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Abstract
Artificial intelligence (AI) is playing an ever-increasing role in radiology (more so in the adult world than in pediatrics), to the
extent that there are unfounded fears it will completely take over the role of the radiologist. In relation to musculoskeletal
applications of AI in pediatric radiology, we are far from the time when AI will replace radiologists; even for the commonest
application (bone age assessment), AI is more often employed in an AI-assist mode rather than an AI-replace or AI-extend mode.
AI for bone age assessment has been in clinical use for more than a decade and is the area in which most research has been
conducted. Most other potential indications in children (such as appendicular and vertebral fracture detection) remain largely in
the research domain. This article reviews the areas in which AI is most prominent in relation to the pediatric musculoskeletal
system, briefly summarizing the current literature and highlighting areas for future research. Pediatric radiologists are encouraged
to participate as members of the research teams conducting pediatric radiology artificial intelligence research.
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Introduction

Simply put, artificial intelligence (AI) can be defined as soft-
ware that automates (or semi-automates) a cognitive task. AI
applications in the musculoskeletal system can be fully auto-
mated (e.g., bone age assessment) or semi-automated (e.g.,
vertebral fracture assessment). Although AI tools in general
can be categorized as AI-assist (helping the radiologist), AI-
replace (replacing the radiologist) or AI-extend (exceeding the
capability of the radiologist) [1], as far as the author is aware,
no clinical tool functions in the AI-extend mode in pediatric
musculoskeletal radiology practice.

Existing AI tools can help to improve image quality; aid in
the measurement of lengths, angles and volumes; or aid in the
detection of pathological processes, the last through

recognition and classification of morphological or textural
abnormalities.

Of the 144 AI products that are CE (Conformité
Européenne) marked and commercially available, 74 also
have United States Food and Drug Administration (FDA) ap-
proval and 18 are related to the musculoskeletal system [2]. Of
these 18, one is for image enhancement and post-processing
rather than being a diagnostic aid, per se. Considering the
remaining 17 AI musculoskeletal products, the majority (14)
have been designed for aiding diagnosis from radiographs,
while use in pediatric radiology is only explicitly stated in
the information available for 3 of the 17 tools. Table 1 sum-
marizes these 17 available musculoskeletal AI tools; all 3 tools
intended for use in pediatric radiology are for bone age assess-
ment [2].

Although commercially available tools are currently
only for bone age assessment, ongoing and published
research pertains to tasks such as fracture diagnosis (ap-
pendicular and vertebral), scoliosis and leg-length dis-
crepancy measurements. Other areas where pediatric re-
search is being performed include determining bone
health using the bone health index and diagnosing
metopic craniosynostosis and developmental dysplasia
of the hip. These emerging applications could achieve
commercial release within the next decade.
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This review also identifies and briefly discusses areas in
which very little AI research has been conducted but in which
there is potential for AI to play a significant role; these areas
include inflicted injury (child abuse) and skeletal dysplasias.

The main focus of this article is on diagnosis/detection of
pathology. For AI applications related to image-quality im-
provement, image post-processing, quality control, etc., the
reader is directed to other articles in this special issue and to
the 2019 review by Koska [3].

Current applications: bone age assessment

Although three bone age assessment AI tools are on the mar-
ket, the oldest and probably best known is BoneXpert
(Visiana, Hørsholm, Denmark). Indeed, BoneXpert is the

oldest musculoskeletal AI-replace software tool on the market
(Table 1), and more than 150 departments are using
BoneXpert in day-to-day clinical practice across Europe, each
performing more than 100 analyses per year (personal com-
munication with H.H. Thodberg and P. Bak, November
2020).

BoneXpert automatically calculates bone age according to
the Greulich and Pyle and the Tanner and Whitehouse stan-
dards in a process that takes less than 15 s per hand and wrist
radiograph. The method is based on traditional machine-
learning methodology and involves prediction of bone age
based on shape, intensity and texture scores as derived from
principal component analysis. It is worth noting that there are
no General Data Protection Regulation (GDPR)-related is-
sues, because BoneXpert is configured as a Digital Imaging
and Communications in Medicine (DICOM) node for local

Table 1 Currently available CE-marked musculoskeletal radiology artificial intelligence (AI) toolsa

Date on
market

Company Product name Disease targeted Modality Pediatricsb CE
class

FDA

Mar 2009 Visiana (Hørsholm,
Denmark)

BoneXpert Bone age Radiography Y I N

2012 Medimaps (Geneva, Switzerland) TBS iNsight (Osteo) Osteoporosis Radiography N IIa II

Nov 2017 Aidoc (Tel Aviv, Israel) C-Spine C-spine fracture CT N I II

May 2018 VUNO (Seoul, Korea) VUNO Med-BoneAge Bone age Radiography Y IIa N

Jan 2019 QUIBIM (Valencia, Spain) 2D Bone Microarchitecture
QTS Score

Osteoporosis
Oncology
Osteopenia

Radiography N IIa N

Jan 2019 QUIBIM 2D Bone Microarchitecture
QTS Score

Osteoporosis
Oncology
Osteopenia

CT, MRI N IIa N

Jan 2019 QUIBIM Cartilage T2 Mapping Osteoarthritis
Degeneration
Sports diseases

MRI N IIa N

Jan 2019 QUIBIM Texture Analysis Tumors
Osteoporosis
Osteopenia
Osteoarthritis

Radiography, CT,
MRI, PET, US,
SPECT

N IIa N

Jun 2019 AZMed (Paris, France) Rayvolve Fracture Radiography N I N

Aug 2019 ImageBiopsy Lab
(Vienna, Austria)

IB Lab KOALA Osteoarthritis (knee) Radiography N I II

Nov 2019 Radiobiotics (Copenhagen,
Denmark)

RBknee Osteoarthritis (knee) Radiography N I N

Feb 2020 Arterys (San Francisco, CA) Chest/MSK AI Fracture
Dislocation

Radiography N IIa N

Mar 2020 Gleamer (Paris, France) BoneView Fracture Radiography N IIa N

Oct 2020 ImageBiopsy Lab IB Lab HIPPO Hip measurements Radiography N I N

Oct 2020 ImageBiopsy Lab IB Lab LAMA Leg geometry Radiography N I N

Nov 2020 ImageBiopsy Lab IB Lab PANDA Bone age Radiography Y I N

U Zebra (Kibbutz Shefayim,
Israel)

Bone Health Vertebral compression
fractures

CT N U II

CE Conformité Européene, FDA United States Food and Drug Administration approval, MSK musculoskeletal, N no, PET positron emission tomog-
raphy, SPECT single-photon emission computed tomography, U unknown, Y yes
a Derived from [2]
b Only includes those tools for which pediatric use is explicitly stated
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picture archiving and communication systems (PACS) and is
an image-analysis application only. In other words,
BoneXpert does not store data, share data or transfer data
outside the local PACS. The pathway and output are illustrat-
ed in Figs. 1 and 2, respectively, and the terminology used in
the output is explained in Table 2.

Although launched in 2009 as an AI-replace tool, approx-
imately 70% of departments that have the software installed
use BoneXpert as an AI-assist tool (A. Offiah, unpublished
work). The reason for this is simple: while BoneXpert rejects
radiographs with significant abnormality (e.g., poor position-
ing, abnormal bone morphology, poor image quality), it does
not reject radiographs with subtle abnormality of morphology
(e.g., early rickets) or abnormality of texture (e.g.,
metaphyseal striations). If a radiologist does not review the
radiographs, then these subtle changes will be missed. The
detection of such abnormalities is outside the scope of the
software as developed, and radiologists are advised to bear
this in mind.

The percentage of radiographs rejected by BoneXpert be-
cause of abnormal anatomy depends on the types of patients
seen, ranging from approximately 0.4% in general hospitals to
up to 3% in hospitals specializing in skeletal dysplasias. The
percentage of radiographs rejected by BoneXpert because of
poor image quality is generally very low (reflecting radiogra-
pher competence). However, departments in which significant
edge-enhancement is applied as part of the post-processing of
images might see rejection rates of up to 10%, accompanied
by the error message, “Too sharp” (personal communication
with H.H. Thodberg and P. Bak, April 2021). The software
has been tested in multiple populations and ethnicities, includ-
ing Caucasian, African American, Hispanic, Asian Chinese
and Saudi Arabian populations [4–9]; while generally appli-
cable to all ethnicities, some caution is advised, but this is
related to the applicability of the standards (Greulich and

Pyle, Tanner and Whitehouse 3) and not to the BoneXpert
software itself. The latter claim can be made based on diag-
nostic accuracy studies that have compared manual to

Fig. 1 BoneXpert workflow. The radiographer who has performed the
left hand and wrist radiograph sends it to the picture archiving and
communication system (PACS) in the usual way. The reporting
radiologist (or radiographer) transfers the image to BoneXpert, where
the automated bone age estimation is performed. BoneXpert then
returns the annotated image to the PACS. The reporting radiologist now

not only has access to the BoneXpert-derived Greulich and Pyle and the
Tanner and Whitehouse 3 bone age assessments, but he or she can also
review the original radiograph for disease-related abnormality (e.g.,
evidence of a skeletal dysplasia). Image courtesy of Peter Bak and Hans
Henrik Thodberg (Visiana). CR computed radiography, DICOM digital
imaging and communications in medicine, DR digital radiography

Fig. 2 Posteroanterior left hand and wrist radiograph in a 3-week-old
boy, following interpretation of bone age by BoneXpert. The figures in
the small white boxes represent the Greulich and Pyle bone ages of the
individual bones. BA (GP) Greulich and Pyle bone age (gender), BA SDS
Bone age standard deviation score (ethnicity), BA (TW3) Tanner and
Whitehouse three-bone age, BHI bone health index (digital X-ray
radiogram), BHI SDS bone health index standard deviation score
(ethnicity), CauEu Caucasian European, M male, N/A not available (no
ossified carpal bones in this child), y years. See also Table 2
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automated bone age assessments [10–17], with reported root
mean square errors being as low as 0.63 [18].

In 2017, the Radiological Society of North America
launched a Machine Learning Challenge, making freely avail-
able a set of more than 14,000 hand and wrist radiographs
[19]. The best-performing entry achieved a concordance cor-
relation coefficient of 0.99 and differed from ground truth by
only 4.3 months, compared to 7.3 months for radiologists
[20]. It is possible for readers to test the application for them-
selves but note that it is for demonstration purposes only (i.e.,
it is not for clinical use) [21].

Other bone age tools have also been tested and found to
be reliable and accurate and to reduce reporting times
[22–26] and it is worth pointing out the encouraging results
obtained for bone age estimation of the index finger alone
(as opposed to the entire left hand and wrist radiograph)
when using a neural-network-based AI application, which
paves the way for hand-held bone age estimation machines
[26].

While some authors have focused their work on AI deter-
mination of bone age from other sites, such as the pelvis [27]
or knee [28], and other modalities, such as MRI [29–32], a
relatively recent systematic review highlighted the lack of
such studies, in addition to the need for more research
assessing potential socioeconomic and ethnic variations on
the performance of such AI tools [33].

Emerging/future applications

Bone health index

There is no reliable method of predicting fracture risk in
children. While dual-energy X-ray absorptiometry is the
gold standard for bone mineral density assessment in chil-
dren, it has limitations [34–36]. As such, other quantitative
bone imaging techniques have been developed including
AI applications (predominantly related to adults; Table 1).
Of relevance to pediatrics is radiogrammetry. Originally
performed manually [37], this technique lends itself to au-
tomation because it measures cortical thickness of the

phalanges in relation to their lengths, thereby producing
an index of bone strength.

In addition to determining bone age, the BoneXpert soft-
ware discussed in the previous section also performs “dig-
ital X-ray radiogrammetry,” providing an indication of
bone health called the “bone health index” or “BHI”
(Fig. 2 and Table 2). Bone health index is derived from a
measurement of the cortical thickness, width and length of
the three middle metacarpals. A standard deviation score is
also provided, allowing comparison with the bone health
index of healthy Caucasian children of the same age and
gender.

While a few studies have been performed with favorable
results [38–41], the clinical role of the bone health index in
monitoring and assessing bone strength in children (of any
ethnicity) has not been elucidated. In a recent systematic re-
view, peripheral quantitative computed tomography (pQCT),
bone health index and quantitative ultrasound (QUS) were
compared with dual-energy X-ray absorptiometry. Meta-
analysis showed BHI to have the strongest correlation with
dual-energy X-ray absorptiometry, with a pooled estimate of
correlation of 0.71 compared to 0.57 for both pQCT and QUS
[42]. These results encourage further research into the poten-
tial clinical application of BHI.

Fracture assessment

Appendicular fractures

The few studies that have assessed the utility of AI for appen-
dicular fracture detection in children have predominantly con-
centrated on the elbow joint, possibly because of the complex-
ity of the elbow joint and multiple unossified epiphyseal cen-
ters that are found in children. England et al. [43] used a
relatively small set of lateral radiographs to train (657 images),
validate (115 images) and test (129 images) a convolutional
neural network for the identification of elbow joint effusions.
Compared to the reference standard of radiologists’ reports,
the network had sensitivity, specificity and accuracy of 0.91.

In a significantly larger study consisting of 21,456
anteroposterior and lateral elbow radiographs, Rayan et al.
[44] determined the feasibility of deep learning to correctly
classify elbow radiographs as normal or abnormal. The true
positive rate (i.e., those radiographs correctly classified as ab-
normal) was highest for supracondylar fractures (0.996) and
lowest for osteochondral lesions (0.000), although it should be
noted that there were only two cases of osteochondral lesions
in the entire dataset. Most recently, Choi et al. [45] assessed
the ability of a convolutional neural network to correctly iden-
tify supracondylar fractures from 1,266 anteroposterior and
lateral elbow radiographs.

The results of these three studies (summarized in Table 3;
[43–45]) are encouraging. However, particularly given their

Table 2 BoneXpert outputs

Term Interpretation

BA (GP) Greulich and Pyle bone age (gender)

BA SDS Bone age standard deviation score (ethnicity)

BA (TW3) Tanner and Whitehouse three-bone age

Age Chronological age

BHI Bone health index (digital X-ray radiogram)

BHI SDS Bone health index standard deviation score (ethnicity)
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relatively low positive predictive values, the current role of
such AI tools would appear to be in the initial triage of elbow
radiographs following trauma in children, in areas where a
(pediatric) radiologist is not immediately available. Future re-
search could also be directed toward determining the feasibil-
ity of AI tools for fracture detection in children at other ap-
pendicular sites, in a similar way to ongoing investigations in,
e.g., the wrist [46] and proximal femur [47] of adults.

Axial fractures

A decision tree might be seen as a flowchart-like structure, with
each branch representing a potential outcome. Optimal trees are
predictive AI algorithms that limit the number of outcomes while
encompassing as much of the available data as possible [48].
Bertsimas et al. [49] used an optimal trees artificial intelligence
approach to predict cervical spine trauma in children. However,
this model was based on history and clinical parameters (includ-
ing Glasgow Coma Scale) and used imaging interpretation by
radiologists as an outcome measure for presence or absence of
fracture, rather than using the algorithm to classify radiographs.
Given the difficulty associated with obtaining adequate views
(particularly in younger children) and complexity of the cervical
spine [50], thiswould be aworthy field for the development of an
AI diagnostic tool.

Other studies assessing AI tools for detecting vertebral
fractures in children relate to osteoporotic compression frac-
tures rather than post-traumatic fractures and are briefly
reviewed next.

The diagnosis of vertebral crush fractures from dual-energy
X-ray absorptiometry scans is termed vertebral fracture assess-
ment, and the Lunar iDXA machine (GE Healthcare Lunar,
Buckinghamshire, UK) has been shown to be as reliable as
radiographs for vertebral crush fracture diagnosis in children
at a lower radiation dose penalty [51, 52]. The use of software
tools to diagnose vertebral fractures from dual-energy X-ray
morphometry scans is termed morphometric vertebral analysis
[52]. Such software tools are widely available for clinical use in
adults; however, they have not been licensed for use in chil-
dren. Given both the wide variability in diagnosis of vertebral
fractures in children [53] and that the recognition of vertebral

shape (morphometry) lends itself to AI applications, re-
searchers have assessed the accuracy and reliability of existing
adult software, specifically SpineAnalyzer (Optasia Medical,
Cheadle, UK) and AVERT (Optasia Medical) in the diagnosis
of vertebral fractures in children [54–56]. The AI tools
SpineAnalyzer and AVERT are semi-automated; they require
an individual to identify and label the centers of vertebral bod-
ies T4 to L4 (any non- or poorly visible vertebrae can be omit-
ted). The tools then automatically outline the vertebral bodies
using 6 (SpineAnalyzer) or 33 (AVERT) points and provide an
output indicating normal or fractured vertebrae and severity of
fracture based on height loss ratios (Fig. 3; [56]). The reader
can manually reposition any points that were erroneously iden-
tified by the software. The conclusion of these studies is that the
diagnostic accuracy of existing adult (semi-automated) soft-
ware tools for vertebral fracture assessment in children is insuf-
ficiently adequate for clinical use (Table 4). Reasons for this
include unossified ring apophyses, variation in vertebral
shape with age and normal variants in children, all issues
that are less problematic (if at all) in adults. The adult tools
were trained using the radiographs of post-menopausal
women and (despite the misleading final column in Fig. 3,
which suggests otherwise) are based on the Genant et al.
[56] classification for vertebral fractures. If morphometric
vertebral analysis is to be accurate in children, then any tool
developed must be trained using the spine radiographs of a
cohort of healthy children [57].

Inflicted fractures (child abuse)

Inflicted metaphyseal and rib fractures in infants and young chil-
dren are often difficult to detect and yet are highly predictive of
abuse [58, 59]. United Kingdom national guidelines (adopted by
the European Society of Paediatric Radiology) advise that im-
ages be double-reported by at least one pediatric radiologist [60,
61]; therefore in centers where this is not possible because of
staffing issues, it would be helpful to have an AI-assist tool, if
only to highlight suspicious areas for closer review by the radi-
ologist on either skeletal surveys performed for suspected abuse
or (perhaps more important) on radiographs performed for other
indications, e.g., a chest radiograph for cough. Work has been

Table 3 Diagnostic accuracy of
artificial intelligence (AI)
applications for elbow trauma in
children

Author [reference] Sensitivity Specificity Accuracy Positive
predictive value

Negative
predictive value

England et al. 2018 [43] 0.91 0.91 0.91 – –

Rayan et al. 2019 [44] 0.91 0.84 0.88 0.87 0.89

Choi et al. 2020 [45]
(temporal test set)

0.93 0.92 – 0.80 0.98

Choi et al. 2020 [45]
(geographic test set)

0.10 0.86 – 0.70 0.10
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done on the AI-assisted detection of rib fractures in adults, with
encouraging results [62–65], including the development of fully
automated convolutional neural networks to perform this task
[66, 67]. However, to the author’s knowledge, no such studies
have been carried out for suspected abusive fractures in infants
and young children. Research in this area should be encouraged.

To assist radiologists and others in the field, a web-based
tool to unify the investigative protocol in suspected abuse and
to support training and multicenter national and international
research, a knowledge base to be populated with clinical in-
formation, radiographs and radiographic information has been

described [68] and continues to be developed (ongoing work
of author).

Other emerging/future pediatric musculoskeletal
applications

Developmental hip dysplasia

Two studies have assessed the ability of neural networks to
diagnose developmental hip dysplasia in children [69, 70]. Li
et al. [69] used a training set of 11,473 anteroposterior pelvic

Table 4 Diagnostic accuracy of
artificial intelligence (AI)
applications for morphometric
vertebral fracture assessment in
childrena

Author [reference] Sensitivity Specificity False-positive
rate

False-negative
rate

Kappa

Crabtree et al. 2017 [52]
(6-point techniqueb)

0.79 0.71 0.13 0.27 0.24–0.60

Alqahtani 2019 [54]
(SpineAnalyzer)

0.31 0.96 0.04 0.69 0.16–0.44

Alqahtani 2019 [54] (AVERT) 0.41 0.91 0.09 0.59 0.26–0.46

Alqahtani 2020 [55] (AVERT)

Single radiographer

Additional observers

0.80

0.89

0.90

0.79

0.10

0.21

0.20

0.11

-

0.29–0.69

a From dual-energy X-ray absorptiometry scans
b The precise software tool used was not specified

Fig. 3 Lateral spine dual-energy
X-ray absorptiometry scan in a
12-year-old boy, left, with
deformity results right.
Morphometric vertebral fracture
assessment using SpineAnalyzer
identifies four mild (T4, T10,
T11, L1) and three moderate (T9,
T12, L3) fractures. Bicon.
biconcave, SQ semi-quantitative
score (of Genant et al. [56])
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radiographs and a test set of 101 images for the diagnosis of
developmental dysplasia of the hip based on the Sharp angle
(acetabular index). They found that accuracy was similar
when compared to orthopedic surgeons and required less time,
and they concluded that their AI tool could potentially replace
orthopedic surgeons [69]. Zhang et al. [70] used 9,081
anteroposterior pelvic radiographs as their training set and a
further 1,138 anteroposterior pelvic radiographs as their test
set for the diagnosis of developmental hip dysplasia based on
the acetabular index. They concluded that their deep-learning
system improved consistency, convenience and effectiveness
compared to clinician-led diagnosis and suggested that it
might simplify current screening pathways [70].

As far as can be ascertained, neither of these tools was
compared to a reference standard of pediatric radiologists. In
the author’s opinion, this would be an important next step
before widespread use of such AI tools by pediatric radiology
departments.

Spinal alignment

Several studies have been conducted to determine the degree
of scoliosis and other measurements of the spine using con-
ventional radiographic images [71], biplanar radiographic im-
ages [72] or moiré images [73]. All such studies have shown
promising results and indeed automated spine and lower limb
measurements are performed by the biplanar imaging system
installed at the author’s institution.

Other authors have assessed the ability of AI to predict
scoliosis progression [74], assess the Risser stage [75], detect
evidence of scoliosis treatment from radiographs [76] and to
automate three-dimensional (3-D) spine reconstructions from
biplanar images [77].

Miscellaneous

A few other studies conducted in children (or children and
adults) and assessing AI applications in the musculoskeletal
system are worthy of mention and include determining leg-
length discrepancy from radiographs [78], quantifying the de-
gree of metopic craniosynostosis from skull CT scans [79],
predicting the presence of discoid lateral menisci from radio-
graphs [80], determining muscle mass from dual-energy X-
ray absorptiometry scans in cerebral palsy [81] and discerning
sexual dimorphism from hand and wrist radiographs [82].
Further applications of some of these tools are obvious, e.g.,
diagnosis of premature fusion of sutures other than the
metopic suture and determination of muscle mass in other
conditions such as myopathies and juvenile dermatomyositis.
The clinical utility of a tool that identifies gender from hand
and wrist radiographs is limited to forensic imaging, perhaps
helping with the identification of bodies destroyed by mass
disasters, but it is significant because (to the author’s

knowledge) it is the only example of a potential AI-extend
tool in pediatric musculoskeletal imaging (i.e. a tool that per-
forms a task over and above the capability of radiologists).

Computer-assisted diagnosis of skeletal dysplasias might
be based both on AI-assisted morphological analysis and on
the creation of “ontologies” in the skeletal dysplasia domain.
An ontology organizes large datasets into sets of categories/
concepts and forms relationships between them [83].
Ontologies related to skeletal dysplasias include the Human
Phenotype Ontology [84], the Bone Dysplasia Ontology [85]
and the dynamic Radiological Electronic Atlas of
Malformation Syndromes (dREAMS) [86].

Pertaining to AI-assisted diagnosis of skeletal dysplasias
based on skeletal morphometry, preliminary work using ra-
diographs of infants from the dREAMS database has shown
an accuracy of 78.0% to 87.5% for lateral spine, 68.0% to
75.0% for anteroposterior spine and 87.5% to 88.0% for
anteroposterior chest radiographs in dichotomizing images to
“achondroplasia” or “not achondroplasia” categories [87].
Accuracy and confidence intervals would be expected to im-
prove using a dataset larger than that used by the authors (40
lateral spine, 16 anteroposterior spine and 26 anteroposterior
chest radiographs in a ratio of 70% to 30% for training and
testing, respectively). Nevertheless, the results provide proof
of concept and suggest that the task is worth pursuing.

Conclusion

Bone age assessment tools are the only pediatric musculo-
skeletal AI tools available on the market. In recent years,
increasing research has been conducted in areas such as
elbow fractures, developmental hip dysplasia and scoliosis
assessment. However, there is significant scope for more
work, particularly in areas such as the diagnosis of vertebral
fractures, inflicted injury, skeletal dysplasias and musculo-
skeletal oncology. Pediatric radiologists are encouraged to
be members of the research teams conducting such studies,
so that the reference standard used is the diagnostic accura-
cy of pediatric radiologists, rather than the diagnostic accu-
racy of clinicians from other specialties, which is the case in
some publications. AI tools will not replace the pediatric
musculoskeletal radiologist in the near future, if ever.
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