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Abstract
Elevation is an important determinant of ecological community composition. It integrates several abiotic features and
leads to strong, repeatable patterns of community structure, including changes in the abundance and richness of numer-
ous taxa. However, the influence of elevational gradients on microbes is understudied relative to plants and animals. To
compare the influence of elevation on multiple taxa simultaneously, we sampled phytotelm communities within a
tropical pitcher plant (Nepenthes mindanaoensis) along a gradient from 400 to 1200 m a.s.l. We use a combination of
metabarcoding and physical counts to assess diversity and richness of bacteria, micro-eukaryotes, and arthropods, and
compare the effect of elevation on community structure to that of regulation by a number of plant factors. Patterns of
community structure differed between bacteria and eukaryotes, despite their living together in the same aquatic micro-
habitats. Elevation influences community composition of eukaryotes to a significantly greater degree than it does
bacteria. When examining pitcher characteristics, pitcher dimorphism has an effect on eukaryotes but not bacteria, while
variation in pH levels strongly influences both taxa. Consistent with previous ecological studies, arthropod abundance in
phytotelmata decreases with elevation, but some patterns of abundance differ between living inquilines and prey.
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Introduction

Mountains, especially tropical mountains, can exhibit dif-
ferences in climatic variables across their ranges compara-
ble to the climatic changes that occur around the globe from
equator to poles [1–4]. Because mountains create spatially
compact environmental gradients, they are useful for ex-
ploring broad patterns across taxa. Decades of research
has uncovered similar patterns across diverse taxa: whether
monotonic or hump-shaped, plants, mammals, birds, am-
phibians, reptiles, insects, and other invertebrates all gen-
erally exhibit decreasing diversity and abundance with in-
creasing elevation [5]. While studies of elevational gradi-
ents can be traced back to the time of Linnaeus, bacteria and
other microbes have been the focus of such studies only
recently—largely within the past decade [6]. The extent to
which microbes follow the same macroecological trends
established in plants and animals (macro-organisms or
“macrobes”) remains partially unresolved. One major line of
thought on microbial macroecology is the Baas-Becking hy-
pothesis: “everything is everywhere, and the environment se-
lects”, suggesting that bacteria are not dispersal-limited and
thus not subject to the broad-scale spatial structuring seen in
macrobes [7–12]. However, this view is controversial [13–17],
and may not apply to eukaryotic microbes [18, 19].

Microbes have not been as extensively studied in the con-
text of elevational gradients, but the past decade has seen an
increasing number of studies examining elevational patterns
of bacteria in soil [6, 8–12, 20–22] and to a lesser extent,
aquatic habitats [23–26]. Similar studies have also been con-
ducted for fungi [27–35] and protists [18, 36–39]. Of these
microbial elevational gradient studies, only a handful have
compared diversity patterns of syntopic microbes and
macrobes coinhabiting the same microhabitats. The results
of these studies have also been inconsistent, with some finding
that microbes and macrobes follow concordant patterns of
richness (generally decreasing richness with increasing eleva-
tion) [6, 22], and others finding that microbes and macrobes
exhibit differing patterns [21, 25, 40]. Other, more general
analyses have found that bacteria and micro-eukaryotes re-
spond differently to environmental factors within the same
habitats, with eukaryotes having stronger dispersal limitation
[41–45]. It may thus be necessary to distinguish between bac-
teria and eukaryotes when comparing macrobes to microbes.

A multi-taxon comparative approach can contribute to im-
proved understanding of elevational macroecology. Including
organisms with diverse physiologies spanning multiple tro-
phic levels helps improve the generalizability of observed pat-
terns [46]. To achieve this task, our study utilizes communities
in phytotelmata, which are small, specialized aquatic ecosys-
tems contained within plant tissues such as tree holes or pitch-
er plants [47]. These systems have unique advantages for
comparative multi-taxon studies: though small, they often

encompass a diverse set of taxa, which can include bacteria,
archaea, eukaryotic microbes, invertebrates, and vertebrates
(the term “inquilines” has been used to refer to phytotelm
inhabitants, especially invertebrates) [47]. Thus, they serve
as convenient, replicated communities with distinct bound-
aries in which multiple taxa experience a similar environment
and can be compared simultaneously using a metabarcoding
approach [48]. Specifically, we studied tropical pitcher plants
(genus Nepenthes), which are carnivorous plants with modi-
fied leaves or “pitchers.” These pitchers act as pitfall traps, in
which a secreted fluid pool digests captured insects, while also
serving as a phytotelm habitat [49, 50]. Trait variation in
pitchers, both morphological and physiological, can also in-
fluence community composition. Morphological features in-
clude pitcher dimorphism (an individual plant produces two
distinct pitcher morphs, “lower” and “upper” pitchers from the
terrestrial rosette and arboreal climbing phases, respectively)
and variation in red pigmentation [51, 52]. Coloration may
affect visual signaling to arthropods [52, 53]. Pitcher dimor-
phism may involve differences in visual and olfactory signal-
ing modalities in addition to the terrestrial/arboreal microhab-
itat distinction [54, 55]; two studies found between-morph
differences in inquiline insect community composition [56,
57]. One key physiological feature of pitchers is their active
regulation of fluid pH levels [58], which can vary significantly
within or between species [59, 60].Nepenthes phytotelm com-
munities typically include bacteria, fungi, algae, protozoans,
mites, and aquatic insect larvae [47, 49, 59], and, occasionally,
anuran tadpoles [61–63] and crabs [64]. Previous
metabarcoding studies show that their communities are spe-
cialized and distinct from the surrounding environment [65],
which can be attributed to the specific conditions within the
plants such as the acidic pH levels of the fluids [65, 66].

In this study, we examine phytotelm communities of
Nepenthes mindanaoensis along a 400–1200 m a.s.l.
elevational gradient on Mt. Hamiguitan, Mindanao,
Philippines. We collected the entire fluid contents and used a
DNA metabarcoding approach to sequence 16S and 18S
rRNA genes to capture the community-level diversity of bac-
teria and eukaryotes, respectively. The sequence-based ap-
proach captures both micro- and macro-eukaryotes (i.e., meta-
zoans). We also identified and counted physical specimens of
arthropods in the pitcher, both the inquilines (generally aquat-
ic insect larvae that complete their development living and
feeding inside the pitcher fluids), as well as the partially
digested prey remains. Our primary goal was to determine
whether pitcher phytotelm communities are structured by el-
evation, or whether plant-regulated factors such as pH and
morphology have a greater effect that overrides the effect of
elevation (which might be largely generated by external cli-
matic factors such as temperature and precipitation). We were
also interested in whether the relative effects of external gra-
dients differed among taxa. We did not attempt to establish the
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effect of specific climatic factors, and unfortunately elevation
and geographic distance covaried in our transect, so it was not
statistically possible to disentangle the effects of these separate
external (i.e., non-plant-regulated) factors on pitcher biota.
However, we still gain insight into the relative influence of
plant-regulated versus external factors. Whether the influence
of the external gradient is due to climate or distance (or a
combination of both), determining its relative effect on differ-
ent taxa provides information of interest, since the compara-
tive effect of geographic distance on microbes and macrobes
is also an open question [42, 67].

Methods

Site

Mount Hamiguitan (N 06° 43′ 1.81″, E 126° 10′ 24.35″) is
located in the southernmost peninsula of eastern
Mindanao, the southernmost major island of the
Philippines. Much like the neighboring Indo-Australian
Archipelago, the Philippines is a hotbed of biodiversity.
Because the majority of its islands were never connected
to mainland Southeast Asia, the Philippines boasts impres-
sive levels of endemism: an estimated 45% of vertebrate
species, 50% of plant species, and 70% of insect species
are endemic [68]. Further, many species are endemic to
single islands or even single peaks. Five Nepenthes species
are endemic to Mt. Hamiguitan [69, 70]. This site-level
endemism is one reason for Mt. Hamiguitan Range
Wildlife Sanctuary’s designation as an UNESCO World
Heritage Site. The site ranges from 75 to 1637 m a.s.l.
and has several habitat types, including dipterocarp forest,
montane forest, moss forest, and pygmy moss forest at the
highest elevation.

Following the general pattern observed on tropical moun-
tains, there is a pronounced gradient in both temperature and
precipitation. We determined the site’s climatic properties
using data from WorldClim [71], analyzed using the “st”
package in R [72], with a resolution of 5 min for max temper-
ature and 2.5 min for all other variables. In any given month,
the mean temperature for the lowest elevation region of Mt.
Hamiguitan is 26–27 °C compared to 21–22 °C at the highest
elevation, while the monthly minimum temperature ranges
from 21 to 22 °C at the lowest elevation and 16–18 °C at the
highest elevation. For maximum temperature, the range is 30–
30.5 °C at low elevation and 27.5–29 °C at high elevation.
Precipitation patterns are more variable throughout the year
than temperature patterns, but during the months of June to
September (monsoon season), conditions tend to be wetter at
low elevation: 18–36 mm at the lowest elevation compared to
17–24 mm at the highest elevation (Supplementary Table 1).

Sample Collection

Sampling was conducted 14–17 July 2016. We worked
along a transect from ~ 400 to ~ 1200 m a.s.l. (a
Euclidian distance of ~ 4.2 km, Fig. 1). Nepenthes
mindanaoensis individuals were abundant throughout this
transect, allowing for systematic sampling; however, we
sampled fewer pitchers from ~ 600 to 800 m a.s.l. due to
more challenging terrain. We collected the contents of 33
N. mindanaoensis pitchers (Table 1), selecting only a sin-
gle healthy mature pitcher per individual plant. We poured
the entire fluid contents from each pitcher directly into a
single, sterile 50 mL Falcon tube, sealing the capped
tubes with parafilm to safeguard against spillage or con-
tamination prior to the addition of preservative. The tubes
were kept secure and out of the sun within a backpack
during in-field transit . We added 1 mL of cetyl
trimethylammonium bromide (CTAB) buffer for every
1 mL of pitcher fluid within 24 h of collection as a pre-
servative (this was done indoors at a field station) [65].
Prior to the addition of CTAB, we recorded the volume of
each sample and removed a small amount of liquid to
measure pH with ColorPhast pH strips (Merck KGaA
Darmstadt, Germany). We measured the length (distance
from the base of the pitcher to the insertion of its lid) and
width (the diameter of the widest section of the pitcher) of
each pitcher in situ using digital calipers. We also record-
ed pitcher morph (upper or lower) and color (primarily
green or red-pigmented) of each sample. We estimated
“canopy openness” for each pitcher by photographing
the sky above from pitcher’s-eye-view using a point-
and-shoot digital camera (Canon PowerShot ELPH
170IS, which has a 4.5–54 mm zoom lens with 12× dig-
ital zoom) and calculating the area not covered by vege-
tation using ImageJ [73]; this metric does not only include
leaf area of canopy trees but also all herbaceous layers
shading that pitcher. We obtained GPS coordinates and
elevation of each sampled pitcher using a Garmin eTrex
handheld GPS unit. We determined Euclidian distance be-
tween plants using the distance tool in Google Earth Pro.

Arthropod Identification and Analysis

After removing fluid for DNA extraction, we filtered arthro-
pod bodies and debris from fluid samples using fine gauze (<
0.5 mm pore size) and separated taxa under a dissecting mi-
croscope. We created high-resolution digital images using a
digital camera mounted on a dissecting microscope together
with the AutoMontage photo compositing system, then stored
the specimens in 100% ethanol. We counted total arthropod
numbers from each pitcher. For arthropods classed as insect
prey, numbers were based on a combination of head capsule
counts and wing counts; in the case of wings, we counted two
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morphologically similar wings as one individual. Arthropod
counts were categorized as culicid (mosquito) larvae,
ceratopogonid (midge) larvae, brachyceran (a dipteran subor-
der) larvae, mites (Acari), ants (Formicidae), and other insect
prey. We used field guides to key ants to species where pos-
sible [74], and culicids to genus [75]. Order-level designation
of insect prey was based on wing venation patterns or the
appearance of head capsules. For further statistical analysis,
both arthropod abundance (number of individual arthropods
within a taxonomic category) and richness (number of taxa
within a category, morphospecies in the case of ants and
culicids, or orders in the case of non-ant insect prey) were
based on physical counts, rather than 18S sequences.

Extraction and Sequencing

We used metabarcoding to sequence the 16S and 18S ribo-
somal RNA genes in the fluid to represent the entire prokary-
otic and eukaryotic communities in the pitcher fluid. DNA
was extracted using a bead-beating and phenol-chloroflorm
extraction method after concentrating the cells with a

centrifuge [76]. Negative controls were included for each set
of extractions, and no measurable DNA was recovered from
them. Amplicons were generated and sequenced at the
Environmental Sample Preparation and Sequencing Facility
(ESPSF) at Argonne National Laboratory. We targeted the
V4 region of the 16S rRNA gene using primers 515F-806R
[77, 78] and the V9 region of the 18S genes using primers
Euk1391f-EukBr [79, 80]. Sequences were assembled and
assigned to operational taxonomic units (OTUs) using the
QIIME pipeline and Harvard’s Odyssey computer cluster
[65]. We used the Greengenes and SILVA databases for 16S
and 18S sequences, respectively, for taxonomic classification
of OTUs, with a cutoff of 97% sequence identity. In some
cases, further taxonomic assignment was determined using
NCBI BLAST. Neighbor-joining phylogenies were construct-
ed for all bacterial (16S) and eukaryotic (18S) OTUs. 16S
OTUs classified as chloroplast and mitochondrial sequences,
and 18S OTUs classified as Embryophyta (land plant) se-
quences were removed from downstream analyses of commu-
nity similarity to avoid inclusion of possible contaminants
from host plant cells.

Fig. 1 a Sampling area for the study, blue circles indicate the locations of
the sampled pitchers on Mount Hamiguitan. Location of the area within
the Philippines is indicated by a red box in the inset. b–e Representative

photographs of N. mindanaoensis pitchers sampled in this study: lower
pitcher (b) and upper pitchers (c–e). Photos: MAKN
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Statistical Analysis

All analyses were conducted in R version 3.5.0. We first
conducted a principal components analysis (PCA) of all
recorded sample traits (elevation, Euclidian distance, fluid
pH, canopy openness, fluid volume, pitcher length, pitcher
width, pitcher morph, and pitcher color) in order to deter-
mine the axes of variation and assess correlation among
traits. Based on this assessment, we determined that
Euclidian distance (the shortest distance between two sam-
pling points) was strongly, positively correlated with ele-
vation (on the same PCA axis), and thus did not include
Euclidian distance as a variable in our analyses. In order to
further probe the effect of physical Euclidian distance on
our data, we plotted the log of the Unifrac distance matrix

for bacteria or eukaryotes against the log of Euclidian dis-
tance (in meters) to search for distance-decay patterns. One
would expect to see stronger distance-decay patterns in
more dispersal-limited taxa [81, 82]. In addition, we used
the function “betadisper,” together with “permutest” to cal-
culate and compare levels of 16S-/18S-based beta diversity
(pitcher-to-pitcher turnover) between low (< 700 m a.s.l.)
and high (> 700 m a.s.l.) elevation pitchers for bacteria and
eukaryotes. Since high elevation pitchers were more wide-
ly distributed in the habitat than low elevation pitchers
(maximum Eucl idian dis tance of 1998.95 m vs.
511.25 m, respectively), we expected greater turnover at
high elevations if inter-pitcher community similarity were
strongly influenced by Euclidian distance. We chose to use
pitcher length as the sole pitcher dimension because

Table 1 List of all Nepenthes
mindanaoensis pitcher fluid
samples collected, with data on
pitcher morph, elevation, and
Euclidean distance from start of
transect

Pitcher ID Morph Elevation (m a.s.l) Euclidean distance from start (m)

MIN001 Upper 446 0

MIN002 Upper 447 6.89

MIN003 Upper 451 28.21

MIN004 Upper 446 28.21

MIN005 Upper 458 59.39

MIN006 Lower 459 72.61

MIN007 Lower 468 88.05

MIN009 Upper 465 102.25

MIN008 Lower 464 106.06

MIN010 Upper 464 108.02

MIN011 Upper 471 110.66

MIN012 Upper 475 154.95

MIN013 Upper 506 368.83

MIN014 Upper 514 385.3

MIN015 Upper 525 455.97

MIN016 Lower 523 462.43

MIN017 Upper 533 476.6

MIN018 Lower 533 490.63

MIN019 Upper 533 499.06

MIN020 Upper 539 511.12

MIN022 Upper 791 2249.2

MIN021 Upper 791 2253.75

MIN035 Upper 837 2755.37

MIN023 Lower 1003 3082.09

MIN024 Lower 1008 3107.74

MIN026 Lower 1042 3763.74

MIN025 Lower 1054 3776.82

MIN027 Lower 1087 3822.08

MIN028 Lower 1120 3870.16

MIN029 Lower 1112 3884.43

MIN030 Upper 1111 3884.43

MIN034 Lower 1202 4214.95

MIN033 Lower 1200 4248.15
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pitcher length is positively correlated with width, but un-
like pitcher width, length is not correlated with fluid
volume.

We analyzed 16S/18S-based community composition with
the “vegan” R package, using the non-metric multidimension-
al scaling (NMDS) ordination method and the unweighted
Unifrac distance metric. Samples were rarefied to 1311
(16S) and 1103 (18S) sequences.We assessed the significance
of clustering by categorical variables (pitcher morph and col-
or) using the “adonis” function in the “vegan” package [83],
which performs a PERMANOVA test. For quantitative traits
(elevation, pH, canopy openness, fluid volume, pitcher
length), we performed Mantel tests. We calculated alpha di-
versity according to “effective number of species” [84], which
can be interpreted as a direct measure of species richness,
unlike standard diversity indices. We calculated effective
number of species for 16S/18S data from Shannon Index
values obtained using the function “diversity” in the “vegan”
package.

To examine patterns of differential abundance of individual
OTUs in relation to fluid properties, we performed the analy-
sis of composition of microbiomes (ANCOM) [85], a test
designed to examine taxon abundance while accounting for
the fact that metagenomics studies yield relative abundance
data as opposed to absolute abundance. For ANCOM tests, we
used the full set of successfully extracted samples, only in-
cluded OTUs with sequence counts above 100, and corrected
for multiple testing (FDR) at a significance level of 0.05.
Continuous environmental variables were transformed into
categorical variables for ANCOM tests. We binned pH into
three categories: low (≤ 3.0), mid (3.0–4.5), and high (≥ 5.0).
Elevation was binned into three categories: low (400–600 m
a.s.l.), mid (600–900 m a.s.l.), and high (> 900 m a.s.l.).
Canopy openness was binned into three categories, which
generally correspond to our preliminary qualitative assess-
ments of canopy openness in the field: closed (~ 0–20%
open), semi-open (~ 20–40% open), and open (~ 40–100%
open).

In order to assess correlations of our measures with phys-
ical specimen-based arthropod counts, we conducted Poisson
regressions using the “glm” function in the “lme4” package in
R. We included all examined factors (elevation, pH, canopy
openness, fluid volume, pitcher length, pitcher morph, and
pitcher color) together into a single generalized linear model
(Poisson regression), in order to account for correlations be-
tween factors.We conducted a separate regression each for the
abundance of culicids, ceratopogonids, brachyceran larvae,
mites, ants, and other insect prey and applied a Bonferroni
correction in assessing significance for the family-wise set of
six arthropod groups. The same method was used to assess
correlations with richness for the family-wise set of three ar-
thropod groups: ant morphospecies, culicid morphospecies,
and non-ant insect prey orders.

Results

Factors Structuring Community Composition

Fluid pH is the only factor significantly structuring bacterial
community composition (Mantel r = 0.64, p = 0.001; Table 2).
While not significant at the Bonferroni-corrected alpha level
of 0.007, bacteria appear to be somewhat structured by eleva-
tion as well, though to a lesser degree than pH (Mantel r =
0.22, p = 0.009). For eukaryotes, both elevation (Mantel r =
0.40, p = 0.002) and pH (Mantel r = 0.31, p = 0.004) have a
significant effect on community composition, with elevation
having a somewhat stronger effect. However, when Metazoa
are excluded from the OTU table, elevation is the only factor
with a significant effect (Mantel r = 0.35, p = 0.001). In this
case, pH shows a possible effect though not significant
(Mantel r = 0.31, p = 0.015; Table 2).

OTU Taxonomic Composition

We found a total of 2867 bacterial and 923 eukaryotic (includ-
ing 405 metazoan) operational taxonomic units (OTUs), anal-
ogous to spec i e s . P ro t eobac t e r i a—pa r t i cu l a r l y
Acetobacteraceae in Alphaproteobacteria, Burkholderiales in
Be t a p r o t e o b a c t e r i a , a n d En t e r ob a c t e r i a l e s i n
Gammaproteobacteria—dominate the bacterial composition
(compris ing on average 82% of al l sequences) ;
Actinobacteria, Bacteroidetes, and Firmicutes are also com-
mon across samples, with lower relative abundance (compris-
ing on average 11%, 1.9%, and 1.2% of all sequences, respec-
tively; Fig. 2). The eukaryotic communities consist of many
taxa, including Metazoa, Alveolata, Stramenopiles (especially
Chrysophyceae), Rhizaria, Cryptophyceae (especially
Goniomonas), Discoba (primarily euglenids), Fungi, and
Amoebozoa. Within Metazoa, Insecta is dominant (compris-
ing on average 86% of all metazoan sequences), followed by
Arachnida (specifically mites in Acari; 4.3% of sequences).
Other arthropods and nematodes appear far less frequently
and with lower relative abundance (Fig. 2). We observed frog
eggs (from an unidentified rhacophorid) in one of the pitchers
we sampled, and the 18S data was able to capture this (Fig. 2).

Sequence-Based Alpha Diversity

Bacterial 16S-based alpha diversity (“effective number of spe-
cies”, Jost [68]) does not significantly correlate with elevation
(Table 3, glm, t value = 0.646, p = 0.526). The only factor that
significantly correlates with bacterial alpha diversity is pH,
with greater alpha diversity at higher pH (glm, t value =
3.401, p = 0.003). Eukaryotic 18S-based alpha diversity also
does not significantly correlate with elevation (Table 3, glm, t
value = − 0.283, p = 0.780). Neither does it significantly cor-
relate with pH (glm, t value = 1.256, p = 0.225). The only
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factor that significantly correlates with eukaryotic alpha diver-
sity is pitcher morph, with greater alpha diversity in lower
pitchers (glm, t value = − 3.007, p = 0.007). When Metazoa
are removed from the eukaryotic OTU table, no factor signif-
icantly correlates with alpha diversity (Table 3). Bacterial and
eukaryotic alpha diversity do not clearly correlate with one
another (linear model, R2 = 0.11, p = 0.09) unless metazoans
are removed from the eukaryotic OTU table (linear model,
R2 = 0.28, p = 0.006), in which case non-metazoan eukaryotic
alpha diversity positively correlates with bacterial alpha
diversity.

Relative Abundance of Individual OTUs—ANCOM
Tests

The relative abundance of one bacterial OTU and one eukary-
otic OTU varied significantly with elevation. The bacterial
OTU is assigned to Acetobacteraceae (unclassified to genus);
this OTU appears at low elevation, but not at mid or high.
However, this trend is not representative of Acetobacteraceae
in general, which show no differences in relative abundance
across elevation categories (Kruskal-Wallis χ2 = 4.836, p =
0.089). The eukaryotic OTU is assigned to Chrysophyceae
(Stramenopiles, “uncultured marine eukaryote E222”) and is
present at mid and high elevation, but not at low. This reflects
the trend in Stramenopiles in general, as all Stramenopile OTUs
together are much less abundant at low elevation than mid and
high elevation (Kruskal-Wallis χ2 = 20.84, p < 0.0001). While
no Cryptophyceae OTUs were determined to be differentially
abundant by elevation through the ANCOM test,
Cryptophyceae in general (all classified as the genus
Goniomonas) tend to be more abundant at low elevation, in
contrast to the Chrysophyceae (Kruskal-Wallis χ2 = 6.561,
p = 0.038; Fig. 3a).

The relative abundances of two bacterial OTUs and one
eukaryotic OTU were significantly differentially abundant

across pH categories. The bacterial OTUs include one classi-
fied in the genus Acidisoma and one in Acidocella (both
Acetobacteraceae), which both tended to decrease with in-
creasing pH. This trend reflects what can be seen for all
Acetobacteraceae, with lower mean log relative abundance
in the high pH category (Kruskal-Wallis χ2 = 11.663, p =
0.003, Fig. 3b). As Acetobacteraceae are the dominant repre-
sentatives of Alphaproteobacteria, the trend also holds for
Alphaproteobacteria in general (though not statistically signif-
icant, Kruskal-Wallis χ2 = 5.329, p = 0.07). This can be
contrasted with Betaproteobacteria, which have higher mean
log relative abundance at higher pH (Kruskal-Wallis χ2 =
10.327, p = 0.006), or Gammaproteobacteria which exhibit
no pronounced trend with pH (Kruskal-Wallis χ2 = 3.516,
p = 0.172; Fig. 3c).

The single eukaryotic OTU with significant differential
abundance across pH categories was classified as belonging
to Termitomyces (Agaricomycotina: Basidiomycota); the
trend of higher relative abundance at high pH compared to
low and mid pH categor ies i s genera l izab le to
Agaricomycotina (Kruskal-Wallis χ2 = 10.669, p = 0.005).
This can be contrasted with Saccharomycetes (Ascomycota)
which have lower relative abundance at high pH compared to
low and mid pH categories (Kruskal-Wallis χ2 = 11.697, p =
0.003, Fig. 3d).

Correlations Among Factors—Elevation and Euclidian
Distance

The seven continuously varying factors we recorded (elevation,
Euclidian distance, canopy openness, pH, fluid volume, and
pitcher length/width) differed considerably among our sampled
pitchers (Fig. 4), with 68% of the total variation explained by
PCA axes 1 and 2. As previously noted, elevation and
Euclidian distance strongly covary. We did not find a
distance-decay relationship for either bacteria or eukaryotes;

Table 2 Results of Mantel (1) or PERMANOVA (2) analyses of 16S- or
18S-based community composition for Bacteria, Eukaryotes, and
Eukaryotes without Metazoa. The seven factors constitute separate tests
on the same ordination for each of the respective three taxa, so the set of

tests for each taxon is accordingly considered a family-wise set to account
for multiple testing. “Coefficient” refers either to Mantel r or
PERMANOVA R2 depending on the test

Factor Bacteria Eukaryotes Eukaryotes without Metazoa

Coefficient p value Coefficient p value Coefficient p value

Elevation1 0.220 0.009 0.400 0.002* 0.351 0.001*

pH1 0.640 0.001* 0.310 0.004* 0.300 0.015

Canopy openness1 0.020 0.350 0.070 0.130 0.020 0.399

Fluid volume1 0.060 0.280 0.060 0.280 0.023 0.397

Pitcher length1 0.002 0.468 − 0.050 0.700 − 0.095 0.803

Pitcher morph2 0.060 0.020 0.080 0.016 0.066 0.216

Pitcher color2 0.030 0.910 0.039 0.572 0.050 0.586

*Indicates significance at Bonferroni-corrected alpha level of 0.007
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rather, there is a slight positive correlation between community
similarity and Euclidian distance for bacteria (R2 = 0.012, p =
0.038), eukaryotes (R2 = 0.077, p < 0.0001), and eukaryotes
without Metazoa (R2 = 0.061, p < 0.0001). Bacteria show no

significant difference in beta diversity (pitcher-to-pitcher turn-
over) between low elevation (average distance to median =
0.52) and high elevation (average distance to median = 0.51)
in our analysis (permutation test for homogeneity of
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dispersions, F = 0.27, p = 0.59). Eukaryotes also show no
significant difference in beta diversity between low (average
distance to median = 0.462) and high (average distance to
median = 0.457) elevation (permutation test for homogeneity
of dispersions, F = 0.04, p = 0.85). Without Metazoa,
eukaryotes still show no significant difference in beta diversity
between low (average distance to median = 0.441) and high
(average distance to median = 0.447) elevation (permutation
test for homogeneity of dispersions, F = 0.04, p = 0.85). The
lack of distance-decay patterns or change in beta diversity with
elevation suggests that pitcher organisms are not dispersal
limited across this transect.

Community Composition, Richness, and Abundance
of Arthropods—Physical Counts

We examined physical specimens of inquiline and prey arthro-
pods to obtain count data. Physical count data differ from 18S
sequence data. For instance, we did not obtain any OTUs
assigned as ants, despite ants making up the majority of prey
items we observed; this has previously occurred in Nepenthes
metabarcoding studies [86] and may reflect primer biases against
Formicidae. Unlike a previous study [86], OTU sequence counts
in our study do not correlate well with physical specimen counts
(linear regressions on log-transformed data, culicids: R2 = 0.04,
p = 0.31; ceratopogonids: R2 = 0.005, p = 0.74; mites: R2 =
0.001, p = 0.88; non-ant insect prey: R2 = 0.006, p = 0.69). On
the other hand, 18S data seem to accurately capture the presence
of nematoceran (i.e., most inquiline dipterans) families and non-
ant insect prey orders observed from physical specimens across
fluid samples (Supplementary Fig. 1). Unless otherwise noted, all
analyses of arthropod composition, richness, and abundance
henceforth are based on physical specimen counts.

Most of the insect inquilines that we identified were mos-
quito larvae (Culicidae, 772 individuals), followed by midges
(Ceratopogonidae, 69 individuals), and a few individuals be-
longing to the sub-order Brachycera (possibly representatives

of the family Phoridae, 13 individuals). All of the culicid
larvae in our samples were identified as the genus
Tripteroides, which we classified into four distinct morpho-
species based on characteristics of spines and setae
(Supplementary Fig. 2). Mites in the family Histiostomatidae
are known Nepenthes inquilines [87] and our 18S data re-
vealed their presence (94% of mite OTU sequence counts),
but the only mites we could see were in a different lineage: the
order Oribatida. This is likely because oribatids are relatively
large-bodied and pigmented, while histiostomatids are gener-
ally smaller and transparent, and thus more likely to be
overlooked or lost when being filtered from the pitcher fluid.
We are uncertain whether the oribatid mites function as inqui-
lines or prey, though the latter appears more likely given their
lack of obvious aquatic adaptations compared to
Histiostomatidae [88]. The prey spectrum is dominated by
ants; there were a total of 1172 ants across all samples (mean
± standard deviation = 75.4 ± 35.5) compared to a total of 122
prey items identified as other insects (mean ± standard devia-
tion = 3.70 ± 4.16). We identified 42 morphospecies of ants (3
identifiable to named species) in 5 subfamilies and 15 genera
(Supplementary Table 2). The non-ant prey included insects
from 11 different orders (Supplementary Table 3). Even after
ants were removed, Hymenoptera (primarily Chalcidoidea)
was the most frequently encountered order (18 samples),
followed by Diptera (13 samples), Coleoptera (12 samples),
and Hemiptera (10 samples); the remaining orders each oc-
curred in four or fewer pitchers.

Morphospecies-level richness of culicids, ants, and ordi-
nal richness of non-ant insect prey was not significantly cor-
related with elevation (Table 4, p > 0.05 in all cases). There
were no significant effects of the other measured factors on
richness (Table 4, p > 0.05 for ants and non-ant insect prey),
except that culicid morphospecies-level richness increases
with decreasing pH (glm, z value = − 2.89, p = 0.004).

Culicids, mites, and ants were significantly less abundant at
high elevations (Table 5, p < 0.001 in all cases). Brachyceran

Table 3 Results of generalized linear model test of factors correlating with 16S- or 18S-based alpha diversity (“effective number of species”, Jost
2006). All factors included in one model to account for correlations between factors

Factor Bacteria Eukaryotes Eukaryotes without Metazoa

t value p value t value p value t value p value

Elevation 0.646 0.526 − 0.283 0.780 1.349 0.193

pH 3.401 0.003* 1.256 0.225 1.224 0.236

Canopy openness 0.238 0.815 − 1.182 0.252 0.273 0.788

Fluid volume − 0.651 0.523 1.132 0.272 0.234 0.818

Pitcher length 0.543 0.594 1.492 0.152 0.848 0.407

Pitcher morph (uppers relative to lowers) − 0.534 0.599 − 3.007 0.007* − 1.63 0.120

Pitcher color (red relative to green) − 0.795 0.437 − 1.373 0.186 − 1.351 0.192

*Significant at a Bonferroni-corrected alpha level of 0.0167
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larvae and non-ant insect prey exhibit no significant trends in
abundance; however, there was a slight increasing trend for
the latter (Poisson regression, z value = 1.972, p = 0.049).

Abundances of culicids, brachyceran larvae, ants, other
insect prey, and mites all decreased with increasing pH
(Table 5; culicids, mites, ants, other insects: p < 0.001;
brachyceran larvae, p = 0.002). The abundances of culicids,
ceratopogonids, and mites all significantly increase with can-
opy openness (Table 5; p < 0.001 for culicids and mites, p =

0.002 for ceratopogonids), whereas ants decrease with in-
creasing canopy openness (Table 5, p < 0.001).

Discussion

Bacterial and eukaryotic communities inhabiting the same
Nepenthes mindanaoensis pitchers change with elevation
in different ways. Bacterial community composition was
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much more strongly influenced by pH than by elevation,
while elevation had the greatest effect on eukaryotic com-
munity composition. Moreover, when numerically domi-
nant metazoan sequence data are removed from the eukary-
ote OTU table, non-metazoan eukaryotes are still strongly
impacted by elevation in our study: the trend is not strictly
driven by the macroscopic/multicellular members. This
difference between the two domains could be due to the
stark physiological differences between them, such as the
greater metabolic diversity of bacteria, which grants them
wider niche breadth [42].

Elevation and Euclidian distance covary in our study,
preventing the separation of elevational effects from potential
effects of spatial distance; however, there is evidence suggest-
ing that spatial distance plays little role in pitcher community
composition. First, we do not find a distance-decay pattern for
either bacteria or eukaryotes, suggesting that neither group is
dispersal-limited within our transect [81, 82]. Second, despite
greater distances between pitchers at high elevation in the
transect, they do not differ in the degree of pitcher-to-pitcher
turnover compared to the low elevation pitchers. This demon-
strates that community composition is fairly stable within
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elevation categories, although different between them. The
fairly small total geographic distance of our transect (~
4.2 km) may effectively reduce any effect of physical distance
that could potentially shape community structure at larger
scales. Nevertheless, we found biologically meaningful pat-
terns that are consistent with effects of elevation found in other
studies.

In support of previous findings, we generally see arthropod
abundances decreasing with increasing elevation. This has
been documented for aquatic insects [91], mites [92], and ants
[93]; and corresponds with changes in temperature and

precipitation gradients. The notable exception here is that
abundance of non-ant insect prey items slightly increases with
elevation (Table 5)—possibly a better reflection of the biology
of prey capture rather than that of the relative abundances of
the insects themselves (Supplementary Discussion). While
eukaryotic community composition and the abundances of
individual members (whether sequence-based or specimen-
based) change with elevation, alpha diversity (i.e., morpho-
species richness or effective number of species sensu Jost
[70]) does not significantly change with elevation for any of
our higher taxa, including bacteria, micro-eukaryotes, and

Table 5 Results of tests on relationships between arthropod abundance
(counts of physical specimens) and all examined factors. All factors were
included in a single generalized linear model (along with elevation) for

each individual arthropod category (culicids, ceratopogonids,
brachyceran larvae, mites, ants, and other insects), using a Poisson
regression

Likely Inquilines Culicids (n = 722) Ceratopogonids (n = 69) Brachyceran larvae (n = 13)

Factor z value p value z value p value z value p value

Elevation − 5.236 1.65E-07* − 1.853 0.064 1.419 0.156

pH − 12.329 2.00E-16* − 2.057 0.040 − 3.166 0.002*

Canopy openness 10.661 2.00E-16* 3.158 0.002* − 1.317 0.188

Fluid volume 14.559 2.00E-16* − 1.421 0.155 0.715 0.475

Pitcher length − 13.491 2.00E-16* − 6.373 1.86E-10* − 0.646 0.518

Pitcher morph (Uppers relative to Lowers) − 0.356 0.722 2.533 0.011 − 1.206 0.228

Pitcher color (Red relative to Green) − 0.906 0.365 4.091 4.30E-05* − 2.015 0.044

Likely prey Mites (n = 87) Ants (n = 1172) Other insects (n = 122)

Factor z value p value z value p value z value p value

Elevation − 4.141 3.46E-05* − 18.349 2.00E-16* 1.972 0.049

pH − 3.624 2.90E-04* − 4.244 2.19E-05* − 4.148 3.36E-05*

Canopy openness 3.284 0.001* − 16.015 2.00E-16* − 1.592 0.111

Fluid volume 3.219 0.001* − 10.619 2.00E-16* − 0.201 0.841

Pitcher length − 2.539 0.011 6.928 4.25E-12* − 1.622 0.105

Pitcher morph (uppers relative to lowers) −6.109 1.00E-09* 3.278 0.001* − 0.883 0.377

Pitcher color (red relative to green) − 0.245 0.806 − 7.363 1.80E-13* −2.608 0.009

*Significant at a Bonferroni-corrected alpha level of 0.008

Table 4 Results of tests on relationships between insect morphospecies/
order-level richness (based on counts of physical specimens) and the
other examined factors. All factors were included in a single

generalized linear model for each individual arthropod category (ant
morphospecies, culicid morphospecies, and prey insect orders not
including ants), using a Poisson regression

Factor Culicid morphospecies Ant morphospecies Non-ant prey orders

z value p value z value p value z value p value

Elevation − 1.253 0.210 1.234 0.217 0.349 0.727

pH − 2.890 0.004* − 1.933 0.053 − 0.878 0.380

Canopy openness 0.030 0.976 − 1.706 0.088 − 1.172 0.241

Fluid volume 2.030 0.042 0.535 0.593 − 0.696 0.486

Pitcher length − 1.714 0.086 − 1.784 0.074 − 0.235 0.814

Pitcher morph (uppers relative to lowers) 0.401 0.688 0.116 0.908 − 0.550 0.583

Pitcher color (red relative to green) 0.251 0.802 0.188 0.851 − 2.044 0.041

*Significant at a Bonferroni-corrected alpha level of 0.0167
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arthropods. Elevation may have a smaller effect on richness in
our study system because Nepenthes phytotelm communities
are comprised of specialized members and have a relatively
small potential species pool compared to other environmental
DNA samples [65].

A particularly striking change in the eukaryotic taxonomic
composition is that Cryptophyceae seems to be replaced by
Stramenopiles (primarily Chrysophyceae) at high elevation
(Fig. 3a). Past studies of algal communities in high-altitude
lakes, using either molecular or morphological methods,
found Chrysophyceae to be the most important members of
those communities, and Cryptophyceae were relatively less
important both in terms of richness and abundance [37,
92–94]. In contrast, Cryptophyceae are more common and
diverse elsewhere [18, 95]. Grossman et al. [37] suggested
that Chrysophyceae function as an indicator taxon because
they reflect the general response of aquatic protist communi-
ties to elevational gradients. That phytotelmata such as
pitchers can reflect the macroecology of freshwater lakes is
intriguing. Tolotti et al. [93] show that Chrysophyceae thrive
in high-altitude lakes because they are well-adapted to the
oligotrophic conditions common in such lakes. In our study,
the abundance of ants, which are the pitchers’ main insect
prey, significantly decreases with elevation. It is thus quite
possible that the fluid in pitchers at high elevation is less
nutrient-rich than low elevation pitchers due to the scarcity
of prey in the fluid.

Differences in light requirements could also influence algal
patterns [96]. Canopy openness has a significant correlation
with elevation in our study, as pitchers grew in more shaded
microenvironments at higher elevations. However, canopy
openness does not necessarily explain the influence of eleva-
tion overall. While some responses are concordant between
elevation and canopy (i.e., culicid, ceratopogonid, and mite
abundance, Table 5), others are not (i.e., ant abundance,
Table 5), possibly reflecting individual ecological differences
(Supplementary Discussion).

The plant-regulated trait with the strongest effects in our
study was pH. Nepenthes mindanaoensis exhibits a wide pH
range: samples measured from 6.5 down to the very acidic pH
1.5. This matches previous observations that the Nepenthes
species with the lowest pH levels also tend to have the greatest
pH variance [59]. Fluid pH is the only measured factor with
significant effects on bacterial community composition, and it
also influences eukaryotic community composition, though to
a lesser degree than does elevation. The strong response of
bacteria to pH fits with the well-known narrow pH require-
ments of bacteria [97]. Higher pH levels may require fewer
adaptations, thus allowing for greater diversity. This is
reflected by the higher 16S-based bacterial alpha diversity at
higher pH levels in our study. OTU-based relative abundance
analysis verifies this, as the characteristically acidophilic fam-
ily Acetobacteraceae [98] dominates at low pH, particularly

Acidocella (Fig. 2), making up as much as 99.8% of bacterial
sequences within a given fluid sample.

In contrast with most bacterial groups, but similar to
Acetobacteraceae, we found that abundances of all arthropod
groups tend to increase with decreasing pH. Dipteran inqui-
lines are likely to be specially adapted to the pitcher digestive
fluid environment. For example, many pitcher-associated lar-
vae are specialized [59], including Tripteroides where all de-
scribed Nepenthes-associated species have an obligate associ-
ation [99]. However, it is still somewhat surprising that not
only the abundance but also the richness of culicids increases
with decreasing pH. This suggests that all four culicid mor-
phospecies are equally tolerant of acidic conditions, rather
than the existence of multiple species with different physio-
logical tolerances that only co-occur in more moderate condi-
tions. Prey capture induces fluid acidification [100, 101], and
an increase in nutrient availability could explain the relation-
ship between high abundance of ants, other insect prey, and
mites with low pH.

For over a century, ecologists have studied elevational
patterns of biodiversity in plants and animals, yet only in
the past decade have microbes received similar scrutiny.
The extent to which microbes abide by the ecological laws
of macrobes is still an open question. Few published stud-
ies of community changes across an elevational gradient
have investigated phytotelmata [102–105], and none of
these have compared microbes with macrobes. Aquatic
microbial systems have also been understudied in
macroecology relative to soil microbes [106], and protists
are understudied relative to bacteria [18]. Thus, our work
contributes to advancing knowledge of microbial
macroecology in multiple ways, and has led to several
novel insights. We find that high elevation Nepenthes algal
communities are analogous to those of alpine lakes.
Additionally, we have compared patterns of the living in-
quiline phytotelm community and their interactions with
the external environment and the plant with those of the
prey (Supplementary Discussion). Hence, our study pro-
vides insight into a wide range of taxa within a small aquat-
ic ecosystem, both living and dead, and how they are af-
fected by external conditions and plant-regulated traits. We
can neither confirm nor deny that “everything is every-
where” à la Baas-Becking [7], as neither macrobes nor
microbes (whether bacterial or eukaryotic) appear to be
dispersal-limited across our transect. However, we can
say that “the environment selects,” but the key point is that
different taxa experience the same environment differently.
For arthropods and eukaryotic microbes (especially algae),
the external environment of the elevational gradient is pri-
marily what selects, whereas for bacteria it is the immedi-
ate chemical environment within the pitcher that primarily
selects. Thus, in multi-taxon macroecology studies moving
forward, it will be important to ask not merely “does the
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environment select?” but also “what is the relevant spatial
scale of environmental factors for a given taxon?”
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