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Abstract
Background  Skeletal dysplasias collectively affect a large number of patients worldwide. Most of these disorders cause 
growth anomalies. Hence, evaluating skeletal maturity via the determination of bone age (BA) is a useful tool. Moreover, 
consecutive BA measurements are crucial for monitoring the growth of patients with such disorders, especially for timing 
hormonal treatment or orthopedic interventions. However, manual BA assessment is time-consuming and suffers from high 
intra- and inter-rater variability. This is further exacerbated by genetic disorders causing severe skeletal malformations. While 
numerous approaches to automate BA assessment have been proposed, few are validated for BA assessment on children 
with skeletal dysplasias.
Objective  We present Deeplasia, an open-source prior-free deep-learning approach designed for BA assessment specifically 
validated on patients with skeletal dysplasias.
Materials and methods  We trained multiple convolutional neural network models under various conditions and selected 
three to build a precise model ensemble. We utilized the public BA dataset from the Radiological Society of North America 
(RSNA) consisting of training, validation, and test subsets containing 12,611, 1,425, and 200 hand and wrist radiographs, 
respectively. For testing the performance of our model ensemble on dysplastic hands, we retrospectively collected 568 
radiographs from 189 patients with molecularly confirmed diagnoses of seven different genetic bone disorders including 
achondroplasia and hypochondroplasia. A subset of the dysplastic cohort (149 images) was used to estimate the test–retest 
precision of our model ensemble on longitudinal data.
Results  The mean absolute difference of Deeplasia for the RSNA test set (based on the average of six different reference 
ratings) and dysplastic set (based on the average of two different reference ratings) were 3.87 and 5.84 months, respectively. 
The test–retest precision of Deeplasia on longitudinal data (2.74 months) is estimated to be similar to a human expert.
Conclusion  We demonstrated that Deeplasia is competent in assessing the age and monitoring the development of both 
normal and dysplastic bones.
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Introduction

The estimation of bone age (BA), which evaluates skeletal 
maturity, is a valuable tool in assessing children’s growth. 
Usually, it is one of the first steps in the diagnosis of pedi-
atric growth disorders [1]. In particular, for conditions in 
which hormonal therapy or orthopedic interventions are 
being considered, the timing of the treatment depends on 
the assessed BA [2]. The BA can be estimated by observ-
ing the ossification centers of a child’s skeleton. The main 
body parts used for BA assessment are the hands, wrists, 
and knees. BA estimates from the hand and wrist are more 
closely correlated with the child’s overall growth progress 
and puberty onset than estimates from the knee. Hence, the 
BA estimated from hand radiographs is more effective in 
assessing delayed or advanced growth [3] and is therefore 
used as a routine diagnostic and monitoring method [4, 5]. 
The Greulich-Pyle (GP) [6] and Tanner-Whitehouse (TW) 
[7–9] are the two most commonly used hand and wrist BA 
estimation methods. While the TW method is considered to 
be more accurate, the GP method is generally regarded to be 
faster [10]. Nevertheless, both methods are time-consuming 
and show high degrees of inter- and intra-rater variability 
[10, 11].

Artificial intelligence (AI) methods contribute to all 
medical fields [12] including pediatric radiology [13] and 
numerous machine learning (ML) approaches have been 
proposed to automate BA assessment, most of them rely-
ing on a publicly available dataset released in 2017 by the 
Radiological Society of North America (RSNA) for their 
pediatric BA challenge [14, 15]. While an approach using 
end-to-end deep learning (DL) without any prior input, e.g., 
specific regions of interest (ROIs) or a particularly task-spe-
cific design, won the competition [15, 16], ML approaches 

emphasizing anatomical features used in human BA assess-
ment have shown some improvement in more recent studies 
[17–20].

A major indication to perform BA assessments is sus-
pected growth or developmental anomalies. This is often 
connected to the phenotype of skeletal dysplasias [21], 
which are rare genetic disorders. Although these disorders 
are individually rare [22], collectively they affect a large 
number of children [23] with an estimated total number of 
around 25 million worldwide. Especially in such patients, 
reliable and precise BA estimations are important for the 
initial assessment and monitoring of the maturation progress 
over time [24]. As skeletal dysplasias alter hand morphol-
ogy, conventional methods relying on the identification of 
individual bones or ROIs might be unsuitable for precise BA 
assessment. For example, the commonly-used BA assess-
ment tool BoneXpert (Visiana, Hørsholm, Denmark, [25]) 
struggles to generalize to all patients with skeletal dysplasias 
and, for example, rejects around 50% of cases with achon-
droplasia (personal communication with H. H. Thodberg, 
March 2023). However, this problem is still understudied 
because many approaches to automatic BA assessment have 
been developed for and tested on datasets composed of pre-
dominantly normally-developing children. The public data-
set released as part of the 2017 BA challenge contains only 
0.21% cases of reported skeletal dysplasias [14, 15] and the 
more recent study by Thodberg et al. [25] included <1.4% 
of patients with congenital diseases. Kim et al. [26] and 
Wang et  al. [27] proposed and tested DL methods on 
patients with abnormal growth; however, their study was 
limited to Korean and Chinese populations, respectively, and 
their test sets included no or only small numbers (n<10) of 
images from patients with severe skeletal dysplasias such 
as achondroplasia.
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In this article, we introduce Deeplasia: an AI application 
designed for BA assessment specifically validated on the 
hands of patients with skeletal dysplasias. Given the intrinsic 
scarcity of data from patients with rare diseases, our aim was 
to present an open-source tool that, while trained on data 
of normal hands, can reliably be used for assessing BA of 
patients with rare bone diseases.

Materials and methods

Training and validation datasets

We used the 2017 RSNA training and validation sets con-
taining 12,611 and 1,425 images, respectively. RSNA pub-
lished these data for their Pediatric BA ML Challenge [14, 
15]. The data were obtained from Children’s Hospital Colo-
rado (Aurora, CO) and Lucile Packard Children’s Hospital 
at Stanford (Palo Alto, CA). For each image, the sex and a 
ground truth GP BA estimate are provided. For determin-
ing the ground truth BA, one estimate from the original 
clinic providing the data, a second estimate from the same 
rater at least 1 year later, and four independent estimates 
were obtained. To form the final consensus BA estimate, a 
weighted mean based on the performance of each reviewer 
is calculated (for more details, see Halabi et al. [15]). The 
mean chronological age of patients in the training and vali-
dation set is 10.8 ± 3.5 years [14] and their mean estimated 
BA is 10.6 ± 3.4 years [15].

Test datasets

For validating our AI, we used three independent test data-
sets as described below.

The test set from the Radiological Society of North America

The RSNA test dataset from the Pediatric BA ML Chal-
lenge [14, 15] contains 200 images (100 males) from Lucile 
Packard Children’s Hospital. The mean chronological age of 
patients in this set is 11.3 ± 3.8 years [14] and the mean esti-
mated BA is 11.0 ± 3.6 years [15]. Similar to the training and 
validation sets, the sex and a ground truth GP BA estimate 
(weighted average of six measurements) are provided for 
each image. The distribution of ground truth BA for males 
and females in the test set is similar to those in the training 
and validation sets.

Los Angeles Digital Hand Atlas

As an additional test set for normally-developing children, 
we used the publicly released Los Angeles Digital Hand 
Atlas [28, 29]. It consists of 1,390 images acquired between 

1997 and 2008 at the Children’s Hospital Los Angeles, 
United States of America. The study cohort included four 
ethnicities and ground truth BA estimates were obtained by 
two raters using the GP atlas. The ground truth BA was 
defined as the average of the two ratings. We excluded seven 
images due to lacking or completely implausible ground 
truth BA assessment (BA of 99 years, BA of 0 years for 
children with chronological age of 9 years, and two images 
with a difference compared to a third manual assessment by 
K.M., [a pediatric endocrinologist with more than 40 years 
of clinical experience] of >2 years).

German Dysplastic Bone Dataset

To compile a dataset for validating the BA prediction mod-
els on dysplastic hands, we retrospectively collected hand 
radiographs from patients referred to the pediatric endo-
crinology of two German university hospitals (Magdeburg 
and Leipzig) due to a suspected growth disorder between 
2006 and 2022. The radiographs were acquired as hard cop-
ies and thereafter digitized. The study was approved by the 
ethics committee of the medical faculties of the universi-
ties of Magdeburg (reference 27/22) and Leipzig (reference 
121/22-ek).

We term this dataset the German Dysplastic Bone Dataset 
(GDBD). In total, it contains 568 hand radiographs from 
189 patients with molecularly confirmed diagnoses of one 
of the following disorders: achondroplasia; hypochondro-
plasia; pseudohypoparathyroidism; Noonan, Silver-Russell, 
and Ullrich-Turner syndromes; and a mutation in the SHOX 
gene. Further, to increase the diversity of this dataset, we 
supplemented it with 55 images from 12 patients with intrau-
terine growth restriction (IUGR) and 79 images from 79 
children who were suspected to have a growth anomaly but 
had not been genetically diagnosed with any skeletal dys-
plasia. The number of images and patients and the distribu-
tion of their chronological age are shown in Figs. 1 and 2, 
respectively. An example hand and wrist radiograph of each 
disorder is shown in Fig. 3. The ethnic background of these 
patients is not available; however, we suspect a large portion 
of them to be Caucasian.

The BA reference gradings for the German Dysplastic 
Bone Dataset were obtained using the GP standard by K.M. 
and A.K. (a pediatric endocrinologist with more than 20 
years of clinical experience). For 643 out of 702 images, 
one of the assessments was obtained from the initial clini-
cal report (by a pediatric radiologist or endocrinologist). 
The BA ratings for the remaining images and the second 
reference ratings were obtained from a dedicated session, 
in which the images were presented (a) using the same pre-
processing procedures as for testing the models, (b) in a 
randomized order, and (c) blinded for the chronological age, 
the clinical report, and the diagnosis.
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The process by which the datasets described above were 
used in the training and testing of our AI is shown in Fig. 4.

Design and development of Deeplasia

Image background removal and preprocessing

Imaging and scanning induce artifacts to the input images, 
e.g., department-specific markers or white borders surround-
ing the radiograph carrier in the scan. Such artifacts (which 
are present in many of the images in our German Dysplas-
tic Bone Dataset) have been shown to bias DL models, for 
example by Zech et al. [30]. Further, high-intensity borders 
can potentially skew the image normalization for inference. 
To prevent these problems, we trained and incorporated DL 
modules within Deeplasia to automatically extract the hand 
from the scan by masking the background. Some exam-
ples of the results of our preprocessing on dysplastic hands 

are shown in Fig. 3. The details of our hand segmentation 
approach are described in Supplementary Material 1. The 
training masks and the code for the hand segmentation are 
publicly available via Rassmann et al. [31] and github.com/
aimi-bonn/ hand-segmentation, respectively.

Bone age model training

As a baseline approach for the BA model, we followed the 
design principle winning the 2017 RSNA Pediatric BA 
ML Challenge [15, 16]. The model architecture, outlined 
in Supplementary Material 2, is composed of a fully con-
volutional neural network (CNN) as a feature extractor, 
channel-wise average pooling of the extracted features, 
and concatenation of a representation of the patient’s sex 
inflated to 32 neurons (we further discuss the effect of 
sex on BA assessment in Supplementary Material 2). The 
results are passed through a variable set of fully-connected 
(FC) layers to achieve a final prediction. We employ Effi-
cientNets [32] as backbone feature extractors. In compari-
son to previously proposed end-to-end learning methods 
[16, 33], our applied average pooling reduces the dimen-
sionality of the learned features and, thus, decreases the 
model size. For example, the largest of our BA models 
has a feature dimensionality of 1,792 resulting in a total 
network size of 23 × 106 parameters, while the configura-
tion proposed by Torres et al. [33] uses a feature dimen-
sionality of 33,712 and 82 × 106 parameters. All the details 
of our training procedure for reproducing the models are 
described in Supplementary Materials 2 and 3, and the 
open-source code for training the BA models is available 
at github.com/aimi-bonn/Deeplasia and deeplasia.de.

Model explorations for building an ensemble

To build the model ensemble for Deeplasia, we experi-
mented with three different training conditions: (a) 

Fig. 1   The German Dysplastic 
Bone Dataset distribution of 
image (a) and patient (b) counts 
for specific disorders. ACh 
achondroplasia, HyCh hypo-
chondroplasia, IUGR​ intrauter-
ine growth restriction, PsHPT 
pseudohypoparathyroidism

Fig. 2   The cross-cohort distribution of chronological age in the Ger-
man Dysplastic Bone Dataset
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baseline: EfficientNet-b0 with 512 × 512 input resolu-
tion, (b) large CNN: EfficientNet-b4 with 512 × 512 input 
resolution, and (c) high-resolution: EfficientNet-b0 with 
1024 × 1024 input. For each of these conditions, we trained 
models with three sets of FC layers: [256], [512, 512], and 

[1024, 1024, 512, 512]. Therefore, in total, we trained nine 
CNN models for BA estimation. A flowchart describing 
this procedure is shown in Fig. 5 and the details of our 
training experimentations are described in Supplementary 
Material 3.

Fig. 3   Example dorsopalmar hand and wrist radiographs for each 
bone dysplasia in the German Dysplasia Bone Dataset. a, b A 
10-year-old boy with achondroplasia. c, d A 10-year-old girl with 
hypochondroplasia. e, f A 12-year-old boy with intrauterine growth 
restriction. g, h A 3-year-old boy with Noonan syndrome. i, j A 
4-year-old girl with pseudohypoparathyroidism. k, l A 4-year-old 
boy with a mutation of the SHOX gene. m, n A 9-year-old girl with 

Silver-Russell syndrome. o, p A 14-year-old girl with Ullrich-Turner 
syndrome. For each example, the original raw (a, c, e, g, i, k, m, o) 
and preprocessed (b, d, f, h, j, l, n, p) image is shown. There is a 
wide range of relative scales within the images; image qualities vary 
and show artifacts such as labels and white or gray backgrounds 
caused by scanning



87Pediatric Radiology (2024) 54:82–95	

1 3

To choose the models for building an ensemble, we 
analyzed the pairwise correlations between the predicted 
BA of these nine models (see Supplementary Material 3). 
This revealed that there is a higher correlation between the 

predictions of the models within each training condition 
(i.e. the baseline, large CNN, and high-resolution) com-
pared to the ones between the models across these condi-
tions. As dissimilar prediction patterns in a model ensemble 

Fig. 4   Flowchart describing the use of the different datasets for training and testing of our models. DHA Los Angeles Digital Hand Atlas, GDBD 
German Dysplastic Bone Dataset, MAD mean absolute difference, RSNA Radiological Society of North America

Fig. 5   The flowchart describes the procedure for experimenting with 
different training configurations when building a model ensemble. We 
experimented with three different training conditions (baseline, large 
CNN, and high-resolution) each with three sets of FC-layer combi-
nations. Out of these nine CNN models, we selected three (one per 

training condition, shown in green in the figure) based on their per-
formance on the validation data set. See the “Design and develop-
ment of Deeplasia” section and Supplementary Material 3 for further 
details. BA bone age, CNN convolutional neural network, FC fully 
connected
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are advantageous due to partial compensation of predictive 
errors, it is beneficial to construct an ensemble composed of 
models across different training conditions. Consequently, 
we chose to pick the best-performing model from each of the 
three training conditions (green boxes in Fig. 5) for build-
ing our model ensemble. The final BA is the average of the 
results from these three models.

Evaluation methods

Metrics and statistical analysis

For model selection and benchmarking, the mean abso-
lute difference (MAD) was used. It is calculated as 
the L1-norm of the difference between predicted BA 
Ŷ =

(
ŷ1, ŷ2,… , ŷn

)T  and the respective ground truth 
Y =

(
y1, y2,… , yn

)T:

Further, the root-mean-square error (RMSE) was used 
as a metric that is more sensitive to outliers. It is defined 
as:

For the statistical analysis, we assume the error to be 
normally distributed and, thus, derive the confidence inter-
vals of the RMSE from the corresponding χ2 distribution. 
As an additional, clinically more interpretable metric, we 
define a 1-year accuracy. Let 1condition denote the indicator 
function (a function that evaluates to 1 if and only if con-
dition is true) and assume the BAs Yˆ and Y to be denoted 
in years, then

Note that we do not conduct a symbolic perturbation, so 
the measure is conservative with regard to the model per-
formance as the models, in contrast to human raters, are 
unlikely to assign integer BAs.

Longitudinal analysis

To detect small changes in development (slowdowns 
or growth spurts), BA measurements are required to 
have high test–retest reliability. Directly measuring the 
test–retest reliability would require a dedicated imaging 
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ŷi − yi

�2

Accuracy1−year

(
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1|ŷi−yi|≤1

session which would be unethical due to the unnecessary 
radiation exposure. However, assuming linear progress of 
the BA over time, the test–retest reliability can be esti-
mated retrospectively from regular check-ups within the 
testing cohort. For estimating the upper bound of the 
expected error in assessing the BA, the method proposed 
by Thodberg and Sävendahl [34] was used. No patients 
were excluded due to therapies or other interventions. The 
potential variability in growth patterns due to the disor-
ders of the patients included in the analysis might give a 
very non-linear growth pattern. To account for this, we set 
the maximum time difference for the derivation triplets to 
14 months, the lowest threshold to achieve n ≥100 triplets. 
For analyzing the rater performance, only triplets derived 
from either the clinical ratings or from a single rater within 
the blinded re-rating session were included to avoid rater-
rater biases or biases between clinical and blinded reviews.

Attention maps

To cast light on the decision-making process of our end-
to-end method, we produce the so-called attention maps 
by calculating the absolute value of the gradient of the 
predicted BA with respect to the input image. These maps 
highlight the regions in the image that, according to the 
models, are important for assessing BA (see Supplemen-
tary Material 4 for further details on generating these 
maps).

Results

Performance on the test set of the Radiological 
Society of North America

On the RSNA test set comprising 200 radiographs, 
Deeplasia achieved a MAD of 3.87 months, RMSE of 
5.14 months, and a 1-year accuracy of 98.5% (Table 1). 
Interestingly, even the three individual models of our 
ensemble (see Supplementary Material 3) achieved test 
accuracies (MAD of 4.2, 4.1, and 4.3 months for the best-
performing models of the baseline, large CNN, and high-
resolution training conditions, respectively) comparable to 
other approaches incorporating human priors.

Performance on the Digital Hand Atlas dataset

To assess the generalizability to external test cohorts and 
potentially unseen ethnicities, we evaluated Deeplasia on 
the Digital Hand Atlas dataset [28, 29]. We used 1,383 
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radiographs from children (age 0–18 years) with different 
ethnic backgrounds and their corresponding BA ratings. On 
this dataset, Deeplasia achieved a MAD of 5.81 months, 
RMSE of 7.67 months, and a 1-year accuracy of 92.9% (see 
the second row of Table 1). Note that for this dataset, the 
ground truth BA estimates are based on two rather than six 
raters for the RSNA test set.

Performance on the German Dysplastic Bone 
Dataset

Finally, we evaluated the performance of Deeplasia on the 
German Dysplastic Bone Dataset to assess the generaliza-
tion of Deeplasia to patients with skeletal dysplasias. Over-
all, this dataset contains 568 images from patients with a 

Table 1   Deeplasia and inter-
rater accuracies across different 
test datasetsa

DHA Los Angeles Digital Hand Atlas, GDBD German Dysplastic Bone Dataset, GDBD (gen. dis.) the 
subset of the GDBD with molecularly confirmed genetic diagnosis of one of the seven skeletal dysplasias 
in this study, MAD mean absolute difference, RMSE root mean squared error, RSNA Radiological Society 
of North America
a Lower MAD and RMSE indicate higher accuracy, bEstimated range for the accuracies of the assessed sin-
gle raters

Dataset Num. ref. 
ratings

n Deeplasia (months) Inter-rater (months)

MAD RMSE [95% confi-
dence interval]

MAD RMSE [95% con-
fidence interval]

RSNA 6 200 3.9 5.1 ([4.7, 5.7]) 4.8–7.0b -
DHA 2 1,383 5.8 7.7 ([7.4, 8.0]) 4.4 7.0 ([6.8, 7.3])
GDBD 2 702 6.0 7.7 ([7.3, 8.1]) 9.5 12.8 ([12.2, 13.6])
GDBD (gen. dis.) 2 568 5.8 7.5 ([7.1, 7.9]) 9.5 12.8 ([12.1, 13.6])

Fig. 6   Bland–Altman plots showing the performances of Deepla-
sia (a) and BoneXpert (b) on the German Dysplastic Bone Dataset 
(GDBD) hand radiographs. a The MAD of Deeplasia (for all the 702 
GDBD radiographs) is 6.0 months. The cases rejected by BoneXpert 
(11 achondroplasia and seven pseudohypoparathyroidism) are indi-
cated (green). For these cases, the performance of Deeplasia is simi-
lar to that for other cases and 16 out of 18 of them are within the 95% 
confidence interval (broken lines). b The MAD of BoneXpert (for 
684 radiographs) is 6.3 months. Note that even for the achondropla-

sia cases that were not rejected by BoneXpert, a drop in its perfor-
mance is visible for children below 5 years old. ACh achondroplasia, 
HyCh hypochondroplasia, IUGR​ intrauterine growth restriction, MAD 
mean absolute difference, PsHPT pseudohypoparathyroidism, SHOX 
mut. mutation of the SHOX gene, SRS Silver-Russel syndrome, UTS 
Ullrich-Turner syndrome. An interactive version of the Bland–Alt-
man plot for Deeplasia can be accessed via https://​aimi-​bonn.​github.​
io/​websi​te/​deepl​asia/​resul​ts.​html and deeplasia.de

https://aimi-bonn.github.io/website/deeplasia/results.html
https://aimi-bonn.github.io/website/deeplasia/results.html
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molecularly confirmed genetic disorder, 55 images from 
patients with IUGR, and 79 images from individuals with-
out any genetically diagnosed dysplasia, but who had been 
referred to pediatric endocrinologists due to a suspected 
growth anomaly. All reference BA ratings were performed 
by the same two raters (K.M. and A.K.).

Comparing the predictions of Deeplasia and the ground 
truth estimates defined by the average of two raters, the 
model ensemble achieved a MAD of 5.96 months, RMSE of 
7.67 months, and a 1-year accuracy of 90.2% for the full set 
and 5.84 months (MAD), 7.48 months (RMSE), and 90.1% 
(1-year accuracy) for the subset of patients with molecularly 
confirmed disorders. These values (also listed in the third 
and fourth rows of Table 1) are similar to those from the per-
formance on the Digital Hand Atlas dataset and in the range 

of the single rater estimated in the annotation of the RSNA 
BA challenge [15]. Consequently, the error of the model 
ensemble with respect to the average of two reference rat-
ings is smaller than the assessed inter-rater error (Table 1). 
In Fig. 6, we illustrate the Bland–Altman plot for Deeplasia. 
It shows the difference between the BA predictions from 
Deeplasia and the reference values (from the two raters) vs. 
the average of the two methods. The mean difference of the 
two methods is ∆ =  + 1.4 months (shown by a broken line), 
and the plot reveals no systematic over- or underestimation 
of the BAs for different skeletal disorders. The difference 
between the predicted BA and the reference ratings is within 
1.96 standard deviations (i.e. the 95% confidence interval) 
for 95.6% of the predicted BAs.

Analyzing the models’ predictive error for individual 
disorders, listed in Table 2, shows no significant drop in 
performance in comparison to the children with no diag-
nosed disorder. However, a tendency of increased RMSE 
and MAD is observed for achondroplasia, hypochondropla-
sia, and pseudohypoparathyroidism, while a significantly 
decreased error is observed for Noonan and Ullrich-Turner 
syndrome. This may be attributed to the accuracy of the 
reference grading, given that the inter-rater errors (columns 
7 and 8 of Table 2) are also higher for achondroplasia, hypo-
chondroplasia, and pseudohypoparathyroidism and lower for 
Noonan syndrome and Ullrich-Turner syndrome. Of note, for 
each disorder, the average error of the model in comparison 
to a single manual rating (columns 5 and 6 of Table 2) is 
smaller than the average difference between the two manual 
raters. Hence, our model ensemble is at least as accurate as 
the assessed human raters for all assessed disorders and, at 

Table 2   The accuracy of Dee-
plasia on the German Dysplas-
tic Bone Dataset

Accuracy is shown with respect to the average bone age rating of two raters (columns 3 and 4) and a single 
rater (columns 5 and 6), plus the inter-rater errors (columns 7 and 8), lower MAD and RMSE errors mean 
higher accuracy. n refers to the number of individual radiographs per disorder. The RMSE is stated with the 
95% confidence interval. ACh achondroplasia, GDBD German Dysplastic Bone Dataset, HyCh hypochon-
droplasia, IUGR​ intrauterine growth restriction, MAD mean absolute difference, PsHPT pseudohypopar-
athyroidism, RMSE root mean squared error, w.r.t with respect to

Disorder n Deeplasia w.r.t. two 
raters (months)

Deeplasia w.r.t. a single 
rater (months)

Inter-rater error (months)

MAD RMSE MAD RMSE MAD RMSE

ACh 25 7.3 9.2 ([7.2, 12.7]) 10.0 13.1 ([10.9, 16.2]) 13.3 18.5 ([14.5, 25.5])
HyCh 44 7.2 9.5 ([7.9, 12.0]) 8.4 11.8 ([10.3, 13.9]) 11.6 13.9 ([11.5, 17.6])
Noonan 80 4.3 5.6 ([4.8, 6.6]) 7.5 8.0 ([7.2, 9.0]) 8.9 11.5 ([9.9, 13.6])
PsHPT 30 7.5 8.8 ([7.1, 11.8]) 10.3 13.9 ([11.8, 17.0]) 13.9 21.5 ([17.2, 28.7])
SHOX mutation 198 5.9 7.5 ([6.8, 8.3]) 7.5 9.6 ([9.0, 10.3]) 9.5 12.0 ([11.0, 13.4])
Silver-Russell 69 6.2 7.7 ([6.6, 9.2]) 7.7 9.6 ([8.6, 10.8]) 7.7 11.5 ([9.8, 13.8])
Ullrich-Turner 122 5.2 6.9 ([6.1, 7.9]) 6.4 8.7 ([8.0, 9.6]) 8.4 11.5 ([9.6, 12.3])
IUGR​ 55 7.2 8.9 ([7.5, 11.0]) 8.8 10.8 ([9.6, 12.5]) 8.5 12.2 ([10.3, 15.0])
None diagnosed 79 6.3 8.1 ([7.0, 9.6]) 9.3 10.5 ([9.5, 11.8]) 10.0 13.5 ([11.6, 15.9])

Table 3   The test–retest precision of Deeplasia

The clinical and a blinded manual bone age rating is estimated on 
patients with genetically-confirmed disorders (i.e. excluding intrauter-
ine growth retardation and  non-diagnosed cases) within the German 
Dysplastic Bone Databse (GDBD). n refers to the number of images 
within the GDBD for which the interpolation residuals could be esti-
mated. The precision is stated with a 95% confidence interval. GDBD 
German Dysplastic Bone Dataset

Rating method Precision (months)

Full dataset (n=149) With clinical 
BA (n=106)

Deeplasia 2.7 (2.5, 3.1) 2.4 (2.1, 2.8)
Clinical rating - 2.6 (2.3, 3.0)
Blinded rating 5.6 (4.9, 6.2) 5.8 (5.1, 6.7)
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the same time, retains accuracy for severe skeletal dyspla-
sias (achondroplasia and pseudohypoparathyroidism), while 
inter-rater disagreement is increased for these conditions.

For a quantitative comparison between a bone segmen-
tation-based method and our end-to-end approach, we 
applied the commonly-used BoneXpert software [25] on 
the hand radiographs contained in the German Dysplas-
tic Bone Dataset (Fig. 6). BoneXpert failed to assess the 
BA of 18 radiographs in this dataset (11 achondroplasia 
and seven pseudohypoparathyroidism). For the remaining 
684 radiographs of the German Dysplastic Bone Data-
set, BoneXpert achieved a MAD and an RMSE of 6.3 and 
8.4 months, respectively, while (for this subset) Deep-
lasia achieved a MAD of 5.9 months and an RMSE of 
7.6 months. The performance of BoneXpert for the indi-
vidual disorders in the German Dysplastic Bone Dataset 
is given in Supplementary Material 5. On the other hand, 
for the 18 cases rejected by BoneXpert, the MAD of Dee-
plasia is 9.4 months and its RMSE is 10.8 months.

Performance on longitudinal data

In clinical scenarios, determining BA is not only important 
for receiving an initial diagnosis but also for monitoring 
development and maturation. This requires a high test–retest 
reliability for the measured BA. We retrospectively estimated 

Fig. 7   Plots of bone age matura-
tion progress of individual 
patients within the German 
Dysplastic Bone Dataset 
estimated by Deeplasia, the 
clinical, and a blinded manual 
assessment. Bone age and 
chronological age are denoted 
in months. a, b Boys with 
hypochondroplasia (a) and 
pseudohypoparathyroidism (b). 
c, d Girls with Noonan (c) and 
Ulrich-Turner (d) syndromes

Fig. 8   Example attention maps from Deeplasia. a, b A 7-year-old 
girl with achondroplasia. c, d A 10-year-old girl with hypochondro-
plasia. e, f A 10-year-old girl with intrauterine growth restriction. g, 
h A 10-year-old girl with Noonan syndrome. i, j An 11-year-old girl 
with pseudohypoparathyroidism. k, l A 10-year-old girl with a muta-
tion of the SHOX gene. m, n A 10-year-old girl with Silver-Russell 
syndrome. o, p A 9-year-old girl with Ullrich-Turner syndrome. q, r 
A 9-year-old girl with no genetic disorder. s, t A 9-year-old girl with 
no genetic disorder. For each example, the radiograph (a, c, e, g, i, k, 
m, o, q, s) and the attention map (b, d, f, h, j, l, n, p, r, t) is shown. 
These maps show that the attention of the models is mainly on the 
phalangeal and metacarpal joints, as well as the carpal bones, i.e. the 
regions relevant for bone age assessment. Larger versions of these 
images, as well as the exact bone age measurements, are available in 
Supplementary Material 4

◂
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the test–retest reliability from regular check-ups within our 
cohort, employing the method proposed by Thodberg and 
Sävendahl [34]. In brief, this method assumes a linear pro-
gress of BA between two measurements and compares the 
measured BA to the interpolation between adjacent BA 
estimates.

The results from this analysis are summarized in Table 3 
and four examples are shown in Fig. 7. Based on the German 
Dysplastic Bone Dataset, we estimated the test–retest error on 
patients with genetic disorders to be at most 2.74 months 
(95% confidence interval [2.46, 3.09], n = 149). Comparing 
our results to the ground truth rating shows that the precision 
of Deeplasia is on par with clinical assessment. Neverthe-
less, in the clinical scenario, the patient’s identity, diagnosis, 
and BA results from previous examinations are known and 
can be used to smooth the next reported BA. If the ratings 
are conducted blinded and in a randomized order without 
additional information, the precision of the human BA read-
ing drops significantly (Table 3) and the noise in manual BA 
assessment is clearly visible (Fig. 7). Thus, automatic BA 
prediction using Deeplasia is significantly more precise and 
reliable than a manual rating in a blinded scenario.

Deeplasia’s attention maps

In Fig. 8, we illustrate ten examples of the resulting attention 
maps from Deeplasia. These maps show that the attention 
of the models is mainly on the phalangeal and metacarpal 
joints, as well as the carpal bones, i.e. the regions relevant 
for BA assessment.

Discussion

Deeplasia achieved a competitive MAD of 3.87 months on 
the RSNA test set, which is on par with the current state-of-
the-art (3.91 months, [18]) and tools cleared for clinical use 
(4.1 months, [20, 25]). This demonstrates that our prior-free 
learning approach is as powerful as other approaches that 
require additional annotations, ROI extractions, or human 
priors.

On the German Dysplastic Bone Dataset—a new dataset 
comprising radiographs with skeletal dysplasias—Deeplasia 
achieved a MAD of 5.96 months, RMSE of 7.67 months, and 
a 1-year accuracy of 90.2% (based on two reference ratings). 
These results are slightly better than those reported by Wang 
et al. [27] in their study of a cohort consisting of 745 Chi-
nese patients. They report a MAD of 6.96 months, RMSE 
of 9.12 months, and a 1-year accuracy of 84.6%. However, 
their cohort included a wider range of developmental growth 
disorders (including 20 different classes).

When assessing the performance of the commonly-used 
BoneXpert software [25] on the hand radiographs contained 

in the German Dysplastic Bone Dataset, we found that Bon-
eXpert rejected 11 out of 25 (44%) achondroplasia cases 
and 7 out of 30 (23%) pseudohypoparathyroidism cases. The 
BoneXpert rejection rate for achondroplasia is in agreement 
with the expected ≈50% (personal communication with H. 
H. Thodberg, March 2023). While for the 18 cases rejected 
by BoneXpert, there is a drop in the overall performance of 
Deeplasia (MAD=9.4 and RMSE=10.8 months); its error is 
still significantly smaller than the inter-rater error (Table 2). 
Also, as is visible in the Bland–Altman plot, Deeplasia’s 
predictions for these 18 cases show no significant deviation 
from the ground truth. In fact, 16 out of 18 of these cases 
lie within the 95% (or 1.96σ) confidence intervals, and the 
other two cases are only 2.1σ and 2.9σ from the ground truth. 
We remind the reader that the ground truth values are the 
average of two experts with a total of 60 years of experience 
in pediatric BA assessment. However, it would be neces-
sary to further study the performance of Deeplasia on larger 
cohorts, especially to test on a larger number of achondro-
plasia and pseudohypoparathyroidism cases.

A general concern regarding medical AI is to understand 
its decision-making process [35]. While methods relying on 
the segmentation of individual bones offer a higher degree 
of explainability compared to end-to-end learning methods, 
this study shows that the latter is successful in analyzing 
dysmorphic bones for which the former methods do not 
always work. However, the generalization process of the AI 
from normal to abnormal bones might appear difficult to 
comprehend. We have shed light on the decision-making 
process of our end-to-end method by producing the so-called 
attention maps, illustrated in Fig. 8. These maps reveal that 
the models primarily focus their attention on the phalangeal 
and metacarpal joints, along with the carpal bones, which 
are the pertinent areas for assessing bone age. In addition, 
the observable patterns in the attention maps of the dys-
plastic hands remain unaltered in comparison to the hands 
with no genetic disorder. This shows that the activation pat-
terns within the model are invariant to the dysmorphologies 
represented in the German Dysplastic Bone Dataset and 
the extracted features remain unaffected by the anomalies. 
Combined with the results of the unaltered performance, this 
shows the generalizability of Deeplasia to the presence of 
skeletal disorders in the input images.

While there have been some studies employing DL-based 
techniques on medical images of patients with rare genetic 
diseases (e.g., [36–38].), this field is still understudied, per-
haps mainly due to the inherently small quantity of data 
available for such disorders. The current study is limited 
to only seven different genetic bone diseases. Hence, future 
work should expand the current dataset to a broader set of 
disorders and patients with varying ethnic backgrounds (e.g., 
via support from FAIR [39] sources such as the Gestalt-
Matcher Database [40]).
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Conclusion

As patients with skeletal dysplasias are an important group 
requiring bone age assessment, it is vital to ensure the appli-
cability and generalizability of automated approaches to 
these patients in dedicated studies such as this work. We 
have demonstrated that our prior-free deep-learning ensem-
ble system, Deeplasia

•	 achieves a competitive performance on the RSNA BA 
test dataset composed of predominantly healthy patients,

•	 generalizes to patients from unseen cohorts and with a 
variety of genetically-confirmed skeletal dysplasias, and

•	 is applicable to longitudinal data from patients with 
skeletal dysplasias for progressive growth monitoring.

We have  provided the codes we developed for our 
model ensemble to the community for scrutiny and reuse 
in their research.

Supplementary Information  Supplementary material is available at 
https://​doi.​org/​10.​1007/​s00247-​023-​05789-1.
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