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Abstract
Background  No study has assessed normal magnetic resonance imaging (MRI) findings to predict potential brain injury in 
neonates with hypoxic–ischemic encephalopathy (HIE).
Objective  We aimed to evaluate the efficacy of MRI-based radiomics models of the basal ganglia, thalami and deep medul-
lary veins to differentiate between HIE and the absence of MRI abnormalities in neonates.
Materials and methods  In this study, we included 38  full-term neonates with HIE and normal MRI findings and 89 normal 
neonates. Radiomics features were extracted from T1-weighted images, T2-weighted images, diffusion-weighted imaging 
and susceptibility-weighted imaging (SWI). The different models were evaluated using receiver operating characteristic 
curve analysis. Clinical utility was evaluated using decision curve analysis.
Results  The SWI model exhibited the best performance among the seven single-sequence models. For the training and valida-
tion cohorts, the area under the curves (AUCs) of the SWI model were 1.00 and 0.98, respectively. The combined nomogram 
model incorporating SWI Rad-scores and independent predictors of clinical characteristics was not able to distinguish HIE 
in patients without MRI abnormalities from the control group (AUC, 1.00). A high degree of fitting and favorable clinical 
utility was detected using the calibration curve with the Hosmer−Lemeshow test. Decision curve analysis was used for the 
SWI, clinical and combined nomogram models. The decision curve showed that the SWI and combined nomogram models 
had better predictive performance than the clinical model.
Conclusions  HIE can be detected in patients without MRI abnormalities using an MRI-based radiomics model. The SWI 
model performed better than the other models.
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Introduction

Hypoxic–ischemic encephalopathy (HIE) is an important 
form of neonatal encephalopathy, has high mortality and 
morbidity and occurs in 1–8 cases per 1,000 live births [1]. 
The effects of HIE on the brain can lead to serious con-
ditions, rapid progression and poor prognoses. However, 
patients experience varying degrees of neurological seque-
lae. The optimal method for evaluating suspected HIE is 
magnetic resonance imaging (MRI) [2]. Owing to the dif-
ferent examination times, injury patterns and protocols, 
some HIE patients may have normal or pseudonormal MRI 
findings [3]. When HIE occurs with brain injury, it is par-
ticularly challenging to identify and define. Furthermore, it 
has been reported that neurologic deficits may also occur in 
some neonates with normal brain MRI findings [4].

The Sarnat Grading Scale assesses the severity of HIE 
[5]. Normal or pseudonormal MRI findings can affect 
the Sarnat Score and most findings are classified as mild 
or moderate HIE. According to the Sarnat Grading Scale, 
infants with mild HIE were previously considered to have 
a good prognosis without long-term disability. Recent data 
analysis suggests an increased risk of behavioral dysregula-
tion and attention deficit among school-aged children with a 
history of HIE at birth, even those who had mild HIE [6–8]. 
The prevalence of abnormalities in infants with mild HIE or 
normal brain MRI findings ranges from 20−60% [9]. Infants 
with mild HIE or HIE and normal brain MRI findings who 
were cooled had a lower incidence of brain injury than non-
cooled infants [10]. Therefore, it is necessary to identify and 
treat HIE in infants with normal brain MRI findings.

Although conventional MRI is widely used in neonatal 
HIE, it provides limited information via human observation 
alone. Radiomics refers to the high-throughput computa-
tional extraction and analysis of features of digital medical 
images and the conversion of the information into mineable 
data [11]. These data can be subsequently analyzed to con-
struct biomarkers for disease prediction and diagnosis by 
using feature selection. Radiomics can provide potentially 
valuable information beyond the limitations of human anal-
ysis [12]. The clinical applicability of radiomics has been 
investigated in several studies. Previous studies have shown 
the value of radiomics features in predicting disease, treat-
ment response and prediction and prognosis in various can-
cers [13–17]. However, only a few studies have used texture 
analysis to evaluate ischemic changes in neonates. No study 
has assessed normal MRI findings in neonates with HIE to 
predict potential brain injury. The current study aimed to 
develop and validate radiomics models to differentiate brain 
injury from normal MRI findings in neonates with HIE.

Materials and methods

Patients and data collection

This retrospective study was approved by the Medical Eth-
ics Committee of the Hunan Children’s Hospital of South 
China University. Owing to the retrospective analysis of 
anonymized data, the need for informed consent was waived.

The database of the Neonatology Department was reviewed 
to identify neonates with perinatal asphyxia and HIE between 
January, 2018 and April, 2022. The inclusion criteria were 
as follows: (1) neonates aged ≥37 weeks of gestation who 
underwent MRI; (2) normal MRI findings; and (3) available 
demographic, clinical and laboratory data. The exclusion 
criteria were as follows: (1) premature infants (gestational 
age <37 weeks), (2) infants with motion artifacts on MRI and 
(3) infants with metabolic diseases. A total of 38 patients who 
met the above criteria were included in the positive group.

The control group consisted of neonates who underwent 
brain MRI within the first 2 weeks of life to investigate the 
possibility of a congenital central nervous system malforma-
tion. Infants without abnormalities observed on brain MRI 
were included. Based on the consensus of radiologists, the 
control group included 89 neonates with normal brain MRI 
findings. The identification and selection of the study cohort 
and the exclusion criteria are presented in Fig. 1.

Magnetic resonance imaging acquisition and 
processing

All patients underwent brain MRI, including diffusion-
weighted imaging and susceptibility-weighted imaging (SWI) 
scans. All brain MRI scans were performed at our hospital 
using a 3.0-tesla (T) MRI scanner (MAGNETOM Skyra, 
Siemens Healthcare, Erlangen, Germany or MAGNETOM 
Prisma, Siemens Healthcare, Erlangen, Germany) with an 
eight-channel head coil with the same MRI parameters. Addi-
tional details can be found in Supplementary Material 1.

MR images were preprocessed before segmentation 
and feature extraction to remove potential differences 
between the studies acquired from the two different scan-
ners. The image preprocessing was performed by X.D.,  a 
pediatric radiologist with 5 years of experience. Additional 
details can be found in Supplementary Material 2.

Model construction, evaluation and validation

MR images were moved to three-dimensional slicer software 
for segmentation and then saved for subsequent radiomics 
feature extraction. In this study, the deep medullary veins 
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were assessed and quantified using the created regions of 
interest (ROIs) close to the lateral ventricles [18]. The ROI 
of the ganglia, thalami or deep medullary veins were manu-
ally determined by two pediatric radiologists (Y.Y. with 10 
years of experience and X.D.) with unanimous agreement. 
The radiologists anonymized the clinical data. Additional 
details can be found in Supplementary Material 3.

Patients were randomly divided into two cohorts (training 
and validation cohorts) for each sequence in a ratio of 7:3. 
Considering that some features contribute to the positive 
classification performance and that others might add noise to 
it, the minimum redundancy maximum relevance (mRMR) 
was used to filter the features in our radiomics model to 
eliminate redundant and irrelevant features and retain the 
features with the maximum prediction efficiency. Thereafter, 
the least absolute shrinkage and selection operator (LASSO) 
was used to select effective and predictable features that are 
suitable for high-dimensional low-sample-size data with col-
linearity. A 10-fold cross-validation was used to select fea-
tures with non-zero coefficients. After determining the num-
ber of features, the most predictive radiomics features were 
chosen to construct the radiomics model. The selected fea-
tures in each model are termed the corresponding Rad-score. 

Prediction models based on radiomics feature parameters 
include the T1-weighted image (T1WI) basal ganglia model 
(T1WI-BG model), T1WI thalami model (T1WI-TH model), 
T2-weighted image (T2WI) basal ganglia model (T2WI-BG 
model), T2WI thalami model (T2WI-TH model), apparent 
diffusion coefficient (ADC) basal ganglia model (ADC-BG 
model), ADC thalami model (ADC-TH model) and SWI 
model. Based on the results of univariate and multivariate 
logistic regression analyses, the independent predictors of 
clinical characteristics were combined with the Rad-score 
obtained by the model that had the best performance to 
establish the combined nomogram model.

Clinical features from the univariate analysis (with sta-
tistical significance P<0.05) were used in the multivariate 
regression analysis. Features with P<0.05 in the multivari-
ate regression analysis were included in the clinical model.

The diagnostic efficiency of different models was meas-
ured using receiver operating characteristic (ROC) curve 
and area under the curve (AUC) analyses in the training 
and validation cohorts. The Delong test was used to test the 
differences in the ROC curves. The predictive performances 
of the different models were calibrated and evaluated in the 
training and validation cohorts. The Hosmer−Lemeshow test 

Fig. 1   Flow chart summarizing 
enrolment of the study popula-
tion. HIE hypoxic–ischemic 
encephalopathy, MRI magnetic 
resonance imaging
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was used to evaluate the calibration curves. Finally, decision 
curve analysis (DCA) was used to evaluate the clinical value 
of the different models.

All statistical analyses were performed using IBM Sta-
tistical Package for Social Sciences Statistics for Windows 
(Version 26.0; IBM Corp., Armonk, NY) and R software 
(Version 4.1.0; R Foundation for Statistical Computing, 
Vienna, Austria). Quantitative data were compared using 
Student’s t-test or the Wilcoxon test. Categorical data were 
compared using χ2 test. The “mRMRe” package was used 
to perform the mRMR analysis, and the “glmnet” package 
was used to execute the LASSO algorithm. The “pROC” 
package was used to plot the ROC curves. All statistical tests 
were two-sided, with statistical significance set at P<0.05.

Results

Clinical characteristics

A study group of 38 neonates with mild HIE and normal 
MRI findings were included. Based on the consensus 
of the radiologists, the control group included 89 neo-
nates with normal brain MRI findings. In a ratio of 7:3, 
patients were randomly assigned to the training (n=90) 
or validation (n=37) cohorts. Details of the clinical 
characteristics and comparison between the HIE and 
control groups are presented in Table 1. Significant dif-
ferences between the groups were found in some clini-
cal manifestations (asphyxia, resuscitation, dyspnea 

Table 1   Demographic, clinical and laboratory features

ALT alanine aminotransferase, AST aspartate aminotransferase, BE base excess, CO2 carbon dioxide, CK-MB creatine kinase isoenzyme, F 
female, HIE hypoxic-ischemic encephalopathy, IL-6 interleukin 6, M male, PO2 partial pressure of oxygen
The bold values represent P-values < 0.05 (statistical significance)

Characteristic Total (n=127) HIE (n=38) Control (n=89) P Training cohort (n=90) Validation 
cohort (n=37)

P

Birth weight (mean ± sd)   3.3 ± 0.5     3.3 ± 0.5   3.3 ± 0.4    0.69   3.3 ± 0.4     3.3 ± 0.5 0.36
Head diameter (mean ± sd) 90.9 ± 3.9   90.6 ± 3.6 90.9 ± 4.1    0.69 90.8 ± 4.1   90.9 ± 3.4 0.88
Gestational time, week (mean ± sd) 39.2 ± 1.1   39.3 ± 0.9 39.1 ± 1.1    0.41 39.2 ± 1.1 39.20 ± 1.2 0.85
Age, day (mean ± sd)   7.4 ± 3.8     6.9 ± 2.1   8.1 ± 4.2    0.07   7.2 ± 4.3     7.8 ± 4.1 0.60
Asphyxia resuscitation, n (%)
yes 37 (29.1%) 37 (97.4%) 89 (100%) 26 (28.9%) 11 (29.7%)
no 90 (70.9%)   1 (2.6%)   0 (0%) < 0.01 64 (71.1%) 26 (70.3%) 1.00
Dyspnea cyanosis, n (%)
yes   50 (39.4%) 24 (63.2%) 26 (29.2%) 35 (38.9%) 15 (40.5%)
no   77 (60.6%) 14 (36.8%) 63 (70.8%) < 0.01 55 (61.1) 22 (59.5%) 1.00
Convulsions
yes   18 (14.2%)   6 (15.8%) 12 (13.5%) 13 (14.4%)   5 (13.5%)
no 109 (85.8%) 32 (84.2%) 77 (86.5%)    0.95 77 (85.6%) 32 (86.5%) 1.00
Sex, n (%)
F   52 (40.9%) 11(28.9%) 41 (46.1%) 38 (42.2%) 14 (37.8%)
M   75 (59.1%) 27 (71.1%) 48 (53.9%)    0.11 52 (57.8%) 23 (62.2%) 0.80
ALT (mean ± sd) 23.8 ± 35.4   35.8 ± 58.1 18.6 ± 16.8    0.01 25.5 ± 41.2 19.5 ± 12.3 0.38
AST (mean ± sd) 57.3 ± 44.2   86.7 ± 53.4 44.7 ± 32.7 < 0.01 59.4 ± 46.9 52.1 ± 36.9 0.40
Creatinine (mean ± sd) 45.5 ± 21.7   61.0 ± 20.7 38.9 ± 18.7 < 0.01 46.0 ± 21.9 44.3 ± 21.5 0.69
CK-MB (mean ± sd) 60.8 ± 80.5 100.0 ± 121.5 44.1 ± 46.2 < 0.01 65.0 ± 92.8 50.7 ± 35.7 0.36
Troponin (mean ± sd)   0.6 ± 6.0     1.9 ± 11.0   0.10 ± 0.0    0.12   0.8 ± 7.2   0.1 ± 0.1 0.52
Procalcitonin (mean ± sd)   2.8 ± 7.3     5.1 ± 10.2   1.8 ± 5.4    0.01   2.5 ± 6.7   3.5 ± 8.5 0.45
IL-6 (mean ± sd) 63.6 ± 169.9   55.0 ± 134.2 67.3 ± 183.7    0.71 62.0 ± 174.8 67.4 ± 159.6 0.87
Lactic acid
(mean ± sd)

  5.2 ± 1.7     5.7 ± 2.5   5.0 ± 1.2    0.02   5.3 ± 2.0   5.0 ± 1.0 0.38

D-dimer (mean ± sd)   2.5 ± 3.5     3.2 ± 2.9   2.2 ± 3.7    0.14   2.5 ± 3.8   2.4 ± 2.7 0.80
CO2 (mean ± sd) 36.1 ± 10.8   39.1 ± 10.8 34.8 ± 10.6    0.04 36.2 ± 11.2 36.0 ± 9.9 0.93
PO2 (mean ± sd) 73.3 ± 24.7   73.2 ± 25.3 73.3 ± 24.5    0.97 72.9 ± 24.7 74.3 ± 24.9 0.76
HCO3-ion (mean ± sd) 21.7 ± 5.5   21.2 ± 6.6 22.0 ± 4.9    0.45 21.7 ± 5.6 21.9 ± 5.2 0.86
pH (mean ± sd)   7.4 ± 0.1     7.3 ± 0.1   7.4 ± 0.1 < 0.01   7.4 ± 0.1   7.4 ± 0.1 0.82
BE (mean ± sd)  -2.6 ± 5.8    -4.6 ± 7.9  -1.7 ± 4.5    0.01  -2.5 ± 5.8  -2.6 ± 6.0 0.96
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and cyanosis), laboratory markers (alanine aminotrans-
ferase, aspartate aminotransferase, creatinine, creatine 
kinase isoenzyme, procalcitonin and lactic acid) and 
blood gas analysis (CO2, pH, and base excess). No 
variables were statistically different between the train-
ing and validation cohorts, thus suggesting reasonable 
classification.

The multivariate regression analysis included all param-
eters with P<0.05 from the univariate analysis. The final 
results showed that creatinine and lactic acid levels were 
independent predictors of HIE (Table 2). A clinical model 
was established using independent predictors.

Radiomic feature selection and construction 
of the Rad‑score

All radiomics features with non-zero coefficients in the 
LASSO logistic regression model were selected to build 
the differentiation model. After dimensionality reduction, 
the potential predictors were selected from the 1,316 fea-
tures identified from the training cohort for each sequence, 
and the ROIs are shown in Fig.  2 and Supplementary 
Material 4. The equation for each Rad-score is presented 
in Supplementary Material 5. After screening the features 
extracted from the T1WI-BG, T1WI-TH, T2WI-BG, T2WI-
TH, ADC-BG, ADC-TH and SWI models, a total of 7, 
11, 7, 11, 8, 11 and 10 radiomics features were retained, 
respectively.

For the training and validation cohorts, the AUC of the 
SWI model were 1.00 and 0.98, respectively. Thus, the Rad-
score obtained by the SWI combined with the independent 
predictors of clinical characteristics were used to establish 
the combined model (Supplementary Material 5).

Performance and validation of different prediction 
models

The Wilcoxon test was used to evaluate the difference 
between the two groups and the distribution of Rad-
scores in the training and validation cohorts (Fig. 3). In 
the training cohort, HIE patients with normal brain MRI 
had a higher Rad-score than the control group in each 
MR sequence radiomics model and the combined mod-
els (P<0.05). This finding was confirmed in the validation 
cohort (P<0.05).

The SWI model exhibited the best predictive perfor-
mance among the seven single-sequence models. The 
AUCs of the training and validation cohorts in the SWI 
model were 1.00 (95% confidence interval [CI], 0.94−1.00) 
and 0.98 (95% CI, 0.82−0.99), respectively. In the train-
ing cohort, the AUCs of the T1WI-BG, T1WI-TH, T2WI-
BG, T2WI-TH, ADC-BG, ADC-TH and clinical mod-
els, namely, 0.98 (95% CI, 0.85−0.97), 0.98 (95% CI, 
0.79−0.94), 0.98 (95% CI, 0.83–0.96), 0.98 (95% CI, 
0.89−0.99), 0.97 (95% CI, 0.77−0.92), 0.97 (95% CI, 
0.79−0.94) and 0.82 (95% CI, 0.71−0.89), respectively, 
were relatively lower than the AUC of the SWI model. 
The AUC of the nomogram with creatinine, lactic acid and 
SWI Rad-score in the training cohort was 1.00 (95% CI, 
0.94−1.00). The details are presented in Table 3 and Fig. 4.

No significant differences were found between the ROC 
of the SWI model and the combined nomogram model in 
the training (P=0.38) and validation (P=1.00) cohorts. The 
calibration curve showed that the predicted probability of 
each model was in good agreement with the observed values 
(Fig. 5).

The DCA based on the clinical, SWI and combined nom-
ogram models is shown in Fig. 6. The decision curve showed 
that the SWI and combined nomogram models had better 
predictive performance than the clinical model.

Discussion

To the best of our knowledge, this is the first study to assess 
the utility of normal MRI in neonates with HIE to predict 
potential brain injury. MRI-based radiomics models of the 
basal ganglia, thalami and deep medullary veins allow for 
the accurate diagnosis of brain injury associated with HIE 
in neonates even when conventional brain MRI findings are 
normal. Our results show that radiomics features obtained 

Table 2   Positive results of univariate and multivariate regression 
analysis of clinical characteristics

ALT alanine aminotransferase, AST aspartate aminotransferase, CI .95 
95% confidence interval, CK-MB creatine kinase isoenzyme

Univariate regression analysis

Variable Odds Ratio Lower Upper P

Age 0.83 0.71 0.970 0.02
Dyspnea cyanosis 4.25 1.64 11.06 < 0.01
ALT 1.03 1.00 1.06 0.03
AST 1.03 1.02 1.05 < 0.01
Creatinine 1.05 1.03 1.08 < 0.01
CK-MB 1.01 1.00 1.02 0.01
Procalcitonin 1.15 1.01 1.31 0.04
Lactic acid 1.35 1.04 1.76 0.03
pH < 0.01 < 0.01 0.18 0.01 

Multivariate regression analysis
Variable Odds Ratio CI.95 P
Creatinine 1.05 1.02–1.08 < 0.01
Lactic acid 1.37 1.04–1.81 0.02
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from the basal ganglia and thalami on T1WIs, T2WIs and 
ADC maps have high diagnostic accuracy with AUC>0.90. 
The SWI model obtained from the deep medullary veins on 
the SWI had excellent diagnostic performance (AUC, 1.00), 
accuracy of 0.99, sensitivity of 0.96 and specificity of 1.00 
in the training cohort. The combined nomogram model that 
was used together with the SWI Rad-score and creatinine 
and lactic acid levels did not significantly contribute to the 
differentiation between the brain injury with normal MRI 
findings in HIE and the normal groups, with an AUC of 
1.00, an accuracy of 0.99, a sensitivity of 1.00 and a specific-
ity of 0.98 in the training cohort. The Wilcoxon test, calibra-
tion curve and the Hosmer−Lemeshow test were performed 
to evaluate the predictive model. The results of our study 
suggest that the Rad-score value of each model is meaning-
ful in the Wilcoxon test, thus indicating that radiomics is 
useful in each sequence and that radiomics features show the 
commonality of distinguishing the HIE group from the nor-
mal MRI and control groups in different sequences. There 
was good correlation between all models and the actual data.

Most studies have used conventional MRI features to 
predict brain injury in neonates with perinatal asphyxia. 

Conventional and further techniques for brain MRI have 
depicted the features of neonatal HIE, while Machie et al 
have used an MRI score to define abnormalities in HIE 
[19–21]. Parameters such as entropy, skewness and kur-
tosis, are commonly used. For example, Sarioglu et al. 
[22] used MRI-based texture features from the basal 
ganglia and thalami on apparent ADC maps and T1- and 
T2-WIs. The histogram entropy log-10 value was used 
as an indicator to differentiate between moderate-to-
severe and mild HIE (P<0.001; odds ratio [OR], 266). 
An independent predictor of moderate-to-severe HIE was 
the absence of hyperintensity in the posterior limb of the 
internal capsule on T1WIs (P=0.012; OR, 17.11). Kim 
et al. [18] analyzed the value of the texture features of the 
deep medullary veins on SWI as a potential biomarker 
according to age and the presence of ischemic injury. 
Among these parameters, entropy showed a significant 
difference between the age groups (P=0.001). The ROC 
on skewness resulted in an AUC of 0.87 to differentiate 
infants with ischemic injury. The current study analyzed 
the relationship between traditional imaging signs and 
HIE brain injury even when MRI findings were normal. 

Fig. 2   Radionics analysis 
on axial magnetic resonance 
images in a 37-week-old male 
neonate with mild hypoxic 
ischemic encephalopathy. a–c 
Regions of interest were placed 
on the basal ganglia (dark blue) 
and thalami (light blue) on the 
axial T1-weighted (W) images 
(a), T2-W images (b) and 
apparent diffusion maps (c). d 
Susceptibility-weighted image 
with regions of interest placed 
on the deep medullary veins 
(dark blue)
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Fig. 3   Rad-score scatterplots. a–c T1-weighted images (T1-W) (a), 
T2-weighted images (T2-W) (b) and apparent diffusion coefficient 
maps (c) with regions of interest placed on the thalami. d–f T1-W 
(d), T2-W (e) and apparent diffusion coefficient maps (f) with regions 
of interest placed on the basal ganglia. g Susceptibility-weighted 

imaging with regions of interest placed on the deep medullary 
veins. All plots show significantly higher Rad-scores in the hypoxic-
ischemic encephalopathy with MRI findings normal group (Label=1) 
than in the control group (Label=0), in both the training cohort and 
the validation cohort
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A series of quantitative imaging features can be extracted 
from the T1WI-BG, T1WI-TH, T2WI-BG, T2WI-TH, 
ADC-BG, ADC-TH and SWI models. Among the seven 
single-sequence models, the SWI model was superior 
to the other models in predicting potential brain injury 
with HIE in neonates without MRI abnormalities. The 
combined nomogram based on the SWI Rad-score and 

clinical factors may be used as a quantitative tool; how-
ever, it did not outperform the SWI model. According to 
the general pathophysiology, early pathological changes 
in HIE mainly include nerve cell degeneration, necro-
sis, brain edema, intracranial hemorrhage and cerebel-
lar injury. After hypoxia occurs in brain tissue, cerebral 
blood flow perfusion decreases, arterioles show reactive 

Fig. 3   (continued)
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dilation, oxygen intake by hypoxic brain tissue increases 
and hemodynamics at the microvascular level shows con-
sequent damage, thus increasing the proportion of deoxy-
hemoglobin in venules. SWI is more sensitivite than con-
ventional MRI in detecting abnormal venous dilatation in 
the brains of neonates with HIE [23]. Therefore, neonates 
with HIE have potential brain injuries even without MRI 
abnormalities. Radiomics refers to the high-throughput 
computational extraction and analysis of features from 
digital medical images and the conversion of information 
into mineable data. Wavelet_HHH_glszm (gray-level 
size-zone matrix [GLSZM]) _GrayLevelNonUniformity 
and wavelet_HLH_glcm (gray-level co-occurrence matrix 
[GLCM]) _maximal correlation coefficient were consid-
ered key parameters for the accuracy of the proposed SWI 
model according to their corresponding coefficients. The 
GLSZM consists of elements containing the number and 
size of gray areas. The gray-level band matrix includes 
features that describe the distribution of small/large areas 
and low/high gray areas. The GLCM is a matrix wherein 
the number of rows and columns represents the number 
of times the gray value is in a certain relationship (angle, 
distance), i.e. a second-order histogram. The features cal-
culated on the GLCM included entropy, energy, contrast, 

homogeneity, dissimilarity and correlation [24–26]. The 
GLSZM and GLCM differ in their SWI sequence image 
gray level, image uniformity, contrast and homogeneity.

This study has several limitations. First, it is a single-
center retrospective study with a lack of external verifica-
tion, which might have led to case selection bias and limited 
generalizability. Second, although a relatively large number 
of neonates were included in this study, the cohort is small 
compared to those of other radiomics studies, particularly 
the HIE neonatal group with no MRI abnormalities; this 
might affect the general applicability of our results. A large-
scale, prospective, multicenter study is required to validate 
our results. Third, manual segmentation was used to delin-
eate the ROIs; automatic or semiautomatic segmentation, 
which are objective, were not used for comparison and veri-
fication. Fourth, various imaging protocols may potentially 
affect the radiomics. To handle this issue, image preprocess-
ing before segmentation and feature extraction were per-
formed to improve the robustness of the radiomic features. 
However, the variability of some imaging parameters that 
could not be normalized might have affected our results. 
The use of standardized imaging protocols is important 
to avoid low-quality unreliable results. Further research is 
needed to address these deficiencies.

Table 3   Accuracy and 
predictive value of different 
models

ADC apparent diffusion coefficient, AUC​ area under the curve, BG basal ganglia, CI confidence interval, 
DMV deep medullary veins, NPV negative predictive value, PPV positive predictive value, SWI susceptibil-
ity-weighted imaging, T1WI T1-weighted image, T2WI T2-weighted image, TH thalami

AUC​ Accuracy 95%CI Sensitivity Specificity PPV NPV

Training cohort
T1WI_TH_model 0.98 0.88 0.79–0.94 1.00 0.83 0.71 1.00
T2WI_TH_model 0.98 0.96 0.89–0.99 0.85 1.00 1.00 0.94
ADC_TH_model 0.97 0.88 0.79–0.94 0.96 0.84 0.72 0.98
T1WI_BG_model 0.98 0.92 0.85–0.97 0.93 0.92 0.83 0.97
T2WI_BG_model 0.98 0.91 0.83–0.96 0.93 0.91 0.81 0.97
ADC_BG_model 0.97 0.86 0.77–0.92 0.96 0.81 0.68 0.98
SWI_DMV_model 1.00 0.99 0.94–1.00 0.96 1.00 1.00 0.98
Clinical model 0.82 0.81 0.71–0.89 0.85 0.79 0.64 0.93
Combine model 1.00 0.99 0.94–1.00 1.00 0.98 0.96 1.00
Validation cohort
T1WI_TH_model 0.92 0.78 0.62–0.90 0.82 0.77 0.60 0.91
T2WI_TH_model 0.92 0.89 0.75–0.97 0.73 0.96 0.89 0.89
ADC_TH_model 0.79 0.81 0.65–0.92 0.64 0.89 0.70 0.85
T1WI_BG_model 0.92 0.87 0.71–0.96 0.91 0.85 0.71 0.96
T2WI_BG_model 0.92 0.84 0.68–0.94 0.91 0.81 0.67 0.96
ADC_BG_model 0.79 0.78 0.62–0.90 0.73 0.81 0.62 0.88
SWI_DMV_model 0.98 0.95 0.82–0.99 0.91 0.96 0.91 0.96
Clinical model 0.76 0.81 0.65–0.92 0.79 0.85 0.67 0.88
Combine model 0.98 0.84 0.68–0.94 0.91 0.81 0.67 0.95
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Fig. 4    Calibration curves of the three models for the training (a) and validation (b) cohorts
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Fig. 5   Receiver operating characteristic curves for the training and 
validation cohorts for different models. a–c T1-weighted images 
(T1-W) (a), T2-weighted images (T2-W) (b) and apparent diffusion 
coefficient (ADC) maps (c) with regions of interest placed on basal 
ganglia. d–f T1-W (d), T2-W (e) and ADC maps (f) with regions of 
interest placed on thalami. g, h Susceptibility-weighted imaging with 

regions of interest placed on deep medullary veins. The graphs rep-
resent the susceptibility-weighted model versus the clinical model 
versus the combined model for the training (g) and validation (h) 
cohorts.  ADC apparent diffusion coefficient,  AUC​ area under the 
curve, BG basal ganglia, DMV deep medullary veins, SWI suscepti-
bility-weighted imaging, TH thalami
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Fig. 5   (continued)
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Conclusion

This study developed and compared eight models to assess 
the utility of normal MRI in neonates with HIE to predict 
potential brain injury. The results suggest that the SWI and 
combined nomogram models have potential for use in dif-
ferentiating brain injury from normal MRI in HIE, with the 
SWI model offering the greatest diagnostic value.
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