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Abstract Bacteria in the environment must survive preda-
tion from bacteriophage, heterotrophic protists, and preda-
tory bacteria. This selective pressure has resulted in the
evolution of a variety of defense mechanisms, which can
also function as virulence factors. Here we discuss the
potential dual function of some of the mechanisms, which
protect against heterotrophic protists, and how predation
pressure leads to the evolution of pathogenicity. This is in
accordance with the coincidental evolution hypothesis,
which suggests that virulence factors arose as a response
to other selective pressures, for example, predation rather
than for virulence per se. In this review we discuss some of
those environmental factors that may be associated with the
rise of pathogens in the marine environment. In particular,
we will discuss the role of heterotrophic protists in the
evolution of virulence factors in marine bacteria. Finally,
we will discuss the implications for expansion of current
pathogens and emergence of new pathogens.

Introduction

The rapidly changing environment is increasingly recog-
nized to have an important role in the emergence of patho-
gens. In the marine environment, these changes will include
increases in seawater temperature, changes of currents, in-
creasing eutrophication, and decreases in salinity [1]. An
extensive study spanning 50 years of surface seawater

samples from the North Sea indicate that increasing seawa-
ter temperatures favors the spread of Vibrio spp. [2], includ-
ing those pathogenic to humans [3, 4]. It is also becoming
clear that infection of humans in many cases is incidental, as
virulence factors may have important roles in interactions
with predators and non-human hosts in the environment,
including bacteriophages, predatory bacteria such as Bdel-
lovibrio, protozoans, nematodes, insects, and plants [5].
Thus, the implications are that many of these virulence
factors evolve outside of the context of human disease [6].
In the cases presented here, the selection pressure driving
the evolution of these virulence factors was likely to be the
predation by heterotrophic protists, and thus predation may
explain, at least in part, the evolution of pathogens in the
marine environment.

Predation as a Driving Force of Evolution

Bacteria and heterotrophic protists have a long history of co-
evolution. Predation by heterotrophic protists is considered
to be a major mortality factor in the marine environment
[7–10] and is therefore a strong driving force for the evolu-
tion of defense strategies [11]. These traits that provide
grazing defense may also have resulted in enhanced fitness
and pathogenicity of these strains in human (or animal/-
plant) hosts [12, 13]. For example, bacteria can avoid being
ingested by altering cell surface components, changing cell
morphology (e.g. filamentation), increasing swimming
speed, biofilm formation, and quorum sensing-regulated
toxin release (for reviews see [11, 14, 15]). Many of these
traits may have led to acquired pathogenicity, suggesting
that humans are an accidental rather than intended host [12,
16–18]. In contrast, it can be envisioned that predation in the
environment could also lead to a decrease in pathogenicity if
the traits that are used for anti-predator defense and human
infection are different. In this case the cost of predator
defenses may have a fitness trade-off resulting in a decrease
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in pathogenicity traits. Indeed, this may in part explain why
most of the bacterial strains found in these environments are
in fact not pathogens. Thus, we could envision that only a
subset of anti-predator defenses would be effective in the
human host and, therefore, only strains exhibiting these
defenses would be able to colonize human hosts and hence
be pathogenic.

The main question then is whether virulence is a result of
natural selection for phenotypes such as avoidance of host
immune defenses and infectious transmission or whether
virulence factors have roles that increase the fitness of the
bacteria in another environment or context. The traditional
view of host/pathogen co-evolution is that this association
would ultimately end in extinction of one or both partner(s),
or in pathogen attenuation and ultimately commensalism
[19, 20]. Thus, virulence is evidence that the association of
the bacterium with the host is recent [21]. However, an
alternative view is that virulence could be coincidental,
i.e., the expression of virulence determinants gives the bac-
terium an advantage in an out-of-host context. Levin and
Eden [22] suggest in their review on host/pathogen co-
evolution that direct selection would result in attenuation
of virulence while coincidental selection would result in
maintenance of virulence. The authors suggest that the poly-
saccharide capsule of Streptococcus pneumoniae is under
direct selection as encapsulated strains are selected for in the
host and the uncapsulated strains are avirulent. Conversely,
it is likely that the Escherichia coli pap adhesin that is
responsible for urinary tract infection is under coincidental
selection as these adhesins cause an inflammatory response
in the urinary tract resulting in clearance, and adhering
strains have a disadvantage when competing with non-
adhering bacteria for colonization of the urinary tract. It
can also be envisioned that both direct and coincidental
selection occur simultaneously but act on different viru-
lence determinants. For example, the toxin produced by
Vibrio cholerae that is responsible for the explosive
diarrhea in cholera patients is probably under direct se-
lection. A role for the toxin in the environment has not
been identified and indeed most V. cholerae isolates from
the environment are non-toxigenic [23]. Furthermore, the
expression of this toxin in the human host is important
for the dissemination of the bacterium. In contrast, the
toxin-coregulated type IV pilus of V. cholerae could be
under coincidental selection as this pilus is needed for
attachment to the chitinous exoskeleton of copepods
which is the preferred niche in the environment [24].

Due to the long history of co-evolution of bacteria and
protists, many grazing defense strategies have evolved in
different bacterial lineages (Table 1). Some bacteria have the
ability to resist digestion after phagocytosis and multiply
within the amoeba host without killing it (e.g., V. cholerae
[25, 26]), while others cause host death (e.g., Legionella

pneumophila [27–29]), traits which may contribute to path-
ogenicity in a human host. In some cases the bacterium can
prevent the fusion of the lysosome and phagosome, thereby
avoiding digestion [30, 31], while others escape lysosomal
digestion by entering the cytoplasm of the predator [26].

In some cases, the genes and/or effector proteins regulat-
ing the survival of bacteria in the presence of bacterivorous
protists have been identified and often these genes/proteins
have a defined role in the pathogenicity of these bacterial
pathogens towards the human host. In this review we outline
a few of these “virulence factors” and discuss their roles
both in the environment and in the human host and present
evidence that these factors likely evolved to improve bacte-
rial fitness in the environment rather than for pathogenicity
per se.

Amoeba as a Selective Force Driving the Evolution
of Intracellular Pathogens

Free-living amoeba such as Dictyostelium discoideum and
Acanthamoeba castellanii are useful predator models for the
study of how pathogenic bacteria prevent/survive phagocy-
tosis. Both organisms have been extensively studied and
share similar characteristics to human macrophages, i.e.,
both are eukaryotic single cells and phagocytize bacteria.
D. discoideum shares a range of proteins and metabolic
processes with metazoans [32]. In plaque assays Adiba
and colleagues demonstrated that E. coli strains possessing
virulence genes (iron uptake and resistance to serum, bile,
and lysozyme/lactoferrin) were resistant to grazing by D.
discoideum whereas non-virulent strains were eliminated
[12]. D. discoideum has been used as a model organism
for the identification of virulence factors that are important
for survival in co-culture with human pathogens such as
Pseudomonas aeruginosa and V. cholerae [33–35].

In some cases co-culture can be advantageous for the
prey. In co-culture with A. castellanii, Vibrio parahaemoly-
ticus was shown to survive in rich peptone-yeast-glucose
(PYG) medium, while no viable bacteria could be detected
in PYG alone [36]. V. parahaemolyticus was able to resist
phagocytosis by A. castellanii; thus, this growth promotion
was not due to intracellular survival of V. parahaemolyticus
but rather was mediated by a factor secreted by A. castella-
nii. Similar results have been presented with V. cholerae
where the biofilm biomass was increased in the presence
of marine heterotrophic nanoflagellates (Cafeteria roenber-
gensis and Rhynchomonas nasuta) compared to non-grazed
controls [37, 38]. Supplementation of V. cholerae cultures
with supernatants from cultures of predators also resulted in
an increase in bacterial biomass. While this may be partly
due to recycled nutrients made available by predation, there
is evidence that the amount of nutrient provided is not
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sufficient to fully explain the increase, indicating that a
secreted predator cue is involved [39].

Biofilm Formation

The role of biofilms in human infection and disease has been a
topic of intense research over more than 40 years. Biofilms are
surface-associated communities of microorganisms encased
in extracellular polymeric substances (EPS). Biofilms in the
human body are the cause of more than 60 % of infections,
including dental plaque and periodontitis [40], infections from
biomedical implants such as heart valves (endocarditis) and
prosthetic joint implants, catheters and stents, infections in the
lungs of cystic fibrosis patients often resulting in broncho-
pneumonia, persistent otitis media, and chronic rhinosinusitis
[41]. Biofilms are especially important in chronic infections as
bacterial cells in biofilms are up to 1,000-foldmore resistant to
antimicrobials than their planktonic counterparts [42]. Under-
standing the nature of this increased resistance is currently a
central goal for medical researchers. Because of their recalci-
trance to treatment, biofilm infections typically show recur-
ring symptoms after antibiotic treatment and often, must be
removed surgically. A large number of medically important
bacteria are able to form biofilms including P. aeruginosa, E.
coli, Staphylococcus spp., Salmonella typhimurium, L. pneu-
mophila, Haemophilus influenzae, Vibrio spp., and Strepto-
coccus ssp. [43, 44].

Evidence for the occurrence of biofilms in the environ-
ment is present in fossil records, for example, in 3.2 billion-
year-old deep-sea hydrothermal rocks from Pilbara Craton,
Australia [45]. Biofilms are a characteristic of ancient line-
ages of Archaea and Bacteria, indicating that biofilm for-
mation is an ancient characteristic of microorganisms [43]
and implying that biofilms have a role in increasing the

fitness of microbes in these environments. Biofilms are
common in freshwater environments, often forming a slimy
covering on rocks and other submerged surfaces. In the
marine environment, biofilms form on all submerged surfa-
ces, including the hulls of ships, buoys and pylons, but the
major source of marine biofilms is in aggregates of micro-
organisms and detritus called marine snow [46].

V. cholerae has been observed in the marine environment
in biofilms in the form of multicellular aggregated clumps,
and it is believed that these biofilms contribute to the per-
sistence of the organism in inter-epidemic periods [47–49].
The formation of biofilms of similar structure has been
shown to also occur during human infection [50] and may
protect V. cholerae from acid pH and/or antibiotics in the
human gut. Furthermore, the biofilms of V. cholerae that are
shed in human stools have increased infectivity compared to
planktonic cells and are thus responsible for high rates of
reinfection during outbreaks of cholera [50].

Biofilms formed in the environment have been shown to
be more resistant to a variety of stresses, including extremes
of temperature, pH, and exposure to UV [43]. There is
increasing evidence that biofilms are protective against pre-
dation. In biofilms formed by the yeast, Cryptococcus spp.,
ciliate grazers showed a strong preference for feeding on the
EPS rather than on cells embedding in the biofilm, while in
the planktonic phase, high numbers of yeast cells were
ingested [51]. Furthermore, the number of metabolically
active yeast cells in the biofilm was 1.75 times higher in
grazed biofilms when compared to non-grazed controls.
Thus, EPS from the biofilm may serve as a preferential
nutrient source to some predators, and feeding on EPS as
opposed to biofilm cells benefits the biofilm not only from
protection against ingestion but also due to the increased
nutrients provided to the community through nutrient
recycling.

Table 1 Examples of factors involved in pathogenicity of a broad range of bacteria are also involved in anti-predation strategies

System/toxin Bacterium Anti-predation Virulence affecting humans Reference

T3SS P. aeruginosa Kills A. castellanii Pneumonia [86]

L. pneumophila Parasite inside amoeba and human
monocytes

Legionellosis [31, 101]

E. coli Survives inside A. castellanii Diarrheal disease [64]

Chlamydiae Endosymbiont of Acanthamoeba sp. Trachoma, genital tract infections, and
pneumonia

[102]

V. parahaemolyticus Toxic towards a range of protist grazers Wound infections, septicemia, and acute
gastroenteritis

[92]

T6SS V. cholerae Cytotoxic against D. discoideum O1/O139-cholera and non-O1/non-O139
gastroenteritis

[34]

Violacein C. violaceum Causes rapid cell death in protists Opportunistic pathogen [71, 100]

J. lividum Causes rapid cell death in protists – –

P. tunicata Causes rapid cell death in protists – –

Shiga toxin E. coli Stx-carrying bacteria kill T. thermophila Hemorrhagic colitis [65, 66]
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Early biofilms of V. cholerae [38] and P. aeruginosa [52]
formed grazing-resistant microcolonies in the presence of the
surface-feeding flagellate, R. nasuta, whereas biofilms with-
out the predator remained undifferentiated. Late, more mature
biofilms were toxic to R. nasuta, while biofilms formed by a
quorum sensing mutant supported the growth of the predator.
Thus, microcolony formation and the production of toxins are
effective anti-predator mechanisms that allow V. cholerae and
P. aeruginosa to persist in the environment. In addition, while
V. cholerae biofilms were not grazed, planktonic cells were
reduced by 97 % in 72 h [38]. In the presence of a predator in
planktonic populations, there was a shift from the smooth cell
morphotype to the biofilm-enhancing rugose morphotype.
Further investigations on the relative contribution of EPS to
grazing resistance indicated that while EPS provides protec-
tion from grazing, the secretion of an anti-protozoal factor is
more important in grazing resistance of late biofilms [39]. In
P. aeruginosa, it was shown that mature biofilms are resistant
to a range of biofilm-feeding predators due to the production
of an inhibitor, while microcolony formation was only bene-
ficial in the early stages of biofilm formation [53]. Thus, there
are multiple anti-predator mechanisms that are expressed at
different stages of the life-cycle of these bacteria.

Evidence that the expression of biofilm-mediated preda-
tor defense is a general feature of marine biofilm-forming
bacteria has been presented in a study comparing the pres-
ence and efficacy of chemical defenses in biofilms and
planktonic phases of growth. The bacterial isolates used in
the study were obtained from the surface of the marine alga,
Ulva lactuca, and included representatives of the five main
bacterial groups, Bacteriodetes, Planctomycetes, α-, δ-, and
γ-Proteobacteria [54]. When grown planktonically, 90 % of
the isolates were edible, resulting in increased predator
numbers (180-fold increase on average). In contrast, when
the same strains were grown as biofilms, 57 % of the strains
caused a significant reduction in predator numbers, indicat-
ing that the majority of the strains were grazing resistant
only when grown as a biofilm. In semi-natural biofilms
formed by microbial populations from the Rhine River,
Cologne, Germany, it was shown that the presence of het-
erotrophic nanoflagellates resulted in an increase in the
numbers of microcolonies [55]. Thus, the anti-predator fit-
ness of biofilms is likely to be a conserved grazing resis-
tance mechanism that has evolved because of intense
predation pressure in these environments.

Role of Intercellular Communication in Predation
Defense and Pathogenicity

Bacteria communicate through the secretion and perception
of chemical cues called autoinducers (AI), in a process
termed quorum sensing (QS). AIs accumulate in the

environment and when they reach a critical concentration,
they bind to and activate intracellular receptors that alter
gene expression. QS was first described in Vibrio fischeri
where it controls luminescence [56]. For many years, it was
thought that QS only occurred in a few marine bacteria, but
it is now known to occur in many bacteria. In a large number
of these, QS is known to regulate virulence (e.g., Staphylo-
coccus aureus, P. aeruginosa, E. coli, Yersinia spp., Aero-
monas spp., and Vibrio spp.) [57]. In order to establish an
infection, a pathogen must reach a sufficient density so that
it can overcome the host defenses before it expresses viru-
lence factors, otherwise the pathogen will be eliminated by
the host immune system. Thus, controlling the expression of
virulence factors in a cell-density dependent manner gives
the pathogen an advantage. The fact that many virulence
factors, such as the production and secretion of toxins,
proteases, and siderophores, and the expression of pili are
QS-regulated has led to the exploration of QS inhibition as a
way to treat bacterial infections [58].

Quorum sensing allows a coordinated, synchronized re-
sponse by the population to the changing environmental
conditions, thereby increasing the fitness of these popula-
tions and contributing to their persistence in the environ-
ment. Evidence for the role of QS in the regulation of anti-
predator defenses has been reported for P. aeruginosa [52],
V. cholerae [38], Chromobacterium violaceum [59], and
Serratia marcescens [60] where it was shown that QS
mutants have a significantly reduced anti-predator fitness
compared to isogenic wild-type strains. In V. cholerae [38]
and P. aeruginosa [52, 61], QS regulates the expression of
an unknown toxin that is effective against a range of pred-
ators. In the case of S. marcescens, the QS-regulation of a
filamentous biofilm protected the bacterium from grazing
[60]. Indeed, the regulation of biofilm formation and matu-
ration is an important phenotype for environmental
persistence.

Shiga Toxin

Phage-encoded exotoxins, such as cholera toxin, diphtheria
toxin, and Shiga toxin (Stx), produced by bacterial isolates
kill eukaryotic cells by targeting pathways that are generally
conserved. The genes encoding the Shiga exotoxins, stx1
and stx2, are carried on a bacteriophage that infects E. coli.
Shiga toxin-carrying E. coli (STEC) can cause severe
dysentery-like diarrhea and hemolytic uremic syndrome
[62]. Often, these exotoxins are found in environments
where there are no mammalian hosts, indicating that these
exotoxins may have a role in predation resistance [63].

Stx-producing E. coli O157:H7 are able to survive inside
the food vacuoles of Tetrahymena pyriformis [64]. Stx-
bearing E. coli was also shown to have a growth advantage
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over Stx-negative strains in co-culture with the ciliate Tet-
rahymena thermophila [65], but not when cultured in the
absence of the protozoa [64]. When co-cultured with the Stx
strain or when pure Shiga toxin was added, the ciliate was
killed [65]. The authors suggest that the H2O2 released by T.
thermophila induced production of Stx, thereby preventing
predation. In this case the release of a toxin that affects
humans was directly controlled by the presence of phago-
trophic protists.

Although the principle reservoir of STEC is bovines,
reports of isolation of stx-carrying E. coli [66, 67] and stx-
encoding phage [63] from the marine coastal environment
are increasing. The first report of STEC isolated from ma-
rine shellfish originated from the French coastal environ-
ment [67]. In a survey by Gourmelon and colleagues [67]
covering areas in the English Channel, the Atlantic coast,
and Mediterranean Sea, 27.8 % of the samples from oysters,
mussels, and cockles were stx positive. Due to the methods
used in this survey, it was not possible to differentiate
between STEC and stx-encoding prophage, but the results
indicate the potential for infection from ingestion of shell-
fish from this region. Increased runoff from urban and
agricultural areas is probably the cause for the increase in
abundance of STEC in the marine environment. The authors
suggest that although stx2, which is associated with high
human virulence, was not detected in any of the samples, the
marine environment acts as a reservoir from which new
pathogenic STEC strains can arise. In a more recent study
off the coast of Morocco, E. coli O157:H7 and other non-
O157 STEC were found with stx1-positive samples com-
prising 2.1 % of the total shellfish and sediments samples
tested. Only shellfish were positive (0.48 %) for stx2 [66].

In San Diego, California, stx-carrying phages were iso-
lated from terrestrial and aquatic environments where no
disease had been reported to date [63]. Exotoxin-specific
PCR assays showed that 25 % of all samples analyzed were
positive for stx and 18 % of the water samples (combined
marine and freshwater samples) were positive. The authors
speculate that these phages may play a role in the evolution
of human pathogens due to the ease of virulence transfer to
non-pathogenic strains.

Violacein

In 1942 Singh reported that a pigmented extract of C.
violaceum (along with two other bacteria) prevented inges-
tion of otherwise edible bacteria by soil amoeba [68]. This
purple pigment has been identified as the indole alkaloid,
violacein [69, 70]. Violacein was since found to have anti-
microbial, antifungal, antiprotist, antiviral, and even anti-
rotifer properties [71, 72]. In particular, the anti-protozoan
properties of violacein are well documented. In addition to

C. violaceum, many other bacteria produce violacein, in-
cluding the freshwater bacterium Janthinobacterium liv-
idum and the marine bacteria Alteromonas luteoviolacea
[71], Pseudoalteromonas tunicata, Pseudoalteromonas
ulvae, Pseudoalteromonas luteoviolacea, and Microbulbifer
sp. [73]. The anti-protozoan activity of P. tunicata was
determined by bioassay-guided fractionation to be due to
violacein as well as the violacein derivative deoxyviolacein.
The concentration of violacein in biofilms of different
violacein-producing strains was 3 (P. ulvae) to 59 (Micro-
bulbifer sp.) times higher than in planktonically grown
bacteria.

In grazing bioassays Matz and colleagues [59] demon-
strated that as little as three violacein-producing bacteria
ingested by heterotrophic flagellates resulted in rapid cell
death after 20 min and cell lysis within 1 to 2 h. By using a
QS mutant strain, they were able to show that toxin produc-
tion was QS dependent. In experiments with predators ex-
posed to a mixed population of non-toxic and violacein-
producing bacteria, flagellate numbers were inhibited, sug-
gesting an important role for violacein in microbial commu-
nity dynamics. Violacein also displayed activity against a
variety of bacterivorous freshwater zooplankton protists and
metazoans. For all zooplankton taxa tested, the presence of
9 ngmL−1violacein, equivalent to the amount present in a
mixed population of 10 % C. violaceum, resulted in reduced
growth rates by 18–100 % [69].

Although C. violaceum is not a major pathogen, cases of
infections have been increasingly reported. In particular,
immune-compromised persons and children are vulnerable
to C. violaceum infections (e.g. [74–76]). There have also
been reports that infections in other mammals have in-
creased [77, 78]. Minor skin trauma appears to be the
entrance point for the bacterium into the body, leading to
septicemia and liver abscesses, which are often fatal [76].
Violacein induces apoptosis of immune cells such as leuko-
cytes and thus could be important for evasion of the immune
system during human infection [79]. As the range of growth
temperature of C. violaceum is 20–37 °C, rising sea surface
temperatures may also increase the prevalence of violacein-
producing bacteria.

Type III Secretion System

The type III secretion system (T3SS) consists of more than
20 proteins and delivers bacterial effector proteins into
eukaryotic host cells. T3SSs can be found in many Gram-
negative bacteria [80–82], as well as in an endosymbiont of
Acanthamoeba, Protochlamydia amoebophila. Examination
of the endosymbiont genome shows little evidence of hori-
zontal gene transfer (HGT) after its divergence from Chla-
mydiae approximately 700 million years ago [83]. The fact
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that T3SS evolved in this organism long before the appear-
ance of Mammalia ~210 million years ago indicates that the
T3SS evolved for a purpose other than virulence as such,
thus supporting the “coincidental evolution” hypothesis
[84].

The T3SS is essential for the survival of pathogenic E. coli
inside trophozoites of A. castellanii [85] and as a QS-
independent anti-predator mechanism in P. aeruginosa [86].
The upregulation of T3SS and down-regulation of factors
contributing to biofilm formation [86, 87] result in a highly
motile phenotype, allowing P. aeruginosa to rapidly colonize
and kill amoeba cells. In the human host, effectors secreted by
the P. aeruginosa T3SS have profound effects on the progres-
sion of pneumonia, further supporting the hypothesis that the
evolution of anti-predator defenses might have increased the
success of P. aeruginosa as a human pathogen.

V. parahaemolyticus has emerged as the number one
cause of seafood-related bacterial illnesses in many
countries [88, 89]. The thermostable direct hemolysin
(TDH) is an important virulence factor of V. parahaemoly-
ticus, and the T3SS is only present in TDH-positive patho-
genic strains [90]. V. parahaemolyticus has two T3SSs;
T3SS-1 is encoded on chromosome 1 and is responsible
for cytotoxicity, while T3SS-2 carries 2 tdh genes and is
encoded on chromosome 2 on a virulence pathogenicity
island (VPaI-7) acquired by HGT [90, 91]. Matz and col-
leagues [92] demonstrated that the T3SS-2 was necessary
for resistance to grazing by the flagellate C. roenbergensis
as the biomass of a T3SS-2 mutant was reduced by 80 %
while the wild-type strain reduced the flagellate numbers by
85 %. In microcosm experiments containing a native coastal
plankton community, both T3SS-2 positive and negative
strains decreased by about 10 % over a five-day-period. In
the presence of heterotrophic and photoautotrophic protists,
the T3SS-2-negative V. parahaemolyticus population de-
clined 100-fold while in T3SS-2-positive microcosms, a
stable V. parahaemolyticus population was established and
increased by 20 % as the numbers of protists decreased by
59 % [92]. Furthermore, with an increase in the temperature
from 16 to 30 °C, the maximum cell density of the T3SS-2-
positive strain increased while the T3SS-2-negative strain
remained suppressed by the ciliate grazer. These data show
that the T3SS plays a role in increasing the fitness of V.
parahaemolyticus in the environment by facilitating inva-
sion of a coastal plankton community and that these strains
have an added advantage at higher temperatures which is
important in the context of global warming.

Type VI Secretion System

The type VI secretion system (T6SS), first identified by
Spaink and co-workers [6], is found in more than 100

sequenced bacterial genomes, a large number of which are
Gram-negative bacterial pathogens (e.g., P. aeruginosa, Sal-
monella enterica, and Aeromonas hydrophila) and many
possessing multiple copies [93]. The T6SS has been dem-
onstrated to be involved in pathogenesis in a number of
human pathogens [94–96]. This secretion system was dem-
onstrated to be required for cytotoxicity of V. cholerae
towards Dictyostelium and mammalian macrophages by a
contact-dependent mechanism [34]. In A. hydrophila the
expression of T3SS and T6SS, as well as QS and lateral
flagella, is positively linked. In fact, the link between regu-
lation of T3SS and T6SSs has been reported for a number of
bacteria [97]. However, the majority of bacteria possessing
T6SSs are not pathogens, but rather occur in marine and soil
environments and there is strong evidence that in many of
these cases, the T6SS has a role in interactions with other
bacteria [98]. Thus, it is likely that T6SSs have a broad role
for increasing bacterial fitness in the environment rather
than in pathogen/host interactions per se. Supporting this
is the fact that T6SS, T3SS, flagellar synthesis, biofilm
formation, and quorum sensing are linked in many bacteria
and these systems are all known to play roles in environ-
mental fitness. In the case of V. cholerae, while there is clear
evidence that genes encoded in the T6SS are important for
survival in Dictyostelium and the deletion of the effector
protein, Hcp, had no effect in a mouse model of infection,
highlighting that its role in virulence in the human is unclear
[34, 99].

Conclusions

Amoeba and macrophages have similar mechanisms of
phagocytosis and prey inactivation [100] and therefore, the
resistance mechanisms that are important for survival of
both ingestion by amoeba and phagocytosis by immune
cells seem to be similar, supporting the idea that resistance
to amoeba is an important driving force in the evolution of
intracellular pathogens [11, 27]. Likewise, pre-ingestional
protective mechanisms may also be similar to those needed
by pathogenic bacteria to evade eukaryotic immune sys-
tems. For example, biofilm production and QS-mediated
secretion of virulence factors by P. aeruginosa and V. chol-
erae are important for both environmental survival and
resistance to predation by heterotrophic nanoflagellates
[38, 52, 53, 86, 92]. Thus, the similarities between anti-
predator defense mechanisms and defenses against phago-
cytes suggest a causal link in pathogenicity and environ-
mental persistence. This has profound implications for the
evolution of virulent strains in the environment, as many
virulence factors that are studied in the context of human
disease potentially have functions in natural microbial com-
munities. A better understanding of these roles would allow
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us to predict how such pathogens arise and persist in the
environment. Therefore, future research should be directed
at the better understanding of the role of predation in mi-
crobial community function, diversity, and stability.
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