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Abstract
In recent years, many studies have described the composition and function of the human microbiome at different body sites and
suggested a role for the microbiome in various diseases and health conditions. Some studies, using longitudinal samples, have
also suggested how the microbiome changes over time due to disease, diet, development, travel, and other environmental factors.
However, to date, no study has demonstrated whether the microorganisms established at birth or in early childhood, either
transmitted from parents or obtained from the environment, can stay in the human body until adult or senior age. To directly
answer this question is difficult, because microbiome samples at childhood and at later adulthood for the same individual will
need to be compared and the field is not old enough to have allowed for that type of sample collection. Here, using a metagenomic
approach, we analyzed 1004 gut microbiome samples from senior adults (65 ± 7.8 years) from the TwinsUK cohort. Our data
indicate that many species in the human gut acquired in early childhood can stay for a lifetime until senior ages. We identified the
rare genomic variants (single nucleotide variation and indels) for 27 prevalent species with enough sequencing coverage for
confident genomic variant identification. We found that for some species, twin pairs, including both monozygotic (MZ) and
dizygotic (DZ) twins, share significantly more rare variants than unrelated subject pairs. But no significant difference is found
between MZ and DZ twin pairs. These observations strongly suggest that these species acquired in early childhood remained in
these persons until senior adulthood.
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Introduction

The human microbiome refers to the millions of microbial
organisms that live on different body sites [1, 2]. These
microbes are essential for maintaining human health by
producing nutrients and vitamins, regulating the immune
system, providing the host with beneficial molecules,
protecting the gut barrier, and fighting off disease-
causing pathogens. For healthy humans, the microbiome
gets populated immediately at birth. After birth, various
microbial species from mothers and from the surrounding
environments quickly colonize the infants, especially in

the gastrointestinal tract. This initial colonization is influ-
enced by birth modes (vaginal delivery or C-section), use
of antibiotics, breastfeeding, and several other factors
[3–7]. The maternal gut has been found to be the largest
source of colonizing bacteria in the gastrointestinal tract of
healthy infants [8].

The composition of the human microbiome is thought to
evolve and change as humans age. After birth, the infant’s gut
microbiome undergoes a development phase for about a year,
then a transition phase for another year, and then reaches a
stable phase [9]. Youth, adult, and senior populations each
harbor age-specific features in their microbiomes [10]. Gut
microbiome composition can be disrupted due to acute dis-
eases or infections [11], diet [12, 13], use of antibiotics [14]
and other drugs [15], travel [16], and many other factors.
However, the composition of an established gut microbiome
has a tendency to restore after disruption [17]. The stability of
the human gut microbiome has been shown by longitudinal
studies. One study [18], which followed subjects for years,
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showed that some microbial species can stay in the human gut
for many years. However, so far, no study has demonstrated
whether the microorganisms established at birth or in early
childhood, either transmitted from parents or obtained from
the environment, remain in the human body until adulthood or
senior age. To directly answer such a question is difficult,
because microbiome samples at childhood and at later adult-
hood for the same individual would need to be collected and
compared.

The microbial species in the human microbiome exhibit
large genomic variations among different individuals. A large
number of single nucleotide variations (SNVs), short
insertions/deletions (indels), and structural variants from the
same species have been found among different samples [19].
These metagenomic variations are very unique and can be
used as signatures to identify individuals [20]. Here, we ana-
lyzed 1004 gut microbiome samples from senior adults (65 ±
7.8 years) from the TwinsUK cohort [21]. In this study, by
analyzing the rare SNVs and indels in this metagenomic
dataset, we can indirectly show whether species in the human
gut acquired at birth or in early childhood can persist for a
lifetime until senior ages.

The microbiome datasets from the TwinsUK cohort gener-
ated by either 16S rDNA sequencing or shotgun metagenomic
sequencing have been analyzed in several different studies,
which have suggested a heritability of the human microbiome
and how genetic and environmental factors impact the gut
microbiome, as well as the associations between the gut
microbiome and metabolites in stool and blood samples
[22–25]. In these studies, as well as other microbiome studies
involving samples from twins [26], it has been repeatedly
observed that the similarity of the microbiome between twin
pairs is significantly higher than in unrelated subjects. These
observations were explained by the host genetics, which also
explains why the microbiome similarity within the monozy-
gotic (MZ) twin pairs is greater than the dizygotic (DZ) twin
pairs [22–24]. However, the previous studies have not really
answered the question as to when these species shared by twin
pairs started to colonize the gut.

In this study, we used the same dataset from the TwinsUK
cohort, but focused on a set of rare SNVs and indels in the
microbial species, and generated results that support the ob-
servation that the shared rare genomic variants between twin
pairs are from species that colonize them at an early age.

Results and Discussion

In this study, we re-analyzed the stool samples from 1004
individuals from the TwinsUK cohort that were sequenced
using the shotgun metagenomic approach from our previous
study [25]. This dataset includes 161 MZ twin pairs, 201 DZ
twin pairs, and 280 individuals without a matching twin. We

first identified a subset of abundant and common species for
the analysis of SNVs and indels. We found 27 species that
meet the following criteria: (1) present in more than 100 indi-
viduals, (2) present in at least 10 twin pairs, (3) average depth
of sequencing coverage ≥ 2, (4) the fraction of genome cov-
ered by mapped metagenomic reads is ≥ 75%. These criteria
ensure enough sample size for statistical analysis and sequenc-
ing coverage for reliable variant calls. The list of the 27 spe-
cies and number of samples and number of twin pairs for these
species are presented in Table S1.

SNVs and indels for these species were identified using the
Varscan 2 program (see Materials and Methods). For each
species, rare variants (SNVs or indels) that were only found
in less than 20% of samples were kept for further analysis. On
average, 171,316 ± 90,761 rare SNVs and 3308 ± 1424 rare
indels were found per species (Table S1). For each species, a
variant cutoff is defined so that among all the pairs of unrelat-
ed individuals having this species, only 1% of these pairs
share more rare variants than this cutoff (Table S1). For ex-
ample, the cutoff for Methanobrevibacter smithii is 971. It
means that there is a 1% probability that a pair of unrelated
individuals withM. smithii share ≥ 971 rare variants. Here, for
a species, if two individuals meet this cutoff, we consider they
share the same strain-specific variant signature (at a signifi-
cance level of 0.01). Having strain-specific variant signatures
indicates that the strains from the two individuals can be
traced back to the same origin.

For some species, the frequency for the twin pairs sharing
strain-specific variant signatures is much higher than 1%,
which is the expected frequency for unrelated pairs. Exact
binomial test (binom.test in R package) was used to calculate
the p value for the observed number of twin pairs sharing
strain-specific variant signature (Table 1). These species, in
order of increasing p value, are M. smithii, Bacteroides
caccae, Bifidobacterium adolescentis, Alistipes putredinis,
Bacteroides fragilis, Bacteroides dorei, Eubacterium hallii,
Phascolarctobacterium faecium, Bacteroides uniformis,
Blautia obeum, Bifidobacterium longum, Dialister invisus,
and Akkermansia muciniphila.

While it is expected that only 1% of pairs of unrelated
individuals may share strain-specific variant signatures by
chance, for M. smithii, 36% of twin pairs did. This suggests
that for twin pairs where both individuals have M. smithii,
36% of them can be traced back to the same origin. Other
species with high frequency for the twin pairs sharing strain-
specific variant signatures include B. fragilis (23%), B. caccae
(14%), and E. hallii (9%) (Table 1). This highly suggests that
these particular strains shared by the twins originated from the
same source and colonized the twins at their early ages.
Otherwise, although the twins may preferably select similar
microbial species in later adulthood while they are physically
and geographically separated, it is difficult to explain why
these strains share so many rare genomic variants. In addition,
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we did not find significant differences between MZ and DZ
twin pairs.

Our observation about the strain-specific variant signatures
shared between twins is highly connected with the heritability
of the microbiome. Species with most genomic variants pre-
served in twins, such as M. smithii, are also among the list of
heritable microorganisms shown in previous publications [18,
22–24]. In fact, if a species that is originally colonized both
twins during childhood survived until their adulthood, this
species is likely to be a heritable species. However, there are
differences between heritability analysis and our analysis.
Heritability was calculated based on the similarity of microbi-
al species abundance between individuals’ microbiome [18,
22–24]. But in this study, species abundance was not consid-
ered, only the variants were compared. In heritability analysis,
the effect of non-genetic factors (e.g., environment) on the
data was modeled and removed [22–24], so the estimated
heritability is only due to the genetic factors. Therefore, the
heritable species were different between twins and unrelated

pairs and were also different between MZ and DZ twins. In
our analysis, we only observed the difference between twins
and unrelated pairs, not betweenMZ and DZ twins. So, shared
environment played an important role in addition to genetic
factors in our analysis.

Some spec ies , such as Bactero ides vulgatus ,
Subdoligranulum sp. APC924/74, and Dorea longicatena,
showed no significant difference between twin pairs and un-
related pairs (Table 1), which indicates that these strains col-
onized in later adult stages when the twins were separated, or
the strains had diverged too much to be detected by our geno-
mic variant analysis, or had been replaced by related strains.

It is expected that microbes, after the initial colonization in
the human gut, continue to evolve and diverge. However, to
answer the question about how fast different species in the
humanmicrobiome evolve over lifetime, longitudinal samples
are needed. So, we cannot address this question here. A pre-
vious study [18] with longitudinal samples for up to 5 years
showed microbiome community divergence over time based

Table 1 Fraction of twin pairs that share strain-specific variants

Species Number of
twin pairs

Number of twin pairs sharing
strain-specific variant signature a

Frequency a p value

Methanobrevibacter smithii 22 8 0.3636 2.8E−11
Bacteroides caccae 42 6 0.1429 3.9E−06
Bifidobacterium adolescentis 25 5 0.2000 4.5E−06
Alistipes putredinis 114 7 0.0614 1.6E−04
Bacteroides fragilis 13 3 0.2308 2.7E−04
Bacteroides dorei 66 5 0.0758 5.4E−04
Eubacterium hallii 44 4 0.0909 9.9E−04
Phascolarctobacterium faecium 20 3 0.1500 1.0E−03
Bacteroides uniformis 201 8 0.0398 1.0E−03
Blautia obeum 71 4 0.0563 5.7E−03
Bifidobacterium longum 45 3 0.0667 0.01

Dialister invisus 54 3 0.0556 0.02

Akkermansia muciniphila 84 3 0.0357 0.05

Escherichia coli 13 1 0.0769 0.12

Gemmiger formicilis 16 1 0.0625 0.15

Eubacterium siraeum 22 1 0.0455 0.20

Bacteroides vulgatus 87 2 0.0230 0.22

Subdoligranulum sp. APC924/74 100 2 0.0200 0.26

Eubacterium rectale 50 1 0.0200 0.39

Dorea longicatena 54 1 0.0185 0.42

Parabacteroides merdae 32 0 0.0000 1.00

Bacteroides sp. 4_3_47FAA 32 0 0.0000 1.00

Ruminococcaceae bacterium TF06-43 21 0 0.0000 1.00

Coprococcus comes 36 0 0.0000 1.00

Barnesiella intestinihominis 16 0 0.0000 1.00

Streptococcus thermophilus 13 0 0.0000 1.00

Alistipes sp. AM16-43 13 0 0.0000 1.00

a Frequency for the twin pairs sharing strain-specific variant signature
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on 16S rDNA sequencing data. In this study, we tried to see if
there is a correlation between number of shared variants in
twins and their age. However, we did not find any significant
correlation. This suggested that although the species contin-
ued to evolve, the accumulation of genomic variants did not
happen at a linear rate. Otherwise, we should have observed
that older twins have less shared variants than younger twins.

In this study, using strain-level genomic variant analysis on
one of the largest available human metagenomic datasets from
the TwinsUK cohort, we estimate that some species in the
human gut microbiome may stay for life after their initial
colonization since early childhood. After many decades, the
strain-specific genomic variant signatures can still be detected.
To further understand how the species evolve and how their
genomic variants occur over a lifetime, more investigations
with longitudinal samples are needed.

Materials and Methods

Study Cohort and Samples

The subjects are from the TwinsUK adult twin registry, which
includes about 14,000 subjects, predominantly females [21].
The stool samples were collected from a subset of subjects.
Details are described in our previous study [25]. Briefly, stool
samples from 1004 individuals (39 males, 965 females) of
European ancestry were collected. These subjects (65.0 ±
7.8 years) were all living in the UK at the time of specimen
collection. This dataset includes 161 monozygotic (MZ) twin
pairs, 201 dizygotic (DZ) twin pairs, and 280 singletons. Data
on the TwinsUK participants are available for research under
managed access due to governance and ethical constraints and
can be requested from http://twinsuk.ac.uk/resources-for-
researchers.

Metagenomic Sequencing

DNA extraction from stool samples, DNA library preparation,
and metagenomic sequencing of the 1004 samples were also
described in our previous study [25]. Sequencing of the stool
samples yielded an average number of reads of 54 M per
sample. The raw metagenomic sequences are available from
the European Nucleotide Archive website (study accession
number: PRJEB32731).

Metagenomic Sequence Analysis

Raw reads were processed using Trimmomatic (version 0.36)
[ 2 7 ] t o t r im l ow - q u a l i t y b a s e s ( p a r ame t e r s :
SLIDINGWINDOW:4:20 LEADING:3 TRAILING:3
MINLEN:80 MAXINFO:80:0.5). Only paired-end (PE) reads
both of ≥ 80 bp were kept for analysis. High-quality PE reads

were mapped to the human reference genome (hg38) with
BWA-MEM (version 0.7.12) [28] with default parameters and
removed, if they mapped concordantly with an alignment score
of ≥ 60. We maintain a comprehensive microbiome reference
genome database for mapping the metagenomic reads. This
database was compiled and curated from NCBI Refseq ge-
nomes covering complete and draft bacteria, archaea, viruses,
fungi, and microbial eukaryotes species. Currently, the database
contains 27,115 representative genomes. Taxonomy profiles
were determined through reference genome mapping using
Centrifuge (version 1.0.4) [29] with default parameters.

After initial mapping using Centrifuge, we first filtered out
mapped genomes from contamination. The depth of coverage
(read length x number of mapped reads/genome length) and
fraction of coverage (number of bases covered by mapped
reads/genome length) for each mapped genome was calculat-
ed using the alignment file provided by Centrifuge. Some
genomes were filtered out using the following criteria. In se-
quencing, the observed number of times a base is sequenced
follows a Poisson distribution [30]. Given the observed depth
of coverage calculated from the alignment file, the expected
fraction of coverage is (1–1/(edepth of coverage)) [30]. If the ob-
served fraction of coverage was smaller than 1/10 of the ex-
pected value, then it suggested aligned reads were piled up at a
small fraction on the genome rather than uniformly distributed
along the genome, the genome was removed.

Then relative taxonomy abundance was calculated based
on the filtered mapping results.

Genomic Variant Analysis

Our approach for genomic variants is similar to several
existing methods that can analyze metagenomic data at
strain-level such as StrainPhlAn [31], StrainEST [32], and
MIDAS [33]. StrainPhlAn detects single nucleotide variation
(SNV) based by mapping the reads to a set of conserved and
unique species marker genes. StrainEST and MIDAS perform
full-length genome SNV calling. Here, we implemented a
novel approach for genomic variant analysis, including anal-
ysis of both SNVs and also indels.

First, we selected the species with at least 2× depth of
coverage, based on the mapping data from the previous
Centrifuge run. We then performed a second round of map-
ping to align the reads to these selected species using BWA-
MEM [28] (parameters: -T 80). In this round of reads map-
ping, only one representative genome was used for one spe-
cies. After mapping, we analyzed the BAM file using
SAMtools (version 1.9) depth command [34] and calculated
the depth of coverage and fraction of coverage for each ge-
nome. Genomes were removed if the depth of coverage is < 2
or fraction of coverage is < 0.75. SAMtools mpileup com-
mand was used to convert the BAM file to a mpileup file.
Then, Varscan (version 2.4.2) pileup2snp [35] was used to
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call SNVs (parameters: –min-coverage 2 –min-reads2 2 –min-
var-freq 0.66). Varscan pileup2indel was used to detect
indels (parameters: –min-coverage 2 –min-reads2 2 –
min-var-freq 0.66).

For one species, the detected SNVs and indels were col-
lected for the samples that had this species at ≥ 2 depth of
coverage and ≥ 0.75 fraction of coverage. And then from these
collected variants, only rare SNVs and indels that exist in less
than 20% of the samples were kept for further analysis, be-
cause common SNVs or indels are not discriminative in track-
ing strains between subjects.
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