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Abstract
Artificial intelligence (AI) applications for chest radiography and chest CT are among the most developed applications in radiology.
More than 40 certified AI products are available for chest radiography or chest CT. These AI products cover a wide range of
abnormalities, including pneumonia, pneumothorax and lung cancer. Most applications are aimed at detecting disease,
complemented by products that characterize or quantify tissue. At present, none of the thoracic AI products is specifically designed
for the pediatric population. However, some products developed to detect tuberculosis in adults are also applicable to children.
Software is under development to detect early changes of cystic fibrosis on chest CT, which could be an interesting application for
pediatric radiology. In this review, we give an overview of current AI products in thoracic radiology and cover recent literature
about AI in chest radiography, with a focus on pediatric radiology. We also discuss possible pediatric applications.
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Introduction

Chest radiography is one of the most commonly requested
examinations in the workup of pediatric patients under suspi-
cion of having a variety of diseases including pneumonia,
tuberculosis and pneumothorax [1]. Chest radiographs are al-
so commonly acquired to confirm the location of lines and
tubes, or to surveil disease including oncologic disease.
Chest CT is less commonly used in the pediatric population
but can be helpful for assessing children with bronchial dis-
ease, infectious disease or interstitial lung disease.

Artificial intelligence (AI) software for chest imaging is
being widely studied within radiology. To date this has result-
ed in more than 40 CE (Conformité Européenne)-marked
commercial software packages from more than 20 vendors
being available for clinical use in CT and conventional radi-
ography of the thorax [2]. A wide range of abnormalities is
covered by AI, in both chest radiography and chest CT. Most
of the current AI products have been developed for the adult

population, but they might be applicable to the pediatric pop-
ulation as well.

In this review, we discuss commercially available AI prod-
ucts for thoracic radiology. Because most of the current AI
applications might not be specifically applicable to the pedi-
atric population, we also discuss recent literature showing the
potential for AI use in pediatric chest imaging. We emphasize
the applications of AI in chest radiography rather than chest
CT because radiography applications are of more interest in
the pediatric population.

Current landscape of artificial intelligence
products in thoracic radiology

More than 40 AI applications are CE marked for thoracic
radiology. This is the largest number of AI applications in
radiology by subspecialty, after neuroradiology (Fig. 1) [2,
3]. Half of the products are developed for the analysis of chest
radiography, and half for chest CT. No specific products have
been developed and certified for the pediatric population
(Table 1) [4–29]. However, some products might be applica-
ble to the pediatric population, as well. Current research per
chest imaging modality is discussed next. In this review we
emphasize the diagnostic applications, focusing on currently
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available commercial AI systems. Post-processing AI applica-
tions are not considered in this review.

Chest radiography

The first AI software products, or computer-aided detection
software, for conventional chest radiography were designed to
detect lung nodules with the goal to reduce missed lung can-
cers. These tools were then extended to detect other abnormal-
ities on chest radiographs, such as pneumonia, pneumothorax
and rib fractures (Fig. 2). A subset of applications is intended
for triage, prereading images and flagging images on which
urgent findings were detected by the AI system.

Lung nodules

Automated lung nodule detection is the most studied applica-
tion for chest radiography. Research that investigated the per-
formance of lung nodule detection in chest radiographs started
decades ago. With few publicly available datasets, systems
were hard to compare. Steady improvement has been shown
on the Japanese Society of Radiological Technology (JSRT)
dataset consisting of chest radiographs with and without lung
cancer, which can be used for validation purposes. First stud-
ies from 1999 reached a sensitivity of 35% at 6 false positives
per image [30]; by 2014, this improved to a sensitivity of 75%
at 0.5 false positives per image on this dataset [31]. Recently
developed AI systems that incorporated deep learning have
not tested their performances on the JSRT data but do report
improved performances up to a sensitivity of about 80% at
only 0.05 false positives per image [4].

For lung nodule detection, performance of these AI sys-
tems is similar or even surpasses the performance of radiolo-
gists. In a study from Nam et al. [4], a deep learning system
that was trained on more than 40,000 chest radiographs
showed in receiver operating characteristics (ROC) analysis
an area under the curve (AUC) of 0.92–0.99 (depending on
the validation set) for the detection of lung nodules with an
average size ranging 20–40 mm. AI performance was similar
or significantly better than that of the participating thoracic
radiologists in this study. Most readers had improved perfor-
mance when aided by the deep learning system.

Another recent study, by Yoo et al. [32], assessed the per-
formance of their algorithm on chest radiographic screening
data from the National Lung Screening Trial. On the baseline
screening data, consisting of 5,485 radiographs, the algorithm
reached a sensitivity of 94.1% and a specificity of 83.3% for
detecting malignant pulmonary nodules.

Up to now, 11 certified products have been made available
to help detect pulmonary nodules in chest radiographs. The
developed systems have been trained on adult data, often older
people with a high risk of lung cancer. However, the spectrum
of abnormalities in the pediatric chest is different from that in
adults. In the pediatric population, it would be more helpful to
detect pulmonary metastases instead of potential lung cancers,
which is relevant, for example, in children with osteosarcoma.
However, such systems that aim to detect pulmonary metas-
tases specifically are not yet available, and current systems
trained on lung cancer data probably have a lower perfor-
mance for the detection of pulmonary metastases.
Furthermore, the pediatric chest is quite different from the
adult chest with respect to shape, mediastinal contours and
density of bone structures, which also might lower the perfor-
mance of the current systems when applied to this population.

Tuberculosis and pneumonia

In the last few years, several studies have been published on
the detection and diagnosis of consolidations in chest radio-
graphs. Several groups have worked on AI to detect pulmo-
nary tuberculosis in chest radiographs because resources and
trained personal in developing countries are scarce, so auto-
mated evaluation of chest radiographs is especially beneficial
in these countries. One of the first algorithms for tuberculosis,
developed by Hogeweg et al. [33], showed a slightly lower
performance than the observer for the detection of tuberculo-
sis in a high-incidence population. Qin et al. [10] compared
three available commercial deep learning systems and found
similar performance of all systems for the detection of tuber-
culosis in chest radiographs, with an AUC ranging from 0.92
to 0.94 as compared with molecular testing. The AI systems
reached higher specificity than the participating radiologists in
the study, at a matched sensitivity level [10].

Fig. 1 Pie chart shows distribution by radiologic subspecialty of the 144
artificial intelligence (AI) products certified for image analysis in
radiology at the time of this report [2]. MSK musculoskeletal, Neuro
neurologic
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In addition to studies on AI for tuberculosis, studies are
performed for AI that can help detect pneumonia [34–36]. In
one of these studies [34], CheXNeXt, a convolutional neural
network developed by the Stanford Machine Learning Group
that can detect 14 pathologies on anteroposterior (AP) or
posteroanterior (PA) chest radiographs, was tested on the
chestX-ray8 dataset [37]. For 11 of the 14 pathologies,
CheXNeXt achieved radiologist-level performance, including
consolidations (AUC of 0.84 for radiologists versus 0.89 for
the algorithm) [34]. In this study, radiologists achieved higher
performance for the detection of emphysema, cardiomegaly
and hiatus hernia [34].

Few studies have been performed in the pediatric popula-
tion. The first study that was published examined AI to find
any abnormality in pediatric chest radiographs in a very-high-
incidence population suspected of tuberculosis (113/119 im-
ages) [38]. The system reached reasonable performance with
an AUC of 0.78 for correctly identifying abnormal regions in
the image [38].

A recent study reported results for CAD4Kids [39], which
identified pneumonia in children younger than 5 years on
chest radiographs. Sensitivity of the system was 76%, with a
specificity of 80%. ROC performance was 0.85, which was
significantly lower than that of a reference observer who
reached an AUC of 0.98.

In the study by Tang et al. [40], the authors tested their
algorithm for the detection of pneumonia on pediatric data
and reached an AUC of 0.92, which was lower than the
AUC of 0.98 on adult data. After retraining on pediatric
data, the AUC improved to 0.98. And after fine-tuning,
their algorithm improved further and reached an AUC of
0.99 for classifying normal images versus images with
pneumonia [40].

Chen et al. [41] developed an algorithm for detecting com-
mon abnormalities in chest radiographs specifically for chil-
dren ages 1–17 years. The reference standard in the study was
set by a pediatric pulmonologist and radiologist in consensus.
The algorithm reached an accuracy of 72% for detecting bron-
chopneumonia and 85% for detecting lobar pneumonia on a
test set of 531 images [41]. The authors found greater dis-
agreement in children younger than 5 years. This might be
explained by a greater variance of chest shape in younger
children.

Zucker et al. [42] explored the performance of an AI
algorithm to determine the Brasfield score in children
with cystic fibrosis. Their model, trained on roughly
1,800 children and tested on 200 children, achieved com-
parable performance with five participating radiologists
for the most sub-features in scoring cystic fibrosis com-
ponents in chest radiographs according to the Brasfield
score [42].

Currently, seven certified AI products can detect pneumo-
nia and five products can detect pulmonary tuberculosis.
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CAD4TB, a commercial AI system for the automated detec-
tion of tuberculosis, is the only certified product that can be
used in children age 4 years and older [17].

Pneumothorax

Several studies have been performed for automatic
pneumothorax detection in chest radiography, of which
few have been developed into commercial software.

Hwang et al. [6] reported excellent performance of their
algorithm, with a median AUC of 0.97 (range 0.92–
0.99), for the detection of pulmonary malignancies, tu-
berculosis, pneumonia and pneumothorax. Most radiolo-
gists improved in performance after using the algorithm.

Park et al. [43] tested a convolutional neural net-
work to detect pneumothorax after transthoracic nee-
dle biopsy. Their network was trained on 1,596 chest
radiographs and reached an AUC of 0.90 for the

Fig. 3 Bar chart shows artificial
intelligence (AI) products
available for chest CT at the time
of this report [2]

Fig. 2 Bar chart shows artificial
intelligence (AI) products
available for chest radiographs at
the time of this report [2]
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detecting pneumothorax 3 h after needle biopsy. As
a reference standard, they used a consensus read of
two experienced radiologists [43].

The study of Rajpurkar et al. [34] also evaluated pneumo-
thorax detection. In this study their algorithm reached an AUC
of 0.944, compared to an average AUC of 0.940 of radiolo-
gists. No statistical difference was found between the algo-
rithm and the radiologists. Unfortunately, the algorithm was
not tested on an external dataset.

Chen et al. [41], who developed a deep learning system for
the most common abnormalities in pediatric chest radio-
graphs, also tested their algorithm for the detection of pneu-
mothorax and reached an accuracy 86%.

Currently, 11 commercially available packages offer pneu-
mothorax detection. According to the reported literature, none
of the certified products has been trained on pediatric data.
Therefore, performance level of these AI products might be
lower in the pediatric population.

Lines/tubes

Another possible worthwhile application is the detection of lines
and tubes in chest radiographs. Malposition of lines disrupts
proper treatment, and clear visualization of the line can help to
avoid repeat radiographs and reduce patient radiation dose.

Several studies have been performed for the detection of
lines and tubes in chest radiographs [44–49]. Generally the
algorithms are quite good in classifying the presence versus
absence of an endotracheal tube [50], but the systems perform
worse when the exact position of the tip of the tube is sought.

Few studies for AI in the detection of lines and tubes have
been performed in the pediatric population. In the study per-
formed by Kao et al. [51], the authors developed an algorithm
for detecting endotracheal tubes in neonatal chest radiographs.
The authors evaluated the algorithm on 528 images with en-
dotracheal tubes and 816 images without endotracheal tubes.
The discriminant performance for detecting the existence of a
tube reached anAUC of 0.94 [51]. The distance error of the tip
of the tube was on average 1.89±2.01 mm [51].

In a study by Yi et al. [52], the authors used data with
synthetic nasogastric tubes, endotracheal tubes and umbilical
catheters to test their algorithm. The precision (i.e. true posi-
tives / [true positives + false positives]) for their algorithmwas
0.80 [52]. According to the authors, their work can contribute
to the development of a system that detects all lines and cath-
eters in X-ray images and could be used to prioritize images
that show malpositioned lines and request urgent review by
the radiologist [52].

No commercial AI products are available that locate lines
and tubes in chest radiographs. However, a single product on
the market aims to optimize contrast for certain identification
of lines and catheters (ClearRead Confirm; Riverain
Technologies, Miamisburg, OH).

Chest computed tomography

Currently 21 CE-marked AI products for chest CT are avail-
able for use in daily clinical practice. Most applications focus
on lung cancer detection and characterization. Other applica-
tions focus on the detection of pneumonia, especially in cases
of coronavirus disease 2019 (COVID-19); the detection of
obstructive lung disease; or the quantification of emphysema.
Very few products are available for interstitial lung disease or
the detection of pulmonary embolism (Fig. 3). Automatic de-
tection of pulmonary embolism, quantification of emphyse-
ma, and detection and quantification of COVID-19 and fibro-
sis are less relevant for the pediatric population and therefore
are not discussed here.

Lung nodules

In CT, automatic lung nodule detection is the most widely
studied application. The introduction of lung cancer screening
has accelerated the quality and number of products for lung
nodule detection in CT. Several studies have shown outstand-
ing performance for the detection of lung nodules in CT [26,
28, 53, 54]; however, characterization of the nodules is a bigger
issue. Many of the found nodules are small and benign. This
has induced several approaches to characterize nodules and
automatically estimate each nodule’s risk of malignancy [55,
56]. A recent study showed significantly improved perfor-
mance of a convolutional neural network model for risk assess-
ment of small nodules in CT compared with the Brock model,
which is currently used for malignancy risk assessment, with an
AUC of 0.90 compared with 0.87, respectively [55].

Eleven AI products are available for detecting pulmonary
nodules in chest CT with the goal of finding early lung cancer.
In the pediatric population, assessing pulmonary nodules in
chest CT is not a clinical issue, and none of the products has
been developed for the pediatric population. Nonetheless,
these AI products might be useful for detecting pulmonary
metastases, which is applicable in a specific pediatric popula-
tion; none of products that is available, however, is specifical-
ly designed to detect pulmonary metastases.

Obstructive lung disease

Four products on the market focus on obstructive lung disease.
These include chronic obstructive lung disease, asthma and
cystic fibrosis. The latter two, especially, are applicable to
children. Although CT examinations in asthma are not com-
monly performed, CT in cystic fibrosis patients is used to
monitor the disease. AI software can detect minor attenuation
differences in the lung, and thereby detect areas of air-trap-
ping. Further, bronchopathic changes such as bronchial wall
thickening and bronchiectasis can be detected and quantified.
DeBoer et al. [57] showed that the number of airway counts
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on inspiratory high-resolution CT and the percentage of low-
attenuation density on expiratory CTwere significantly higher
in children with cystic fibrosis.

A few products that can assess airway changes and air-
trapping are available and should be usable in people with
cystic fibrosis. However, no studies have been performed to
assess the value of these products over visual assessment.
Recently, Thirona B.V. (Nijmegen, The Netherlands) [58]
obtained a patent for quantitative CT analysis of cystic fibrosis
in children. They aim to develop an algorithm to identify early
changes on CT scans in children with cystic fibrosis.

Pneumothorax

Several studies have examined the use of artificial intelligence
in chest CT for the detection of pneumothorax. One example
is the quick identification of pneumothoraces on chest CT
[59]. This application reached a sensitivity of 100% and a
specificity of 82.5%. The authors suggested that the tool could
be used for triaging and to notify the radiologist about the
detected urgent findings [59]. Complicating factors might be
the presence of emphysema or bullae that could erroneously
be seen as a pneumothorax. Other researchers tried to auto-
matically quantify the volume of the pneumothorax. Rohrich
et al. [60] showed excellent performance of their algorithm,
with a Pearson correlation coefficient of 0.996 between the
automated quantification method and the manual measure-
ment. For the pediatric population, one study investigated a
computer-aided volumetry scheme for quantifying
pneumothoraces in chest CT. The study performed by Cai
et al. [61] also showed excellent performance, with Pearson
correlation coefficient of 0.99 between the manual and auto-
mated measurements. This is important because a larger-
volume pneumothorax might trigger different treatment. At
this point, no commercial AI product is available for detecting
and quantifying pneumothoraces in chest CT.

Future directions

Although AI applications for thoracic radiology are one of the
most developed in radiology, still the use of these applications
in clinical practice is scarce. But, with recent improvements in
quality of the products and more attention on the clinical is-
sues rather than technical possibilities, more products are ex-
pected to be implemented in the clinic in the near future.
Unfortunately, this does not mean that the current AI products
are of added value for the pediatric population. Literature with
performancemeasures of AI products in thoracic radiology for
the use in the pediatric population is limited, and very few of
the current applications could be used in the pediatric popula-
tion. To develop AI in pediatric chest radiology, more studies
are needed to evaluate the performance of current available

systems and also to develop AI products specifically aimed at
the pediatric population.

One approach is to extend existing algorithms aimed at
adults to the pediatric population. However, the intended use
of current AI products in radiology is tailored to adults. If new
studies of existing AI products were to show reliable perfor-
mance in the pediatric population, the intended use of these
products would be different and new certifications needed.

Furthermore, developers should focus on clinical is-
sues in pediatric chest radiology. For instance, detection
of pneumonia or pulmonary metastases in children could
be helpful in clinical practice. Pneumonia in the pediat-
ric population is common and can easily be diagnosed
with chest radiography. Accurate detection of pulmonary
metastases in chest CT of children with known malig-
nancy might improve patient outcome. Apart from ex-
tending existing products, other difficult radiographic
use cases could be addressed, for instance the automat-
ed grading of infant respiratory stress syndrome in pre-
mature newborns. Also, some products could be geared
toward the non-pediatric radiologist, who might be less
experienced in assessing pediatric imaging because of
less exposure, for instance during on-call hours. One
example of this could be automated detection of lines
and tubes in newborns, an application that would also
be helpful for clinicians.

Finally, AI could be used to improve imaging at acquisition
and lower the radiation dose. With AI, CT dose could be
lowered while preserving image quality in children [62, 63].
AI could also be used to reduce artifacts [64, 65]. This topic is
outside the scope of this review because our focus is on diag-
nostic applications; however, continuing improvements in ap-
plications can be expected. CT imaging in children might
therefore be less harmful with a lower radiation dose.

Conclusion

Multiple artificial intelligence products for chest radiology are
available, covering a wide range of thoracic abnormalities.
Reported performances of current products are promising,
but little is known about their value in daily clinical practice.
Products for pediatric chest radiology are scarce but might
become more prevalent in the near future. The available stud-
ies and evidence discussed in this paper suggest that products
for automated detection of pneumonia, tuberculosis and lines
and tubes in chest radiography and cystic fibrosis in chest CT
can be expected.
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