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Abstract

In the collective genomes (the metagenome) of the
microorganisms inhabiting the Earth_s diverse environ-
ments is written the history of life on this planet. New
molecular tools developed and used for the past 15 years
by microbial ecologists are facilitating the extraction,
cloning, screening, and sequencing of these genomes.
This approach allows microbial ecologists to access and
study the full range of microbial diversity, regardless of
our ability to culture organisms, and provides an
unprecedented access to the breadth of natural products
that these genomes encode. However, there is no way
that the mere collection of sequences, no matter how
expansive, can provide full coverage of the complex
world of microbial metagenomes within the foreseeable
future. Furthermore, although it is possible to fish out
highly informative and useful genes from the sea of gene
diversity in the environment, this can be a highly tedious
and inefficient procedure. Microbial ecologists must be
clever in their pursuit of ecologically relevant, valuable,
and niche-defining genomic information within the vast
haystack of microbial diversity. In this report, we seek to
describe advances and prospects that will help microbial
ecologists glean more knowledge from investigations into
metagenomes. These include technological advances in
sequencing and cloning methodologies, as well as
improvements in annotation and comparative sequence
analysis. More significant, however, will be ways to focus
in on various subsets of the metagenome that may be of
particular relevance, either by limiting the target com-
munity under study or improving the focus or speed of
screening procedures. Lastly, given the cost and infra-

structure necessary for large metagenome projects, and
the almost inexhaustible amount of data they can
produce, trends toward broader use of metagenome data
across the research community coupled with the needed
investment in bioinformatics infrastructure devoted to
metagenomics will no doubt further increase the value of
metagenomic studies in various environments.

Introduction

The vast majority of the biosphere_s genetic and
metabolic diversity is currently locked up within the
world_s microbial communities, containing a staggering
number of yet uncharacterized microbial genomes [48,
73]. It has become well accepted that the diversity of
microorganisms represented in culture collections is
highly skewed toward those taxa that are amenable to
growing under laboratory conditions, making our dis-
covery of microbial genes through cultivation-dependent
conventional genome sequencing equally skewed. Even
with the recent success of novel and high throughput
culturing strategies [30, 31, 59, 65, 67, 86], we are still
unable to mimic most microbial environments suffi-
ciently to induce growth of many environmentally
relevant microbes. Recent developments in molecular
detection and identification techniques have enabled us
to get a glimpse of the huge diversity of the microbial
world. However, these techniques have only allowed for
fragmentary observations of populations and communi-
ties, and a full picture of the structure and the (putative)
function of microbial communities is still lacking.

In principle, any study that addresses all the
individuals of a community as a single genomic pool
can be seen as an exercise in metagenomics. In this
regard, the pioneering studies that first delved into
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microbial diversity by direct cloning of microbial DNA
followed by meticulous screening for ribosomal RNA
genes [47, 49] should be, and in this study are, consid-
ered the first metagenomic studies. By the application of
PCR in search of 16S rRNA gene diversity [23] and later
diversity in other functional genes, a much more directed
interrogation of this part of the metagenome became
possible. Although understandable on technical grounds,
we generally lost sight of the rest of the metagenome for
about a decade in our quest to zoom in on phylogenetic
markers and specific functional genes of interest. The
wonder of PCR indeed made molecular inventories of
microbial communities routine, but biases inherent to
PCR amplification and the primers used in this proce-
dure are far from trivial [32]. In this light, it is interesting
to note that advances in screening methods and sequence
throughput have now made it more feasible to survey
rRNA gene diversity without the help of PCR amplifica-
tion, and such approaches are gaining considerable favor
[40, 78].

Improvements in cloning technologies [64] and
increased sequencing capacity provide new tools to gain
greater access to the functional complexity of the
metagenome ([4, 26, 57, 78]; Fig. 1), but how can we
gain as much understanding as possible from these
endeavors? The goals of researchers venturing into the
microbial metagenome vary from directed product
discovery to total community characterization, and the
phylogenetic complexity of the environments studied can
range over orders of magnitude. Likewise, methodologies
vary widely in metagenomic studies, and community
complexity and research goals are the clear determinants

of which metagenomic approaches are most appropriate.
A number of excellent reviews have highlighted the numer-
ous breakthroughs in metagenomics [25, 33, 41, 66], and it
is not our goal in this study to appraise the breadth of
work in this emerging area of research. Rather, we seek to
highlight recent breakthroughs in the application of meta-
genomic approaches to important environments, and to
discuss the unique advantages and disadvantages of the
various metagenomic approaches used to date. In partic-
ular, we aim to identify and evaluate research possibilities
and novel approaches that hold promise to advance our
ability to gain functional knowledge from pursuits in
metagenomics.

Techniques, Approaches, and Examples

A wide range of approaches has been employed to gain
access to metagenomes (Fig. 1). The choice of strategy
depends on a number of factors, including the complex-
ity of the community, the amount of sample material
available, the nature of the substrate, the density of
microorganisms in a habitat, and of course the goal,
scope, and resources available for the study. For purposes
of this discussion, we group metagenomic studies into
three classes: (1) shotgun studies that use mass genome
sequencing, followed by scaffold reconstruction and gene
annotation; (2) product or activity-driven studies that
are designed in search of specific microbial activities and
the genes encoding them; and (3) studies that attempt to
link genome information with phylogenetic markers of
microbial groups of interest.

Step in metagenomic study Issues and decisionsIssues and decisions

Environmental sampling

• biodiversity of environment
• reliance on enrichment
• amount of biomass
available

• maintenance of sample
integrity, sampling strategy
& pooling of samples

DNA extraction and preparation

• direct of after cell extraction
• molecular weight of
extracted DNA

• level of purification
necessary

• achieving appropriate size
range of DNA fragments

Cloning and transformation

Library screening

Downstream analysis & exploitation

• genetic screening via PCR
or hybridization

• functional screening via
positive selection or assay

• high-throughput screening
platforms, such as micro-
arrays or flow cytometry

• functional screening in
multiple hosts

• vector properties: insert
size compatibility, host
range, mobility, selection
markers, inducibility, etc.

• host species & genotype
• size of library
• library cataloging &
storage

• (high-throughput)
sequence analysis and
annotation

• isolation of gene(s) of
interest

• over-expression of gene(s)
for product/activity
analyses

• activity manipulation &
optimization

Figure 1. General, common steps in
the metagenomic strategy are shown
within boxes. Key issues and decisions
relevant to each step are shown in the
call-out boxes.
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Shotgun analysis of community genomes is a rather
simple exercise in terms of wet science. DNA extraction
protocols abound that can provide high-quality DNA for
the construction of large libraries of clones containing
small inserts of environmental DNA, and automated
high-throughput methods are implemented to recover
and sequence as many clones as necessary or resources
will allow. The majority of technical challenges with
shotgun metagenomic approaches come in the construc-
tion of scaffolds of sequence from vast numbers of
unordered short sequences. Advances in assembly meth-
ods, stimulated by the human sequencing project, now
allow for complex pools of sequences to be assembled if
sufficient sequence coverage is available. This last point is
most critical to this process and is directly correlated to
the complexity of the community under study. Perhaps
the most elegant application of community shotgun
sequencing (average insert size of 3.2 kb) was presented
by Tyson and colleagues [76]. In a relatively modest 100
Mb of sequence, this group was essentially able to
reconstruct the genomes of the five dominant organisms
composing the biofilms of the acidic mine drainage
habitat at Iron Mountain, California, USA, thereby
piecing together the metabolic routes of the ecosystem.
This sure-to-become classic example shows that simple
communities in some ways can be seen as meta-
organisms, and as with individual organisms, genome
determination opens the door to postgenomic studies to
gain further insight into genetic networks and metabolic
circuitry in an environment.

Our ability to master metagenomes decreases dra-
matically with increased complexity of the community, as
demonstrated by the largest metagenomic study published
to date [78]. In a monumental project to assess the
genomic diversity of the Sargasso Sea, representing over
one billion base pairs of sequence, Venter and colleagues
found that reasonably large scaffolds could only be
assembled for the most dominant community members,
including the reconstruction of two nearly complete
genomes. Clearly, complete sequencing of such environ-
mental genomes is not an easily attainable goal. Fortu-
nately, it can be argued that this may not be the most
relevant goal, as this study exhibited the wealth of
genomic information obtained via a variety of analyses
into patterns of phylogenetic and functional diversity.
Analyses suggested approximately 1,800 different genomic
species, with a large number of novel phylotypes.
Sequence annotation predicted 1.2 million new genes,
including for example 782 rhodopsin-like genes affiliated
with a wide range of bacterial taxa. This latter finding
suggests that a large fraction of marine bacteria possess
chlorophyll-independent light harvesting systems. Numer-
ous other niche-defining genes and pathways were also
detected, providing an unprecedented insight into the
biogeochemistry of such marine ecosystems.

The problems associated with assembling sequences
recovered from shotgun libraries from complex commu-
nities become extreme when even more diverse ecosys-
tems are interrogated in this way, as demonstrated by
Tringe et al. [74] in their analysis of a soil metagenomic
library. Soil-borne microbial communities are thought to
be Earth_s greatest source of biodiversity, with estimates
ranging from thousands to tens of thousands of species
per gram of soil [10, 72]. Indeed, nearly 140 Mb of sequence
from a farmland soil revealed less than 1% of sequences
showing any overlap, and produced no contigs, indicating
that complete sequencing of such habitats is practically
unattainable. However, Tringe et al. [74] demonstrated that
such an exercise is far from futile. While obviously falling
far short of providing an adequate sampling of the genetic
diversity of this complex environment, this study did pro-
vide a wealth of novel genetic data, revealing hundreds of
thousands of new protein-encoding genes, the vast majority
of which were only distantly related to known protein
sequences. Furthermore, these authors demonstrated that
distribution patterns of sequence motifs and clusters of or-
thologous groups (COGs) of proteins [69, 70] can be used
to provide functional fingerprints of environments, which
can be compared across disparate habitats.

This brief synopsis of shotgun cloning approaches
across a gradient of microbial diversity serves to highlight
the power and limitations of such approaches as applied
to different environments. As such endeavors expand to
include other environments, we can expect that full
community genomes will be produced from numerous
low-diversity environments such as bioreactors and
biofilms [60]. This information will pave the way for
postgenomic studies that should help elucidate microbial
interactions and pathways, allowing predictive and
manipulative management of such economically relevant
microbial communities. We predict that numerous
genomic scaffolds will be revealed in shotgun clone
investigations of important environments of intermedi-
ate diversity such as GI tracts [14, 89] and oral cavities
[19]. In addition, diversity within gene families of
particular relevance to these habitats should be revealed.
Within high-diversity habitats such as soil, metagenomic
approaches should continue to reveal novel and special-
ized genes (see also below) and provide comparative
insight into the distribution of microbial functions across
different habitats.

Product or activity-driven metagenomic studies are
often approached from a more applied perspective, with
the express goal to discover and exploit useful properties
encoded within the metagenome [41]. Given that the
majority of natural products are of microbial origin, and
that the vast majority of microbial genomes have yet to
be explored, it follows that microbial metagenomes
contain a great economic potential. Due to their huge
diversity and history as sources of commercially valuable
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molecules with agricultural, chemical, industrial, and
pharmaceutical applications [9, 41, 42], soil environ-
ments have been the most common subjects of meta-
genome interrogation in this way [11].

Successful exploitation of microbial activities or
metabolic pathways via a metagenomic approach re-
quires a large number of critical steps (Fig. 2). Firstly, the
target environment must contain the gene(s) encoding
the activity of interest, preferably in a high frequency.
Secondly, the DNA extraction and cloning methods must
allow for the capture of intact genes or operons. Thirdly,
the target genes must be detectable, either genetically or
phenotypically. Lastly, once potential target activities
have been detected, it must be possible to tailor their
expression into viable production schemes. Predicting
the success rate can be modeled depending on the nature
of the target genes and the proportional abundance of
the microorganisms harboring them [22].

Obviously, one must first start by looking in the
right kind of environment, as exemplified by Rhee et al.
[55] in their search for thermostable esterases, bearing in
mind that not all environments provide easy access to
large microbial biomass (see below). Still, except in cases
where engineered systems are known to possess high
levels of an activity of interest [27], specific target genes
will represent only a very small fraction of the total
genomic material in environmental samples. One obvi-
ous way to stack the deck in favor of detection of a
property of interest (e.g., enzyme activity) is to enrich
environmental samples for its presence. Metagenomic
analysis of enrichment cultures has indeed become a
powerful approach to isolation of genes encoding simple
functions like biocatalyst or degrading activities [17, 24,
35, 36, 79]. As with other methods that depend on growth

of target populations, enrichment procedures before
metagenome extraction bias samples toward populations
that react particularly well to the specific enrichment
conditions. This may severely restrict the diversity and
novelty of the target gene pool. Many extremely useful
enzyme-encoding genes may occur within populations
that respond slowly to enrichment conditions, thereby
being masked by potentially less-useful genes that occur
within more responsive populations.

Step two in the chain toward metagenome prospecting
has for the most part been solved rather well. Numerous
DNA extraction and cloning methods are now available,
and methods can pretty much be tailored to the sample
type and the insert size desired. Insert size and expression
background are the key factors when determining cloning
strategy, and hinges on the size of the genomic region of
interest (i.e., single genes vs full pathways) and the
suspected phylogenetic range of target genomes. Choice of
cloning strategy is intimately linked with the next link in the
discovery chain, namely, identification of clones of interest.
In theory, clones of interest can be identified by mass
sequencing, where huge amounts of sequence data are
examined for Bpotentially interesting bits^ which are then
studied in further detail. Alternatively, degenerate nucleo-
tide sequences targeting conserved regions of gene families
can be used to screen via various hybridization methods.
These examples of screening by Bforward genetics^ can be
effective when target genes belong to a well-defined protein
family, but are generally inefficient, and can only detect
potentially interesting inserts based upon homology to
known motifs.

Functional screening methods potentially provide a
means to discover new variants of functions of interest.
The efficiency of functional screening of metagenomic

Recovery of
microbial fraction

Restriction, and/or
size selection

(high mol. weight)
DNA extraction

Environmental
sample

Ligation into
vector and host
transformation

Archiving of
clones

Molecular
screening

Functional
bioassays

Alternative host
cloning

Optimization of
expression &
activity

Metabolite
analysis

Sequence
recovery

Exploitation
scheme

Integration into industrial or
pharmaceutical application

Figure 2. Flowchart showing the ex-
perimental steps for the exploitation of
genes recovered from environmental
metagenomes.
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libraries relies both on the efficiency and sensitivity of the
assay and the compatibility of host_s transcription,
translation, and modification machinery to act upon
the transgenic DNA in question. Obviously, expansion of
host ranges within metagenomic studies [39, 43, 81, 82],
even to eukaryote hosts [2], should provide greater access
to the expression of a wider range of environmental gene
activities, and steps in this direction are already bearing
fruit.

In the majority of studies to date, transgenic gene
expression has relied on promoter elements intrinsic to
the transgenic genomic material. However, the use of
vectors that couple inserts to general or specific pro-
moters has also come forward as a useful and highly
directed means of probing the metagenome for microbial
activities. An example is Substrate-Induced Gene Expres-
sion (SIGEX) screening [77, 85]. This novel method
clones environmental DNA into GFP-tagged vectors, and
libraries are subsequently subjected to the target substrate
of interest. Clones expressing GFP in the presence of the
target substrate are then sorted and collected by FACS for
further cultivation and analysis. This procedure allows
one to zoom in on activities that are related to particular
substrates or catabolic pathways of interest. Recent
advances in vector systems and knowledge of promoter
systems are adding to the potential of such directed
approaches to functional gene discovery. Several flow
cytometric methods have also been devised to examine
large metagenomic libraries for activities that can be
detected by fluorescent assays (see Diversa patents US
5958672 and 6872526-B2), promising more rapid inter-
rogation of metagenomic libraries for sequences and
activities of interest.

A final hurdle in realizing the potential of genes
recovered from metagenomic libraries is obtaining high-
level expression and incorporation into viable industrial
processes. Continued effort to improve well-controlled
high-expression systems remains an open research area.
Many microbe-derived activities are still less than
optimal for implementation in industrial processes.
Directed evolution and selection methods [15, 16] are
providing fascinating and promising results that may
allow researches to mold enzymatic activities to fill their
specific needs.

Phylogenetic and large-insert metagenomic approaches
provide access to genetic information contained within
microbial populations only known to us in the form of
specific phylogenetic marker gene sequences [57]. The
general strategy is to use 16S rRNA gene markers as
phylogenetic handles to identify genomic fragments from
not-yet-cultured populations of interest from large-
insert libraries [25]. The already classic example of this
strategy is the discovery of proteorhodopsin within a
genomics fragment belonging to a SAR86 population [4].
The discovery of this niche-defining gene led to further,

far-reaching inferences concerning the diversity and
extent of phototrophy in the world_s oceans [3], and it
serves as the ecological poster child of metagenomics
success.

Similar strategies have now been successful in pro-
viding insight into other not-yet-cultured organisms
including uncultured Acidobacteria [40] and Archaea
[51]. Although these successes provide us glimpses into
novel genomes, it requires a combination of insight and
pure luck to define niches based upon relatively short
stretches of genomics information. Indeed, in silico
exercises using complete genome sequences can easily
demonstrate that it is usually impossible to infer the
niche of an organism based upon the 1–2% of the
genome adjacent to an rRNA operon. A number of
approaches may allow us to glean more functional
information from such exercises: (1) Using genes toward
the ends of marker-containing inserts as markers for
further interrogation of clone libraries would allow one
to detect adjacent inserts, thereby expanding the contig-
uous chromosomal region investigated. Although this
sounds highly attractive, the use of such a strategy may
only be practical where the target populations represent a
considerable proportion of the total community; (2)
Using known functional genes of interest instead of
phylogenetic markers may provide a more direct route to
the discovery of gene clusters of related function. In
many cases, prokaryotic phenotypes are the result of the
concerted effort of many genes that are often arranged
into adjacent operons or super-operonic clusters. Thus,
by targeting known genes central to complex phenotypes,
the entire metabolic pathway of interest can be captured
[25, 56]; (3) Many niche-determining microbial activities
reside on relatively mobile genetic elements. Strategies
targeting the so-called mobilome [21] provide a means of
focusing in an especially interesting subset of microbial
activities [44, 45, 68].

As above, a limiting factor in such approaches is our
ability to screen libraries for markers or activities of interest,
and screening strategies include PCR-based methods,
hybridization [38], and several novel approaches such as
use of microarrays [61] and flow cytometry [46]. Given
that most anchored metagenome approaches rely upon
rRNA gene markers, the creation of libraries that are
enriched for inserts containing these markers may also
prove a useful first step in gaining access to genomic
information from defined phylogenetic groups. Homing
restriction enzymes may facilitate such approaches. These
enzymes target relatively long recognition sites, typically
unique within a bacterial genome, and I-CreI for example
should theoretically ground metagenomic clones to rRNA
gene operons. The prospect of custom-made homing
enzymes [58] is especially exciting as these may provide a
means of grounding metagenomic libraries to specific
genomic sites of choice.
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Gleaning Information Out of the Data: Bioformatics
and Data Analysis

Metagenomic approaches have the potential to generate
tremendous amounts of sequence information. However,
the knowledge gleaned from such studies is not propor-
tional to the sequencing effort involved, and it depends on
the bioinformatics interpretation of the information
obtained. Bioinformatics challenges are encountered at
several steps of metagenome analyses, namely: (1) sequence
assembly, (2) sequence annotation, and (3) broader use
and analysis of metagenomic sequence information.

Algorithms for sequence reconstruction and contig
formation have dramatically improved over the last
couple of years but still rely to a large extent on principles
used for the reconstruction of genomes from single
organisms represented with a large coverage. Genome
assembly is already complicated when analyzing a single
cultured bacterium, and assembly becomes increasingly
difficult when the total diversity and structure of a
community is not known. Although community genome
sequencing projects to date have managed to provide
valuable insight into how patterns of sequence coverage
and COG recognition can be used to glean important
information from incomplete genomic sampling, further
progress in this area is essential. For example, building
recovered sequence information onto the scaffolds of
known genomes is proving to be a highly valuable tool in
trying to piece together partial genome sequences recov-
ered from environmental samples. As community genome
sequencing efforts continue and novel sequencing meth-
ods are introduced, community assembly algorithms will
need to place a greater emphasis on unraveling genomic
information from partial coverage of genomes and a high
abundance of short sequencing reads.

In the ideal scenario, the annotation of gene sequences
should depend upon recovery of a full gene sequence, the
context of the gene within the genome, sequence homol-
ogy genes of known function, and experimental evidence
of a gene product and function. Even in the analysis of
genomes from pure cultures, the last of these criteria is
lacking, and assumptions are made based mostly upon
sequence homology and recognized sequence motifs, as
well as the assumption that past annotations are correct.
However, with environmental sequences, the first two
criteria are often also lacking, making reliance on pure
sequence homology often tenuous at best. Clearly, gene
function also relies on context, and conclusions based
solely upon sequence similarities should be treated with
the appropriate caution. Bearing this in mind, predictions
of functional modules and domains based upon dynamic
databases of gene families from sequenced genomes, as
exemplified for polyketide synthase genes [84], should
provide a greater degree of confidence for the annotation
of genes recovered directly from the environment.

Due to the costs and infrastructure of large-scale
metagenomics efforts, it is clear that such approaches are
not yet available to a broad community of scientists. On
the other hand, large-scale metagenome projects can
produce much more data than any one group can
analyze, and initial analyses are typically restricted to
general trends of diversity and composition and a
selected number of traits of specific interest to the
researchers. Of course, recovered sequence information
is made available via public databases, but this is often in
a less useful form than the original datasets. Opening up
metagenomic datasets for interrogation by a broader
group of researchers, whose interests span a greater
breadth of microbial functions, seems to be a relatively
easy step that could greatly increase the understanding
gleaned from large-scale metagenomics initiatives.

Practical Aspects and Coordinating Efforts

To date, there has been little broad-scale coordination in
efforts to describe environmental metagenomes, and
standards of resource management and curation are
essentially absent. Who should choose the environments
to be studied, and how should they be sampled? Who
should decide the best approaches to access these
metagenomes? Should cloned material be cataloged and
stored, and if so, how and where? What is the most
useful form of database management for recovered
sequence information, and how should this be imple-
mented? Up to now, the answers to these questions have
for the most part been dictated by the specific interests
and assets of the researchers spearheading individual
metagenome projects. Some recent efforts have been
helpful in providing the first coordination in such efforts,
as exemplified by the US Department of Energy_s
Genomes to Life Program and the Community Sequenc-
ing Program sponsored by the Joint Genome Institute.
Not only is choice of environment important but also
more coordinated funding efforts, better storage and
access to cloned material, and standards of annotation
and data deposition are necessary. Clearly, greater
national and international cooperation in choosing and
overseeing such metagenome efforts would help make
large-scale metagenomic efforts more valuable, increasing
their resource value to the scientific community.

What the Future May Hold

Metagenomics strategies currently followed, and the
resources brought to bear in their execution, fit into the
category of what might be called Bsledgehammer^ or
Bbrute force^ approaches. Advances in cloning, screen-
ing, and sequencing technologies have made such a
rough, indirect approach possible, and continued devel-
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opment in these areas will no doubt increase our access
to the massive amount of information encoded in
uncultivated microorganisms. Still, we may never find
genes or assemble genomes originating from relatively
low-abundant species or organisms residing in environ-
ments with high biodiversity despite their possible
keystone roles in their environment or value to man.
More focused methods are clearly needed if we wish to
increase the efficiency with which we can recover genomic
needles of interest from the haystack of environmental
microbial diversity.

Why go through the effort of producing and
screening large metagenomic libraries for particular
genomic fragments of interest if the organisms in
question can be cultivated and subjected to genome
analysis [75]? A major selling point of metagenomic
approaches is that they are not restricted to only
culturable microorganisms but also provide access to the
Bunculturable^ majority of microbial communities [83].
Increasingly, the application of the term Bunculturable^
has proven to be incorrect for many microorganisms,
as novel isolation and culturing methods are fueling a
new wave of success stories in efforts to culture diverse
microbes [30, 31, 54, 59, 65, 67]. Thus, many
Bunculturable^ bacteria are more correctly probably just
not-yet-cultured, and investments in culturing efforts
may help to reduce the need for indirect and cumber-
some metagenomic approaches.

A number of other technologies are emerging that
should also help us to focus on particular microbial
needles in the haystack. These include: (1) combining
metagenome approaches with stable isotope probing
methods to focus in on genomes of active community
members, (2) increased use of methods that target
mRNA to access diversity of expressed genes, (3) zoom-
ing in on small sample sizes in particular environments
of interest using whole community genome amplification
methods to increase DNA quantities, (4) micromanipu-
lation of individual cells for single-cell genome sequenc-
ing, and (5) the isolation and sequence determination
from single DNA molecules.

Stable isotope probing has become a powerful
approach for studying subsets of microbial communities
that respond to particular key substrates [52]. Molecular
analysis of Bheavy-labeled^ fractions of microbial com-
munities based upon on phylogenetic and functional
gene markers has provided a great impetus in the quest
to couple microbial identity and function. However, such
methods still focus on individual genes. Application of
metagenomic approaches to active fractions of microbial
communities offers an obvious route to isolation of
important and complex microbial activities. Potential
problems in this approach include the recovery of large
molecular weight DNA, if large-insert approaches are
required, and the limited amount of labeled nucleic acid

available for subsequent analysis. Amplification of the
labeled fraction may provide a solution to this latter
problem as discussed below.

Metagenomic approaches focus on genomic poten-
tial as opposed to realized activities, and a greater focus
on gene expression in the environment is urgently
needed. While gene expression of individual genes are
providing insight into particular processes of interest [8],
mRNA-based studies targeting numerous microbial ac-
tivities simultaneously may hold the key to understanding
the functioning of microbial consortia [7, 18]. In this
respect, DNA-based metagenome studies should be
coupled with environmental transcriptomics approaches
to gain insight into the genes that are actually active in
the environment [50].

Numerous methods (DOP-PCR, IPEP, MDA, Omni
Plex) have recently been developed for the amplification
of genomic DNA without knowledge of sequence content
[12, 62, 71, 88]. Such whole-genome amplification
strategies have typically been employed in the analysis
of trace amounts of human DNA for analytical purposes
[37]. However, the recent use on low-density cultures has
opened up the ability to obtain genomic sequences from
organisms for which extensive high-density culturing is
not yet possible (i.e., genome sequencing has been
performed on as little as õ1,000 cells after MDA; [13]).
Similarly, genome amplification methods hold great
promise to assist in the analysis of environmental
samples that lack sufficient biomass for convenient
application of metagenomic methodologies. Whole-
genome or metagenome amplification methods will not
only allow for the analysis of low-biomass environments
but will also allow for the analysis of microbial
communities at scales that are more appropriate for
elucidating microbial functioning. For instance, many
soil processes may best be understood at the level of
microbial aggregates and bioreactors at the level of
individual flocs.

Taken a step further, such amplification technologies
provide access to microbial genomes at the level of a
single microbial cell [53, 87, 88]. The ability to gain
genome sequence information from a single cell will
finally fully bypass our need to culture organisms to gain
access to their full genomic potential. Combining single-
cell sequencing methods with in situ methods of cell
identification and new techniques for the isolation and
characterization of single prokaryotic cells [6, 20]
presents the possibility of examining microbial commu-
nity genomes and activities one cell at a time. Why put
all the genomes of an ecosystem into a mixer and try to
piece the genomes back together again afterward when
genomic information can be directly obtained from the
individual community members? Such methods will not
only open the door to the study of individual cells
belonging to phylogenetic groups that are resistant to
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culturing methods and/or that occur at low frequencies,
but will also provide a means of conducting bacterial
population biology [63].

As with other methods, such amplification methods
also carry a number of potential drawbacks, especially
biases introduced by selective amplification [12], produc-
tion of relatively short DNA fragments, and risks of
contamination. Although whole-genome amplification
methods provide access to the vast majority of genomic
DNA present, and methods are being improved [28],
amplification bias will remain an issue for the foreseeable
future in the application of such procedures to environ-
mental DNA. The production of relatively short fragments
hampers the prospect of recovery of intact genes or
operons although methods for larger fragment recovery
upon amplification are becoming available [34]. Whole-
genome amplification methods, especially the Multiple
Displacement Amplification (MDA) method [1, 12, 28],
are superior to PCR-based method in recovering large
DNA fragments from very limited amount of materials.
However, when applied to single cells, the issue of
background amplification with MDA is not trivial, as
exemplified by Raghunathan et al. [53], who found up to
70% of amplicons to be contaminants. In addition, the
amplification by strand displacement creates a complex,
repeated forked structure of DNA that may hamper
downstream manipulations [80]. Most recently, two
methods have been developed to reduce background
amplification: one based on nanoliter-scale reaction
volumes [29], and the other involving careful experimen-
tal procedures coupled by real-time monitoring of
amplification kinetics [87]. With these improvements in
background amplification, as well as a new sequencing
library construction protocol to deal with the unusual
hyperbranched DNA structures generated by MDA, Zhang
et al. [87] demonstrated amplification of single Prochlor-
ococcus cells and recovered approximately two-thirds of
the genome at the sequencing depth of 3.5õ4.7�. Due to
amplification bias on single-cell amplifications, it was
estimated that a sequencing depth of õ15� would be
required to recover 90% of the genome, with the filling of
remaining gaps best dealt with via PCR-based methods.
Nevertheless, this study represents a significant technolog-
ical advance in obtaining genome information from single
cells in environmental samples without lab culturing.
Further developments, such as reducing amplification bias
and improving sequencing coverage, as well as implemen-
tation of high-throughput screening platforms, are re-
quired to tackle the highly complex microbial communities
in the environment. Before the single-cell genome sequenc-
ing method can be robustly and cost-effectively imple-
mented in regular research labs, metagenomic sequencing
will remain as an attractive complementary method in the
coming years.

Recent technological advances indicate that the
analysis of small nucleic acid samples can be taken to
the extreme, namely, single DNA or perhaps even RNA
molecules [5]. Single molecule sequencing technologies
are not yet applicable to the study of environmental
samples but, if rendered feasible, hold the potential to
open the door to microbial community genomics at the
subcellular level.

Conclusions

Metagenomic approaches offer the unique ability to
examine directly the genomic content of microbial
communities, and recent advances in cloning, sequenc-
ing, and screening technologies are rapidly increasing the
speed and efficiency with which community genomes can
be analyzed. However, the immense microbial diversity
of this planet precludes a simple strategy of sequencing
everything, and clever choices and coordination in
environment selection, screening methods, and data
analysis will be key to deriving maximal knowledge and
utility from available resources. The greatest advances in
accessing community genome pools will probably come
not from course improvements in metagenome library
construction, but rather in methods to interrogate
metagenomes for important microbial functions. Despite
the hype of metagenomic approaches, emerging technol-
ogies and a revival in culturing efforts may make
metagenomic approaches unnecessary in many cases.
Thus, while metagenomic approaches can provide unique
and unprecedented glimpses into microbial community
function, they should not be seen as a means in and of
themselves, but rather one impressive tool within the
integrated approaches becoming available to tackle the
diversity of Earth_s microbial functions.
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73. Torsvik, V, Øvreås, L, Thingstad, TF (2002) Prokaryotic diversity:
magnitude, dynamics, and controlling factors. Science 296: 1064–1066

484 G.A KOWALCHUK ET AL.: FINDING THE NEEDLES IN THE META-GENOME HAYSTACK

http://dx.doi.org//10.1093/nar/gkl645


74. Tringe, SG, von Mering, C, Kobayashi, A, Salamov, AA, Chen, K,
Chang, HW, Podar, M, Short, JM, Mathur, EJ, Detter, JC, Bork, P,
Hugenholtz, P, Rubin, EM (2005) Comparative metagenomics of
microbial communities. Science 308: 554–557

75. Tyson, GW, Banfield, JF (2005) Cultivating the uncultivated: a
community genomics perspective. Trends Microbiol 13: 411–415

76. Tyson, GW, Chapman, J, Hugenholtz, P, Allen, EE, Ram, RJ,
Richardson, PM, Solovyev, VV, Rubin, EM, Rokhsar, DS, Banfield,
JF (2004) Community structure and metabolism through recon-
struction of microbial genomes from the environment. Nature
428: 37–43

77. Uchiyama, T, Abe, T, Ikemura, T, Watanabe, K (2005) Substrate-
induced gene-expression screening of environmental metage-
nomic libraries for isolation of catabolic genes. Nat Biotechnol
23: 88–93

78. Venter, JC, Remington, K, Heidelberg, JF, Halpern, AL, Rusch, D,
Eisen, JA, Wu, DY, Paulsen, I, Nelson, KE, Nelson, W, Fouts, DE,
Levy, S, Knap, AH, Lomas, MW, Nealson, K, White, O, Peterson, J,
Hoffman, J, Parsons, R, Baden-Tillson, H, Pfannkoch, C, Rogers,
YH, Smith, HO (2004) Environmental genome shotgun sequencing
of the Sargasso Sea. Science 304: 66–74

79. Voget, S, Leggewie, C, Uesbeck, A, Raasch, C, Jaeger, KE, Streit,
WR (2003) Prospecting for novel biocatalysts in a soil metage-
nome. Appl Environ Microbiol 69: 6235–6242

80. Vora, GJ, Meador, CE, Stenger, DA, Andreadis, JD (2004) Nucleic
acid amplification strategies for DNA microarray-based pathogen
detection. Appl Environ Microbiol 70: 3047–3054

81. Wang, GY, Graziani, E, Waters, B, Pan, W, Li, X, McDermott, J,
Meurer, G, Saxena, G, Andersen, RJ, Davies, J (2000) Novel
natural products from soil DNA libraries in a streptomycete host.
Org Lett 2: 2401–2404

82. Wexler, M, Bond, PL, Richardson, DJ, Johnston, AWB (2005) A
wide host-range metagenomic library from a waste water treat-
ment plant yields a novel alcohol/aldehyde dehydrogenase.
Environ Microbiol 7: 1917–1926

83. Whitman, WB, Coleman, DC, Wiebe, WJ (1998) Prokaryotes: the
unseen majority. Proc Natl Acad Sci USA 95: 6578–6583

84. Yadav, G, Gokhale, RS, Mohanty, D (2003) SEARCHPKS: a
program for detection and analysis of polyketide synthase
domains. Nucleic Acids Res 31: 3654–3658

85. Yun, J, Ryu, S (2005) Screening for novel enzymes from meta-
genome and SIGEX as a way to improve it. Microb Cell Fact 4: 8
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