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Abstract
Background Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks 
an effective way to predict its effect.
Objective To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion pheno-
types by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy.
Materials and methods In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepato-
blastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster 
the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and 
selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. 
The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed.
Results Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) 
based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy 
(P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 
and 0.008, respectively).
Conclusions This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. 
In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a 
proper imaging classification system.
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Liver Tumors Strategy Group (SIOPEL) guideline and 
Expert Consensus for Multidisciplinary Management of 
Hepatoblastoma (CCCG-HB-2016) protocol), some inves-
tigators consider that it may not be necessary for young 
children (6 months to 3 years of age) with a very high 
alpha-fetoprotein (AFP) level [7, 8]. Furthermore, the 
heavily vascularized tumors make it difficult to perform 
a needle biopsy. In addition being a heterogenous tumor, 
hepatoblastoma has different compounds and various bio-
logic behaviors [9]; a needle biopsy may not represent the 
heterogeneity of the tumor.

Compared with the pre-surgery biopsy, the appear-
ance in imaging can provide a comprehensive evaluation 
of the tumor, not only in regard to location and vascu-
lar invasion but also regarding the composition of the 
tumor. Even now, there is still not a satisfactory imaging 
classification system, primarily due to the complexity of 
the appearance in imaging [10]. An objective and quan-
tifiable method is needed to carry out the assessment 
and clustering of hepatoblastomas with imaging-based 
intralesional heterogeneity.

Nowadays, with the help of machine learning, massive 
data analysis is no longer a problem. Radiomics, research 
focused on the extraction of quantitative metrics, is a rap-
idly evolving field. Besides esimple lesion characteristics 
such as shape and heterogeneity, radiomics can extract 
information out of complex gray value patterns which 
are difficult to recognize or quantify by human eyes 
[11]. This characteristic makes radiomics data mineable, 
which means that it can be used to discover previously 
unknown patterns of disease evolution, progression, and 
treatment response with a sufficient dataset. A previous 
study found that unsupervised clustering may have the 
potential to classify the image phenotypes by radiomics 
features [12].

Introduction

Hepatoblastoma, is an embryonal tumor which accounts for 
two-thirds of malignant liver tumors in children, and makes 
up between 1% and 2% of all childhood malignancies [1]. 
The overall survival rate has increased (largely in the past 
three decades), from approximately 30% to 70%, due to 
advances in chemotherapy, image modalities, and surgical 
techniques [2]. But some challenges still prevent it from hav-
ing a better prognosis.

Most studies have  shown that if the tumor is com-
pletely resectable, the prognosis is favorable [3]. Up to 
70% of patients could not receive surgery directly when 
the tumors were found. Moreover, tumor recurrence is 
more often seen in patients without chemotherapy [4]. 
Thus, neoadjuvant chemotherapy is recommended for 
most patients, which is critical in increasing the complete 
tumor resection rate and reducing the recurrence rate [5]. 
The main therapeutic goal of neoadjuvant chemotherapy 
is to reduce tumor volume and reach complete surgical 
resection. Yet, treatment results for advanced tumors are 
still far from being satisfying. A total of 20% of patients 
have anticancer drug resistance [6]. For these patients, 
neoadjuvant chemotherapy not only prolongs the course 
of treatment but also reduces the degree of tolerance for 
surgery. Thus, predicting the sensitivity to neoadjuvant 
chemotherapy is essential for choosing the proper thera-
peutic schedule for these patients.

However, it is hard to predict the effect of neoadju-
vant chemotherapy. Generally, the pathology of the initial 
diagnosis is most likely to predict the efficacy of chem-
otherapy. That said, for most cases of hepatoblastoma, 
the purpose of tumor biopsy is simply to confirm the 
diagnosis. In clinical practice, although biopsy is recom-
mended by the guidelines (e.g., International Childhood 
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Regarding the clinical challenge, this study aimed to 
identify radiomics-based hepatoblastoma phenotypes using 
unsupervised machine learning. The correlations between 
clusters and clinical and pathological features were ana-
lyzed, intending to establish an imaging-based categoriza-
tion for hepatoblastoma.

Methods

Patient enrollment and imaging protocols

In this single-center retrospective study, all patients were 
enrolled from the First Affiliated Hospital, Sun Yat-sen 
University and examined between August 2013 and Sep-
tember 2021. This study was approved by the institutional 
review board of the First Affiliated Hospital of Sun Yat-
sen University (No. [2021]027). The inclusion criteria 
were as follows: (1) initially diagnosed hepatoblastoma 
with clear pathologic diagnosis; (2) age between 0 and 
6  years old; (3) received neoadjuvant chemotherapy 
based on the CCCG-HB-2016 protocol [13]; and (4) had 
contrast-enhanced computed tomography (CT) imag-
ing before and after neoadjuvant chemotherapy within 
1 week. The exclusion criteria were as follows: (1) incom-
plete clinical data before and after neoadjuvant chemo-
therapy (mainly the AFP level); (2) patients receiving 
interventional therapy during neoadjuvant chemotherapy; 
and (3) poor quality of contrast-enhanced CT images 
(evaluated by two experienced radiologists).

All subjects were scanned in our institution, using 
either a Siemens SOMATOM FORCE®, Siemens Health-
care GmbH (Erlangen, Germany) or a IQon Spectral CT, 
Philips Healthcare (Amsterdam, Netherlands)  scanner. 
Scanning parameters were assigned based on patient 
weight, with the use of size-based protocols. Each scan 
was manually checked for liver lesions and de-identified 
for further image processing.

Clinical staging

The stages of the tumor were evaluated using the PRETEXT 
system of the SIOPEL [14]. The second imaging examina-
tion was carried out following two cycles of cytostatic treat-
ment to monitor the effect. The Response Evaluation Criteria 
in Solid Tumors (RECIST) was used to evaluate the effect 
of chemotherapy [15].

Image quality evaluation

Only arterial phase contrast-enhanced axial CT datasets 
before neoadjuvant chemotherapy were included, because 
the arterial phase shows the clearest margin and highlights 
the heterogeneity within the tumor [16]. Image quality 
was assessed and divided into three categories, excellent, 
good, and normal quality, in order to retain the comparabil-
ity of the radiomics properties between individual patients 
(assessed by Y.C., a clinical radiologist with 7 years of clini-
cal experience in pediatric radiology). However, although we 
scanned the arterial phase at a similar time in all patients, the 
enhancement degree was hard to control to an exact phase, 
due to different circulatory clearance rates in children. To 
control the effect of the degree of arterial phase enhance-
ment on image quality, the arterial phase was further classi-
fied into early arterial phase, arterial phase, and late arterial 
phase for comparison. The criteria and example images of 
arterial phase evaluation are shown in Fig. 1 and Supple-
mentary Material 1.

Radiomics features extraction

All the contast-enhanced CT images were resliced to the resolu-
tion ratio of 0.5 mm × 0.5 mm × 1 mm (width × length × height). 
Following this, segmentations of the tumors were completed 
manually by a medical student (H.L., three years of experience 
in pediatric radiology and segmentation), and were then evalu-
ated and corrected by a clinical radiologist (Y.C.) to achieve 

Fig. 1  Axial post-contrast computed tomography images in three 
children with hepatoblastoma show criteria and examples of arterial 
phase evaluation. a Early arterial phase in a 1.5-year-old boy: there 
is no contrast in the portal vein. b Arterial phase in a 1-year-old girl: 

there is mild enhancement of the portal vein. c Late arterial phase in 
a 1.5-year-old boy: there is clear enhancement of the portal vein (pos-
sibly also the vena cava)
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precise segmentation. If the patient had more than one lesion, 
only the largest lesion was extracted for analysis.

The free Python software PyRadiomics was used to 
extract the tumors’ radiomics features (version 3.0.1, 
Harvard, Boston, MA).The features “firstorder,” “shape,” 
“glcm” [Gray Level Co-occurrence Matrix], “gldm” [Gray 
Level Dependence Matrix], “glrlm” [Gray Level Run 
Length Matrix], “glszm” [Gray Level Size Zone Matrix], 
and “ngtdm” [Neighboring Gray Tone Difference Matrix] 
were extracted from the original images as well as from the 
images after wavelet-transformation (eight wavelet decom-
positions), resulting in a total of 872 features. Supplemental 
Material 2 contains a complete list of the extraction settings 
and parameters used in this analysis. Then the features were 
exported and prepared for further analysis.

Unsupervised clustering and feature selection

The statistical analysis was performed in R and RStudio 
(version 1.3.1093, Boston, MA). Before analysis, each 
feature was normalized using the Z-score. Then, a line of 
within-cluster sums of squares was drawn to determine the 
number of clusters (Supplementary Material 3). A hundred 
times repeated k-means clustering of tumors and radiomic 
characteristics were used to separate potentially clinically 
important cohorts and displayed in an extra heatmap, which 
also included the hierarchical approach, to cluster the tumors 
in an unsupervised manner. The outcome of clustering visu-
ally was further validated using the t-distributed stochastic 
neighbor embedding (t-SNE) algorithm, one of the unsuper-
vised approaches for descending dimension.

The least absolute shrinkage and selection operator 
(LASSO) regression algorithm was used to exclude the 
redundant features and identify the most relevant features for 
the differentiation between cluster groups using the “glmnet” 
package in R [17]. The reduced heatmaps were created for 
the final feature set. The heatmaps were all created using the 
“ComplexHeatmap” package in R [18].

Cluster analysis

Based on the essential features chosen, the unsupervised cluster-
ing results were examined quantitatively and visually. Then, the 
demographic data, image quality, and contract phase between 
clusters were analyzed. Using a Chi-squared test, it was deter-
mined whether there was any link between clinical parameters, 
pathologic parameters, and qualitative radiological features and 
the previously identified clusters. SPSS statistical software (ver-
sion 21.0, IBM Corp., Armonk, NY) was used for statistical 
analysis, and the measurement data were expressed as x ± s. The 
Chi-square test was used for the comparison of all categorical 
variables and the t-test was used for dimensional data. A P-value 
of below 0.05 was considered statistically significant.

Results

Patient enrollment

Based on the inclusion criteria, the contrast-enhanced CT 
images of 137 patients were enrolled in this study. From 
these cases, 35 were excluded due to incomplete clinical 
data, two were excluded due to the use of interventional 
therapy, and one was excluded because of poor image qual-
ity. As a result, 99 patients (54 males), including 99 tumors, 
were finally enrolled for analysis (Fig. 2). In this cohort, the 
average age was 30 months (range from 0–163 months). The 
PRETEXT stages of these patients are shown in Table 2.

Cluster analysis

The k-means clustering method clusters the tumors unsu-
pervised into three groups and the features into six groups. 
The heatmap of unclustered features and tumors is shown 
in Fig. 3. The heatmap in Fig. 4 shows the clustering result. 
The total number of lesions was 46, 30, and 23 for each 

Fig. 2  Consort flow chart 
showing patient recruitment HB 
hepatoblastoma
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cluster. The unsupervised t-SNE method further verified the 
reliability of the classification (Fig. 5).

Demographic data and imaging quality 
between clusters

Age, sex, and image phase were comparable in each cluster. 
However, the image quality showed a statistical difference 
between clusters (Table 1).

We further analyzed the correlation between image 
quality and age. The result showed that age was positively 
associated with image quality (the older the child, the bet-
ter the image quality, r=0.262, P=0.009), which meant that 
although age did not show a statistical difference between 
the clusters, it did have an effect on image quality.

Selection of important features

By using the supervised lasso regression method with the 
dependent variable of clusters, the most relevant eight fea-
tures were selected (Supplementary Material 4), including 
“original_glcm_DifferenceAverage,” “wavelet.LHL_glcm_
SumEntropy,” “wavelet.LHL_gldm_DependenceEntropy,” 
“wavelet.HLL_glcm_MaximumProbability,” “wavelet.HLL_
glszm_GrayLevelNonUniformityNormalized,” “wavelet.

HLH_glrlm_RunEntropy,” “wavelet.HHL_gldm_Depend-
enceEntropy,” and “wavelet.HHL_gldm_DependenceVari-
ance.” The features are shown as a heatmap in Fig. 6.

Visual cluster analysis

Two experienced radiologists (Y.C and M.F., a clinical radi-
ologist with seven years’ experience) visually analyzed the 
hepatoblastoma within the clusters. Thus, the categories 
were assigned according to their imaging characteristics as 
(i) homogenous type, (ii) heterogenous type, and (iii) nodu-
lated type. The typical images are shown in Fig. 4.

Differences in clinical parameters, pathological 
parameters, and qualitative radiological features 
among different clusters

The correlations of clinical parameters and pathologic 
parameters with the three previously defined clusters are 
shown in Table 2. The PRETEXT stages showed no differ-
ence between clusters. However, the effect of neoadjuvant 
chemotherapy, assessed by RECIST, did show a signifi-
cant difference between clusters. Among these clusters, the 
homogenous type tended to have the best therapeutic effect, 
while the nodulated type tended to resist chemotherapy. 

Fig. 3  Heatmap of unclustered features shows all extracted features from all patients
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When comparing the pathological epithelial ratio of the 
clusters (only 74 cases were assessed in pathologic testing), 
the homogenous type and heterogenous type had higher epi-
thelial components than the nodulated type.

When comparing the qualitative radiological features 
between the clusters, most of the common image signs, 
including the capsule state, margin state, intratumoral hemor-
rhage, and calcification, did not show the difference between 
the groups. Only the cystic change inside the tumor showed 
between-cluster differences (Table  3). Besides, we also 
assessed the other parameters of the tumor, including grow-
ing pattern (inside or outside of the liver), tumor location (left 

lobe or right lobe), contiguous extrahepatic tumor, multifo-
cality, tumor rupture, caudate lobe involvement, lymph node 
metastasis, and distant metastasis, which also did not show 
between-cluster difference (Supplementary Material 5).

Discussion

This study for the first time subdivides hepatoblastoma 
into three phenotypes based on radiomics features, using 
unsupervised clustering. The clustering results demon-
strated good predictability of the impact of neoadjuvant 

Fig. 4  Heatmap of the clustering result and typical images for each 
cluster. The features were clustered into six groups and the tumors 
were clustered into three groups (a). Hepatoblastoma was clustered 

into three phenotypes, including homogenous type (b), heterogenous 
type (c), and nodulated type (d), based on radiomics features
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chemotherapy and the pathogenic component, demonstrat-
ing the clinical utility of this method. This radiomics-based 
clustering system may have the potential to facilitate the 
precise treatment of hepatoblastoma. Additionally, this 

study showed that unsupervised algorithms can be suc-
cessfully applied to diseases like hepatoblastoma that lack 
a reliable imaging classification method.

The reliability of unsupervised clustering is the basis 
of this study. There are four kinds of mainstream unsuper-
vised clustering algorithms, including the k-means cluster 
method, hierarchical clustering, t-SNE cluster method, and 
density-based spatial clustering of applications with noise 
(DBSCAN) [19]. Theoretically, each algorithm has its 
randomness. To avoid the resulting bias, we repeated the 
k-means clustering algorithm 100 times to obtain relatively 
stable results. Additionally, the “ComplexHeatmap” pack-
age in R, which was used to draw the heatmap in our study, 
embeds the hierarchical method. Thus, the heatmap result 
also showed the result of clustering by hierarchical method, 
which was comparative with the result by the k-means 
method. Additionally, we also used the t-SNE approach for 
validation, further demonstrating the validity and depend-
ability of the clustering result.

Previous studies have also  tried to predict the histo-
pathology and the prognosis of hepatoblastoma using 

Fig. 5  T-distributed stochastic neighbor embedding (t-SNE) result 
after adding the color of clustering results. tSNE t-distributed stochas-
tic neighbour embedding

Table 1  Demographic data and 
image quality 

Bold represents statistical significance (P<0.05)

Variable Cluster 1 Cluster 2 Cluster 3 P

n (cases) 46 30 23
Age (months) (median, 

interquartile range)
17 (22) 16 (26) 23 (126) 0.778

Sex Male 24 (52.2%) 18 (60.0%) 12 (52.2%) 0.772
Female 22 (47.8%) 12(40.0%) 11(47.8%)

Image quality Excellent 30 (65.2%) 20 (66.7%) 10 (43.5%) 0.030
Good 15 (32.6%) 9 (30.0%) 8 (34.8%)
Normal 1 (2.2%) 1 (3.3%) 5 (21.7%)

Image phase Early arterial phase 7 (15.2%) 3 (10.0%) 4 (9.3%) 0.464
Arterial phase 26 (56.5%) 23 (38.3%) 14 (32.6%)
Late arterial phase 13 (28.2%) 4 (13.3%) 5 (21.8%)

Fig. 6  Feature reduced heatmap clustered by lesions, identifying the 
features “original_glcm_DifferenceAverage” “wavelet.LHL_glcm_
SumEntropy” “wavelet.LHL_gldm_DependenceEntropy” “wavelet.
HLL_glcm_MaximumProbability” “wavelet.HLL_glszm_GrayLev-
elNonUniformityNormalized” “wavelet.HLH_glrlm_RunEntropy” 
“wavelet.HHL_gldm_DependenceEntropy” and “wavelet.HHL_

gldm_DependenceVariance”. glcm: gray-level co-occurrence matrix; 
gldm: gray level dependence matrix; glrlm: gray-level run-length 
matrix; glszm: gray-level size zone matrix;  HHL: high-pass high-pass 
low-pass; HLH: high-pass low-pass high-pass; HLL: high-pass low-
pass low-pass; LHL: low-pass high-pass low-pass
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contrast-enhanced CT characteristics in a conventional way. 
But the performance was shown to be poor [20]. It is simple 
to discover by evaluating the quantitative radiological features 
between the clusters that the traditional radiological charac-
teristics have little impact on the clustering outcome, high-
lighting the benefit of radiomics analysis. Roughly, radiomics 
features include histogram-based and texture-based, model-
based, transform-based, and shape-based features [21]. The 
more extensive and varied radiomics properties allow for the 
discovery of previously unidentified markers. In this way, one 
can use a similar method to explore the new image-based clus-
tering system, as well as its important features.

Among the eight important features selected by LASSO, 
one came from the unfiltered original group, and the other 
seven came from the wavelet transform filtered group. Three 
of them were Gray-Level Co-occurrence Matrix (GLCM) 

features. The GLCM, as a second-order gray-level histo-
gram, describes spatial relationships of pairs of voxels or 
voxels with predefined gray-level intensities [11]. A further 
three features were calculated from the Gray Level Depend-
ence Matrix (GLDM), which quantifies gray level depend-
encies in an image [22]. The final two features came from 
Gray Level Size Zone Matrix (GLSZM) and Gray Level 
Run-length Matrix (GLRLM). In short, these features all 
represent the gray-level variation from distinct perspectives. 
This suggests that, in contrast to the shape, diameter, and 
other histogram data, the tumoral texture is the crucial point 
to differentiate hepatoblastoma.

Developed from degenerated hepatoblasts, hepatoblas-
toma can be differentiated according to the liver develop-
ment stages. The tumor can be subdivided into two main 
histologic subtypes: epithelial type and mixed type [23]. 

Table 2  Clusters and patient clinical and pathological characteristics

Bold represents statistical significance (P<0.05)
PD, progressive disease; PR, partial response; SD, stable disease

Variable Cluster 1 Cluster 2 Cluster 3 P

n (cases) 46 30 23
PRETEXT Stage 1 2 (4.3%) 3 (10.0%) 1 (4.3%) 0.274

Stage 2 11 (23.9%) 14 (46.7%) 8 (34.8%)
Stage 3 26 (56.5%) 12 (40.0%) 12 (52.2%)
Stage 4 7 (15.2%) 1 (3.3%) 2 (8.7)

RECIST (adjuvant chemotherapy) PR 28 (60.9%) 16 (53.3%) 8 (34.8%) 0.02
SD 18 (39.1%) 13 (43.3%) 11 (47.8%)
PD 0 (0.0%) 1 (3.3%) 4 (17.4%)

AFP (×  105 μg/L) 5.35 ± 4.45 5.54 ± 6.38 4.02 ± 5.59 0.612
Epithelial ratio(n=74) 89.7 ± 18.0 (n=35) 90.1 ± 19.4 (n=23) 81.6 ± 27.3 (n=16) 0.029

Table 3  Clusters and patient 
qualitative radiological features

Bold represents statistical significance (P<0.05)

Variable Cluster 1 Cluster 2 Cluster 3 P

n (cases) 46 30 23
Capsule No capsule 7 (15.2%) 6 (20.0%) 2 (8.7%) 0.613

Incomplete capsule 11 (23.9%) 8 (26.7%) 9 (39.1%)
Complete capsule 28 (60.9%) 16 (53.3%) 12 (52.2%)

Margin Smooth 12 (26.1%) 10 (33.3%) 6 (26.1%) 0.811
Lobulated 18 (39.1%) 12 (40.0%) 40 (40.4%)
Irregular 4 (8.7%) 2 (6.7%) 0
Invasive 12 (26.1%) 6 (20.0%) 7 (30.4%)

Intratumoral Hemorrhage With 38 (82.6%) 28 (93.3%) 19 (82.6%) 0.371
Without 8 (17.4%) 2 (6.7%) 4 (17.4%)

Calcification With 23 (50.0%) 20 (66.7%) 12 (52.2%) 0.336
Without 23 (50.0%) 10 (33.3%) 11 (47.8%)

Cystic change With 16 (34.8%) 20 (66.7%) 15 (65.2%) 0.008 (0.04 
after FDR-
corrected)

Without 30 (65.2%) 10 (33.3%) 8 (34.8%)
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Generally, in tumors, the epithelial component is more sensi-
tive to chemotherapy than the mesenchymal component [24]. 
In hepatoblastoma, similarly, compared with mixed type, 
epithelial type has a better prognosis [25]. As we previously 
discussed, the intensity variance is the primary source of 
variation between the clusters. And usually, the intensity 
variance inside the tumor indicates the component variance 
of the tumor. Additionally, it has been demonstrated that 
tumors with poor response to neoadjuvant chemotherapy 
typically have a poor prognosis [4]. What’s more, the cystic 
change inside the tumor can reflect the heterogeneity to a 
certain extent. These could help explain why, according 
to our findings, tumors in cluster 3 had the greatest degree 
of image heterogeneity, the worst response to neoadjuvant 
treatment, and the lowest epithelial ratio in histology.

Finally, we saw that the most widely used classification 
scheme—PRETEXT—does not exhibit a high link with the 
clusters in this study. As we know, the PRETEXT system, 
which describes the extent of the tumor within the liver, 
focuses on the resectability of the tumor [26]. This imaging 
clustering approach can be utilized in conjunction with the 
PRETEXT system since it highlights the susceptibility to 
neoadjuvant chemotherapy.

This study is a preliminary single-center study. Since a 
ground truth for training cannot be easily defined, the unsu-
pervised approach has its intrinsic limitations. Though we 
tried different algorithms to improve the credibility of this 
work, more detailed pathologic data and more external data 
from other institutions is needed to verify the clinical util-
ity of this approach. Recent studies have reported some 
genetic phenotypes and epigenetic footprint of hepatoblas-
toma, which might correlate with chemotherapy resistance 
and prognosis [27, 28]. Regrettably, in this retrospective 
study, we were not able to test the genetic phenotype of these 
tumors. Further study is needed to identify a possible corre-
lation between the clustering system and gene expression in 
hepatoblastoma. Lastly, the predictive ability of the clustering 
system to determine long-term prognosis was not assessed 
and should be another goal for futture studies.

Conclusion

In conclusion, we grouped hepatoblastoma into three 
clusters based on radiomics features. This new classifi-
cation system may help to predict the response to neo-
adjuvant chemotherapy , potentially promoting precision 
medical care for patients with hepatoblastoma. 
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