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Abstract
Chytridiomycosis is a fungal disease caused by the pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans
(Bsal), which has caused declines in amphibian populations worldwide. Asia is considered as a coldspot of infection, since adult
frogs are less susceptible to Bd-induced mortality or morbidity. Using the next-generation sequencing approach, we assessed the
cutaneous bacterial community composition and presence of anti-Bd bacteria in six frog species from India using DNA isolated
from skin swabs. All the six frog species sampled were tested using nested PCR and found Bd negative. We found a total of 551
OTUs on frog skin, of which the bacterial phyla such as Proteobacteria (56.15% average relative abundance) was dominated
followed by Actinobacteria (21.98% average relative abundance) and Firmicutes (13.7% average relative abundance). The
contribution of Proteobacteria in the anti-Bd community was highest and represented by 175 OTUs. Overall, the anti-Bd bacterial
community dominated (51.7% anti-Bd OTUs) the skin microbiome of the frogs. The study highlights the putative role of frog
skin microbiome in affording resistance to Bd infections in coldspots of infection.
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Over a decade, amphibians’ (frogs, caecilians, and salaman-
ders) skin microbiome has been studied extensively to under-
stand their role in the amphibian panzootic disease, called
chytridiomycosis [1–3]. The disease is caused by two aquatic
fungal pathogens: Batrachochytrium dendrobatidis (Bd) in-
fects frogs, salamanders, and caecil ians [4], and
B. salamandrivorans (Bsal) infects both frogs and salaman-
ders [5, 6]. They have caused declines in over 500 amphibian
species, and possible extinctions of 90 species, worldwide [7].
In adult frogs, the skin microbiome plays an important role in
the host’s defense mechanism [8]. The frog’s skinmicrobiome
produces a plethora of anti-fungal metabolites to protect the
host [2, 8], and the bacterial community on the skin might
confer resistance to pathogens [9]. Skin microbiomes of frogs
have revealed some important anti-Bd bacteria, such as
Janthinobacterium lividum (family Oxalobacteraceae) [2, 8]
and Serratia marcescens (family: Yersiniaceae) that produce

anti-fungal metabolites: “Violacein” [8] and “Prodigiosin,”
respectively. Both violacein and prodigiosin compromise the
integrity of the cell membrane [10, 11], and prodigiosin also
inhibits RNA and protein synthesis in bacteria [12].
Consequently, these two metabolites are known to inhibit Bd
fungal growth [2]. Since anti-Bd bacteria are present on frogs
that show resistance to Bd [13], investigating such skin
microbiomes for potential anti-Bd bacterial isolates would
benefit disease mitigation strategies.

There are over 395 frog species in India, and the list is
growing, as new taxa are being discovered rapidly (see,
http://amphibiaweb.org/). With high species richness and
endemism, the stakes are high for understanding the role of
Bd on frog populations, and the mechanisms by which frogs
might be able to resist Bd infection. Frog populations in the
region exhibit low Bd prevalence and high Bd haplotype
diversity, which points at possible historical host-pathogen
co-evolution [14]. Low prevalence and low mortality could
a l so imply tha t f rogs show some res i s t ance to
chytridiomycosis, and this could be mediated by the skin
microbiome. Investigating the role of frog’s skin microbiome
in coldspots of Bd infection could reveal new pathways that
inhibit the pathogen. Therefore, we studied the bacterial com-
munity composition in six frog species from two hotspots for
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amphibian species richness, namely the Western Ghats and
the Andaman Islands. We explored the frog skin microbiome
data to infer the role of bacterial community in affording them
with resistance to Bd infections. (Full details on the methods
are provided in the Supplementary file S1.)

We generated a total of 18,543 good quality sequences
from 18 frogs belonging to six species that had noBd infection
(Table 1). We aligned all good quality sequences in mothur
and assigned them identity using SILVA v123 database. In all,
we identified 1351 unique sequences (at ≥ 97% sequence sim-
ilarity). These unique sequences revealed 551 operational tax-
onomic unit (OTU), belonging to five major bacterial phyla.
Average relative abundance (ARA) of bacterial taxa in the
microbiome was calculated as percentage of the total good
quality bacterial sequences obtained. Proteobacteria (56.15%
ARA) was the most dominant phylum, followed by
Actinobacteria (21.98% ARA), Firmicutes (13.7% ARA),
Bacteroidetes (7.2% ARA), and Acidobacteria (0.49%
ARA). Acidobacteria was present only in B. beryet (1.99%
relative abundance) and in Limnonectes doriae (0.99% rela-
tive abundance), from the Andaman Islands. In the case of
aquatic Nyctibatrachus poocha, Proteobacteria (6.98% rela-
tive abundance) was found to be the least abundant, and
Actinobacteria (49.12% relative abundance) was the most
abundant (Fig. 1b). Rarefaction revealed that L. doriae had
the highest and Ghatixalus asterops had the least number of
OTUs (Table 1). Cluster analysis revealed that the bacterial
community did not form clusters based on the niche occupied
by the frogs (Fig. 1a).

Out of the 551 OTUs identified, 285 OTUs (51.7%) were
anti-Bd bacterial OTUs, and they constituted 74.2% of the av-
erage relative abundance in each of the six species. The percent-
age of anti-BdOTUs, represented as a fraction of the total num-
ber of OTUs recorded from each frog species, showed variation.
The highest percentage of anti-Bd bacterial OTUs were present
on G. asterops (171/216, 79.1% anti-Bd OTUs), followed by
Raochestes chlorosomma (42/57, 73.7% anti-Bd OTUs),
D. melanostictus (115/195, 58.9% anti-Bd OTUs), B. beryet
(37/78, 47.4% anti-Bd OTUs), L. doriae (26/98, 26.5% anti-
Bd OTUs), and N. poocha (20/101, 19.8% anti-Bd OTUs).
Six anti-Bd bacterial OTUs, namely, Stenotrophomonas sp.
(OTU 3), Sphingomonadales_unclassified (OTU 6),
Staphylococcussp. (OTU 7), Microbacteriaceae_unclassified
(OTU 18), Micrococcaceae_unclassified (OTU 21), and
Caulobacteraceae_unclassified (OTU 34), were present in all
six frog species. They matched with Silverstoneia flotator (in-
hibitory_30), Sphingomonadaceae bacterium (KU738962.1),
Boophis madagascariensis (ns_6),Colostethus panamensis (in-
hibitory_2), Alytes obstetricans (ns_64), and Caulobacteraceae
bacterium (KU738923.1), respectively, from Woodhams et al.
[15] and Muletz et al. [16] database. The average relative abun-
dance of these OTUs was 17.8%. Percentage of anti-Bd bacte-
rial OTUs, represented as a fraction of the total anti-BdOTUs in Ta
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different bacterial phyla were: Proteobacteria (175/285, 61.4%
anti-Bd OTUs), Bacteroidetes (57/285, 20% anti-Bd OTUs),
Actinobacteria (36/285, 12.3% anti-Bd OTUs), and Firmicutes
(17/285, 5.96% anti-Bd OTUs).

Globally, frog skin microbiomes are replete with
Proteobacteria, Bacteroidetes, and Actinobacteria [17–19].
Proteobacteria is also abundant in soils [20], and thereby, as-
sociated with tropical frog skins [17, 21], and majority of them
(80% of the total OTUs present) are in the anti-Bd databases
[15]. Bacterial family Pseudomonadaceae (Proteobacteria)
has been reported from several frogs’ skin microbiomes with
varying abundance [19]. However, this bacterial family was
not found in B .beryet , L. dorie , N. poocha , and
R. chlorosomma (Fig. 1b). Family Xanthomonadaceae
(Proteobacteria) was dominant in the bacterial community in
all the frog species, except N. poocha. Actinobacteria was
dominant (49.12% relative abundance), and Proteobacteria
was the least represented (6.98% relative abundance) in
N. poocha. Actinobacteria are associated with freshwater eco-
systems [22], and N. poocha being a mountain stream-
dwelling frog shares the same habitat with the bacterial phy-
lum. The differences in the bacterial phyla composition on
N. poocha could also be due to seasonal differences, or chang-
es in pH of water in streams [23].

In terrestrial frogs (L. doriae and R. chlorosomma), OTUs
were higher than in aquatic (N. poocha) and arboreal
(G. asterops and B. beryet) frogs (Table 1). A similar pattern
has been documented in a global comparison of frog skin
microbiomes [19]. Bacterial OTUs in terrestrial frogs could
be attributed to their contact with soil, which has a rich bac-
terial community. Based on bacterial OTUs and their abun-
dance, there was no consistent association between the niche
of the frogs and their skin bacterial community composition
(Fig. 1a). This lack of association suggests that frog skin

bacterial community might not be an accurate descriptor of
the niche of the frog.

Anti-Bd bacterial OTUs (51.7%) were higher than those
reported on frog species from Costa Rica (13%) [17] and
Panama (8.45%) [23]. Salamander skin microbiome from
the Eastern USA has revealed high anti-Bd bacterial OTU
abundance (87% average relative abundance), which was con-
tributed by 13% of anti-Bd OTUs [18]. Other bacterial genera
with anti-Bd OTUs on the frogs were: Chryseobacterium (23/
285, 8% anti-Bd OTUs), Elizabethkingia (18/285, 6.3% anti-
Bd OTUs), Stenotrophomonas (18/285, 6.3% anti-Bd OTUs),
and Pseudomonas (13/285, 4.5% anti-Bd OTUs; see
Supplemental file S2). These bacteria have been shown to
exhibit anti-Bd activity in vitro [24–27]. Anti-Bd genera,
namely, Strep tomyces [26] , Propionibacter ium ,
Microbacterium, and Micrococcaceae [27], belonging to the
phylum Actinobacteria, also possess anti-fungal properties.
They were found in the skin microbiome of the six species
of frogs examined. Since a large number of anti-Bd OTUs
were detected, we hypothesize that a similar community of
bacteria might be present in frog populations in the region.

Low abundance of anti-Bd bacteria on frog’s skin has been
linked to high prevalence of Bd in the hotspots of infection
[23, 28]. However, currently, there is no evidence suggesting
that a high abundance of anti-Bd bacteria on frog’s skin is
associated with low prevalence of Bd infection in coldspots
of infection. A rich anti-Bd bacterial community that thrives
on the skin of frogs has been revealed through this study. It
could be one of the reasons for the low prevalence of Bd in
frog populations in the region. Anti-Bd bacteria provide frogs
with protection from Bd infections in different ways: (i) by
producing anti-Bd metabolite [29], (ii) by producing biofilm
on frog skin surface [1], and (iii) by host-mediated selection of
anti-Bd metabolite producing bacteria on its skin [30]. Since

Fig. 1 Graph represents the cluster analysis and the relative abundance of
the frog skin microbiome: a cluster analysis of frog species is calculated
using Bray-Curtis method. Font color of species name indicates niche of
frog. b Bacterial phylum-level relative abundance in six frog species. c

bacterial Family level relative abundance in six frog species (Plots were
prepared using R (v3.6.3) software, and modified using Inkscape 0.91
(https://inkscape.org/en/))
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frog skin microbiome reports are scarce from Asia, future
studies should focus on role of skin bacterial community in
affording protection from Bd infection by attenuation of the
pathogen [31]. Bacterial flora in the soil or streammight be an
important source for the frog skin microbiome; therefore, we
hypothesize that Bd might be experiencing strong selection
pressure both in the environment, and on the frogs in
coldspots of infection.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00248-020-01669-5.
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