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Abstract
Since the introduction of artificial intelligence (AI) in radiology, the promise has been that it will improve health care and reduce
costs. Has AI been able to fulfill that promise? We describe six clinical objectives that can be supported by AI: a more efficient
workflow, shortened reading time, a reduction of dose and contrast agents, earlier detection of disease, improved diagnostic
accuracy and more personalized diagnostics. We provide examples of use cases including the available scientific evidence for its
impact based on a hierarchical model of efficacy. We conclude that the market is still maturing and little is known about the
contribution of AI to clinical practice. More real-world monitoring of AI in clinical practice is expected to aid in determining the
value of AI and making informed decisions on development, procurement and reimbursement.
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Introduction

Artificial intelligence (AI) has the potential to change many
aspects of health care. However, AI is a means, a tool, not the
goal in itself. To create a positive impact on health care with
this technology, the clinical goal should be clearly defined.
The Da Vinci robot is a well-known example of innovative
technology that became very popular very fast, but even today
the cost-effectiveness and claim of improved patient outcomes
are being debated [1, 2]. With health care expenses continu-
ously rising through an increasingly older population and
evolving technology, we should dare to be critical about what
medical devices, including AI-based software, are actually
improving health care or making it more efficient.

More than 150 AI products for radiology are on the market
[3]. These products have been cleared by the Food and Drug
Administration (FDA) or are European Conformity (CE)
marked to allow clinical use in the United States and
Europe, respectively. Although the supply is large, the scien-
tific evidence on the validation and impact of these products
remains limited [4, 5]. A study performed in 2020 showed that
only 36 of 100 AI products analyzed had peer-reviewed evi-
dence available on their efficacy [5].

The scientific evidence on the efficacy can be classified ac-
cording to the hierarchical model developed by Fryback and
Thornbury [6] back in 1991 to evaluate the contribution of diag-
nostic imaging to the patient management process. In a previous
study this model was adapted (Table 1; [5, 6]) to be applicable to
assess evidence on AI [5]. The lower levels describe the func-
tioning and performance of the product (levels 1, 2). Evaluations
regarding higher levels (levels 3–5) describe the impact on the
diagnosis, therapy and outcome of the patient. Ultimately, level 6
evidence describes the impact of AI on a macro level, demon-
strating the effects on costs and health.

Most studies demonstrated the accuracy of the algorithm (lev-
el 2), but (prospective) research showing the benefits in clinical
practice (level 3 and up) was limited and covered only 18 of the
100 products evaluated [5]. Another recently published study
systematically reviewed evidence on the economic impact of
AI in health care (level 6) and found only six eligible articles
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[7], demonstrating the limited evidence of the impact of AI from
a more global perspective.

Considering the framework of value-based health care and
the corresponding value equation, value=outcome/cost, AI
can create value when either reducing the costs or improving
the health outcome [8]. We define these as the ultimate goals
of AI in radiology, which can be supported by a variety of
subgoals described as (1) making the workflowmore efficient,
(2) shortening the reading time, (3) reducing dose and contrast
agents, (4) earlier detection of disease, (5) improved diagnos-
tic accuracy and (6) more personalized diagnostics (Fig. 1).

In this paper, we expand upon the AI tasks and use cases
supporting these six objectives, summarized in Table 2, and
provide the evidence that demonstrates the (potential) impact
of these solutions on health care.

Clinical objectives with artificial intelligence

More efficient workflow

With ever increasing health care costs worldwide, effective
use of the limited resources is an important endeavor. AI could

contribute to this in clinical, but also non-clinical, ways. For
example, even before a patient enters the radiology depart-
ment, AI software might aid the scheduling of imaging ap-
pointments and predict no-shows for nudging or more effi-
cient scheduling. Chong et al. [9] trained a model to predict
which patients had the highest risk of missing their appoint-
ment. These patients received a phone call reminder, decreas-
ing the no-show rate from 19.3% to 15.9% [9]. The impact of
most of these solutions is not necessarily aimed at the detec-
tion or diagnosis of the patient; rather, these solutions address
boundary conditions like patient management. The applica-
tions, therefore, involve lower risk and have fewer rules and
regulations to comply to before they can be implemented in
clinical practice. In spite of this, the availability and imple-
mentation of such software are limited, leaving room for
growth of this industry.

The workflow might also be optimized by changing the
diagnostic process with AI. A use case that is already wide-
spread is AI software for tuberculosis detection on chest radio-
graphs. AI-supported tuberculosis detection is especially useful
in developing countries where staffing, expertise and financial
resources are often limited. This can be used as an autonomous
pre-screening tool to reduce the use of microbiological tests,

Table 1 Hierarchical model of
efficacy to assess the contribution
of artificial intelligence (AI)
software to the diagnostic
imaging process, adapted from [5,
6]

Level Explanation

Level 1t Technical efficacy

Study demonstrates the technical feasibility of the software

Level 1c Potential clinical efficacy

Study demonstrates the feasibility of the software to be clinically applied

Level 2 Diagnostic accuracy efficacy

Study demonstrates the standalone performance of the software

Level 3 Diagnostic thinking efficacy

Study demonstrates the added value to the diagnosis

Level 4 Therapeutic efficacy

Study demonstrates the impact of the software on the patient management decisions

Level 5 Patient outcome efficacy

Study demonstrates the impact of the software on patient outcomes

Level 6 Societal efficacy

Study demonstrates the impact of the software on society by performing an economic analysis

Fig. 1 Six objectives that can be pursued with artificial intelligence in radiology to improve efficiency and health outcomes
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which are more time-consuming and costly (levels 2, 3, 6)
[10–13]. This is one of the first AI applications in radiology
where the software functions autonomously and has taken over
the task of the radiologist.

The potential of AI for workflow optimization is also being
explored in use cases, but this has not been put into clinical
practice. Formammography screening, for example, studies have
been performed to simulate an alternative workflow in which an
AI risk score determines the number of radiology reads (none,
single or double), reducing the total amount of reading time (level
3) [14, 15]. For lung nodule detection on CT, it has been pro-
posed to empower technicians with AI to leave only some of the
workload to the radiologists (level 3) [16].

Shorter reading time

Apart from increasing diagnostic accuracy and patient outcome,
AI can contribute to increasing efficiency of the workforce.
Between 2013 and 2018, CT and MR imaging exams increased
by 54% and 48%, respectively, in theUnitedKingdom,while the
radiology workforce grew only 19% [17]. Increasing numbers of
diagnostic imaging examinations along with image technology
improvements in the number of slices, reconstructions and se-
quences have resulted in many more images to review per pa-
tient. Decreasing the reading time of the exams could counteract
this trend and potentially reduce the rate of burnout for pediatric
radiologists as well [18].

Computer-aided detection (CAD) can decrease reading
time by making the diagnostic process easier. Research has
shown that reading time for normal cases decreased whereas
the reading time for pathological cases slightly increased
when using CAD tools [19]. Besides quality of the AI system,
workflow integration is crucial for making this kind of soft-
ware a success. Image enhancement could not only shorten
image acquisition time but also ease detection, as shown by
Martini et al. [20], who found that vessel suppression on CT
thorax imaging resulted in a 21% reduction in reading time for
the detection of pulmonary metastasis. Last, the automated
quantification of nodules, brain volumes or other tissues, for
example, might mitigate some of the tedious manual work that
is part of a radiologist’s job, along with the large interrater
variability inherent to these tasks [21, 22]. In pediatrics, the
automated bone age prediction is a well adopted AI solution
aiding the quantification and reading efficiency of hand radio-
graphs [22, 23]. The device could be used autonomously,
potentially reducing the reading time to zero, or as a concur-
rent read to speed quantification.

Early detection

A timely diagnosis or intervention might be the objective to
ultimately improve patient outcome. Especially in critical care
situations, such as stroke diagnostics where the phrase “time isTa
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brain” is used, speed is important and AI has gained ground.
AI software is used to analyze CTs and CT angiograms and
notify radiologists, hub centers or even the intervention team
directly when a large vessel occlusion or intracranial hemor-
rhage is present. Some preliminary prospective studies have
shown the potential positive impact of AI in stroke care by
reducing time between the CT angiography and the interven-
tion from 281 min to 243 min, on average, and reducing
length of stay (levels 4, 5) [24, 25].

An alternative method to reduce report turnaround times
and promote early detection of critical findings includes
worklist prioritization based on urgent findings detected by
AI [26]. A study from a German university hospital simulated
this concept on retrospective chest radiographs and found that
turnaround times for reporting critical findings reduced from
80 min to 35–50 min [27]. In the United States, a commercial
algorithm to prioritize intracranial hemorrhage resulted in re-
duced waiting time from 16 min to 12 min per positive case
[28]. Apart from identifying urgent findings, incidental find-
ings can also be detected early through AI notification.
Examples are lung nodule detection on chest radiographs
and automated detection of vertebral fractures to identify early
signs of osteoporosis using AI applied to every chest or abdo-
men CT (level 2) [29].

Dose and contrast reduction

A less renowned goal, but one that is very applicable for AI, is
the reduction of radiation dose and intravenous contrast
agents. This is even more relevant for pediatric patients be-
cause minimizing the use of radiation also minimizes the ele-
vated risk of cancer in younger patients [30]. More frequently,
deep learning is being used to advance and speed image re-
construction and post-processing [31, 32]. Such technology
facilitates good image quality with a lower dose or even no
dose, as shown by a study fromBelgium in which commercial
AI software was used to synthesize a CT from MR to assess
lesions in the sacroiliac joints for the diagnosis of
spondylarthritis, maintaining diagnostic accuracy and making
CT potentially redundant (level 3) [33].

Improved diagnostic accuracy

About half of the AI products for radiology on the market aim
primarily at improving diagnostic accuracy [3] by increasing
the sensitivity and/or specificity of the diagnostic test. These
products are designed to decrease missed diagnoses or prevent
unnecessary interventions or examinations, thereby improv-
ing health outcomes.

Computer-aided detection algorithms, which were around
long before the rise of AI, serve this purpose the most. By
reading the exam concurrently with the radiologist or as a
second read, bounding boxes, markers and probability scores

aid the radiologist in the diagnostic process. Many products
are on the market and much research has been conducted to
demonstrate the performance of these algorithms in compari-
son to radiologists or a ground truth (level 2) [13, 34–36].
However, most of these products cannot be used as a
standalone medical device, and it is therefore the accuracy of
the combination of the software and radiologist that matters
(level 3). Considering bone age assessment, researchers dem-
onstrated a substantial increase in diagnostic accuracy for two
radiologists aided by AI software as opposed to using the
Greulich-Pyle atlas only (level 3) [22].

Many CAD products are commercially available and have
gained ground in clinical practice. These products focus on the
detection of cancerous tissue such as breast lesions and lung
nodules. However, computer-aided detection is not the only
way to reach this objective. Image enhancement and quanti-
tative analysis also support this goal. For example, it has been
shown that bone or vessel suppression on thorax imaging can
elevate the detection of lung nodules (level 3) [20, 37]. In the
area of musculoskeletal radiology, we found that automated
knee assessment might improve both the agreement between
physicians and the accuracy of the osteoarthritis diagnosis
(level 3) [38].

Personalized diagnostics

Instead of acting based on knowledge and research of a pop-
ulation, AI algorithms can support precision medicine by
predicting risks and outcomes based on individual character-
istics. This can result in improved health outcomes and aid the
allocation of resources, e.g., by providing treatment or addi-
tional testing to patients who are expected to benefit most. For
example, in the field of neurology, AI-generated brain volume
measurements were used to predict the need for further inva-
sive testing to diagnose Alzheimer disease; by using this mod-
el, a high diagnostic accuracy could be achieved while only
performing additional biomarker testing on 26% of the popu-
lation (level 4) [39]. Similarly, for thyroid lesion assessment
with US, researchers showed prospectively that biopsies could
be avoided when the malignancy risk was assessed with the
help of a commercially available AI tool (level 4) [40].

Within the context of breast cancer screening, the classifi-
cation of breast density aims to personalize the screening pro-
cess. It is known that women with dense breasts have a higher
risk of cancer [41–43]. An automated method makes a strati-
fied screening process feasible in which women with dense
breasts receive screening more frequently or with other mo-
dalities such as MR imaging. A study from the Netherlands
involving more than 40,000 women with extremely dense
breast tissue according to commercially available AI software
resulted in significantly fewer interval cancers in the group
that received additional MR screening (level 5) [42].

2090 Pediatr Radiol (2022) 52:2087–2093



The use of additional data such as clinical characteristics
and genome information could enforce the ability to person-
alize predictions. However, this is not widespread within the
commercially available AI-based radiology software.

Discussion

Even though the potential of AI to create value to (pediatric)
radiology and the patient management process is large, the
impact has only been proved in a limited number of cases.
Most evidence is based on simulations or retrospective stud-
ies. One of the reasons for the lack of evidence might be that
the field is still maturing. Most products came to the market
only in the last 2 years (Fig. 2) [3]. On average, it takes
17 years for health care innovations to become adopted in
clinical practice [44]. Thus, one could argue that AI adoption
in clinical practice is still in its infancy.

In the light of pediatric radiology, some applications such
as bone age prediction have been widely adopted, but other
use cases linger. Vendors tend to go for areas of application
that are widely used, are relevant to a large population, and for
which there is a large availability of training data (“low hang-
ing fruit”). This causes significant overlap in the clinical use
cases addressed by vendors, while many use cases remain
unaddressed, including pediatric use cases.

Although FDA clearance and CE marking are present for
many AI products, this does not guarantee the added clinical
value. The notified bodies (Europe) and FDA (United States)
assess the medical devices, including AI software, for risk of
harm. Assessing the value and efficacy is up to the vendor and
clients themselves, even more so considering that the efficacy
is partly hospital-dependent because each hospital’s patient
populations, imaging brands and workflows are different
[45]. Therefore, it has been proposed by multiple parties, in-
cluding the FDA, to change the way AI software is regulated

from a standalone evaluation to a more systemic approach
where the context of the clinical and human interaction is
taken into account [45–47]. This would require more real-
world monitoring contributing to the available evidence on
the actual clinical impact of AI on health care.

Another challenge for creating clinical value with AI is the
actual technical implementation and deployment of these al-
gorithms. With many narrow task-oriented solutions on the
market, the number of contracts and integrations can quickly
proliferate and create a large overhead that does not contribute
to optimizing efficiency. Further, the increase of information
(biomarkers, quantifications, heatmaps, etc.) produced by the
algorithms has to be presented in a way that does not decrease
efficiency. Marketplaces and mediating platforms have
emerged to take some of that burden away. These platforms
are still in development and the added value both clinically
and financially remains to be studied.

Considering the increased attention on value-based health
care, determining the value of a new technology such as AI
becomes more relevant for hospitals and insurance compa-
nies. With the abundance of AI tools, monitoring or even
calculating the expected effects to make informed decisions
is crucial. This might demonstrate the return of investment—
quality or efficiency improvement — justifying the purchase.
Monitoring efficacy and use might alsominimize the presence
of ghost software, or the situation in which software is being
paid for but remains unused.

The question remains who is going to pay for the AI tools
introduced. Insurance companies might have a role in reim-
bursing the costs of AI use. In 2002, approval for reimburse-
ment was given in the United States for the use of CAD for
mammography, which caused a swift increase in sales and use
of the CAD systems [48]. However, this decision backfired as
studies by Fenton et al. [49] in 2007 and by Lehman et al. [48]
in 2015 showed that the use of these CAD systems in clinical
practice did not improve detection rates. Now, the CAD for
mammography can no longer be reimbursed separately, mak-
ing it only profitable to use if the system really improves the
efficiency or quality of the tumor detection.

In 2020, Medicare and Medicaid Services took another
approach to support the financing and adoption of AI
tools in acute stroke using the New Technology Add-on
Payment program [50]. The AI solutions aid in the detec-
tion of large-vessel occlusions in acute stroke and alert the
stroke team to decrease the time to treatment. Preliminary
studies have shown that patients might experience less
disability and are thus potentially in less need of extra
care later in life [24]. These potential benefits mostly lie
in the long term, although the costs for the software are
made in the short term by, for example, the radiology
department. Insurance coverage could be a game changer
in AI adoption but requires profound evidence of the clin-
ical impact of the AI tool and use case. Time will tell

Fig. 2 Number of artificial intelligence products in radiology brought to
market based on data from [3]
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whether this new approval has (re-)opened the gates for
other clinical use cases in- and outside the United States.

Conclusion

Even though the potential of AI software to impact radiology
is large, little is known about how it is changing the quality,
efficiency and costs of health care. History has shown that
real-world validation of these innovations is essential to mak-
ing informed decisions on further development, procurement,
implementation and reimbursement.

Closely evaluating and monitoring the experiences and im-
pact of the AI products in clinical practice should provide
insights in its contribution to the initial health care improve-
ment goals. Only then can we prove whether AI is contribut-
ing to improved health care with respect to both costs and
health outcomes.
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