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Abstract
Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are 
only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric 
cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic 
experience.
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Introduction

As with all aspects of imaging, paediatric cardiac imaging is 
expected to undergo dramatic changes over the next decade 
in all aspects of the work, driven by the use of artificial intel-
ligence (AI). A recent review of AI in the literature identi-
fied five health care areas where AI is expected to have a 
huge impact [1]: health care systems management, diagnos-
tics, clinical decision-making, patient data and predictive 
medicine.

There are few examples of how AI is used in paediat-
ric cardiac imaging. This review presents some of these 
advances and gives a flavour of the opportunities that AI and 
other technologies have to offer. I use the patient pathway 
for a paediatric cardiovascular MRI scan to highlight the 
areas that can be affected by AI — the processes of ordering, 
organising, performing and reporting a cardiovascular MR 
scan and how these data can then be utilised for research 
and patient benefit (Fig. 1). I also describe some of the ways 
that AI can impact echocardiography and cardiovascular CT.

Importantly, developments in AI should help move clini-
cal practice from an era of evidence-based medicine to one 

of intelligence-based medicine [2] and precision patient 
management, where information from big data is used to cre-
ate knowledge that is then drilled down to meet the specific 
needs of the individual patient in real time. Ultimately, this 
is expected to improve patient outcomes as well as patient 
and clinician experiences. Ideally, it will also free clinician 
time from many of the mundane processes that we currently 
need to carry out.

How artificial intelligence can affect 
the patient pathway in cardiovascular 
magnetic resonance imaging

Ordering, scheduling and protocolising

The first step in any radiologic procedure is test ordering. 
The aim is to have the right test (most appropriate test for the 
clinical question) at the right time (clinical urgency, patient 
choice) that is efficient (minimising missed appointments 
and providing the most cost-effective test).

Improving the information on the imaging request form, 
which is often poor, is a crucial first step to drive all these 
processes. One recent study found that 80% of imaging 
requests did not have the relevant clinical information [3]. 
AI tools can extract clinical information from the clinical 
electronic patient record (EPR) to improve imaging modal-
ity selection [4] and then drive imaging protocolisation 
to address the relevant clinical questions [3]. One such 
machine learning tool was able to analyse unstructured text 
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for clinical indications for neurologic MR imaging requests 
and appropriately protocolise the MR scan with an accuracy 
of 95% [5]. For cardiovascular MR imaging, prior clinical 
data and previous imaging protocols (from the individual or 
patients with similar underlying heart disease) could be used 
to potentially predict scan times. Furthermore, algorithms 
could be used to search the EPR to ensure that there are no 
contraindications to MRI, pre-populating the MR consent 
form with this information.

Algorithms can also be used to support optimisation of 
scheduling:

•	 to define optimal times for appointment bookings [6];
•	 to predict which patients might not attend [7]; and
•	 to define optimal follow-up times [8], automatically 

booking follow-up imaging.

This can improve efficiency — fewer staff calling, texting 
with appointment reminders, etc. — all of which can lead to 
an improved patient experience with more timely remind-
ers about dates and times of imaging appointments, fewer 
missed appointments, improved utilisation of expensive 
scanner time and appropriate use of staff. Machine learning 
has also been used to predict wait times and delays on the 
day of imaging to keep patients and families better informed 
[9].

Cardiovascular magnetic resonance sequences

As we know, MRI is an inherently slow process. Hence, 
algorithms can reduce the amount of data required and sup-
port more rapid scanning. This is more so in cardiovascular 
imaging, where data are acquired not only in three dimen-
sions, but also over time.

Multiple techniques have been developed over the years, 
including parallel imaging and compressed sensing, to 
reduce acquisition times for cardiovascular MR sequences. 

These imaging techniques are prone to signal degradation 
and aliasing and require prior information, which is often 
crude at present. AI methods are excellent at discovering 
patterns and have been used to improve cardiovascular 
MR image quality for sparsely sampled data. Deep neu-
ral networks, in particular convolutional neural networks 
(CNNs) and recurrent neural networks, have been used to 
solve machine learning problems, predominately in a super-
vised way (using known ground-truth data) [10]. Examples 
include:

•	 de-noising data (to enable k-space under sampling),
•	 de-aliasing data (to enable k-space under sampling),
•	 super-resolution (to use low-resolution data to predict 

high-resolution detail), and
•	 reduced errors from field inhomogeneity and eddy cur-

rents (more accurate flow imaging).

In paediatric cardiovascular MR, clinical validated 
machine learning studies have shown that real-time acquisi-
tions for two-dimensional (2-D) cine imaging can be used to 
reduce scan time from just under 5 min to 18 s with no loss 
in image quality [11]. This required training in 10 people 
with congenital heart disease (CHD). For three-dimensional 
(3-D) whole heart imaging in people with CHD, super-res-
olution machine learning reconstruction has been shown to 
reduce scan time from 8 min to 3 min, with similar image 
quality compared to current methods [12]. Similar inte-
gration of AI for rapidly reconstructing four-dimensional 
(4-D) flow [13] and 3-D late-gadolinium enhancement [14], 
though not tested in the CHD setting, might also speed car-
diovascular MR imaging.

Ultimately all these methods allow for image acquisition 
to be quicker, reducing the overall scan time by factors of up 
to 4 (60-min scan now performed in 15 min). For paediatric 
cardiovascular MR, this allows for reduced need of general 
anaesthetic for younger children (shorter scans, no need for 

Fig. 1   Aspects of the radiologic patient pathway for paediatric cardiovascular MRI where artificial intelligence can play a role
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breath-holding; Fig. 2), better overall image quality from 
better compliance (again shorter scans, no need for breath-
holding) and increased scanner utilisation (more scans per-
formed each session).

Cardiovascular magnetic resonance scanning

As described, AI might be able to help with cardiovas-
cular MR protocolisation, which would enable protocols 
to be automatically loaded into the sequence list for the 
appropriate clinical indication (e.g., basic CHD protocol, 
heart failure protocol, cardiomyopathy protocol). Further-
more, learning-based algorithms can be applied to enable 
automated planning for the ventricular imaging planes for 

imaging the heart, which can take less than 10 s to complete 
[15]. Another potential way to reduce scan time might be to 
determine which sequences lead to pertinent clinical infor-
mation in any given condition, again focusing the imaging 
protocol.

Similar automated algorithms using CNNs have been 
used for echocardiography and have included view identi-
fication based on validation of more than 8,000 manually 
segmented echocardiograms, with accurate imaging plane 
identification (96% for parasternal long axis) [16].

These methods support imaging technicians as they plan 
cardiovascular MR scans, reducing operator dependence and 
enhancing the homogeneity of imaging protocols locally and 
across organisations to enhance data for multicentre studies. 

Fig. 2   Cardiovascular MR imaging in a 3-year-old girl with pul-
monary hypertension without general anaesthetic. a Clinical image 
shows a father comforting his child (white arrows show small red 
socks of child!) during the scan, whilst child watches a video. b 
Anteroposterior time-resolved gadolinium-enhanced MR angiogram 

of the great vessels in the thorax. c Real-time cine imaging of the 
heart, 4-chamber view. d, e Oblique transverse phase-contrast veloc-
ity images (phase-contrast image [d], magnitude image [e]) of the 
ascending aorta to measure systemic flow
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This might mean that complex cardiovascular MR scans that 
require children to travel to distant specialist centres can be 
carried out to the same standard, utilising the same degree 
of expertise, using an MR scanner closer to the child’s home 
— potentially reducing waiting times for scans and reducing 
travel times for patients and families.

Cardiovascular magnetic resonance analysis

Imaging segmentation/data analysis

As we continue to reduce the length of cardiovascular MR 
scans, benefiting patients, and increasing the number of 
scans we can perform, we remove one of the bottlenecks for 
cardiovascular MR waiting lists. However, the burden now 
shifts to the reporting environment. Currently, complex car-
diovascular MR scans can take more than 60 min to report, 
with manual segmentation of ventricular volumes (dreaded 
circle drawing), flow post-processing (including 4-D flow), 
3-D anatomy segmentation and tissue characterisation, all 
requiring significant cardiac imager time to analyse. It is 
therefore essential that these mundane tasks become more 
automated, to reduce reporting times and prevent a second 
bottleneck (no waiting for cardiovascular MR appointments 
because scans can be done quickly, but referrers now wait-
ing for scan reports — the new bottleneck). Furthermore, 
algorithms that could compare a patient’s studies to deter-
mine changes in volumes, flow, function and other imaging 
characteristics would be hugely useful, saving enormous 
amounts of time comparing studies and providing a trend 
for patient disease progression to track management (e.g., 
response to drug treatments, response to surgery or interven-
tional cardiac catheterisation, or watchful waiting as part of 
routine surveillance).

Fortunately, a whole array of AI algorithms — machine 
and deep learning — are being developed to assist in data 
analysis, including automated quantification of ventricular 
volume, automated flow analysis, automated segmentation 
for tissue characterisation and automated cardiovascular 
MR tissues fingerprinting. They are described in the next 
paragraphs.

Automated quantification of ventricular volume  CNNs 
using multi-vendor left ventricular (LV) data have shown 
excellent correlation (r2 ≥ 0.98) and agreement with meas-
urement obtained by clinical experts [17]. Similarly good 
agreement has been found for LV volume and function 
assessment using a deep-learning-based algorithm for fully 
automated quantification [18]. Measurements of LV, left 
atrial (LA), right ventricular (RV) and right atrial (RA) 
volumes have also been shown to be accurate using a fully 
convoluted network with a large-scale annotated dataset, 
comparable to human interobserver variability using United 

Kingdom biobank data [19]. Deep learning algorithms can 
now be integrated into frameworks for cardiovascular MR 
cardiac functional assessment, which can provide a degree 
of quality control. One such framework consists of pre-
analysis deep learning image quality control, followed by 
a deep learning algorithm for biventricular segmentation in 
long-axis and short-axis views, myocardial feature-track-
ing, and a post-analysis quality control to detect erroneous 
results [20]. The framework achieved good agreement with 
no clinical oversight, though some RV measures were less 
well performed by the framework than manual assessment. 
Importantly, deep learning ventricular segmentation of both 
the LV and RV has now been shown to be useable in CHD, 
though accuracy for RV measurements was worse than for 
LV measurements [21].

Automated flow analysis  Although flow segmentation is 
relatively automated for the majority of cardiovascular MR 
post-processing tools, further automation to analyse images 
with limited or no operator input would be useful. A recent 
study looking at ascending aortic flow measurements at the 
aortic valve level has shown that accurate machine learning 
segmentation was uniformly successful, requiring no human 
intervention, with very high correlation (r = 0.99) between 
manual and algorithm segmentation and measurement in an 
external validation cohort [22].

Automated segmentation for tissue characterisation  Late-
gadolinium enhancement can be used to guide clinical 
treatment, and clinical implementation of this informa-
tion requires reproducible and reliable segmentation of the 
infarcted regions [23]. One automated method using deep 
CNNs to automatically quantify LV mass and scar volume in 
people with hypertrophic cardiomyopathy showed potential, 
with good agreement with manual segmentation [24].

Automated cardiovascular MR tissues fingerprinting  Com-
bining T1, T2, extracellular volume and late gadolinium 
enhancement data to create multi-parametric myocardial 
tissue characterisation has been demonstrated using pattern 
recognition algorithms to match the sampled signal to a pre-
defined dictionary of predicted signal evolutions [25]. Such 
automated tissue characterisation could then be useful for 
automated diagnosis of cardiomyopathies and acute myocar-
ditis and for the monitoring of cardiac transplant rejection.

Automated diagnosis

Automated diagnosis in CHD is not straightforward. One 
attempt has been to use an atlas-based computer-aided 
approach, which exploits similarity measures between the 
atlas and target images for normal cardiac anatomy and peo-
ple with transposition of the great arteries following either 
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the atrial or arterial switch operation. The method was vali-
dated using annotated images and subsequently showed a 
diagnostic accuracy of 97.3% when evaluated on a set of 60 
whole heart MR images [26]. Deep learning algorithms have 
been shown to make the diagnosis of cardiac amyloid from 
cine cardiovascular MR and late-gadolinium images [27]. 
Such algorithms might then be able to differentiate between 
cardiomyopathies not only in adults, but also in children.

Considerable work is required to build and validate 
algorithms that can automatically diagnose CHD from 3-D 
images. However, as a first step, algorithms that can dis-
tinguish normal from abnormal cardiovascular MR images 
might be useful to ensure that complex CHD anomalies, 
which are rare and hence not seen often in routine clinical 
practice, are not missed, even if the exact diagnosis is not 
made, and that referral for expert opinion is carried out.

Cardiovascular magnetic resonance report 
generation

Algorithms could be used to generate a report template 
based on the clinical referral and the clinical patient infor-
mation from the EPR. This information could also be used 
to search local and international clinical guidelines and 
research publications so that concurrent literature related to 
the case is instantaneously available at the time of reporting. 
For example, when reporting a case of Turner syndrome, the 

real-time availability of the current aortic dimensions from 
the latest consensus paper to guide clinical decisions would 
be hugely valuable.

Report generation can clearly be supported by automated 
speech recognition that either gathers data in a structured 
form or extracts data using natural language processing tools 
[28] to ensure that data are available for big data sets. The 
data from the radiologic report could also be used to auto-
matically inform the referring clinician and used to drive 
follow-up recommendations — e.g., “Follow-up assessment 
for right ventricular volume assessment recommended in 
2  years” automatically generates a cardiovascular MR 
appointment for the patient at this time point [29]. Further-
more, AI could be leveraged to generate targeted reports, 
specific for the referring cardiologist, the patient and the 
family, or the non-cardiologist, to ensure that the most per-
tinent information gets to the right person in the right lan-
guage for them to understand and affect patient care.

Provision of data for research and precision 
medicine

The integration of data from multiple sources — clini-
cal, imaging (radiology, digital pathology, photographs), 
genomic, proteomics and laboratory medicine — can be 
used to create vast databases that can be explored by AI algo-
rithms (Fig. 3). After these databases have been explored 

Fig. 3   Integration of patient information from multiple sources 
brought together in a single electronic patient record. These data, and 
data from thousands of other patients, are accessed using artificial 
intelligence (AI) and learning algorithms to create new understanding 

for patient populations. These big data can then be accessed for the 
individual patient, using AI and supervised, unsupervised and rein-
forcement learning to provide precision care in a feedback cycle, cre-
ating a virtuous cycle of patient data and care
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and validated, information can then be drilled down back 
to individual patients to drive precision medicine for each 
person based on their clinical history, imaging, laboratory 
findings and genetics, combined with the latest outcomes 
gathered in real time.

A few studies have used machine learning to combine 
cardiac imaging with other investigative and clinical fea-
tures to predict prognosis. In one study, cardiovascular MR 
imaging data were combined with clinical, haemodynamic 
and functional markers in adults with pulmonary hyperten-
sion [30]. A machine learning survival model that included 
the cardiac motion parameters derived from cardiovascular 
MR was shown to have incremental prognostic power when 
compared with conventional parameters [30].

In a second study, measures of cardiac dimensions and 
function were derived from cardiovascular MR images of 
people with tetralogy of Fallot using automated deep learn-
ing analysis, which was combined with established clinical 
parameters and electrocardiogram (ECG) markers [31]. The 
deep learning models were trained on raw Digital Imaging 
and Communications in Medicine (DICOM) data at a single 
centre, then applied to a national cohort dataset to predict 
prognosis for adults with CHD.

Summary of artificial intelligence in other 
areas of cardiovascular imaging

Authors Xu et al. [32] gave an excellent summary of the AI 
developments in echocardiography and cardiovascular CT 
and the tools that have been developed.

Echocardiography

Artificial intelligence lends itself to all areas of echocar-
diography with automated analysis of chambers, ejection 
fraction and strain [16], valvular assessment [33] and aortic 
dimensions [34], with a move toward automatic diagnosis 
that has been shown in several areas, including the diagnosis 
of constrictive versus restrictive cardiomyopathy [35] and 
hypertrophic cardiomyopathy versus the athlete’s heart [36].

Cardiovascular computed tomography

At present, the majority of algorithms that have been devel-
oped for cardiovascular CT have focused on the assessment 
of ischaemic heart disease with algorithms to support ana-
tomical diagnosis, coronary artery plaque quantification, 
coronary blood flow and myocardial perfusion.

A combination of clinical and cardiovascular CT param-
eters using a machine learning framework has been shown 

to better predict 5-year mortality than conventional meas-
ures using the Framingham risk score [37]. Coronary artery 
blood flow — fractional flow reserve — can be calculated 
using computational fluid dynamics modelling [38] with 
excellent accuracy that has been demonstrated in several 
prospective multicentre studies.

Such algorithms might prove useful in the analysis of 
small stenosed vessels in CHD cardiovascular CT, and meth-
ods for automated CHD diagnosis developed for 3-D cardio-
vascular MR images should be useable in cardiovascular CT 
when they become available.

Conclusion

There are few concrete examples of the use of clinically vali-
dated AI in paediatric cardiac imaging. However, there is 
clearly huge potential to improve the experiences of children 
and clinicians in health care, using AI to drive precision patient 
medicine and disease discovery by combining siloed data sets 
from the whole patient pathway. Ultimately, this is expected to 
build an era of intelligence-based medicine that should enable 
more proactive, as opposed to reactive, care over time to sup-
port preventative medicine and early disease detection.

Much work remains to validate AI technologies in paedi-
atric practice and to address some of these issues:

•	 changing the way care is delivered/clinical teams are 
managed;

•	 building good-quality (excellent data in) large data sets, 
which can be difficult in rare diseases;

•	 moving from single-centre validation to universal appli-
cability;

•	 understanding data issues of confidentiality (patients and 
families in the paediatric setting), ownership (who owns 
health care data?), and value (what is health care data 
worth?);

•	 importance of regulation for ethical use of data, but not 
over-regulation that stifles crucial innovation;

•	 importance of understanding the role of decision support 
tools/models of care, and where AI information does not 
make sense; and

•	 the need for connectivity to link disparate data sets com-
ing from the home, primary care and the hospital set-
tings, and linking clinical teams, patients and families, 
and data scientists and engineers together.

If we can reduce the amount of mundane work we have to 
do, speed data acquisition and automate data analysis and diag-
nosis, whilst having all the relevant information at our fingertips 
to plan patient care based on the most recent guidelines, provid-
ing information that can then be used to drive the next person’s 
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care in a virtuous cycle, AI will ideally give us more time to 
think and talk to our patients and their families, paradoxically 
increasing the human touch that is so vital for patient care.
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