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Abstract
Winter temperatures are projected to increase in Central Europe. Subsequently, snow cover will decrease, leading to increased
soil temperature variability, with potentially different consequences for soil frost depending on e.g. altitude. Here, we experi-
mentally evaluated the effects of increased winter soil temperature variability on the root associated mycobiome of two plant
species (Calluna vulgaris and Holcus lanatus) at two sites in Germany; a colder and wetter upland site with high snow
accumulation and a warmer and drier lowland site, with low snow accumulation. Mesocosm monocultures were set-up in spring
2010 at both sites (with soil and plants originating from the lowland site). In the following winter, an experimental warming pulse
treatment was initiated by overhead infrared heaters and warming wires at the soil surface for half of the mesocosms at both sites.
At the lowland site, the warming treatment resulted in a reduced number of days with soil frost as well as increased the average
daily temperature amplitude. Contrary, the treatment caused no changes in these parameters at the upland site, which was in
general a much more frost affected site. Soil and plant roots were sampled before and after the following growing season (spring
and autumn 2011). High-throughput sequencing was used for profiling of the root-associated fungal (ITS marker) community
(mycobiome). Site was found to have a profound effect on the composition of the mycobiome, which at the upland site was
dominated by fast growing saprotrophs (Mortierellomycota), and at the lowland site by plant species-specific symbionts (e.g.
Rhizoscyphus ericae and Microdochium bolleyi for C. vulgaris and H. lanatus respectively). The transplantation to the colder
upland site and the temperature treatment at the warmer lowland site had comparable consequences for the mycobiome, implying
that winter climate change resulting in higher temperature variability has large consequences for mycobiome structures regardless
of absolute temperature of a given site.

Keywords Climate change . Calluna vulgaris . DNA barcoding . EVENT experiments . Holcus lanatus . Plant-fungi
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Introduction

Winter soil temperature is an important driver for many eco-
logical and biogeochemical processes [1] and was reported as
a predictor for plant richness and phenology in cold temperate
and boreal terrestrial ecosystems [2, 3]. Climate change is
increasing the average winter air temperatures in many re-
gions of the temperate zone, with consequences for stability
and length of snow cover and subsequent consequences for
soil insulation [4–6]. However, frost events are predicted to
occur with unchangedmagnitude and duration as nowadays in
many temperate regions [7]; therefore, winter air and soil tem-
peratures are expected to become more variable [8, 9]. The
increased variance in soil temperature will likely increase the
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frequency of soil frost and freeze–thaw cycles, which can
physically damage plant roots [10], break up soil aggregates
[11] and lyse microbial cells through physical and osmotic
stress [12, 13]. For warmer lowland temperate regions, how-
ever, although soil temperature variability might increase, an
increase in winter temperatures could generally lead to fewer
frost events (e.g. lowland Germany [2, 5]). Contrasting effects
of winter climate change can therefore be expected for colder
versus warmer temperate regions [14]. For these reasons, a
temperature manipulation experiment was set up under two
conditions (at a relatively warm lowland site and a colder
upland site, see the ‘Methods’ section). Two common temper-
ate plant species, Calluna vulgaris and Holcus lanatus, were
planted in monoculture mesocosms and winter soil tempera-
ture was experimentally manipulated (induced by short winter
warming pulses, for details, see the “Methods” section and
Schuerings et al. (2014b) [15]).

Both plant species are known to form mycorrhizal associ-
ations (ericoid and arbuscular respectively for C. vulgaris and
H. lanatus). Such symbioses and other plant properties e.g.
exudates and root morphology [16] are known to shape
rhizobiome microbial assembly [17]. Therefore, it is essential
to also consider the response of the associatedmicroorganisms
when studying plant response to climate change. In this arti-
cle, we report the results from an investigation of the soil
fungal community (mycobiome from hereon) associated with
the plant roots in the above described experiment.

It was previously reported that the warming pulses signif-
icantly reduced the snow cover at both experimental sites
(lowland and upland) and increased variability of soil temper-
atures, but not significantly affecting the number of freeze-
thaw cycles (8/7 and 5/6 cycles across winter 2010/2011 for
ambient/warming treatment at the lowland and upland site
respectively) [18]. Likewise, a number of plant traits were
previously reported from the experiment [15, 18]; the main
trends from these studies are summarized in Table 1. In gen-
eral, both plant species (which were pre-grown under the same
greenhouse conditions prior to the experiment) had a larger
above-ground biomass (end of growing season) at the upland
site, and an increased nitrogen (N) availability and enzymatic
activity was measured in the soil throughout the winter at this
site (Table 1). The winter warming pulse treatment consistent-
ly increased the microbial activity (measured by bait-lamina
sticks) across sites, but had inconsistent effects on the plant
responses at both sites.

Many microbial organisms are sensitive to frost-stress [13,
19] with documented consequences for microbial associated
processes, such as nitrogen mineralisation [20, 21]. Fungi are
in general hypothesised to be more frost sensitive than other
soil microbes, due to their filamentous growth which may be
more susceptible to frost damage than e.g. single-celled organ-
isms [13, 22]. Damage to mycorrhizal fungi may have a par-
ticularly strong impact on plant communities and their

productivity. Klironomos et al. (2001) [23] found that freezing
treatment reduced the per cent colonization of five tested
arbuscular mycorrhizal (AM) fungi on five common northern
temperate plant species, but also that species-specific re-
sponses existed which could be linked to life strategy and
morphology of the fungal species. Contrary, Lekberg et al.
(2008) [24] found no indications of local adaptation among
globally distributed AM fungi in their response to freezing.
Finally, examples of microbes mitigating frost-stress in plants
also exists [25] and the concept is applied in agricultural pro-
duction where plants are inoculated with specific microbes
with the ability to influence plants’ biochemistry [17, 25–29].

Based on these previous findings (Table 1), we expect
the mycobiome community composition to have shifted in
response to the warming treatment which has generally led
to an increased below ground activity (enzyme- and biotic
activity, N availability and root growth). Changes in the
mycobiome are likely driver of the increased N availability
and we expect both saprotrophic and mycorrhizal fungi to
show altered abundances patterns under ambient and
warming conditions.

Methods

Experimental Design and Sampling

The experimental design was previously described in
Schuerings et al. (2014b) [15]. In brief, plant seedlings of
the grass Holcus lanatus and 2-year-old plants of the shrub
Calluna vulgaris (juvenile plants randomly picked from the
same cohort, both pre-grown under controlled greenhouse
condition at the lowland site) were planted in May 2010 in
monoculture mesocosms (barrels; 50 cm diameter and 80 cm
depth) which were then set up at two sites; the lowland site
located in the Ecological-Botanical Garden of the University
of Bayreuth, Germany (49° 55′ 36.32″ N, 11° 34′ 57.28″ E,
358 m a.s.l.) and the upland site located at the Waldstein
mountain in the Fichtelgebirge, Germany (50° 8′ 35.81″ N,
11° 51′ 50.92″ E, 781m a.s.l.). The soil substrate was a natural
soil consisting of homogenized loamy sand (77% sand, 16%
silt, 7% clay) from a sand quarry nearby the lowland site
where both plant species naturally occur, with a pH = 7 and
a total carbon content of 2.4%. The barrels were attached with
outlet hoses at the bottom of each mesocosm, so that the
mesocosms functioned as zero tension lysimeters. In the fol-
lowing winter, warming pulses were administrated between
December 2010 and February 2011. Warming pulses were
started when weather forecast predicted air frost (at both sites)
for at least 48 h in which the warming pulses took place. Each
factorial combination (species by warming treatment by site)
was replicated five times. Soil (− 2 cm depth) and air temper-
ature (+ 5 cm height; one per treatment and experimental site)
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were measured hourly by thermistores (B57863-S302-F40,
EPCOS) connected to a datalogger (dl2, Delta). The upland
site was generally colder, experiencing lower annual air tem-
peratures and higher annual precipitation (Schuerings et al.
2014b [15] and suppl. S1).

The experimental design and sampling is summarized in
Fig. 1.

For this study, samples were collected on March 14, 2011,
and December 1, 2011 (during plant dormancy before and

after the growing season following the warming pulses treat-
ment). From each mesocosm, five soil cores (2 cm diameter)
were collected and fine roots were taken from the cores by
hand and frozen at − 80 °C.

DNA Extraction and Library Preparation

A bead mixture (0.03 g of Ø 0.1–0.25 mm, 0.06 g of Ø
0.25–0.5 mm and 5–6 glass beads Ø 1.25–1.55 mm) was
added to approximately 1 cm of fine roots for homogeni-
sation in a FastPrep Instrument (MP Biomedicals) at
6 m s−1 for 60 s. DNA was extracted using the Charge
Switch gDNA Plant Kit (Invitrogen) for details see
Kreyling et al. (2012) [30].

An ITS amplicon library was constructed using the fungal
specific primers ITS1F [31] and ITS4 [32] as detailed by
Peršoh et al. (2018) [33]. Briefly, the 80 samples were
multiplexed in two consecutive PCRs (adding unique
barcodes per sample), equimolary pooled and purified.
Paired-end sequencing (2 × 250 bp; Kit v3 Chemistry) of the
amplicon was conducted by the sequencing service of the
Faculty of Biology at LMU Munich, using the Illumina
MiSeq platform (Illumina Inc.). Raw sequencing files are
available from NCBI (BioProject: PRJNA678839).

Bioinformatic Processing

Using the QIIME pipeline [34] sequence reads were assigned
to samples according to the indices and barcodes. Quality
filtering was applied using the same command. In agreement
with earlier studies, only the forward orientated reads,
representing the ITS1 rRNA gene region, were further proc-
essed [33, 35, 36]. ITS1 reads of samples with identical
barcodes were trimmed at the 5′-end to the final 11 bp of the
SSU rRNA gene region and at the 3′-end to a length of 172 bp
using the FastX toolkit (www.hannonlab.cshl.edu/fastx_
toolkit/). The trimmed ITS1 reads, with retained quality

Table 1 Overview of the main trends from previously published results
of the experiment. Red columns indicate warming treatments. Arrows
indicate the directional change relative to ambient plots. Cross-
treatment bars indicate site-specific effects. ns, non-significant. For fur-
ther details, see Schuerings et al. (2014a), 2014b [15, 18]. All measure-
ments were taken at multiple time points in the winter 2010/2011, except
biomass which was measured at the end of the growing season 2011 and
2012. 1)For H. lanatus harvested completely twice a year for C. vulgaris,
biomass was estimated based on biometric measurements and calibrated
against harvested individuals. 2)Measured from leaf material and only
measured at the lowland site. NSC is cryoprotective structures (lowering
freezing point of the plant tissue). 3)Root length was acquired via
minirhizotron technique in a clear plastic tube monitoring root develop-
ment. 4)Plant-available N measured with resin stick method install in each
mesocosm during the winter. 5)Measured with bait-lamina sticks contain-
ing 16 baits which were inserted vertically in the top soil layer of every
mesocosm prior to the warming pulses treatment. 6)Potential extracellular
enzymatic activity measured from soil extractions with assays for beta-
glucosidase, cellobiohydrolase, acid phosphatase, xylosidase (the latter
two showed only site-specific differences)

Fig. 1 Schematic overview of experimental timeline and sampling. Ten
replicates of Calluna vulgaris and Holcus lanatus were planted and
distributed to two sites (five replicates per plant per site) in May 2010;

warming pulses (indicated with red arrows) were administrated through-
out the winter 2010/2011 and root samples collected on March 14 and
December 1 2011 (before and after the 2011 growing season)
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scores, were subjected to CD-HIT-OTU [37] for clustering
[38] (www.weizhongli-lab.org/cd-hit-otu/). An OTU
(operational taxonomic units) table, which lists the number
of reads in each cluster for each sample, was generated by
applying a 97% similarity threshold. OTUs were assigned
to taxa using QIIME and the UNITE database v7 [39] as
reference (The OTU table is available from suppl. S2). The
phyla ‘Zygomycota’ was renamed to ‘Mortierellomycota’
for the final publication, following recent nomenclature
[40]. Both DNA read-based (individual) and sample-
based OTU accumulation curves were constructed follow-
ing [41] to insure sampling saturation was reached (suppl.
S3). Prior to analysis, samples were rarified to 30,000 reads
per sample (five samples had less reads but showed satu-
rated OTU accumulation curves, these samples were kept
without rarefication). The results of this study were
checked on nonrarefied raw data and found to be qualita-
tively the same without rarefaction (data not shown). The
online application FUNGuild [42] was used for functional
classification of the fungal community, distinguishing be-
tween plant pathogens, mycorrhizal fungi (arbuscular, ecto-
and ericoid mycorrhizal) and saprotrophic fungi; the latter
was further separated into three categories: (i) purely
saprotrophic, (ii) potential symbiotroph (endophytes) and
(iii) potential wood degraders.

Data Analysis and Statistics

Basic statistical analyses were performed in R v. 3.3.3 [43]
using mainly the packages ‘vegan’ [44] and ‘iNEXT’ [45].
Analysis scripts are available from supplementary S4. All av-
erages are reported with ± standard deviation, statistical sig-
nificance differences between means were tested using
Kruskal-Wallis test as a consequence of unequal sampling
sizes between categories.

For the 59 recovered fungal communities, distance-based
redundancy analysis (dbRDA) was performed using Bray-
Curtis (BC) dissimilarity matrix of the Hellinger-
transformed fungal community with 1000 permutations.
Experimental parameters were as follows: site (upland
and lowland site), sampling time (spring, fall), plant spe-
cies (C. vulgaris, H. lanatus) and treatment (ambient,
warming). PERMANOVA (permutational multivariate
analysis of variance [46]) analysis was carried out to cal-
culate interaction effects between the experimental param-
eters by applying the function ‘adonis2’ from the R pack-
age ‘vegan’. Prior to analysis, the dispersion (variance)
between groups was tested with the function ‘betadisper’
(R package ‘vegan’) and was found non-significant for all
parameters. A heatmap was made of the ten most abun-
dant OTUs, with presence in minimum half of the samples
from a given site. Data were log transformed before z
scores were calculated for improved graphic presentation.

OTUs with similar distribution patterns across samples
were identified by hierarchical clustering constrained by
sample order, using the ‘coniss’ clustering method from
the R package ‘vegan’.

Results

Data Quality and Annotation

In total, 1077 OTUs were obtained from a 97% sequence
similarity clustering; of these, 963 were classified as fun-
gal and were considered for further analysis (Table 2 and
suppl. S2). Of the 80 samples processed, 59 were consid-
ered of high quality (see suppl. S3 for OTU saturation
curves). Sample-based OTU accumulation curves indicated
that 96.6% of the expected total diversity was recovered by
the sampling (suppl. S3 and S5). The 59 samples consid-
ered for further analysis had on average 95 ± 30 OTUs per
sample after rarefaction (30,000 reads per sample).

Temperature Data

For the present study, frost events were considered a critical
parameter for the mycobiome and when evaluating the tem-
perature data with this focus we found that the number of days
with average soil temperature below zero varied between sites,
with 40.6% less days at the lowland site (19 vs. 32 days
respectively, Fig. 2a). Likewise, the number of days with
permanent sub-zero soil temperatures (i.e. maximum mea-
sured temperature within 24 h below − 0.5 °C) was more
than tripled at the upland site compared to the lowland
site (6 vs. 19 days respectively, Fig. 2a). The warming
pulse treatment reduced these numbers to 10 and 4 days
at the lowland site, while no reduction was seen at the
upland site (Fig. 2a). The daily temperature fluctuation

Table 2 Overview on
bioinformatics
processing steps and
taxonomic assignment

Assembled reads 3,542,865

OTUs (97% similarity) 1077

OTUs annotated to (accumulated
percentage)

Species 376 (34.9%)

Genus 209 (54.3%)

Family 30 (57.1%)

Order 162 (72.1%)

Class 55 (77.3%)

Phylum 90 (85.6%)

Kingdom (fungi) 41 (89.4%)

Unclassified 114 (100%)
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was significantly different between sites (p < 0.001) and
treatments (p < 0.001, Fig. 2b), with the largest fluctua-
tions seen at the lowland site (2.9 ± 3.1 °C, Fig. 2b and
suppl. S5).

Explanatory Power of Experimental Parameters for
the Mycobiome

The total amount of mycobiome variance which could be
explained by the assessed parameters was 23.7%, as revealed
from distance-based redundancy analysis (dbRDA, Fig. 3 and
Table 3). The first three dbRDA axes were found to signifi-
cantly explain mycobiome variance (11.1%, 5.8% and 3.0%
respectively, Table 3), with ‘plant species’ (C. vulgaris,
H. lanatus), ‘site’ (upland, lowland) and the experimental
‘treatment’ (warming pulses) accounting for these axis
(Table 3). All three parameters showed significant interaction
effects indicating complex responses of the mycobiome
(suppl. S5).

Community Composition

The mycobiome comprised mainly of taxa assigned to the
Ascomycota (76.0 ± 30.7% of total relative abundance), among
classified OTUs Sordariomycetes (15.2%) and Helotiales

(11.5%) were dominant (Fig. 4a–b). Second most dominant
phylum was the Mortierellomycota (18.4 ± 30.2%; all belong-
ing toMortierellales), whereas only a smaller fraction belonged
to the Basidiomycota (5.3 ± 7.4%; Agaricomycetes, 2.8% and
Tremellomycetes, 1.7%, Fig. 4a–b). A significantly (p =
0.041) larger fungal diversity was observed for H. lanatus
compared to C. vulgaris mesocosms (Table 4; for taxonomic
composition of individual samples, see suppl. S6).

Of the 922 OTUs assigned to minimum phyla-level, 651
(representing 69.0% of the total abundance) could be assigned
to a functional group using the FUNguild classifier (Table 5).
Of these, ca. half (326 OTUs representing 29.1% of the total
abundance) was assigned with a high confidence score (‘high-
ly probable’ or ‘probable’, Table 5). A shift in taxonomic
composition was seen between the upland and lowland sites,
which was also reflected in the functional profile of the
mycobiome, where saprotrophic fungi had an increased rich-
ness and the group saprotrophic-symbiotrophs (including
Mortierellales) a large increase in relative abundance at the
upland site (41.3 ± 35.4% vs. 5.7 ± 14.4% at the upland and
lowland site respectively, Table 4). On the contrary, mycor-
rhizal fungi both assigned to ecto- and ericoid mycorrhiza
were strongly reduced in richness at the upland site and for
the latter its occurrence at the upland site completely dimin-
ished (12 ± 23.8% to < 0.0% at the lowland and upland sites

Fig. 2 a Histogram of the average soil temperatures between Dec 1,
2010, and Feb 28, 2011 (bin width: 0.5 °C). The number of days (N) with
average (Ave.) soil temperatures ≤ − 0.5 °C are indicated in blue and
summarized in the upper right corner of each plot. Max. = the number
of day with maximum soil temperatures ≤ − 0.5 °C. b Daily soil temper-
ature fluctuation (difference between the maximum and minimum

observed daily temperature). Boxes represent the first and third quartile,
median (line) and outliers (dots) are indicated as are ANOVA results
(p < 0.05; Tukey HSD groups: a–c). c Average daily soil temperature
(blue line) and standard deviation (grey area) for the period. Data is a
mean of two or four replicates from ambient and warming plots
respectively
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respectively, Table 4). Arbuscular mycorrhiza showed no re-
sponse and had in general a very low abundance (< 1%,
Table 4).

The mycobiome showed clear plant-specific ‘signatures’
at the lowland site, an effect largely driven by symbiont

species (Fig. 5), whereas at the upland site plant-specific
community patterns could no longer be identified. Here the
communities were dominated by OTUs assigned to the ge-
nus Mortierella, a pattern consistent when summarized at
genera level (suppl. S7).

For the mycobiome associated with C. vulgaris, a pro-
nounced difference between the two sites occurred in the abun-
dance of the ericoid mycorrhizal partner Rhizoscyphus (syn:
Hymenoscyphus andPezizella) ericae [47, 48]whichwas highly
dominant at the lowland site but almost completely absent at the
upland site. Likewise, in the mycobiome of H. lanatus though
no arbuscular mycorrhizal fungi was among the dominant taxa,
bothMicrodochium bolleyi andChaetomium sp. were dominant
at the lowland site but highly reduced at the upland site. Both
these taxa (M. bolleyi and Chaetomium sp.) are known as ben-
eficial root associated fungi involved in pathogen protection for
the grass family Poaceae and other herbaceous plant species
[49–53]. A number of potential plant pathogens were also
among the dominant fungi associated with both H. lanatus
(Fusarium oxysporum, Gibberella zeae and G. avenacea; the
latter two both known to cause epidemics of Fusarium head
blight in wheat crops as well as wild grasses [54]) and
C. vulgaris (Ilyonectria macrodidyma; a root pathotroph of
woody plants [55, 56]) at the lowland site, but had likewise a
reduced abundance at the upland site.

Discussion

Local Winter Climate Conditions Had Profound Effects
on the Mycobiome

Surprisingly, the plant-specific mycobiome patterns were
strongly diminished at the upland site for both ambient and
warming treated mesocosms (Fig. 5). Since no real difference

Table 3 Summary of distance-based redundancy analysis (dbRDA).
First two rows show the ANOVA result for the axis and the proportion
of constrained community variance explained by the axis (significant

p values are in itals). Below are the biplot scores of the experimental
variables (for each variable the highest axis scores are in italic)

dbRDA1 bdRDA2 dbRDA3 dbRDA4 dbRDA5

Significance (p) 0.001 0.001 0.001 0.072 0.425

Explained variance (%) 11.1 5.8 3.0 2.1 1.5

Biplot scores for constraining variables

Lowland −0.383 −0.531 0.051 −0.098 −0.028
Upland 0.559 0.774 −0.075 0.142 0.041

Ambient −0.019 −0.108 −0.672 0.190 −0.090
Warming 0.024 0.137 0.853 −0.242 0.114

Calluna vulgaris −0.853 0.450 −0.065 0.062 −0.046
Holcus lanatus 0.585 −0.309 0.045 −0.043 0.032

Sampling date 0.142 0.092 0.270 0.529 −0.787
No. days with soil frost 0.489 0.680 −0.192 0.477 0.188

Fig. 3 Distance based redundancy analysis (dbRDA) of the Bray-Curtis
dissimilarity matrix of the fungal community (133 of 963 OTUs occurred
in only one sample and were excluded for this plot). Symbols represent:
C. vulgaris (circles), H. lanatus (triangle), upland (hollow), lowland
(filled), ambient temperature (blue) and warming (red). Symbols are
scaled to the number of OTUs in a given sample (ranging from 47 to
178 OTUs)
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in the community was observed between the first and second
sampling campaign (i.e. between early spring and late
autumn; Fig. 5 and suppl. S5), the changes in mycobiome at
the upland site seem related to winter climate conditions. This
was in accordance with the pattern observed at the lowland
site, where the experimental warming treatment led to a com-
munity shift comparable to that observed between the control
treatment at the lowland and the upland site (Figs. 3 and 5). In
line with the predictions for relatively warm and cold temper-
ate sites [4–6], the warming treatment reduced the number of
days with soil frost at the lowland site and increased the daily
soil temperature fluctuations (Fig. 2b and Schuerings et al.
2014a [18]), while at the upland site only a small (non-
significant) increase in temperature fluctuation was seen and
the number of days with soil frost remained unchanged (and
much higher than at the lowland site, 32 days; Fig. 2a–b).
These different consequences of the experimental treatment
for the soil temperature at the two sites likely explained why
the experimental winter warming alone was only found to ex-
plain a minor proportion (3.0%) of the mycobiome variance
(dbRDA3, Table 3). We suspect warming treatment effects at
the upland site were masked by the already much altered (i.e.
colder and frost-effected) climate at this site. Urakawa et al.
(2014) [57] conducted a transplant experiment comparable to

ours with in situ incubations of ten different soils from temper-
ate forest sites, transplanted to sites experiencing either non-
frozen and frost-effected winters in Japan. The authors found
microbial processes (nitrogen mineralisation, nitrification and
denitrification) highly affected by winter climate both during
winter and in the following growing season. In addition, the
authors reported the magnitude and frequency of freeze-thaw
cycles as important explanatory parameter of their results, and
suggested that soils experiencing high intensity of freeze-thaw
cycles hosted microbial communities with higher tolerance to
such. Other authors have found changes in nitrogen dynamics
post-freezing to be linked to root mortality and changes in plant
community in temperate grassland and broadleaf forest [10,
21]. In the present study, the plant community composition
was controlled and increased root growth was reported for both
species under the experimental conditions, why we expect
changes in N mineralisation was mainly driven by the micro-
bial community.

The mesocosm design allowed us to establish and contain
systems in a close-to-natural fashion, making the results more
relatable to natural ecosystems compared to laboratory exper-
iments. However, being that it is an only partly controlled
design, several environmental parameters will differ. Thus, it

Fig. 4 Relative abundance of the main phyla (a) and orders (b) for each
site (upland and lowland) and plant species (C. vulgaris and H. lanatus).
Taxa with < 2% relative abundance were summarized as ‘other’, for b
also unclassified OTUs of Ascomycota and Dothideomycetes were
placed under ‘others’. As. = Ascomucota, Mor. =Mortierellomycota

Table 5 Summary of FUNguild classification. Functional groupswith a
total abundance < 0.01 across confidence score is summarized under
‘other’, this count: ‘Arbuscular mycorrhizal’, ‘Fungal parasite-litter
saprotroph’, ‘pathotroph-saprotroph’ and ‘symbiotroph’

Classification Confidence Abundance Richness

Ectomycorrhizal Highly probable 0.1% 7

Ectomycorrhizal Probable 1.0% 13

Ectomycorrhizal Possible 0.02% 3

Ericoid mycorrhizal Probable 6.4% 29

Ericoid mycorrhizal Possible 0.7% 3

Pathotroph-symbiotroph Probable 0.6% 22

Pathotroph-symbiotroph Possible 10.3% 65

Plant pathogen Highly probable 0.0002% 1

Plant pathogen Probable 7.0% 77

Saprotroph Highly probable 0.3% 10

Saprotroph Probable 11.9% 135

Saprotroph Possible 6.6% 72

Saprotroph-symbiotroph Highly probable 0.001% 1

Saprotroph-symbiotroph Probable 0.03% 4

Saprotroph-symbiotroph Possible 20.2% 105

Wood Saprotroph Highly probable 0.2% 9

Wood saprotroph Probable 1.6% 18

Wood saprotroph Possible 0.9% 23

Other NA 1.3% 54

Sum assigned 69.0% 651

Not assigned – 31.0% 271
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cannot be ruled out that other factors besides temperature con-
tributed to the observed changes in the mycobiome between
the upland and lowland site. For example, the mean winter
precipitation is generally higher at the upland site [18], which
was also the case during the winter of the experimental year
2010/2011, where total precipitation was 400 mm and
314 mm from November to March at the upland and lowland
site respectively (daily precipitation did not significantly differ
between the two sites, suppl. S1). The mesocosms were de-
signed as zero tension containers (i.e. always drained, see the
‘Experimental Design’ section); however, precipitation and
other environmental parameters may still have contributed to
the observed community change.

A New Community Balance at the Upland Site

The plant symbiont species were diminished and instead,
saprotrophic fungi were dominant at the upland site, with a
large dominance of members of the genusMortierella but also
Pseudogymnoascus verrucosus, the latter a psychrotolerant
soil saprotroph [58]. Coinciding, a high extracellular enzymat-
ic activity and a significant increase in plant-available nitrogen
(nitrate and ammonium) was previously reported for the up-
land site (Table 1 and Schuerings et al. 2014a, 2014b [15, 18]).
These results suggest that easily accessible substrates were
available at the upland site during the winter 2010/2011. A
possible source of nitrogen rich substrate may have been mi-
crobial necromass, resulting from the strong community turn-
over which had taken place at the upland site. We suspect that
the soil at the upland site experienced a microbial die-off upon
transplantation to the upland site potentially caused by the

colder environmental conditions at this site (increased degree
of soil freezing) resulting in the observed taxonomic alter-
ations and the dead microbial biomass acting as a source of
easily degradable substrates [59]. This interpretation is in line
with studies showing soil freezing as a strong modifier of
microbial community composition often resulting in an initial
microbial death upon freezing and a compositional shift to-
ward frost tolerant species [60–62].

The present study only targeted the fungi and thus nothing is
known about the dynamics of the remaining members of the
microbiota in the soils. The degree and frequency of soil freez-
ing have been reported to explain microbial (bacteria, fungi and
amoeba) community composition in natural (alpine) soil eco-
systems [63–65]. In our study, a prominent example of a likely
frost-induced change in abundance was seen for Fusarium
oxysporum, a species found to be highly sensitive to freezing
under laboratory conditions [66] and which was among the
dominant taxa at the lowland site but was strongly reduced at
the upland site (Fig. 5). An altered microbial community struc-
ture will undoubtedly influence the mineralisation and avail-
ability of nutrients in the soil. As such, a shift in the relative
dominance between e.g. bacteria and fungi could also have
resulted in the increased nitrogen availability reported from
the upland site and warming treatment [62, 67]. Kuffner et al.
(2012) [68] found no changes in richness and only minor
changes in taxonomic composition of bacteria across season
in a warmingmanipulation study conducted on subalpine forest
soils in the Austrian Alps. Those results are in accordance with
other studies showing that bacteria are generally more freeze-
thaw tolerant than both fungi and archaea [13, 60, 68]. Also,
protists and other less studied microbial organisms will likely

Fig. 5 Heatmap of the ten most
frequent and abundant OTUs
from each site (upland and
lowland), representing 43.1% of
the total community (rarefied).
Data was normalized to 30,000
reads per sample prior to analysis.
Red colours indicate relatively
high abundance; blue colours
indicate relatively low abundance
for a given OTU across samples.
OTUs with similar distribution
pattern across samples are
clustered. Upper colour bar
represents the sample sorting by
plant species C. vulgaris (purple)
and H. lanatus (green) and treat-
ment: ambient (A, light colour)
and warming (W, dark colour).
Sample ID is given at the bottom
(Au: Autumn sample, Sp: Spring
sample). Taxonomic classifica-
tion and OTU ID are given at the
right side
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have species-specific responses to the altered environmental
condition e.g. some amoebae (naked amoebae) have been re-
ported as highly frost tolerant [69] while others (myxamoeba)
were shown to be highly sensitive to freezing and even more so
when these occur rapidly, leaving no time for encystment and/
or other coping mechanisms [19]. Likewise, the speed of freez-
ing has also been shown to affect the survival rate of bacteria
[70] and finally, Tibbett et al. (2002) [71] found the recovery
rate of ectomycorrhizal fungi after a freezing event partly ex-
plained by the temperature prior to freezing (2 °C or 22 °C),
suggesting that a wider temperature amplitude (as seen for the
warming treatment at the lowland site) can result in a decreased
frost-tolerance for some fungi. In the case of an increase in
microbial necromass at the upland site, this might have acted
as an intermediate plant growth driver (which must be consid-
ered transient). Under natural conditions (non-monoculture
conditions), a shift in the plant community can be expected
upon shifts in the fungal community, although the plant re-
sponse might not follow immediately [72, 73]. Our results sug-
gest that such decoupled response between fungi and plants
was undertaking.

Reduced Abundance of Fungal Symbionts Coinciding
with Positive Plant Growth Responses

A positive growth response was reported for C. vulgaris at the
upland site, suggesting that the lack of symbiont R. ericae did
not reduce the fitness of the host plant. Both C. vulgaris and
H. lanatus are common plant species in temperate and sub-
arctic ecosystems and should have no problem prevailing at
the mountainous upland site. Although studies have shown
that both arbuscular and ectomycorrhizal fungi can survive
hard frost events [74], ericoid mycorrhizal associations of
Ericaceae plants (including C. vulgaris) have been reported
to decline with increased latitude and altitude [75, 76], and
Vohník and Albrechtová (2011) [77] reported a shift in abun-
dance between ericoid mycorrhizal and the so-called dark-
septate endophyte fungi associated with the plant genus
Rhododendron (Ericaceae) with increased altitude and latitude
across Europe. Common for these studies, however, is that the
shifts are generally seen at considerably colder regions than
our upland site (i.e. alpine and sub-arctic). Thus, the reduction
in abundance of the ericoid fungi R. ericae at the upland site
might be related to other parameters than temperature per se.
The host plant C. vulgaris might be capable of an efficient
regulation of its mycorrhizal associations under favourable
environmental condition (such as N availability) allowing
the plant to put its carbon resources in to growth rather than
supplying the mycosymbiont. A reduction in mycorrhizal as-
sociations under high nutrient availability has previously been
reported for ecto- and arbuscular mycorrhizal associations
[78–82]. Experiments on the effect of ericoid mycorrhizal

partners on plant growth under nutrient enriched condition
have to our knowledge not yet been carried out.

In addition, both plant species experienced a release from
pathogens at the upland site (from I. macrodidyma and
F. oxysporum/G. zeae/G. avenacea for C. vulgaris and
H. lanatus respectively) which might contribute to explaining
the positive growth response previously reported for both
plant species at this site [15, 18] (Table 1). Likewise,
I. macrodidyma was reduced under the warming-pulse treat-
ment at the lowland site, and also here a positive growth re-
sponse for C. vulgaris was reported [18] (above-ground bio-
mass and root length; Table 1). Although the warming-pulses
at the lowland site reduced the soils exposure to frost, a com-
positional change among the dominant members of the
mycobiome, comparable to that seen for the upland site, was
observed at this site (Fig. 3). This was especially true for the
mycobiome of H. lanatus, where the abundance of the plant-
beneficial fungiM. bolleyi decreased under the warming-pulse
treatment (Fig. 5). Subsequently, a lower biomass of
H. lanatus was reported from the following growing season.
Both examples point to direct effects of the mycobiome on
plant growth (Table 1).

Conclusion

Increased temperature fluctuations and extreme climatic
events are predicted to become more frequent with climate
change [83]. Based on our results, this can have potentially
far reaching consequences for soil mycobiomes and subse-
quently plant productivity. Furthermore, our results indicate
that legacy effects after such ‘extreme’ events can be expected
to remain in the ecosystem across seasons (i.e. no observed
difference between the first and second sampling).

In summary, our results suggest that years with weather
conditions outside the common climatic range for the given
community (here seen at the upland site and under warming
condition at the lowland site) and winter climate (not summer)
have the potential to drive drastic changes in the mycobiome,
with ecosystem-scale consequences for mineralisation and
plant growth. The results also suggest that the mycobiome
responds similarly to a combination of cold temperature
stressors i.e. fluctuations (including number of freeze-thaw
cycles), rate of freezing, absolute minimum temperature and
duration of freezing. More research is needed to identify spe-
cific thresholds for these stressors as well as microbial com-
munity structure resilience.
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