Skip to main content
Log in

Neonatal cardiorespiratory imaging—a multimodality state-of-the-art review

  • ESPR
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Advanced cardiorespiratory imaging of the chest with ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) plays an important role in diagnosing respiratory and cardiac conditions in neonates when radiography and echocardiography alone are not sufficient. This pictorial essay highlights the particularities, clinical indications and technical aspects of applying chest US, cardiac CT and cardiorespiratory MRI techniques specifically to neonates, summarising the first session of the European Society of Paediatric Radiology’s cardiothoracic task force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lobo L (2006) The neonatal chest. Eur J Radiol 60:152–158

    Article  PubMed  Google Scholar 

  2. Gao YQ, Qiu RX, Liu J et al (2020) Lung ultrasound completely replaced chest X-ray for diagnosing neonatal lung diseases: a 3-year clinical practice report from a neonatal intensive care unit in China. J Matern Fetal Neonatal Med 9:1–8

    Google Scholar 

  3. Raimondi F, Rodriguez Fanjul J, Aversa S et al (2016) Lung ultrasound for diagnosing pneumothorax in the critically ill neonate. J Pediatr 175:74-78.e1

    Article  PubMed  Google Scholar 

  4. Szymońska I, Wentrys Ł, Jagła M et al (2019) Lung ultrasound reduces the number of chest X-rays in newborns with pneumothorax. Dev Period Med 23:172–177

    PubMed  PubMed Central  Google Scholar 

  5. Tomà P (2020) Lung ultrasound in pediatric radiology - cons. Pediatr Radiol 50:314–320

    Article  PubMed  Google Scholar 

  6. Liu J, Copetti R, Sorantin E et al (2019) Protocol and guidelines for point-of-care lung ultrasound in diagnosing neonatal pulmonary diseases based on international expert consensus. J Vis Exp 6

  7. Lovrenski J, Petrović S, Balj-Barbir S et al (2016) Stethoscope vs. ultrasound probe - which is more reliable in children with suspected pneumonia? Acta Med Acad 45:39–50

    Article  PubMed  Google Scholar 

  8. Lovrenski J (2020) Pediatric lung ultrasound - pros and potentials. Pediatr Radiol 50:306–313

    Article  PubMed  Google Scholar 

  9. Brat R, Yousef N, Klifa R et al (2015) Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 169:e151797

    Article  PubMed  Google Scholar 

  10. Raimondi F, Migliaro F, Corsini I et al (2021) Lung ultrasound score progress in neonatal respiratory distress syndrome. Pediatrics 147:e2020030528

    Article  PubMed  Google Scholar 

  11. Lovrenski J (2012) Lung ultrasonography of pulmonary complications in preterm infants with respiratory distress syndrome. Ups J Med Sci 117:10–17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lovrenski J (2018) Pulmonary sequestration as an incidental finding of pediatric abdominal ultrasound - two cases. J Health Sci Med Res 37:61–66

    Google Scholar 

  13. Raimondi F, Yousef N, Migliaro F et al (2021) Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res 90:524–531

    Article  PubMed  Google Scholar 

  14. Fernández LR, Hernández RG, Guerediaga IS et al (2022) Usefulness of lung ultrasound in the diagnosis and follow-up of respiratory diseases in neonates. An Pediatr (Engl Ed) 96:252.e1-252.e13

    PubMed  Google Scholar 

  15. Raimondi F, Migliaro F, Sodano A et al (2012) Can neonatal lung ultrasound monitor fluid clearance and predict the need of respiratory support? Crit Care 16:R220

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raimondi F, Migliaro F, Sodano A et al (2014) Use of neonatal chest ultrasound to predict noninvasive ventilation failure. Pediatrics 134:e1089–e1094

    Article  PubMed  Google Scholar 

  17. Poerio A, Galletti S, Baldazzi M et al (2021) Lung ultrasound features predict admission to the neonatal intensive care unit in infants with transient neonatal tachypnoea or respiratory distress syndrome born by caesarean section. Eur J Pediatr 180:869–876

    Article  PubMed  Google Scholar 

  18. Badurdeen S, Kamlin COF, Rogerson SR et al (2021) Lung ultrasound during newborn resuscitation predicts the need for surfactant therapy in very- and extremely preterm infants. Resuscitation 162:227–235

    Article  PubMed  Google Scholar 

  19. Rodriguez-Fanjul J, Jordan I, Balaguer M et al (2020) Early surfactant replacement guided by lung ultrasound in preterm newborns with RDS: the ULTRASURF randomised controlled trial. Eur J Pediatr 179:1913–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szymański P, Kruczek P, Hożejowski R, Wais P (2021) Modified lung ultrasound score predicts ventilation requirements in neonatal respiratory distress syndrome. BMC Pediatr 21:17

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Martino L, Yousef N, Ben-Ammar R et al (2018) Lung ultrasound score predicts surfactant need in extremely preterm neonates. Pediatrics 142:e20180463

    Article  PubMed  Google Scholar 

  22. Perri A, Tana M, Riccardi R et al (2020) Neonatal lung ultrasonography score after surfactant in preterm infants: a prospective observational study. Pediatr Pulmonol 55:116–121

    Article  PubMed  Google Scholar 

  23. Vardar G, Karadag N, Karatekin G (2021) The role of lung ultrasound as an early diagnostic tool for need of surfactant therapy in preterm infants with respiratory distress syndrome. Am J Perinatol 38:1547–1556

    Article  PubMed  Google Scholar 

  24. Raimondi F, Migliaro F, Corsini I et al (2021) Neonatal lung ultrasound and surfactant administration: a pragmatic, multicenter study. Chest 160:2178–2186

    Article  CAS  PubMed  Google Scholar 

  25. Raschetti R, Yousef N, Vigo G et al (2019) Echography-guided surfactant therapy to improve timeliness of surfactant replacement: a quality improvement project. J Pediatr 212:137–143

    Article  PubMed  Google Scholar 

  26. Lovrenski J, Sorantin E, Stojanović S et al (2015) Evaluation of surfactant replacement therapy effects - a new potential role of lung ultrasound. Srp Arh Celok Lek 143:669–675

    Article  PubMed  Google Scholar 

  27. Abdelmawla M, Louis D, Narvey M, Elsayed Y (2019) A lung ultrasound severity score predicts chronic lung disease in preterm infants. Am J Perinatol 36:1357–1361

    Article  PubMed  Google Scholar 

  28. Alonso-Ojembarrena A, Lubián-López SP (2019) Lung ultrasound score as early predictor of bronchopulmonary dysplasia in very low birth weight infants. Pediatr Pulmonol 54:1404–1409

    Article  PubMed  Google Scholar 

  29. Oulego-Erroz I, Alonso-Quintela P, Terroba-Seara S et al (2021) Early assessment of lung aeration using an ultrasound score as a biomarker of developing bronchopulmonary dysplasia: a prospective observational study. J Perinatol 41:62–68

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Lv X, Jin D et al (2021) Lung ultrasound predicts the development of bronchopulmonary dysplasia: a prospective observational diagnostic accuracy study. Eur J Pediatr 180:2781–2789

    Article  PubMed  Google Scholar 

  31. Alonso-Ojembarrena A, Serna-Guerediaga I, Aldecoa-Bilbao V et al (2021) The predictive value of lung ultrasound scores in developing bronchopulmonary dysplasia: a prospective multicenter diagnostic accuracy study. Chest 160:1006–1016

    Article  PubMed  Google Scholar 

  32. Aldecoa-Bilbao V, Velilla M, Teresa-Palacio M et al (2021) Lung ultrasound in bronchopulmonary dysplasia: patterns and predictors in very preterm infants. Neonatology 118:537–545

    Article  CAS  PubMed  Google Scholar 

  33. Pezza L, Alonso-Ojembarrena A, Elsayed Y et al (2022) Meta-analysis of lung ultrasound scores for early prediction of bronchopulmonary dysplasia. Ann Am Thorac Soc 19:659–667

    Article  PubMed  Google Scholar 

  34. Corsini I, Ficial B, Ciarcià M et al (2022) Lung ultrasound scores in neonatal clinical practice: a narrative review of the literature. Pediatr Pulmonol 57:1157–1166

    Article  PubMed  Google Scholar 

  35. Cattarossi L, Copetti R, Brusa G, Pintaldi S (2016) Lung ultrasound diagnostic accuracy in neonatal pneumothorax. Can Respir J 2016:6515069

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lovrenski J, Vilotijević Dautović G, Lovrenski A (2019) Reduced or absent “lung sliding” - a novel lung ultrasound sign of pediatric foreign body aspiration. J Ultrasound Med 38:3079–3082

    Article  PubMed  Google Scholar 

  37. Migliaro F, Sodano A, Capasso L, Raimondi F (2014) Lung ultrasound-guided emergency pneumothorax needle aspiration in a very preterm infant. BMJ Case Rep 2014:bcr2014206803

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Xia RM, Ren XL, Li JJ (2019) The new application of point-of-care lung ultrasound in guiding or assisting neonatal severe lung disease treatment based on a case series. J Matern Fetal Neonatal Med 21:1–9

    Google Scholar 

  39. Davidsen JR, Bendstrup E, Henriksen et al (2017) Lung ultrasound has limited diagnostic value in rare cystic lung diseases: a cross-sectional study. Eur Clin Respir J 4:1330111

    Article  PubMed  PubMed Central  Google Scholar 

  40. Salvadori S, Nardo D, Frigo AC et al (2021) Ultrasound for endotracheal tube tip position in term and preterm infants. Neonatology 118:569–577

    Article  PubMed  Google Scholar 

  41. Zaytseva A, Kurepa D, Ahn S, Weinberger B (2020) Determination of optimal endotracheal tube tip depth from the gum in neonates by X-ray and ultrasound. J Matern Fetal Neonatal Med 33:2075–2080

    Article  PubMed  Google Scholar 

  42. Jaeel P, Sheth M, Nguyen J (2017) Ultrasonography for endotracheal tube position in infants and children. Eur J Pediatr 176:293–300

    Article  PubMed  Google Scholar 

  43. Epelman M, Navarro OM, Daneman A, Miller SF (2005) M-mode sonography of diaphragmatic motion: description of technique and experience in 278 pediatric patients. Pediatr Radiol 35:661–667

    Article  PubMed  Google Scholar 

  44. Karmazyn B, Shold AJ, Delaney LR et al (2019) Ultrasound evaluation of right diaphragmatic eventration and hernia. Pediatr Radiol 49:1010–1017

    Article  PubMed  Google Scholar 

  45. Stolzmann P, Goetti R, Baumueller S et al (2011) Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates. Eur J Radiol 79:85–91

    Article  PubMed  Google Scholar 

  46. 2019 surveillance of chest pain of recent onset: assessment and diagnosis (NICE guideline CG95). London: National Institute for Health and Care Excellence (NICE) (2019) https://www.nice.org.uk/guidance/cg95/resources/2019-surveillance-of-chest-pain-of-recent-onset-assessment-and-diagnosis-nice-guideline-cg95-pdf-8944464078277. Accessed 7 Aug 2022

  47. Huang M, Liang C, Zhao Z et al (2011) Evaluation of image quality and radiation dose at prospective ECG-triggered axial 256-slice multi-detector CT in infants with congenital heart disease. Pediatr Radiol 41:858–866

    Article  PubMed  Google Scholar 

  48. Sui X, Xu X, Song L et al (2017) Effect of third-generation dual-source CT technology on image quality of low-dose chest CT. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 39:17–20

    PubMed  Google Scholar 

  49. De Oliveira NM, Witt DR, Casey SA et al (2021) Multi-institution assessment of the use and risk of cardiovascular computed tomography in pediatric patients with congenital heart disease. J Cardiovasc Comput Tomogr 15:441–448

    Article  Google Scholar 

  50. Han BK, Rigsby CK, Hlavacek A et al (2015) Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9:475–492

    Article  PubMed  Google Scholar 

  51. Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52:e143–e263

    Article  PubMed  Google Scholar 

  52. Tworetzky W, McElhinney DB, Brook M et al (1999) Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol 33:228–233

    Article  CAS  PubMed  Google Scholar 

  53. Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46:116–123

    Article  PubMed  Google Scholar 

  54. Tsai-Goodman B, Geva T, Odegard KC et al (2004) Clinical role, accuracy, and technical aspects of cardiovascular magnetic resonance imaging in infants. Am J Cardiol 94:69–74

    Article  PubMed  Google Scholar 

  55. Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol 38(Suppl 3):S433–438

  56. Francone M, Gimelli A, Budde RPJ et al (2022) Radiation safety for cardiovascular computed tomography imaging in paediatric cardiology: a joint expert consensus document of the EACVI, ESCR, AEPC, and ESPR. Eur Heart J Cardiovasc Imaging 23:e279–e289

    Article  PubMed  Google Scholar 

  57. Nievelstein RAJ, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40:1324–1344

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stroeder J, Fries P, Raczeck P et al (2020) Prospective safety evaluation of automated iomeprol 400 injections for CT through peripheral venous cannulas. Clin Radiol 75:396.e1-396.e6

    Article  CAS  PubMed  Google Scholar 

  59. Siegel MJ (2005) Pediatric CT angiography. Eur Radiol 15(Suppl 4):D32-36

    Article  PubMed  Google Scholar 

  60. Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817

    Article  PubMed  Google Scholar 

  61. Sriharan M, Lazoura O, Pavitt CW et al (2016) Evaluation of high-pitch ungated pediatric cardiovascular computed tomography for the assessment of cardiac structures in neonates. J Thorac Imaging 31:177–182

    Article  PubMed  Google Scholar 

  62. Pache G, Grohmann J, Bulla S et al (2011) Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol 80:e440–e445

    Article  PubMed  Google Scholar 

  63. Chen X-F, Jiang F, Li L et al (2017) Application of low-dose dual-source computed tomography angiography in children with complex congenital heart disease. Exp Ther Med 14:1177–1183

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xu J, Zhao H, Wang X et al (2014) Accuracy, image quality, and radiation dose of prospectively ECG-triggered high-pitch dual-source CT angiography in infants and children with complex coarctation of the aorta. Acad Radiol 21:1248–1254

    Article  PubMed  Google Scholar 

  65. Kellenberger CJ, Yoo SJ, Büchel ER (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  66. Krishnamurthy R (2010) Neonatal cardiac imaging. Pediatr Radiol 40:518–527

    Article  PubMed  Google Scholar 

  67. Ramirez-Suarez KI, Tierradentro-García LO, Otero HJ et al (2022) Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography). Pediatr Radiol 52:661–675

    Article  PubMed  Google Scholar 

  68. Kellenberger CJ, Amaxopoulou C, Moehrlen U et al (2020) Structural and perfusion magnetic resonance imaging of congenital lung malformations. Pediatr Radiol 50:1083–1094

    Article  PubMed  PubMed Central  Google Scholar 

  69. Geiger J, Callaghan FM, Burkhardt BEU et al (2021) Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 51:1503–1517

    Article  PubMed  Google Scholar 

  70. Lapierre C, Déry J, Guérin R et al (2010) Segmental approach to imaging of congenital heart disease. Radiographics 30:397–411

    Article  PubMed  Google Scholar 

  71. Kawel N, Valsangiacomo-Buechel E, Hoop R, Kellenberger CJ (2010) Preoperative evaluation of pulmonary artery morphology and pulmonary circulation in neonates with pulmonary atresia–usefulness of MR angiography in clinical routine. J Cardiovasc Magn Reson 12:52

    Article  PubMed  PubMed Central  Google Scholar 

  72. Newman B (2022) Magnetic resonance imaging for congenital lung malformations. Pediatr Radiol 52:312–322

    Article  PubMed  Google Scholar 

  73. Geiger J, Zeimpekis KG, Jung A et al (2021) Clinical application of ultrashort echo-time MRI for lung pathologies in children. Clin Radiol 76:708.e709-708.e717

    Article  Google Scholar 

  74. Yoo SJ, Hussein N, Peel B et al (2021) 3D modeling and printing in congenital heart surgery: entering the stage of maturation. Front Pediatr 9:621672

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dillman JR, Tkach JA (2022) Neonatal body magnetic resonance imaging: preparation, performance and optimization. Pediatr Radiol 52:676–684

    Article  PubMed  Google Scholar 

  76. Windram J, Grosse-Wortmann L, Shariat M et al (2012) Cardiovascular MRI without sedation or general anesthesia using a feed-and-sleep technique in neonates and infants. Pediatr Radiol 42:183–187

    Article  PubMed  Google Scholar 

  77. Bedoya MA, White AM, Edgar JC et al (2017) Effect of intravenous administration of contrast media on serum creatinine levels in neonates. Radiology 284:530–540

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Caro-Domínguez.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellenberger, C.J., Lovrenski, J., Semple, T. et al. Neonatal cardiorespiratory imaging—a multimodality state-of-the-art review. Pediatr Radiol 53, 660–676 (2023). https://doi.org/10.1007/s00247-022-05504-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05504-6

Keywords

Navigation