lime-
stone cave that encompasses approximately 80 square miles 
and is 365 miles long (explored to date, the endpoint remains 
undiscovered). For thousands of years, water seeping from 
the limestone ceiling has formed thousands of stalactites 
[31]. Animals living in the caves have undeveloped eyes, 
long antennae, and a lack of pigment [32].

The association between humans and caves

Since the prehistoric era, caves have played a key role in 
benefiting humankind. The connection between humans and 
caves is as old as human history itself. Caves are consid-
ered significant natural resources because of their unique 
attraction, history, and their role in a healthy environment. 
Caves play an important role in groundwater flow and are 
home to threatened and endangered animals. Some caves 
also preserve sculptures of prehistoric animals and artifacts 
of early humans. Pre-historic people used caves for differ-
ent purposes, such as shelters, old sanctuaries, sources of 
water, clay, and other materials. There is some evidence that 
the first home of humankind was a cave. Parts of Austra-
lopithecines (man-like creatures) have been found in cave 

deposits in South Africa [33], and the first evidence of early 
Neanderthal humankind was found in a cave in Germany 
[34]. The Cro-Magnon people created their extraordinary 
paintings on the cave walls in France and Spain, where they 
took sanctuary during the ice age more than 10,000 years 
ago [35]. Cave ecosystems are a mystery. Researchers need 
to explore the hidden and fragile world inside caves. In the 
mountains of central Mexico, archaeologists excavated 
a cave with strong evidence that people lived in this area 
more than 30,000 years ago [36]. Recently, the remaining 
Neanderthal-like skulls and jaws parts were found inside a 
cave in Italy [37] (reported by BBC, 11 May 2021, https:// 
www. bbc. com/ news/ scien ce- envir onment- 52614 870). The 
Neanderthals lived about 40,000 years ago. From their 
remains, it is suggested that these peoples lived in the cave 
about 50,000 − 68,000 years ago. The Paleolithic paintings 
on the cave walls provide clear evidence of anthropogenic 
activities inside caves.

The Ajanta caves (consisting of 29 caves) in India were 
built in the second century BCE [38]. They are one of the 
world Heritage sites of the United Nations Educational, 
Scientific and Cultural Organization (UNESCO). These 
caves were used for religious activities and have long been 
regarded as a sacred site in India. The Mesolithic period 
witnessed the first use and modification of the early caves. 
Many rock-cut Hindu and Buddhist sculptures and paint-
ings were found in these caves, which are masterpieces of 
Buddhist religious art [39]. Caves were also used as wine 
and beer cellars because of their constant temperature. Due 

Fig. 2  Illustration of the different zones in the cave ecosystem
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to the high humidity and constant temperature throughout 
the year, people used caves as a hospital for the treatment of 
respiratory diseases [33]. In the past, caves were also used to 
celebrate rituals of passage, bury wealth, Paleolithic paint-
ings, historical landmarks, and hidden treasures hunting. 
After the evolution of civilization, people forgot the impor-
tance of caves [35]. Based on the above evidence, it can be 
suggested that early people emerged from the depths of the 
earth. In addition, there is a possibility that an entire civili-
zation lives beneath the ground in the fourth corner region. 
Caves are another world beneath this world, which can be 
called a subterranean world.

Medical perspectives of caves

The cave environment is completely different from the out-
side environment. The microenvironments and air composi-
tion in caves depend on geology, depth of the cave, annual 
mean temperature, ventilation, and cave water temperature. 
The air in the cave is characterized by high humidity, cleanli-
ness, condensed vapors, constant temperature, low salt con-
tents, rich in antibiotics (produced by mold fungi spores), 
and high self-purification potential [23]. In addition, the air 
in the cave is free from germs, dust particles, and allergens, 
which makes it the best place to treat patients with respira-
tory tract infection, a practice called speleotherapy. The air in 
caves also contains anti-inflammatory calcium, magnesium, 
and iodine ions that are most beneficial to patients with res-
piratory disease [33]. Speleotherapy is a more efficient and 
effective treatment than the sanatorium of mountains, com-
plemented with various other therapies [40]. Historically, 
many caves in Hungary have been used to treat different 

respiratory diseases. Owing to 97% humidity, 12.6 °C tem-
perature, presence of Ca ion (an anti-inflammatory agent) in 
the air of Abaliget Cave, the clinical symptoms of patients 
with respiratory diseases (e.g., asthma, allergies, and silico-
sis) were relieved. Similarly, Aggteleki Cave, Tapolca basin 
Cave (Hospital cave), Szemlohegyi Cave, and Black Hall 
Cave have been used to treat various respiratory diseases, 
including bronchitis, asthma, allergies, and other respiratory 
problems [41]. From the study of Paleolithic cave painting, 
anthropologists believe that due to the sterile conditions of 
the cave, early people used trepanning to treat patients with 
migraines, mental disorders, and epileptic seizures [42, 43]. 
In the current COVID-19 pandemic, caves could be used as 
an isolation ward. It is also possible that prehistoric people 
may have used sulfidic caves for skincare. From the medi-
cal illustrations on the cave walls, it is reasonable to believe 
that caves not only played a pivotal role in teaching but also 
played a vital role in the development of modern surgery. For 
the above reasons, caves should be considered as a school of 
science and medicine.

Discovery of drugs from cave ecosystems

It is believed that microorganisms from pristine environ-
ments, which have not been explored or have relatively 
negligible anthropogenic activities, are likely to be novel 
microbes that producing novel and unique biological com-
pounds. The unique characteristics of cave environments, 
such as complete darkness, high humidity, constant low tem-
perature, and lack of nutrients, may promote the production 
of antimicrobial (antibiotics, antifungal, and antiviral) and 
anticancer compounds (Fig. 3).
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a) Antibiotics production
  Multi-drug-resistant pathogens pose a serious threat 

to world health [44]. Most new antibiotics have been 
discovered by identifying bioactive compounds from 
traditional drugs or accidental discovery. As an impor-
tant source of bioactive compounds, microbes play a 
crucial role in the production of antibiotics. Due to the 
existence of unexplored microbial ecosystems, extreme 
pristine environments (especially cave environments) 
have attracted the attention of researchers. The lack of 
nutrients in the cave ecosystems stimulates competition 
among microbes and causes them to develop survival 
strategies, such as the secretion of metabolites (antibiot-
ics and enzymes). However, caverns could be considered 
a peerless ecosystem for the discovery of novel antibiot-
ics (Table 1).

  Owing to the high demand for the discovery of novel 
drugs, cave ecosystems have been used for more than 
30 years and remains under observation [45]. Glob-
ally, different caves have been investigated for potential 
bioactive compounds. It is suggested that novel strains 
could produce new antimicrobial compounds, and 
some bacteria have a higher potential to produce spe-
cial bioactive metabolites than other bacteria [46, 47]. 
Streptomyces belonging to Actinobacteria is known to 
produce potentially bioactive molecules containing anti-
metabolites, antibiotics, and anticancer agents. Approxi-
mately 45% of known bioactive compounds are secreted 
by Actinobacteria, of which 85% are derived from the 
Streptomyces genus [48]. The occurrence of the Strep-
tomyces genus was documented in many caves, includ-
ing the Mungkorn Tong Cave in Thailand [49], Karst 
Cave in Turkey [50], Kashmir Cave in Pakistan [28], 
Kotumsar Cave in India [51], Miroc Mountain Cave in 
Serbia [52], Helmcken Falls Cave in Canada [53, 54], a 
limestone cave in China [55], Bolshaya Cave in Russia 
[45], Azorean and Canadian volcanic caves [56], Chaabe 
Cave in Algeria [57], Iron Curtain Cave in Chilliwack, 
Canada [58], Parsik Cave in Turkey [59], and Scarisoara 
ice cave in Romania [60]. Other genera of Actinobac-
teria (Arthrobacter, Nocardia, Saccharothrix, Lentzea, 
Micrococcus, Nonomuraea, Spirillospora, Micromono-
spora, Microbacterium, Cryobacterium, and Lysinibac-
ter) were also reported in various cave environments [56, 
58, 62 − 66]. In addition to Actinobacteria, other bacte-
rial phyla such as Firmicutes, Bacteroidetes, Cyanobac-
teria, and Proteobacteria existing in cave environments 
[61, 62] have shown the potential to produce bioactive 
metabolites and have become the research hotspot for 
geo-microbiologists.

  Although the production of antimicrobial compounds 
from cavernicoles is a hot research topic, only a few 
bioactive compounds have been reported in this pristine 

environment. In most cases, the chemical properties of 
bioactive compounds secreted by specific bacteria are 
unknown. The identified bioactive compounds include 
bacteriocin such as peptides of the Bacillus licheni-
formis strain [28, 63], undecylprodigiosin of Streptomy-
ces sp. [52], cervimycins of Streptomyces tendae [64], 
xiakemycin of Streptomyces sp. [65], lipids of Toxopsis 
calypsus and Phormidium melanochroun [62], a mix-
ture of antibiotics of Streptomyces sp., Bacillus sp. and 
Bacillaceae [45], a mixture of polyene and nonpolyene 
metabolites of Streptomyces sp. and Penicillium sp. [57], 
huanglongmycin of Streptomyces sp. [65], chaxalactin B 
of Streptomyces sp. [13], diazepinomicin of Streptomy-
ces sp. [58], lanthipeptides, polymyxin B, paenicidin B, 
fusaricidin, tridecaptin, and colistin A of Paenibacillus 
[66, 67].

  The discovery of novel bioactive compounds empha-
sizes the significance of caves and other pristine envi-
ronments in the development of novel antibiotics. Bac-
teria have spent trillions of years acquiring chemical 
weapons to inhibit the growth of other bacteria [68]. 
Cave ecosystems have become favorite environments 
for bioprospecting of microbes with active compounds. 
Such pristine ecosystems are often linked with tradi-
tional medicine. Pre-historic people used moon-milk 
(white exudates covering the surface of caves) to treat 
many diseases, which has potential against multiple bac-
teria and fungi [49, 69]. Such a new and unstudied eco-
system could help to identify new bioactive compounds 
to combat antibiotic resistant pathogens and perhaps 
provide urgently needed structural microbial diversity 
for the production of novel antibiotics.

b) Antifungal compounds production
  The treatment of incursive fungal diseases remains a 

challenge due to the toxicity of antifungal drugs, lim-
ited routes of administration, restriction, and resist-
ance of antifungal drugs. Fungal infections are the 
most difficult diseases to manage in humankind, with 
approximately 1700 million people suffering from 
fungal infections globally [70, 71]. Incursive fungal 
infections advert to systemic infections in which fun-
gal strains infiltrated and developed themselves in tis-
sues, resulting in life-threatening infections [72]. At 
present, few antifungal drugs are available on the mar-
ket, and many of them could not treat drug-resistant 
fungi. Fungi and bacteria show various interactions in 
different ecosystems, from cozy existence to depreda-
tion [73]. The first antifungal drug was discovered in 
a bacterial strain mediator of such interaction, and the 
bacterial population continues to be the best source of 
antifungal drugs. Studying the ecological interactions 
between fungi and bacteria may help understand the 
evolution of bioactive compounds.

Cave Microbes as a Potential Source of Drugs Development in the Modern Era 681

1 3



  Globally, various caverns have been investigated for 
novel antimicrobial compounds [45]. It is suggested that 
there should be novel bacterial and fungal strains with 
different interactions in the cave environments, which 
could be a significant source of novel antifungal com-
pounds. Currently, 90% of antimicrobial compounds are 
derived from bacteria belonging to the phylum Actino-
bacteria, particularly the Streptomycetaceae family [74, 
75]. In cave environments, Actinobacteria are the domi-
nant group of bacteria, and such an ecosystem provides 
a prosperous reservoir for the discovery of novel bacte-
ria [76, 77]. Despite the dominant group of bacteria in 
cave ecosystem, the cultured-based study is limited [78]. 
Streptomyces sp. from five different caves in Mexico and 
the USA has been reported to inhibit the growth of Pseu-
dogymnoascus destructans fungus, which is the causa-
tive agent of white-nose syndrome in bats, killing more 
than 600,000 bats in only 7 years [78]. Other examples 
of antifungal compounds from cave environments have 
also been documented. Micromonospora, Streptomy-
ces, Dactylosporangium, and Streptosporangium were 
reported in different caves in Korea, and they have activ-
ities against Colletotrichum gloeosporioides, Alternaria 
solani, Fusarium oxysporum sp. Magnaporthe grisea, 
lycopersici, Rhizoctonia solani, and Phytophthora cap-
sici fungi [79]. Nimaichand et al. [80] reported that 
Janibacter and Streptomyces from a limestone cave 
in Manipur, India, showed bioactive and biocontrol 
activities against Candida, F. oxysporum, R. solani, 
Curvularia oryzae, Helminthosporum oryzae, R. pry-
zae-sativae, and Pyricularia oryzae fungus. Recently, 
Belyagoubi et al. [57] isolated Streptomyces sp. from the 
Chaaba cave, Algeria, to produce nonpolyenic bioactive 
compounds against Candida albicans.

  Cave animals are reservoirs of bacterial populations. 
Bacteria are symbiotic with cave animals (beetles, 
salamanders, isopods, cave crickets, millipedes and 
insects, and other arthropods). Bacteria protect cave 
animals from fungal attacks by killing pathogenic fungi 
through secretion of bioactive antifungal metabolites 
[81]. Insects and arthropods produce various antifungal 
compounds, such as specialist peptides, cuticular excre-
tions, venoms, and hemolymph. Some arthropods use 
additional antifungal molecules derived from mutual-
istic bacteria [81]. Various arthropods and insects have 
mutualistic associations with microbes, indicating that 
natural selection has favored them in such cave ecosys-
tems over those who depend upon endogenic production 
of antifungal compounds. Fukuda et al. [81] studied the 
symbiotic relationship between arthropod and bacteria 
(Pseudonocardia sp.) and found that bacteria provide 
chemical weapons against the pathogenic fungi, and in 
return, they are fed by the host. Otani et al. [82], identi-

fied seven different bacterial phyla in Macrotermitinae 
gut, in which the Bacillus sp. strain was dominant and 
could produce secondary metabolites (polyene polyke-
tide and bacillaene) to inhibit the growth of Tricho-
derma, Pseudoxylaria, Coriolopsis,  Fusarium, and 
Umbelopsis. Therefore, microbes from caves with com-
plex environments have a well-known association with 
cave insects. These cave microbes might directly asso-
ciate with other cave life (cave animals) such as bats. 
Therefore, this pattern of association could disclose pos-
sible association with outside life, especially humans.

c) Anticancer drugs production
  Cancer is one of the most deadly diseases, where 

abnormal cells grow and have the ability to spread to 
other parts of the body. In 2019, approximately 108.5 
million people suffered from this life-threatening disease 
[83]. Cancer is caused by different carcinogens, such 
as genetic mutations, chemicals, tobacco, infections, 
radiation, and pollution [84, 85]. A major challenge for 
scientists is to discover effective anticancer compounds 
to treat this life-threatening disease. At present, there 
are few drugs for cancer treatment [44]. Microbes from 
pristine environments such as caves are regarded as an 
auspicious source of anticancer drugs. Biospeleologists 
believe that the combination of cavernicoles (oligo-
trophic) and metals in caves intervenes with DNA. The 
huge competition between microbes in cave ecosystems 
favors the synthesis of bioactive compounds that inhibit 
the growth of competitors with possible action on cancer 
cells. Some Actinobacteria isolated from cave ecosys-
tems have been screened for the production of bioactive 
compounds against cancer. Spirillospora albida, Non-
omuraea monospora, and Nonomurea roseola reported 
from the Phanangkhoi cave, Thailand, showed antican-
cer activity against lung cancer cells [86]. Similarly, 
Dos-Santos et al. [87] analyzed extracts of Bacillus 
subitilis isolated from Pedra da Cachoeira cave Brazil, 
and the  IC50 values indicated that these microbes are 
promising to produce anticancer compounds. These 
reports provided evidence that cave microbes have the 
potential for novel anticancer compound production.

d) Antiviral drugs production
  Today, the world is in chaos due to the COVID-19 

pandemic. According to several researchers, more viral 
outbreaks are likely to occur in the near future [22]. 
Therefore, we need to be prepared in terms of devel-
oping antiviral drugs and vaccines. Viral infection is a 
worldwide health threat. In the past 50 years, many anti-
viral drugs have been developed and successfully fought 
against some viruses. However, some viral infections, 
such as the influenza epidemic, HCV, HIV, and COVID-
19, are still spreading globally. Due to the high variabil-
ity of the viral genomes, the virus quickly exhibits resist-
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ance to antiviral drugs. COVID-19 is the best example 
of the emergence of multiple variants in a short time [5]. 
Viral infections, including from the Ebola virus, Zika 
virus, MERS CoV, severe acute respiratory syndrome 
coronavirus, and COVID-19 have caused great damage 
to public health. However, there remain no effective vac-
cines or drugs against these viruses on the market. In 
this regard, scientists are searching for novel microbes 
to produce bioactive antiviral compounds to treat these 
lethal infections. Unique microbes with the potential to 
produce new bioactive compounds live in cave ecosys-
tems.

  In cave soil, the load of the viral population is neg-
ligible, and only 0.2% of sequences were of the virus 
in 960,000 total sequences [88]. The study of virus 
diversity in cave environments remains a hot research 
topic. Viruses have only been incidentally reported from 
cave ecosystems. However, no reports on viral diver-
sity in cave soil, water, or sediments have been con-
ducted. Cave animals, such as rodents, bats, reptiles, 
birds, arthropods, amphibians, and others are the reser-
voirs of viruses in cave ecosystems. Bats are incredibly 
unique virus reservoirs. Bats are unique mammals, with 
immunological, ecological, and behavioral ascribes that 
make them different from other mammals. Bats have an 
exceptional number of species, composing 20% of all 

other mammalian species, and are the only true flying 
mammals [89]. Bats are relatively long-lived mammals 
because of their body’s size, and temperate species often 
undergo hibernation or torpor [90]. There exist different 
theories about why bats are unique reservoirs of viruses 
and seldom experience viral infections.

  Bats have to deal with the physiological stress of 
flight, which increases metabolic rates and subsequent 
enhancement in reactive oxygen species [91]. Recent 
studies reported that bats’ innate immune system may 
allow them to coexist with viruses, maintaining very 
small frictions of viremia or keeping viruses in a dor-
mant state [92, 93]. Cave ecosystems are the best hide-
out for bats where they hang upside down the whole 
day from cave ceiling defecating and sleeping. Bats’ 
excrements, such as urine and feces, could be com-
posed of some pathogenic viruses. Mendenhall et al. 
[94] reported vertebrates’ pathogenic virus families from 
urine and feces of bats, including Flaviviridae, Adeno-
viridae, Papillomaviridae, Reoviridae, Parvoviridae, 
Paramyxoviridae, Polyomaviridae, and Picornaviridae. 
Similarly, the genomic study of cave bats serum in China 
and Singapore detected evidence of coronaviruses, astro-
viruses, and filoviruses [95, 96]. In some regions such 
as West Africa, meat of different animals, including 
monkeys, rats, and bats, eaten by humans has contained 

Table 1  Antibiotic-producing 
bacteria reported from cave 
ecosystems

No Antibiotics Strain name Cave Reference

1 Bacteriocin Bacillus licheniformis Kashmir Cave, Pakistan 30
2 Undecylprodigiosin Streptomyces sp. Miroc Cave, Serbia 54
3 Cervimycins Streptomyces tendae Grotta dei Cervi Cave, Italy 69
4 Xiakemycin Streptomyces sp Karst soil, China 69
5 Mix antibiotics Streptomyces sp., 

Bacillus sp., and 
Bacillaceae

Bolshaya Oreshnaya Cave, Siberia 47

6 Polyene and nonpol-
yene metabolites

Streptomyces sp. and 
Penicillium sp

Chaabe Cave, Algeria 59

7 Huanglongmycin Streptomyces sp. Xiangxi Cave, China 70
8 Chaxalactin B Streptomyces sp. Chaxa Lagoon, Chile 13
9 Diazepinomicin Streptomyces sp. Iron Curtain Cave, Chilliwack, Canada 60
10 Lanthipeptides Paenibacillus 71
11 Polymyxin B Paenibacillus sp. Krubera-Voronja Cave, Georgia 72
12 Hypogeamicins Nonomuraea specus Hardin’s Cave, Tennessee, USA 111
13 Paenicidin B Paenibacillus sp. Krubera-Voronja Cave, Georgia 72
14 Cyclodysidin D Streptomyces sp. Bolshaya Oreshnaya Cave, Siberia 47
15 Fusaricidin Paenibacillus sp. Krubera-Voronja Cave, Georgia 72
16 Chaxalactin B Streptomyces sp. Bolshaya Oreshnaya Cave, Siberia 47
17 Tridecaptin Paenibacillus sp. Krubera-Voronja Cave, Georgia 72
18 Stylissazole B Streptomyces sp. Bolshaya Oreshnaya Cave, Siberia 47
19 Colistin A Paenibacillus sp. Krubera-Voronja Cave, Georgia 72
20 Gyrophoric acid Streptomyces sp. Bolshaya Oreshnaya Cave, Siberia 47
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various viral infections and the serum of those individu-
als tested positive for the Ebola virus, rabies, and coro-
navirus [97].

  Bats are believed to be the reservoirs of various coro-
naviruses, including SARS-CoV and SARS-CoV-2, the 
causative agent of COVID-19. Nonetheless, the evolu-
tion of coronaviruses remains a question. All coronavi-
ruses that infect human beings are of zoonotic or animal 
origin, especially from the bat host [98]. These viruses 
spill out from cave bats to humans either directly via 
contact with carrier bats or indirectly through intermedi-
ate hosts such as wildlife or domestic animals that have 
been contaminated by saliva, blood, feces, or urine of 
infected bats. A few major viral emerging outbreaks, 
including Nipah, Hendra, Ebola, Marburg SARS, and 
MERS as well as the present COVID-19 pandemic have 
been associated with suspected zoonotic transmission 
of bat-borne viruses. It has also been announced that 
bats were the probable source of the Zaire strain of the 
Ebola virus, which was the causative agent of Ebola in 
2013–2016 in West Africa [99]. The recent COVID-19 
pandemic has led to 216.2 million cases and more than 
4.499 million deaths (WHO COVID-19 Status Report, 
2021). During the transmission of the COVID-19 virus 
from bats to humans, the intermediate host remains 
unclear, but it is believed to have an ancestral origin in 
bats with the closest similarity to bats’ coronavirus [100, 
101]. Paenibacillus sp. and Bacillus sp. were reported 
from the cave ecosystem and produced different lipopep-
tides such as octapeptins, polymyxins, iturins, fengycins, 
polypeptins, fusaricidins, tridecaptins, kurstakins, and 
surfactins, which showed bioactivity against different 
viruses [102].

  Latinne et al. [98] estimated that cave bats harbor 
about 15,000 coronaviruses and only a few hundred are 
currently identified. Direct or indirect contact with bats 
poses a huge risk of emerging new life-threatening infec-
tions. To prevent such deadly high-risk viruses, educat-
ing people in those areas with a high prevalence of such 
lethal pathogenic viruses is mandatory. People should 
plug holes in their houses to prevent bats from entering. 
Boil milk of all animals before drinking to kill off the 
viruses and avoid eating fruits bats might have bitten. 
Cave and bat hunters must wear proper sampling suits 
to avoid body contact with bats and their excrement. 
In addition to the spreading of the emergence and re-
emergence of pathogens from cave bats, the serum of 
bats contains antibodies that were produced to fight off 
these viruses and could act as the basis for developing 
novel drugs and vaccines or plasma treatment against 
new emerging pathogens.

  Cave microbial populations may also comprise a mas-
sive viral community that needs to be evaluated, which 

could potentially help scientists solve the issues about 
cavernicoles interactions and population dynamics. 
Cave viruses could also be helpful as therapeutic agents 
because of their capable lytic characteristics. Cave envi-
ronments are associated with infection outbreaks and 
chances of further outbreaks are expected. Therefore, 
caves are hotspots for researchers to study the nature 
of their genome structure, possible mode of infection, 
mode of transmission, and design protection against 
more outbreaks in the form of vaccines or any other 
therapeutic agents or precautionary measures.

Future prospects and conclusions

Caves are pristine and oligotrophic ecosystems that may 
contain novel microbes that could produce new metabo-
lites. In addition, animals in caves are reservoirs of dif-
ferent pathogens that are crucial to be explored to better 
understand their pathogenicity. The emergence of novel 
pathogens and existing antibiotic-resistance pathogens are 
threats to global health. Therefore, the need for new drugs 
is increasing daily. The new screening methods of metagen-
omics, high throughput screening, and metabolomics should 
be used to seek novel bioactive compounds. The advance-
ment of next-generation sequencing and the accumulation 
of high-quality whole genome data provide powerful tools 
and valuable information to support the search for novel 
bioactive metabolites for drug development. However, 
under laboratory conditions, gene clusters responsible for 
bioactive compounds are usually not expressed. Therefore, 
activating these silent gene clusters is a challenge. Metagen-
omics has enabled the advancement of the knowledge base 
of cavernicoles diversity in cave ecosystems and opened 
doors to identify new bacterial strains. The integration 
of metagenomics and current advanced techniques (such 
as genome mining, in silico design, genetic engineering, 
medicinal chemistry, and metabolomics) could help to pro-
duce target-specific antimicrobial compounds to solve the 
problem of antibiotics resistance. Cave microbes could be 
the headline makers in the sense of bioactive compound 
production, biomineralization, polycyclic aromatic hydro-
carbons degradation, enzyme production, and various other 
areas.

This review presents the relationship between prehistoric 
humans and caves. Caves were the possible home of ancient 
humans. Humans have now abandoned these sites; however, 
a unique microbial world still lives in caves, and other ani-
mals use caves as shelters. In an oligotrophic environment, 
cave microbes compete within communities by producing 
bioactive agents. Several studies have reported the synthesis 
of antimicrobial and other biomedically important metabo-
lites from cave microorganisms. Therefore, antimicrobial 
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agents and other metabolites produced by cave microbes 
could provide relief to the modern-day crisis in the biomedi-
cal sector, including the emergence of new pathogens and 
antibiotic resistance. Cave ecosystems may provide a hotspot 
to explore antimicrobial compounds by adapting modern 
molecular techniques.
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