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Abstract
Elevated levels of atmospheric  CO2 lead to the increase of plant photosynthetic rates, carbon inputs into soil and root exuda-
tion. In this work, the effects of rising atmospheric  CO2 levels on the metabolic active soil microbiome have been investigated 
at the Giessen free-air  CO2 enrichment (Gi-FACE) experiment on a permanent grassland site near Giessen, Germany. The 
aim was to assess the effects of increased C supply into the soil, due to elevated  CO2, on the active soil microbiome com-
position. RNA extraction and 16S rRNA (cDNA) metabarcoding sequencing were performed from bulk and rhizosphere 
soils, and the obtained data were processed for a compositional data analysis calculating diversity indices and differential 
abundance analyses. The structure of the metabolic active microbiome in the rhizospheric soil showed a clear separation 
between elevated and ambient  CO2 (p = 0.002); increased atmospheric  CO2 concentration exerted a significant influence on 
the microbiomes differentiation (p = 0.01). In contrast, elevated  CO2 had no major influence on the structure of the bulk soil 
microbiome (p = 0.097). Differential abundance results demonstrated that 42 bacterial genera were stimulated under elevated 
 CO2. The RNA-based metabarcoding approach used in this research showed that the ongoing atmospheric  CO2 increase of 
climate change will significantly shift the microbiome structure in the rhizosphere.
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Introduction

The rise of atmospheric carbon dioxide  (CO2) concentra-
tions and global warming are well-documented processes. 
Total annual anthropogenic greenhouse gas emissions have 
continued to increase, comprising  CO2, which represents 

around 75% of these emissions [1]. Elevated  CO2  (eCO2) 
concentrations have several consequences on plants, such 
as increased growth in C3, C4, and CAM plants by 41%, 
22%, and 15%, respectively [2, 3]; increased plant yield 
[4]; decreased evapotranspiration of both C3 [5] and C4 
plants [6]; augmented photosynthetic capacity [3, 7, 8]; and 
increased below-ground biomass [9].

Considering that nearly up to 21% of all photosyntheti-
cally fixed carbon is transferred to the rhizosphere, roots 
and root exudates influence the composition and biomass 
of soil microbiome [10, 11]. Elevated atmospheric  CO2 
increases efflux amounts of total soluble sugars, amino 
acids, phenolic acids, and organic acids in the root exudates 
[12–14]. Similarly, the rates of organic carbon as energy 
sources enhance microbial degradation of soil organic matter 
(SOC), also known as priming effect [14]. Priming effect is 
defined as an accelerated decomposition of SOC due to an 
increased supply of labile C to the soil and changes in the 
microbial activity as a response [15]. The microbial succes-
sion is accompanied by the activation of various, previously 
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dormant microorganisms that respond specifically to the 
added substrate [15, 16].

The effects of  eCO2 levels on soil ecosystems have 
been studied in free-air  CO2 enrichment (FACE) experi-
ments, revealing significant effects of rising  CO2 on soil 
organisms. However, with regard to microbial composi-
tion and function related to carbon and nitrogen cycling, 
mixed results have been obtained. At the BioCON field 
experiment, it was found that the structure of micro-
bial communities was different between ambient  CO2 
 (aCO2) and  eCO2 [17]. Likewise, the abundance of genes 
involved in labile C degradation and C and N fixation, 
as RuBisCo, carbon monoxide dehydrogenase (CODH), 
propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), nifH 
and nirS genes were significantly increased under  eCO2 
[18]. Similarly, He et al. [19] and Xiong et al. [20] have 
reported a shift of soil microbial communities under  eCO2 
in a soybean and a maize agro-ecosystem, respectively. 
These changes included stimulation of key functional 
genes involved in carbon fixation and degradation, nitro-
gen fixation, denitrification, methane metabolism, and 
phosphorus cycling.

Oppositely, some FACE experiments have shown no 
effects of  eCO2 on soil microbiome structure and activity, 
as Marhan et al. [21] who described that abundances of 
both total 16S rRNA genes and nitrate-reducing bacteria 
were not influenced by  CO2 but by sampling date and 
depth. Dunbar et al. [22] described that neither bacterial 
nor fungal community structure nor composition were 
altered under  eCO2. Pujol Pereira et al. [23] did not find 
any significant effects of  eCO2 on bacterial abundance, 
soil C, and N concentrations. Butterly et al. [24] reported 
that changes in microbial community structure were not 
detected, although  eCO2 reduced the abundance of C and 
N functional genes.

The Giessen free-air  CO2 enrichment (Gi-FACE) experi-
ment in Giessen, Germany, has been running since 1998. 
It is becoming a good predictor model to assess the effects 
of long-term increased  CO2 concentrations on soil micro-
biome structure and function. Some studies carried out in 
this facility aimed to assess these changes. Regan et al. [25] 
reported that in the Gi-FACE extractable organic carbon, 
dissolved organic nitrogen,  NH4

+,  NO3
−, and abundances 

of genes involved in ammonia oxidation and denitrification 
depended more on soil depth and moisture gradient than 
on  eCO2. Similarly, also de Menezes et al. [26] described 
that increases in atmospheric  CO2 may cause only minor 
changes in Gi-FACE’s soil bacterial community composi-
tion and that functional responses of the soil community are 
due to factors like soil moisture rather than  CO2 concentra-
tion. Brenzinger et al. [27] reported that the abundance and 
composition of microbial communities in the topsoil under 
 eCO2 presented only small differences from soil under  aCO2 

 (aCO2), concluding that + 20%  CO2 had little to no effect on 
the overall microbial community involved in N-cycling in 
the Gi-FACE soil. More recently, Bei et al. [28] described 
that  eCO2 had significant effects on the functional expres-
sion associated to both rhizosphere microbiomes and plant 
roots; and that abundances of Eukarya relative to Bacteria 
were significantly decreased in  eCO2 as well.

The question of why some studies reported differences 
between  eCO2 and  aCO2 while some others did not is still 
open. Several abiotic and biotic factors could be the reason 
for the contradictive observations in the different experimen-
tal setups described above. However, all such previous stud-
ies conducted in the Gi-FACE used a DNA-based metagen-
omic approach, with the exception of Bei et al. [28], who 
utilized a metatranscriptomic approach. The disadvantage 
of using DNA is that, after a cell dies, amplifiable extracel-
lular DNA can remain in soils for weeks to years and may 
bias DNA-based estimates of the diversity and structure of 
soil microbial communities [29, 30]. Moreover, Carini et al. 
[31] reported that DNA from dead cells or free DNA rep-
resented a large fraction of microbial DNA in many soils, 
comprising approximately 40.7% and 40.5% of amplifiable 
prokaryotic 16S rRNA genes and fungal ITS amplicons, 
respectively. Therefore, DNA-depending studies may over-
estimate the richness of the soil microbiome by up to 55% 
for prokaryotes and 52% for fungi [31] and in consequence 
may hide the active microorganisms that are involved in soil 
microbial processes.

A better approach for assessing differences between 
 eCO2 and  aCO2 is the use of RNA instead of DNA for 
16S rRNA metabarcoding analysis. The ribosome num-
bers are correlated to the metabolic activity of bacte-
ria [32], and different studies showed that, with this 
approach, the active organisms instead of the dormant 
ones were assessed [33–35]. Additionally, results of the 
metatranscriptomic methodological approach on the Gi-
FACE soil microbiome reported by Bei et al. [28] dem-
onstrated that RNA instead of DNA is a better predictor 
of microbiome composition and activity. For this reason, 
the aims of the present work were (i) to evaluate the 
effect of long-term  eCO2 concentrations and increased 
C supply on active soil microbiome through an rRNA-
based metabarcoding approach; (ii) to assess the differ-
ences between  eCO2 and  aCO2 conditions in rhizosphere 
and bulk soils; and (iii) to link these differences with 
environmental factors.

The following questions have been addressed:

1. Is the community structure of active bacteria different 
between ambient and elevated  CO2 in rhizosphere and/
or bulk soil?

2. Which other environmental parameters beside  CO2 
shape the community?
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Material and Methods

Study Site Description

The Gi-FACE study is located at 50° 32′ N and 8° 41.3′ 
E near Giessen, Germany, at an elevation of 172 m above 
sea level. It consists of three pairs of rings with a diameter 
of 8 m; each pair consists of an ambient and an elevated 
 CO2 treatment ring [36]. Since May 1998 until present, 
elevated  CO2 rings have been continuously enriched by 
20% above ambient  CO2 concentrations during daylight 
hours. Ambient and elevated  CO2 rings are separated by 
at least 20 m, and each pair is placed at the vertices of an 
equilateral triangle. The presence of a slight slope within 
the experimental site (between 0.5 and 3.5°) places the 
rings on a moisture gradient, such that pair 1 has the low-
est mean moisture content (38.8% ± 10.2%) and pair 2 
has the highest mean moisture content (46.1% ± 13.2%), 
whereas pair 3 is intermediate (40.7% ± 11%) [26, 36]. The 
average annual air temperature and precipitation are 9.4 °C 
and 580 mm, respectively.

The vegetation is an Arrhenatheretum elatioris Br.Bl. 
Filipendula ulmaria subcommunity, dominated by 
Arrhenatherum elatius, Galium album, and Geranium prat-
ense. At least 12 grass species, 15 non-leguminous herbs and 
up to 5 legumes with small biomass contributions (< 5%) are 
present within a single plot [37]. The experimental field has 
not been ploughed for more than 100 years. It has received 
N fertilization in form of granular mineral calcium ammo-
nium nitrate (40 kg N  ha−1  year−1) once a year since 1995 
and has been mown twice a year since 1993. The soil at the 
Gi-FACE site is classified as Fluvic Geysol; its texture is a 
sandy clay loam over a clay layer, with pH = 6.2 and aver-
age C and N contents of 4.5% and 0.45%, respectively, as 
measured in 2001 [36].

Soil Sampling and Physico‑chemical Parameter 
Measurements

Soil sampling was performed utilizing sawed off 50 ml 
syringes (11 × 3 cm), and four samples were taken to a depth 
of ~ 10 cm within each ring in September 2015. Soil cores 
were gently shaken by hand to remove loosely attached soil 
(bulk soil), while the soil that remained attached to the roots 
was considered as rhizosphere soil. Bulk and rhizosphere 
soils were sieved (< 2 mm) and stored at − 80 °C for fur-
ther analyses. Samples from each soil core were classified 
in four groups considering the  CO2 conditions (ambient and 
elevated) and the soil habitat (bulk soil and rhizosphere soil).

Ammonium and nitrate concentrations were measured 
according to Kandeler et al. [38] and Bak et al. [39]. Water 

content, dry matter, and water holding capacity of soil 
samples were measured gravimetrically [40]. Carbon and 
nitrogen content of soil were measured by pyrolysis cou-
pled to gas chromatography on a EA 1100 elemental ana-
lyzer (ThermoQuest, Milan, Italy) using a TCD detector 
by the Dumas method according to HBU (1996) [41] and 
VDLUFA (2012) method [42]. Injected  CO2 and  CO2 soil 
fluxes were determined from August to September 2015. 
Injected  CO2 was measured at 60 cm above ground with 
an infrared gas analyzer (LI-COR 6252) [36].  CO2 soil 
fluxes were measured weekly using an automated closed 
dynamic chamber system (LI-COR 8100, LI-COR Inc., 
Lincoln, Nebraska, USA). Per ring, 4 PVC soil collars 
(20.3 cm diameter) were permanently installed as chamber 
bases in 2006 and held vegetation free since 2008. Fluxes 
were calculated from the increase in  CO2 concentration in 
the chamber over the 1–3 min closure time as described 
by Keidel et al. [43].

Central tendency and dispersion measures were calcu-
lated for soil chemical data.  CO2 injection and  CO2 fluxes 
data were analyzed using growth curve analysis (GCA) [44], 
with R packages gazer version 0.1 [45] and lme4 version 
1.1–23 [46], creating polynomial-transformed predictor 
variables, fitting them to a linear mixed model by maximum 
likelihood, and assessing differences between  CO2 condi-
tions with a t-test, using an alpha of < 0.05.

RNA Extraction and Reverse Transcription

RNA extraction was performed following a modified proto-
col of Mettel et al. [47]. For the extraction, 0.3–0.5 g of soil 
were weighed in reaction tubes containing 100 mg of ster-
ile zirconia beads, added with 700 µl TPM buffer (50 mM 
Tris–HCl (pH 5), 1.7% [wt/vol] polyvinylpyrrolidone, 
20 mM  MgCl2), and vortexed for 30 s. Cells were then dis-
rupted in a cell mill MM200 (Retsch, Haan, Germany) for 
2 min at a frequency of 30 Hz. Soil and cell debris were 
precipitated by centrifugation in a microcentrifuge (Her-
aeus Fresco, Thermo Fisher Scientific Inc., Waltham) for 
5 min at 17,000 g and 4 °C, and then the supernatant was 
transferred into a fresh reaction tube. To the resulting soil 
pellet 700 µL of buffer PBL (5 mM Tris–HCl (pH 5), 5 mM 
 Na2EDTA, and 0.1% [wt/vol] sodium dodecyl sulfate) were 
added, and the disruption process was performed again as 
described above. Both supernatants from the lysis processes 
were pooled in one reaction tube.

The pooled supernatant was immediately extracted, ini-
tially with the addition of 500 µl of phenol/chloroform/
isoamyl alcohol (25:24:1) and subsequent with chloroform/
isoamyl alcohol (24:1). Afterwards, each time the sample 
was centrifuged for 5 min at 17,000 g and 4 °C. The result-
ing upper aqueous phase was transferred to a new reac-
tion tube, 800 µl of PEG solution was added (30% [wt/vol] 
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polyethylene glycol 6000 and 1.6 M NaCl), incubated in ice 
for 30 min and centrifuged for 30 min at 17,000 g and 4 °C. 
Subsequently, the DNA/RNA pellet was washed with 800 µl 
of ice-cold 75% ethanol, dried out and dissolved in 50 µl of 
nuclease free water.

After extraction, samples were treated for DNA digestion 
with RNase-Free DNase Set (QIAGEN GmbH — Germany) 
according to manufacturer instructions; DNase reaction was 
stopped with 10 µl of 50 mM EDTA. With the DNA-free 
RNA, a PCR was carried out, using the universal 16S rRNA 
gene primers 27F (5’-AGA GTT TGATCMTGG ATC MTGG 
CTC AG-3’) and 1492R (5’- GGT TAC CTT GTT ACG ACT 
T-3’) [48, 49] and checked on agarose gel electrophoresis 
to verify the absence of remaining DNA in the samples. 
Subsequently, reverse transcription was performed utilizing 
AccuScript High Fidelity 1st Strand cDNA Synthesis Kit 
(Agilent Technologies, Inc., Cedar Creek, TX, USA) fol-
lowing manufacturer instructions.

16S rRNA Ion Torren Sequencing and Metabarcoding 
Analysis

The 16S rRNA gene hypervariable regions (V4&V5) were 
PCR amplified using the set of primers 520F (5’-AYT 
GGG YDTAAAGNG-3’) [50] and 907R (5’-CCG TCA 
ATTCMTTT RAG TTT-3’) [51] and sequenced by Ion Tor-
rent technique following the protocol described by Kaplan 
et al. [52]. The obtained Ion Torrent sequencing output was 
analyzed using QIIME2 version 2020.6.0 [53], sequences 
were demultiplexed with the QIIME2 cutadapt command 
[54] using a barcode error rate of 0 and assigned to specific 
samples by corresponding barcodes. Later, quality control, 
denoising, sequences dereplication, and chimera filtering 
were performed using DADA2 software [55]; the first 15 
nucleotides were trimmed, and sequences were truncated at 
a position of 320 nucleotides. Amplicon sequence variants 
(ASV) generated with DADA2 were taxonomically affiliated 
with a trained fitted classifier [56, 57] based on the SILVA 
138 database [58, 59].

Alpha and beta diversity analyses were performed using 
R studio software 1.1.419, R packages Phyloseq 1.22.3 [60] 
and Vegan 2.4–6 [61]. Before diversity analyses, ASVs were 
collapsed by genera. For alpha diversity assessment, rarefac-
tion was applied and diversity indices (Observed species, 
Simpson, Shannon, Fisher) were calculated and compared 
among  CO2 conditions and soil habitats using the Wilcoxon 
test [62] with the Bonferroni correction method through 999 
permutations. For non-constrained beta diversity analyses, 
data were transformed using centered log ratio (clr) method 
[63, 64], using R package Aldex2 1.18.0 [65]. Later, com-
munity dissimilarity distance matrices were created using 
the Aitchison distance [63, 64] and visualized using princi-
pal component analysis (PCA) [66]. Statistical differences 

among treatments, rings, and  CO2 conditions were assessed 
by a permutational multivariate analysis of variance using 
Adonis method and employing 999 permutations [67]. Addi-
tionally, the degree of dispersion of the bacterial community 
composition from the four soil cores taken in each ring was 
assessed as described above. Redundancy analysis (RDA) 
was used to explore associations between microbial com-
munity structures and environmental parameters, and a per-
mutation test of redundancy analysis using 999 permutations 
was applied for evaluating their statistical significance [68].

For the analysis of correlation between bacterial genera 
and environmental parameters, the genera belonging to the 
core microbiome of each of the soil sample groups were cal-
culated, and their counts were transformed to relative abun-
dance with package Microbiome version 1.8.0 [69]. Later, 
core microbiomes were calculated including genera with a 
total relative abundance of ≥ 0.01% and present in ≥ 85% of 
the corresponding group’s samples. A correlation test was 
performed using Aldex2 1.18.0 [65] and its “aldex.corr” 
function, utilizing Pearson’s correlation coefficient, and 
p values were corrected using false discovery rate (FDR) 
method with an alpha of < 0.05.

Differential abundance of genera from rhizosphere soils 
was assessed by comparing the core microbiomes of each 
 CO2 condition utilizing the R packages DESeq2 1.24.0 [70] 
and Aldex2 1.18.0 [65]. DESeq2 analysis was performed 
by estimating the size factor and the dispersion using the 
geometric mean of the core microbiome genera; later, val-
ues were fitted with a generalized linear model using nega-
tive binomial distribution and applying a Wald significance 
tests, the option “local” for fitting of dispersions to the mean 
intensity and an alpha threshold of < 0.05. Aldex2 analysis 
was done by performing a centered log ratio (clr) transfor-
mation using as denominator the geometric mean abun-
dance of all features and 128 Monte Carlo instances; later, 
a Welch’s t-test with a Benjamini–Hochberg correction and 
threshold < 0.05 was performed.

Functional capabilities based on the obtained 16S rRNA 
data were predicted using PICRUSt2 version (v2.3.0 beta) 
[71]. PICRUSt2 analysis was carried out using the default 
pipeline option. Afterward, EC number, KO functions, and 
MetaCyc non-constrained beta diversity and differential 
abundance analyses were performed as described above.

Quantitative PCR

The quantification of 16S rRNA gene to estimate total bac-
terial abundance was performed following the protocol 
described by Kaplan et al. [52], but instead of DNA, cDNA 
products described above were used for the quantification. 
Quantitative PCR (qPCR) was conducted on a Rotor-Gene 
Q (Qiagen, Hilden, Germany) by using Absolute qPCR 
SYBR Green Mix (Thermo Fisher Scientific). Statistical 
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comparisons were done with Kruskal–Wallis and Wilcoxon 
tests with the Benjamini–Hochberg adjustment method 
using R Package stats version 3.6.3.

Results

Ion Torrent Sequencing

A total of 5,855,099 raw sequences were obtained. After 
demultiplexing, sequences were assigned to each sample, 
ranging sequence counts in each sample from 306,675 
to 22,410. After quality control, denoising, sequence 
dereplication, and chimera filtering with DADA2 soft-
ware, 2,674,159 sequences were removed, resulting in 
3,180,940 non-chimeric sequences and 11,587 representa-
tive sequences which were grouped into ASVs (Amplicon 
sequence variations) at a 99% similarity. Later, sequences 
belonging to chloroplast and mitochondria were removed, 
resulting in 11,508 ASVs.

Soil Microbial Diversity

Diversity indexes were evaluated to assess differences 
in soil microbiome between  eCO2 and  aCO2 conditions. 
In the Gi-FACE, soil active bacterial diversity changed 

due to the influence of increased concentrations of  CO2 
(Fig. 1). These changes are better appreciated when com-
paring bulk and rhizosphere soil fractions from  aCO2 
and  eCO2 rings separately. In regard to alpha diversity 
of rhizosphere and bulk soil fractions from  aCO2 rings, 
significantly higher diversity values were observed in bulk 
compared to rhizosphere soils with Observed species (p 
value 0.00036), Shannon (p value 0.0086), and Fisher (p 
value 0.00036) indexes (Fig. 1). Nevertheless, this differ-
ence was not detected between bulk and rhizosphere soil 
fractions from  eCO2 rings, indicating an evenness between 
the rhizosphere and bulk soils in  eCO2 rings (Fig. 1). Like-
wise,  eCO2 rhizosphere soil presented greater diversity 
values in comparison to its  aCO2 counterpart, according 
to Observed species (p value 0.0193) and Fisher (p value 
0.0193) indexes.

A distance matrix was created using the Aitchison dis-
tance and later ordinated using the principal component 
analysis (PCA) to further analyze the microbiome compo-
sition. Initially, the dispersion of the four soil cores taken 
within each ring and their distance to the centroids was 
assessed. They indicated a considerably different soil micro-
biome composition in each soil core, even when soil cores 
of the same rings were compared (S1). On the other hand, 
the assessment of differences among the evaluated habitats 
showed that the strongest effect on the bacterial microbiome 

Fig. 1  Alpha diversity metrics.  aCO2, ambient  CO2 conditions;  eCO2, elevated  CO2 conditions. * p smaller 0.01, ** p smaller 0.001, *** p smaller 0.0001
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differentiation in the soil was the ring factor, either for rhizo-
sphere or bulk soils (p value 0.001).

Similarly, there were significant differences among the 
community composition of the four evaluated groups  (aCO2 
bulk soil,  aCO2 rhizosphere soil,  eCO2 bulk soil,  eCO2 
rhizosphere soil) (p value 0.001). In the same way, the PCA 
showed a clear differentiation between the microbiome com-
position of the rhizospheres from  eCO2 and  aCO2 rings (p 
value 0.002) (Fig. 2a). On the contrary, the separation of the 
microbial community composition between the bulk soils 
from  aCO2 and  eCO2 rings was not clear and statistically 
not significant (p value 0.327) (Fig. 2b).

Effect of Environmental Parameters on Microbial 
Community

A redundancy analysis (RDA) was carried out to assess the 
effect of environmental factors on the soil microbiome of 
the Gi-FACE. The results indicated that continuously higher 

environmental  CO2 concentration was a factor that exerted a 
significant effect on the differentiation of the microbial com-
munities of  eCO2 rings (p value 0.021) (Table 1, Fig. 3a). 
Furthermore,  CO2 soil fluxes on average were 35% higher 
in  eCO2 rings in comparison to the  aCO2 ones, and this dif-
ference was statistically significant throughout the assessed 
period of time (p value 0.031) (Fig. 3b). Moreover, increased 
soil fluxes of  CO2 are associated with the differences that 
were observed in Gi-FACE soil microbiome (p value 0.001).

Likewise, the ammonium content in the whole soil, rhizo-
sphere and bulk soil fractions had a significant influence on 
the community composition (Table 1), despite the fact that 
soil ammonium concentrations were not significantly dif-
ferent between  eCO2 and  aCO2 rings (p value 0.313) (S2). 
Similarly, the total carbon content had significant influence 
on the whole soil and bulk soil microbial community struc-
ture (Table 1), but likewise ammonium there were no signifi-
cant differences in carbon content between  aCO2 and  eCO2 
rings (p value 0.1304) (S2). On the contrary, the average 
carbon/nitrogen ratio in the whole soil of the  eCO2 rings 
(11.1:1) was significantly higher in comparison with  aCO2 
rings (10.69:1) (p value 0.0069) and had a significant effect 
(p value 0.025) on the microbial community composition 
(Table 1).

Furthermore, when observing each habitat separately, the 
RDA indicated that in the rhizosphere soil, the  CO2 atmos-
pheric concentration had a significant effect on the micro-
biome differentiation between the  aCO2 and  eCO2 rings (p 
value 0.010) (Table 1, Fig. 3c). In contrast,  eCO2 had no 
substantial influence on the composition of the microbial 
community’s structure of the bulk soils (p value 0.097) 
(Table 1, Fig. 3d).

Correlation analysis between environmental variables 
and rhizosphere soil core microbiome demonstrated that 
the abundance of several bacterial genera was either posi-
tively or negatively correlated with environmental  CO2 
concentrations and soil  CO2 fluxes. Among the main bac-
terial families that were significantly positively correlated 

Fig. 2  Principal component analysis (PCA) calculated based on 
Aitchison community dissimilarity distance matrix of a rhizosphere 
soils from ambient and elevated  CO2 rings and b bulk soils from 
ambient and elevated  CO2 rings. A, ambient  CO2 rings; E, elevated 
 CO2 rings;  aCO2, ambient  CO2 conditions;  eCO2, elevated  CO2 con-
ditions

Table 1  p values of permutation test for redundancy analysis (RDA) 
under reduced model using an Aitchison community dissimilarity dis-
tance matrix

Significance codes: 0.0001 ‘***’, 0.001 ‘**’, 0.01 ‘*’

Environmental parameter Whole soil Rhizosphere soil Bulk soil

C:N 0.025 * ––- 0.127
CO2 injected concentra-

tion
0.021 * 0.010 ** 0.097

CO2 flux concentration 0.001 *** 0.003 ** 0.004 **
NH4

+ 0.001 *** 0.002 ** 0.018 *
Total carbon 0.001 *** 0.007 ** 0.001 ***
Water holding capacity 0.006 ** 0.024 * 0.100
Total nitrogen 0.141 ––- 0.688
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with environmental  eCO2 and soil  CO2 fluxes concentra-
tions are Rhodanobacteraceae, “Labraceae,” Xanthomona-
daceae, Rhodobacteraceae, Rhizobiaceae, Pseudomona-
daceae, Phaselicystidaceae, Haliangiaceae, Bacillaceae, 
Streptomycetaceae, Xanthobacteraceae, Burkholde-
riaceae, Devosiaceae, Haliangiaceae, Comamonadaceae 
and Polyangiaceae (Table S3.1). On the contrary, families 
“Solibacteraceae,” Caulobacteraceae, Acetobacteraceae, 
Thermoactinomycetaceae, Beijerinckiaceae, and Blastoca-
tellaceae were negatively correlated with environmental 
 eCO2 and soil  CO2 fluxes (Table S3.1). Moreover, bacterial 
orders Nitrospirales, Caulobacterales, “Rokubacteriales,” 
Vicinamibacterales, “Tistrellales,” and “Rokubacteriales” 
were significantly correlated with  NH4

+ content and soil 
water holding capacity in rhizosphere soils (Table S3.1).

Changes on the Rhizosphere Microbial Community 
Composition

Differential abundance analyses demonstrated that several 
rhizosphere soil genera were affected. Both Aldex2 and 
DESeq2 demonstrated that 42 bacterial genera were stimu-
lated under  eCO2, among those are Haliangium, Phaseli-
cystis, Rhizobacter, Pseudomonas, Rhizobium, Phyllobacte-
rium, Mesorhizobium, Rhodanobacter, Labrys, unidentified 
genus of the class “Sericytochromatia,” Dokdonella, Massi-
lia, Burkholderia, Bacillus, Novosphingobium, Acidibacter, 
and Streptomyces (Fig. 4a, Fig. 4b). These genera showed 
 Log2 Fold changes ranging from 0.910 to 9.67. Furthermore, 
Aldex2 test showed that other 56 genera were significantly 
stimulated in the rhizosphere soil of  eCO2 rings. These 

Fig. 3  Time series data from August to September 2015 of a average 
environmental  CO2 concentrations and b average soil  CO2 fluxes of 
ambient (blue) and elevated (red)  CO2 conditions; level of confidence 
interval of 0.95. Redundancy analysis (RDA) based on Aitchison 

community dissimilarity distance matrix of c rhizosphere soils from 
ambient (blue) and elevated (red)  CO2 rings and d bulk soils from 
ambient (blue) and elevated (red)  CO2 rings; black dots indicate soil 
bacterial genera
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genera belonged mainly to bacterial families Nocardioi-
daceae, Beijerinckiaceae, Pyrinomonadaceae, “Koribacte-
raceae”, “Xiphinematobacteraceae,” Propionibacteriaceae, 
Dongiaceae, Geminicoccaceae, Solirubrobacteraceae, 
Blastocatellaceae, Caulobacteraceae, Nitrosomonadaceae, 
Xanthobacteraceae, Caulobacteraceae, Fibrobacteraceae, 
Acetobacteraceae, unidentified family of the phylum 
“Latescibacterota,” Myxococcaceae, “Solibacteraceae”, 
Rhizobiaceae, and Gemmatimonadaceae (S3).

On the contrary, both differential abundance tests indi-
cated that some genera presented a decreased of abundance 
under  eCO2 conditions. Among these are unidentified genus 
of the family Vicinamibacteraceae, Pasteuria, Caulobac-
ter, unidentified genus of the family “Entotheonellaceae,” 
Brevundimonas, Methylobacterium-Methylorubrum, Sum-
erlaea, Blastocatella, Phenylobacterium, Lacunisphaera, 

Roseomonas, and Opitutus. These genera had  Log2 Fold 
changes from − 0.421 to − 9.31 in  eCO2 ring (Fig.  4a, 
Fig. 4b, S3).

Functional Metagenomics Prediction

Beta diversity results of functional capabilities based on 
16S rRNA data showed significant differences on func-
tional metagenome’s composition of rhizosphere soils from 
 aCO2 and  eCO2 conditions. PICRUSt2 predicted functional 
metagenome were different regarding Enzyme Commission 
number (EC number) (p value 0.005), KEGG Orthology 
(KO) for molecular functions (p value 0.019), and MetaCyc 
Metabolic Pathways (p value 0.022) (S4). Moreover, simi-
lar to taxonomical results, predicted bulk soil’s functional 
metagenomics from  aCO2 and  eCO2 conditions did not show 

Fig. 4  Differential abundances of core microbiome bacterial genera 
of rhizosphere soil under elevated and ambient  CO2. a DESeq2 test 
results with an alpha threshold < 0.05 and error expressed as stand-
ard error of log fold change. b Aldex2 results using centered log ratio 

(clr) transformation and the geometric mean abundance of all fea-
tures; red points indicate significantly different genera after Welch’s 
t-test and Benjamini–Hochberg correction with an alpha thresh-
old < 0.1
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great differences regarding its beta diversity, neither on EC 
numbers (p value 0.197), KEGG Orthology (p value 0.179), 
or MetaCyc Metabolic Pathways (p value 0.317) (S4).

Besides, the analyses of significantly affected predicted 
enzymes indicated that several enzymes of degradation of 
carbon compounds were significantly stimulated in rhizos-
pheric soils under  eCO2 conditions. Enzymes involved in 
carbohydrates, lipids, amino acids, and polycyclic aromatic 
hydrocarbon degradation were significantly stimulated. 
Additionally, numerous predicted enzymes and pathways of 
synthesis of cellular components, membrane transporters, 
and quorum sensing were significantly higher under  eCO2 
conditions (S5). Also, according to KEGG Orthology for 
molecular functions, several enzymes involved in nitrogen 
fixation, nitric-oxide synthesis, and nitrite and nitrate reduc-
tion were predicted to be more abundant in  eCO2 rhizos-
phere soil (S5).

Quantitative PCR

Active biomass estimation by 16S rRNA quantification 
demonstrated changes due to  eCO2 concentrations. A 20% 
increase of 16S rRNA copy numbers per g dry weight soil 
in  eCO2 rhizosphere (2.07 ± 0.50*108) in comparison to 
 aCO2 rhizosphere (1.66 ± 0.44*108) was observed (p value 
0.0001). Nevertheless, when comparing the 16S rRNA copy 

numbers per gram dry weight soil of bulk soils from  aCO2 
(2.35 ± 0.80*108) and  eCO2 (2.35 ± 0.79*108) conditions, no 
significant differences were found (p value 0.9588) (Fig. 5). 
Moreover, significant differences were found between bulk 
and rhizosphere soils from  aCO2 (p value 2.1 *  10–5) with 
in average 29% more copies per dry weigh in bulk soil com-
pared to rhizosphere soil. Nonetheless, when comparing 
rhizosphere and bulk soils from  eCO2 rings, this difference is 
lower and not significant (p value 0.1455), with the bulk soil 
having 12% more copies than the rhizosphere soil (Fig. 5).

Discussion

Changes in Microbiome Structure and Composition

Elevated  CO2 concentrations affect the composition and 
biomass of soil microbial communities in the rhizosphere 
because of greater inputs of labile carbon (C) via root exuda-
tion may increase the microbial N demand. This causes an 
increased competition between plants and soil microorgan-
isms for available N; therefore, N dynamics are likely to 
change under  eCO2 [10, 11, 14, 72].

Our results showed that  eCO2 had a strong effect in the 
Gi-FACE on the metabolic active microbiome of the rhizo-
sphere soil, in contrast to the microbiome of the bulk soil 

Fig. 5  Boxplot of 16S rRNA 
quantification of ambient  CO2 
rings bulk soil (a-bulk), elevated 
 CO2 rings bulk soil (e-bulk), 
ambient  CO2 rings rhizosphere 
soil (a-rhizo) and elevated  CO2 
rings rhizosphere soil (e-rhizo). 
Significance codes: 0.0001 
‘***’
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which remained mostly unaffected. Alpha diversity indi-
ces indicate that a shift occurred under  eCO2 conditions, 
producing an evenness in terms of alpha diversity between 
rhizosphere and bulk soil. Since significant differences were 
found between bulk and rhizosphere soil of  aCO2 rings, this 
evenness represents an increase in alpha diversity of  eCO2 
rhizosphere soil (Fig. 1). Furthermore, beta diversity results 
revealed a different abundance and microbial community 
composition in the rhizosphere of  eCO2 rings compared to 
 aCO2 rings (Fig. 2).

These results differ from previous reports of the  eCO2 
effects on the Gi-FACE soil microbiome, which stated that 
only subtle or no effect occurred on microbial communities 
and that the differences were mostly due to soil conditions 
and the moisture gradient that occurs at this facility [25–27]. 
Similarly, to the aforementioned studies, our data confirmed 
that samples from ring-pair A1-E1 had lower water content 
in comparison to A2-E2 and A3-E3 samples (S2), and that 
water holding capacity (WHC) significantly influenced the 
soil microbiome (Table 1, Fig. 3). This was observable in 
the effect that the ring-pair factor had on the beta diversity 
of the Gi-FACE soil microbiome (p value 0.001) (Fig. 2).

Nonetheless, besides the moisture gradient, the observed 
differences caused by the  eCO2 were likely detected due to 
the RNA-based metabarcoding approach used in our work, 
which is able to differentiate the metabolic active microor-
ganisms from the inactive ones, avoiding the biases caused 
by DNA of dead cell or extracellular DNA, which can com-
prise approximately 41% of the amplifiable prokaryotic 16S 
rRNA genes in soil [31]. However, RNA metabarcoding has 
its limitations as well, mainly due to the fact that RNA con-
version to cDNA requires the use of a reverse transcriptase 
which lacks proofreading activity, creating point mutations 
in some of the cDNA sequences [73]. Reverse transcriptase 
also regularly performs template switching, which can lead 
to the production of chimeric cDNA sequences and the 
creation of shortened isoform sequences from intramo-
lecular template switching [74, 75]. Nevertheless, in our 
study these limitations were minimized by using a Moloney 
murine leukemia virus reverse transcriptase (MMLV-RT) 
derivative combined with a E. coli DNA polymerase III ε 
subunit which lowers the reverse transcription error rate by 
threefold, and later the resulting cDNA was amplified with a 
proofreading DNA polymerase which produced up to eight-
fold fewer errors [76].

The study of Bei et al.[28], which also addressed the 
active microbial community by using a metatranscrip-
tomic approach, supports our results. For the summer of 
2015, the same year that we took the samples for this study, 
they reported significant effects of  eCO2 on the functional 
expression related to rhizosphere and plant roots associated 
microbiomes in the Gi-FACE. Also, similarly to our work, 
they described that the increase in bacterial abundance was 

related to significant enrichment of different taxonomical 
groups, including Acidobacteria, Actinobacteria, and Pro-
teobacteria, and changes related to a significant decrease in 
Fungi and increase in Actinobacteria.

However, Bei et al. [28] found no significant  eCO2 effect 
on the rhizosphere soil and root-associated microbiomes 
during the summer of 2017. These contrasting results for 
different years may result from climatic conditions in sum-
mer, since the summer 2015 was characterized by prolonged 
heat waves, while the mean temperature in summer 2017 
was closer to the long-term average. The effect of  eCO2 
on the soil rhizosphere microbiome we found in our study 
may be affected by the above average temperatures of this 
particular year. Additionally, the prediction that heat waves 
will occur more frequently in the future [77] emphasizes the 
importance of our findings.

The reason why only the rhizosphere microbiome, in 
contrast to the bulk soil microbiome, was affected by  eCO2 
influx is most probably a consequence of the priming effect 
of the increased flux of roots exudates and consequently 
higher availability of carbon compounds. This increased 
supply of labile C causes an accelerated decomposition of 
soil organic C [15], which activates previously dormant 
microorganisms [15, 16].

Effect of  eCO2Concentration on Microbial 
Community, C and N Cycles

Our results of the effect of environmental parameters on 
soil microbiome composition demonstrated that several 
rhizosphere bacterial families such as Rhodanobacteraceae, 
“Labraceae,” Xanthomonadaceae, Rhodobacteraceae, 
Rhizobiaceae, Pseudomonadaceae, Phaselicystidaceae, 
Haliangiaceae, Bacillaceae, Streptomycetaceae, Xantho-
bacteraceae, Burkholderiaceae, Devosiaceae, Haliangiaceae, 
Comamonadaceae, and Polyangiacea were positively cor-
related with  eCO2 fumigation and soil  CO2 fluxes. Within 
these families are found bacterial genera as Streptomyces, 
Burkholderia, Dokdonella, Bacillus, Pseudolabrys, Devosia, 
Mesorhizobium, Acidibacter, Rhizobacter, Rhodanobacter, 
Arenimonas, Amaricoccus, Phyllobacterium, Rhizobium, 
Pseudomonas, Phaselicystis, and Haliangium. Furthermore, 
the aforementioned genera had significant higher counts 
under  eCO2 conditions according to DESeq2 and Aldex2 
results. From other experiments, it was also reported that 
under  eCO2 conditions the rhizosphere soil microbial com-
munities had changed [78]. Increased atmospheric  CO2 
concentrations could also change the competitive ability 
of Rhizobium leguminosarum bv. trifolii, probably due to 
changes in root exudates [79]. In salt marsh systems con-
taining the halophyte Suaeda japonica, it was reported that 
gene abundances and microbial community structures were 
both affected by  eCO2, and rhizospheric microorganisms 
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responded to  eCO2 more strongly than those inhabiting the 
bulk soil [80]. Song et al. [81] described that community 
composition of soil microbiota associated with Phytolacca 
americana and Amaranthus cruentus roots were significantly 
affected by  eCO2, and numbers of bacteria and fungi, as well 
as microbial C and N in the rhizosphere soils of both species, 
were higher at  eCO2.

Greater carbon input due to  eCO2 also explains the 
increase of 35% in soil  CO2 fluxes and the 20% augmen-
tation in 16S rRNA copy numbers from active bacterial 
biomass observed in rhizosphere soil under  eCO2 in com-
parison to  aCO2, which corresponded to an increased soil 
biological activity in Gi-FACE. Cheng et al. [82] described 
that  eCO2 affected soil microbial respiration, producing an 
augmentation of microbial biomass and activities. Similarly, 
King et al. [83] showed that  eCO2 increased soil respiration 
at four forest FACE experiments. Blagodatskaya et al. [84] 
demonstrated that augmented available organic C released 
by roots at  eCO2 altered the ecological strategy of the soil 
microbial community, occurring a shift to a higher contribu-
tion of fast-growing species. The increased biological activ-
ity in  eCO2 rhizosphere soil is supported by the predicted 
functional metagenome obtained with PICRUSt2, which 
shows significant increases in several enzymes involved in 
cellular components biosynthesis such as peptidoglycan, 
lipopolysaccharide, amino acids, bacterial motility pro-
teins, and lipids synthesis (S5). These results differ from 
those obtained by Pujol Pereira et al. [23], who reported that 
on soybean [Glycine max (L.) Merr.],  eCO2 decreased 16S 
rRNA gene abundance in rhizosphere soil by 31%. Also, 
Marhan et al. [21] described that abundances of total 16S 
rRNA were not influenced by  CO2 but by sampling date 
and depth. Likewise, Brenzinger et al. [27] and Bei et al. 
[28] reported that at the Gi-FACE no differences between 
 aCO2 and  eCO2 rings were found regarding the 16S rRNA 
gene. However, Bei et al. [28] described that in summer of 
2015 under  eCO2 conditions the functional metagenome of 
rhizosphere soil presented an increase on amino acids and 
carbohydrates metabolisms, membrane transporters, and 
quorum sensing proteins: similar to our study’s PICRUSt2 
results (S5).

In addition, several genera involved in the degradation 
of carbon (C) compounds were stimulated under  eCO2 
conditions; among these are Pseudomonas and Bacillus 
(Fig. 4, S2) that have been previously reported to degrade 
lignocellulose materials. Pseudomonas boreopolis pro-
duces a cellulase-free xylanase with a high activity of 
hemicellulose degradation [85]. Maki et al. [86] reported 
that Bacillus strain (55S5) and a Pseudomonas strain 
(AS1) displayed high potential for lignocellulose decom-
position due to a variety of cellulase and xylanase activi-
ties. Trujillo-Cabrera et al. [87] described the isolation 
of cellulolytic bacteria from high humus content soils, as 

Bacillus thuringiensis and Pseudomonas gessardii. The 
augmentation of these taxa would agree with the predicted 
functional metagenome, which indicated an increment of 
several enzymes involved in lignocellulose materials deg-
radation, as Chitinase (EC:3.2.1.14), Endo-1,3(4)-beta-glu-
canase (EC:3.2.1.6), Endo-1,4-beta-xylanase (EC:3.2.1.8), 
and Cellulase (EC:3.2.1.4) (S5). Similar results have been 
described by He et al. [17, 19], who reported that soils of 
a soybean agro-ecosystem and a glacial outwash sandplain 
showed increased abundance of encoding genes for enzymes 
involved in labile C degradation such as amylase, glucoa-
mylase, pullulanase, fungal arabinofuranosidase, xylanase, 
endoglucanase, acetylglucosaminidase, and exochitinase. 
Likewise, Xiong et al. [20] described that alpha-amylase, 
cellobiase, endoglucanase, vanillin dehydrogenase, endochi-
tinase, and phenoloxidase encoding genes were stimulated 
under  eCO2 in soybean and maize fields. The above-men-
tioned increase of C compounds degradation could occur as 
a response of greater C availability due to an increase of root 
exudates under  eCO2 conditions.

Moreover, these changes in the C influx could induce a 
reduction of available N in the soil ecosystem [24], which 
alters the N cycle and induces significant changes in soil 
biogeochemical characteristics in the rhizosphere, such as 
 NO3

−, available  K+, soil microbial biomass carbon (SMBC), 
and available  PO4

2− [78]. The aforementioned process could 
explain the higher carbon/nitrogen ratio found in our study in 
 eCO2 rings in comparison with ambient ones and might also 
explain why some genera involved in different processes of 
the nitrogen cycle were stimulated under  eCO2 conditions. 
Genera belonging to families Rhizobiaceae and Xanthobac-
teraceae as Rhizobium, Mesorhizobium, and Phyllobacterium 
have been extensively reported as nitrogen-fixing bacteria 
[88–90], and in our study presented  Log2 fold increases rang-
ing from 6.78 to 8.04. Also, PICRUSt2 results indicate that 
functional orthologs of the enzyme nitrogenase (EC:1.18.6.1) 
were significantly augmented in  eCO2 rhizosphere soil (S5). 
This increase in the abundance of nitrogen-fixing bacteria 
could have occurred as response to N deficiency, which even-
tually became a limiting factor for biomass production under 
 eCO2. Similar results were reported by Li et al. [91], who 
described a 24% increment of 15 N in mine tailing soils under 
 eCO2 and a dominance of uncultured nitrogen-fixing bacteria.

Aldex2 correlation results demonstrated a significant 
negative correlation between  NH4

+ content and Nitrospira 
genus under  eCO2 conditions. Although  NH4

+ values were 
not significantly different between  aCO2 and  eCO2,  NH4

+ 
content was on average 10% higher in  aCO2 soils, which 
suggest that nitrification processes could have been affected 
due to elevated environmental  CO2. Alterations in nitrifica-
tion process in the Gi-FACE have been already described 
by Müller et al. [72], who reported that  eCO2 reduced  NH4

+ 
oxidation to  NO3

− by 25%.
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Furthermore, several denitrifying genera as Streptomyces, 
Rhodanobacter, Pseudomonas, Burkholderia, and Bacil-
lus were significantly stimulated in  eCO2 rhizospheric soil 
with  Log2 fold changes between 5.37 and 8.065 [92–96]. 
Additionally, predicted functional metagenome indicate that 
several orthologs involved in the denitrification process, as 
nitric-oxide synthase (NAD(P)H) (EC:1.14.13.165), nitrate 
reductase (EC:1.7.99.4), nitrite reductase (NO-forming) 
(EC:1.7.2.1), nitrite reductase (cytochrome; ammonia-
forming) (EC:1.7.2.2), periplasmic nitrate reductase NapA 
(EC:1.7.99.-), and nitric oxide reductase NorD protein, have 
significantly greater abundance under  eCO2 conditions (S5).

In summary, our results demonstrate that in the Gi-FACE, 
the rhizosphere soil microbiome was significantly affected due 
to the influence of increased  CO2 concentrations alongside 
other environmental factors. The increment of carbon input 
due to  eCO2 possibly augmented labile carbon degradation in 
rhizosphere soil reflected by the increment of bacteria biomass 
and  CO2 soil emissions. The aforementioned processes could 
cause a nitrogen constraint, observed in the increment of the 
C:N ratio, and decreased of  NH4

+, which likely triggered a 
shift in the rhizosphere soil microbiome with an increment of 
nitrogen fixing and denitrifying taxa. The observed increase of 
denitrifier genera might explain the increased  N2O fluxes under 
 eCO2 conditions, previously described in the Giessen FACE 
[27, 97, 98]. Similarly, our data support the results described 
by Moser et al. [98], who reported that under  eCO2 condi-
tions,  N2O emissions were 1.79-fold higher and that the linear 
interpolations showed a 2.09-fold increase in  N2O emissions 
mostly because of the oxidation of organic N and incomplete 
reduction of  NO2

−, emitting  N2O instead of  N2 (Fig. 6).

Our findings suggest that alterations in carbon cycle 
affects nitrogen cycle dynamics in grassland soils, due to 
changes on the microorganisms involved on the different 
processes of these cycles. Nonetheless, further analyses 
would be necessary to assess the Gi-FACE microbiome 
metatranscriptome of carbon and nitrogen cycles, how they 
are affected by  eCO2, and how this effect depends on ambi-
ent temperature regimes like summer heat waves.
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