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Abstract Retinoblastoma is the most common intraocular
tumor in children. The diagnosis is usually established by the
ophthalmologist on the basis of fundoscopy and US. Together
with US, high-resolution MRI has emerged as an important
imaging modality for pretreatment assessment, i.e. for
diagnostic confirmation, detection of local tumor extent,
detection of associated developmental malformation of the
brain and detection of associated intracranial primitive neuro-
ectodermal tumor (trilateral retinoblastoma). Minimum
requirements for pretreatment diagnostic evaluation of retino-
blastoma or mimicking lesions are presented, based on

consensus among members of the European Retinoblastoma
Imaging Collaboration (ERIC). The most appropriate techni-
ques for imaging in a child with leukocoria are reviewed. CT
is no longer recommended. Implementation of a standardized
MRI protocol for retinoblastoma in clinical practice may
benefit children worldwide, especially those with hereditary
retinoblastoma, since a decreased use of CT reduces the
exposure to ionizing radiation.
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Introduction

Retinoblastoma is the most common intraocular tumor in
children. The incidence is one in 17,000 births. Mean age at
clinical presentation is 2 years in unilateral forms (60% of
cases) and 1 year in bilateral forms [1, 2]. All bilateral forms, as
well as 15% of unilateral forms are related to a constitutional
(hereditary or de novo) mutation of the RB-1 gene, localized
on chromosome 13q14 [2]. Usually the patients present with
leukocoria (white pupil reflection) or a squint.

Retinoblastoma is curable. If detected while still con-
fined to the globe and if there are no metastatic risk factors,
the child will nearly always survive following appropriate
treatment [3, 4]. The preservation of visual function
depends on ocular preservation, initial tumor volume, the
anatomical relationships of the tumors to the macula and
optic disk and the adverse effects of the treatments
(cataracts, vitreous hemorrhage) [5]. In the presence of
metastatic risk factors, adjuvant treatment regimens are
usually applied to prevent life-threatening relapse [6, 7].

Diagnosis of retinoblastoma is usually made by fundo-
scopy (Fig. 1) (under general anesthesia) and US. The
ophthalmologist usually performs both investigations. In
almost all cases classic intratumoral calcifications can be
detected by US providing high confidence rate regarding
diagnosis. Various tumor parameters (laterality; number,
location and size of tumors; tumor seeding to vitreous,
subretinal space or anterior segment) can be evaluated with
these techniques. These are important for grouping the
retinoblastoma and to guide therapeutic decisions. Further
diagnostic imaging plays a crucial role in determining the
local extent and for detecting associated brain abnormalities, i.
e. intracranial tumor extension, possible midline intracranial

primitive neuroectodermal tumor (PNET) and brain malfor-
mations in patients with 13q deletion syndrome [8–10].

PNETs are associated with hereditary retinoblastoma, a
combination known as trilateral retinoblastoma, which
occurs in 5–15% of children in the hereditary subgroup
[10, 11]. Besides the pineal region (pineoblastoma), tumors
may also occur in the suprasellar or parasellar regions.
Trilateral retinoblastoma has been lethal in virtually all
cases reported in literature; however, early detection and
intensive (chemo-)therapy may be lifesaving for some
patients [10, 12, 13].

Conservative treatment strategies (avoidance of enucle-
ation and external beam radiation therapy) can be successful
in the early stages of retinoblastoma and in some patients with
advanced intraocular disease [14]. The options for eye-
preserving therapy have significantly improved during recent
years and are mainly based on tumor reduction with
chemotherapy, and are usually combined with laser coagu-
lation, cryotherapy or radioactive plaque. Recently, selective
ophthalmic artery infusion of a chemotherapeutic agent
became available as an additional treatment option for
locally advanced disease [15]. As a consequence, more
children are treated without histopathological confirmation
and, what is more important, without assessment of risk
factors for disease dissemination and prognosis. Therefore,
imaging is very important in local staging.

Whereas imaging is increasingly used for diagnosis and
as a basis for treatment decisions in retinoblastoma, there is
a lack of standardization for choosing among modalities
and for the minimum quality of MRI. The purpose of this
report is to present a guideline for diagnostic imaging of
retinoblastoma including a standardized MRI protocol
using conventional pulse sequences. The potential role of
advanced imaging techniques for lesion characterization
and detection of tumor extent (such as 3D T1-weighted
sequences, diffusion-weighted imaging, diffusion tensor
imaging and MR-spectroscopy) is beyond the scope of this
guideline.

Risk factors for metastasis and local recurrence

Retinoblastoma may spread either by hematogenous dis-
semination or by direct extension either through the bulbar
wall into the orbit or via the optic nerve and its meningeal
sheath [16]. Therefore, current risk factors for metastasis
and local recurrence include invasion of the optic nerve
posterior to the lamina cribrosa (in particular if there is
tumor at the surgical resection margin), anterior eye
segment (AES), or extensive invasion of the ocular coats
(massive choroidal and scleral invasion) [17–20]. Pathology
remains the gold standard to assess high-risk features of
retinoblastoma. The rate of postlaminar optic nerve invasion

Fig. 1 Fundus photograph shows two tumors. The large white mass with
prominent feeder vessels is located at the macula causing reduced visual
acuity. A smaller tumor is located in the inferolateral part of the retina.
Image courtesy Annette C. Moll, Amsterdam
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in patients treated by primary enucleation has been estimated
at 7–8% [21, 22]. Choroidal invasion is present in 23–42%
of enucleated eyes, out of which the invasion is massive in
about 9–11% [19, 23–25]. The exact incidence of massive
choroidal invasion is unknown, especially since the defini-
tion of “massive” differs among pathologists. Recently, new
consensus criteria were proposed by a worldwide collabora-
tion of pathologists and pediatric oncologists [26]. Tumor
invasion into the AES is very rare, being present in
approximately 2% of primary enucleated eyes [24, 27–30].
Children with histopathological risk factors for metastatic
disease require adjuvant chemotherapy to reduce the risk of
relapse [18–20, 31].

Radiation exposure and second primary malignancies
in hereditary retinoblastoma

Unlike survivors of non-hereditary retinoblastoma, survi-
vors of hereditary retinoblastoma have an elevated risk of
developing second (or even more) malignancies with a
cumulative mortality rate of 17% [32–34]. In patients with
hereditary retinoblastoma, the cumulative incidence of a
second primary malignancy within 40 years of the initial
retinoblastoma is 28% [34]. Chemotherapy has been
reported to increase the risk of leukemia in survivors of
retinoblastoma [35]. Radiotherapy is associated with an
increased risk of soft-tissue sarcomas in survivors of
hereditary retinoblastoma, with a reported significant
association of radiation dose with the risk of second
primary (or more) cancers [34, 36]. Assuming a linear
relation between radiation dose and stochastic risk, several
studies have demonstrated a theoretical increased risk of
CT-associated radiation-induced fatal cancers in children
[37]. Although low, this risk is likely to be further increased
in patients with hereditary retinoblastoma, who are known
to be genetically unstable, due to the inherited germ cell
mutation in the RB-1 tumor-suppressor gene. To minimize
the development of subsequent cancers, survivors of retino-
blastoma are advised to avoid unnecessary radiation. Further-
more, children undergoing radiotherapy for retinoblastoma
may experience abnormalities in the growth and maturation of
their craniofacial skeleton, resulting in mid-face deformities
[38]. For these reasons, external beam radiotherapy was
dramatically reduced for the conservative treatment options,
and the principle of minimizing the exposure to ionizing
radiation should also be applied to imaging. US and MRI
should be used instead of CT. The radiation from interven-
tional procedures, e.g., selective ophthalmic artery chemo-
therapy infusion, is also important [39]. The radiation dose
should be optimized, precisely measured and clearly reported
in future publications to facilitate balancing risks and
benefits both in imaging and therapy.

Choice of imaging modality

US, CT and MRI are the mainstay for imaging of head
and neck tumors in children. US is particularly useful for
examining superficial masses, such as retinoblastoma,
whereas CT and MRI are used to delineate deeper
lesions, particularly those involving the skull base and
the central nervous system. Nowadays, diagnostic eval-
uation of retinoblastoma consists primarily of US and
MRI. Positron emission tomography has become an
important modality for cancer imaging in general;
however, its value in retinoblastoma imaging is currently
limited [40].

US

The human eye, with its superficial position and its fluid-
filled structures, is ideally suited for US. Ocular US is
usually performed by the ophthalmologist while the child is
under general anesthesia, but can also quite easily be
performed without sedation. In retinoblastoma, US demon-
strates an irregular mass, more echogenic than the vitreous
body, with fine calcifications (highly reflective foci mostly
with characteristic acoustic shadowing) [41] (Fig. 2).
Histologically, there is calcification present in approximate-
ly 95% of tumors [42]. Calcification is key to differentiat-
ing retinoblastoma from other mass lesions in a young
child. US detects calcifications in 92–95% of cases where it
is present histopathologically [42, 43]. Retinal detachment
may also be observed, which is an important feature to

Fig. 2 US reveals a hyperechoic tumor occupying the posterior
segment of the globe. Calcium deposits, seen as highly reflective foci
(arrows), are pathognomonic for retinoblastoma in a young child
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define tumor growth pattern, either endophytic or exo-
phytic, or a combination of both. Endophytic tumors arise
from the inner layers of the retina and grow into the
vitreous body. Frequently, small clusters of tumor cells
detach from an endophytic mass, producing multiple
floating tumor islands; this process is known as vitreous
seeding. Exophytic tumors originate in the outer layers and
grow in the subretinal space, which causes retinal detach-
ment with subretinal exudate and possible subretinal tumor
seeding. Tumors with exophytic growth more frequently
have choroidal infiltration compared to endophytic tumors
[44]. Diffusely infiltrating retinoblastoma is a rare histo-
logical form characterized by diffuse infiltration of the
retina without a tumor mass [45]. Tumor height and
diameter are usually measured at US, as these measure-
ments are used for choice of treatment. Color Doppler can
be useful for differentiating a vascularized tumor mass from
echogenic effusions and for differentiation against devel-
opmental abnormalities such as persistent hyperplastic
primary vitreous (PHPV; also known as persistent fetal
vasculature, PFV), with the characteristic persisting hyaloid
artery.

US is not the imaging modality of choice for direct
evaluation of metastatic risk factors. Tumoral calcifications
commonly obscure visualization of the optic nerve [41].
Indirect detection of optic nerve invasion by measurement
of optic nerve diameter with a 3D-US technique has been
reported in a single case report [46], hence its value remains
unknown.

CT

On CT, retinoblastoma is typically a mass of high density
compared with the vitreous body, usually calcified and
moderately enhancing after iodinated contrast medium admin-
istration. CT detection of calcifications in retinoblastoma has a
sensitivity of 81–96%, and an even higher specificity [47].
However, delineation of intraocular soft-tissue detail is limited.
The evidence from surveys suggests that CT is still regarded
an obligatory imaging tool for evaluation of leukocoria,
primarily because CT is supposed to be the best imaging
modality for detection of intraocular calcifications [47–49].
However, justification of the irradiation of a large group of
retinoblastoma patients requires a base of evidence of the
procedure’s clinical effectiveness and possibly also radiation-
effectiveness [50] for supplying (1) valuable additional
information leading toward the diagnosis of retinoblastoma
and (2) valuable additional information, compared to non-
ionizing radiation modalities in detection of tumor extent.

CT was the first imaging modality used to detect optic
nerve invasion [51–53] and is historically assumed to be
precise in detection of tumor extent [54–56]. However,
this assumption is based on conflicting outdated literature,

without thorough evidence by radiologic-pathologic cor-
relation studies. The sensitivity of CT in detection of optic
nerve invasion is actually very low, even in patients with
extensive optic nerve invasion (length of invaded nerve
segment > 2 mm) [21, 51, 53]. The specificity, accuracy
and negative predictive value of CT remain artificially
high because of the relatively low incidence of optic nerve
invasion in normal-size nerves. An enlarged nerve due to
massive tumor infiltration is rare in developed countries.
Assuming retinoblastoma invasion into the optic nerve
produces distortion of the anastomotic vascular network in
the anterior optic nerve region, Jacquemin and Karcioglu
[52] considered that non-visualization of the central retinal
vessels is a reliable indicator of optic nerve invasion.
However, these results were not confirmed by other
studies [21].

MRI

Diagnostic MRI evaluation of a suspected retinoblastoma
requires much more than performing a routine MR imaging
examination of the orbit. High-resolution contrast-enhanced
MRI is the technique of choice and should be used whenever
possible to answer the key clinical questions (to evaluate an
intraocular mass and to determine disease extent; Fig. 3). MRI
has proved to be the most sensitive technique for evaluating
retinoblastoma, especially regarding tumor infiltration of the
optic nerve, extraocular extension and intracranial disease
[21, 22, 44, 57, 58]. A major factor influencing the success
of MRI is the use of appropriate hardware and optimized
pulse sequences with appropriate spatial resolution for ocular
MRI [21, 22, 44, 57–61].

Imaging strategy

Diagnosis of retinoblastoma

Examination under general anesthesia with fundoscopy and
US almost inevitably leads to the diagnosis. As US detects
foci of calcification in almost all retinoblastomas, there is
now little benefit of routine CT for detection of calcifica-
tions in suspected retinoblastoma. Due to technical devel-
opment, US and MRI are currently almost as accurate as
CT for detection of calcifications. Recently, Galluzzi et al.
[42] showed that when data from ophthalmoscopy, US and
MRI are put together, no calcifications detected on CT were
missed. A high-resolution gradient-echo T2-weighted se-
quence showed promising results regarding detection of
calcifications and has been shown to be more effective than
spin-echo techniques [42, 44].

The differential diagnosis of retinoblastoma includes
several non-neoplastic lesions that also cause leukocoria.

Pediatr Radiol (2012) 42:2–14 5



After retinoblastoma, which accounts for 47–58% of
cases of leukocoria in children, other causes in decreas-
ing order of frequency include PHPV, Coats disease,
larval granulomatosis (Toxocara canis), retinopathy of
prematurity, and retinal astrocytic hamartoma [48].
Calcification is the most important differentiating feature of
retinoblastoma. However, when clinical diagnosis remains
uncertain, US and MRI help characterize and differentiate
intraocular abnormalities, especially when ophthalmolog-
ical evaluation is limited due to opaque ocular refractive
media, as may occur in all of these conditions. The role
of CT in the detection of (sometimes subtle) character-
istic findings is limited due to its low soft-tissue contrast
[48, 55].

Detection of tumor extent

In the past, CT was used to determine tumor size, retro-
orbital spread and intracranial growth; however, spread
within the optic nerve past the cribriform lamina, and
infiltration of choroid and sclera, which are important
prognostic factors, are not reliably assessed with CT [51,
53]. Because of its superior soft-tissue contrast, MRI is
more sensitive and specific than CT in detection of tumor
extent and metastatic risk factors. MR imaging using high-
resolution protocols is currently considered to be the most
accurate and valuable tool in pretreatment staging of
retinoblastoma, without known biological side effects.

Standardized retinoblastoma MRI protocol

Although individual examinations should always be tailored
to the specific queries in individual patients (laterality, disease
extent, therapy options), there are general recommendations
for MRI in retinoblastoma. In the following paragraphs we

Fig. 3 Transaxial T2-weighted (TR/TE, 3,460/116 ms) (a) and
T1-weighted (TR/TE, 374/14 ms) precontrast (b) and postcontrast
(c) MRI of exophytically growing retinoblastoma with secondary
retinal detachment. Retinoblastoma typically has low signal intensity

compared to the vitreous body on T2-weighted images and interme-
diate signal intensity on precontrast T1-weighted images, and it
demonstrates marked contrast enhancement

Fig. 4 High-resolution MRI in retinoblastoma. The child is under
general anesthesia. A small circular surface coil (arrow) is accurately
positioned close to the affected eye
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discuss the minimum requirements for diagnostic evaluation
of retinoblastoma or mimicking lesions according to the
consensus reached among members of the European Retino-
blastoma Imaging Collaboration (ERIC). If these recommen-

dations cannot be followed because of technical limitation,
ERIC members recommend to refer the patient to the nearest
(or national) reference center for retinoblastoma, where a
multidisciplinary team of specialized physicians (ophthalmol-
ogy, pediatric oncology, radiology, pathology, radiotherapy,
clinical genetics, psychology) and specialized nurses will
ensure that practice conforms to the best standards of care.

Patient handling

Although the technical success of MRI usually depends on
the cooperation of the patient, in retinoblastoma appropriate
sedation techniques or general anesthesia are nowadays
widely used, with a high yield of diagnostic scans.
Nevertheless, in our experience the success rate of
intravenous sedation is highly dependent on the presence
of trained anesthetists and of the choice of radiofrequency
coils. Especially, the use of small surface coils decreases the
success rate, because these coils need to be accurately
positioned close to the eye. The depth of sedation may be
insufficient for accurate patient positioning. Therefore,
general anesthesia is recommended for MRI in children
with retinoblastoma. Another advantage of general anes-
thesia is the possibility to ensure that the eyelids are fully
closed and to avoid uncontrolled eye movements by putting
pads (fixed with tape) on the closed eyelids. Thereby

Fig. 5 Transaxial contrast-enhanced T1-weighted (TR/TE, 722/
14 ms) image obtained at 3.0 T using a 32-channel head coil shows
an exophytic retinoblastoma with secondary total retinal detachment
and proteinacious subretinal effusion

Table 1 MRI protocol in retinoblastomaa

Requirements

Scanner and coils

Field strength above 1 T

1.5-T system combined with one or two small surface coils
(diameter < 5 cm)

3.0-T system combined with multichannel head coil

Sequences (minimum requirements)

Orbits

Transaxial T2-W (slice thickness ≤ 2 mm)

Optional: Transaxial CISS (Siemens) / FIESTA (GE) / DRIVE
(Philips)

Eye(s) and optic nerve(s)

In-plane pixel size < 0.5 × 0.5 mm; slice thickness ≤ 2 mm

Unilateral disease (or bilateral disease with only one eye strongly
affected)

Precontrast T1-W; at least one plane: transaxial or sagittal oblique

T2-W; at least one plane: transaxial or sagittal oblique

Postcontrast T1-W, no FS; transaxial and sagittal oblique

Bilateral disease (both eyes strongly affected)

Precontrast T1-W (transaxial)

T2-W (transaxial)

Postcontrast T1-W, no FS; sagittal oblique of both eyes and transaxial

Brain

Transaxial T2-W (slice thickness ≤ 4 mm)

Postcontrast T1-W (2D SE with slice thickness ≤ 3 mm or 3D
GRE ≤ 1 mm)

FS fat-saturation, SE spin-echo, GRE gradient-echo
a Consensus among members of the European Retinoblastoma
Imaging Collaboration (ERIC)

Fig. 6 a Thin-slice transaxial T2-weighted (TR/TE, 4,430/102 ms;
section thickness, 2 mm) image demonstrates retinoblastoma of the right
eye with secondary retinal detachment. b Transaxial constructive
interference steady-state (TR/TE, 14/7 ms) image of bilateral retino-
blastoma with secondary retinal detachment. Notice the shallow anterior
chamber of the right eye, a sign of increased intraocular pressure

Pediatr Radiol (2012) 42:2–14 7



susceptibility artifacts caused by air-tissue interface or by
air bubbles under the eyelids is avoided, which is favorable
for the image quality in the anterior eye segment. If
possible, the MR examination can be combined with
fundoscopy and US under the same general anesthetic.

Hardware

Clinical MRI of orbit and eyes is mostly acquired using the
current standard field strengths up to 1.5 T. Since adequate
imaging of retinoblastoma requires high spatial resolution,
the field strength of the MR system should be at least 1.5 T.
The performance of scans at 1.5 T using a head coil is the
most practical approach for evaluation of retinoblastoma.
However, this combination usually gives insufficient signal-

to-noise ratio (SNR) at required in-plane image resolution
and section thickness. Therefore, scanning at 1.5 T should
always be performed with one or two small surface coils
(diameter ≤ 5 cm) to reliably detect small lesions and
metastatic risk factors (Fig. 4). Indeed, the use of surface
coils in ocular tumors has been reported to increase the
diagnostic accuracy [44, 62].

The main advantage of higher field strengths (3 T) is the
increased SNR. Publications on ocular 3-T MRI are still
limited [63, 64]. At 3 T with multi-channel head coil or
surface coils one can achieve high-resolution images
similar to those obtained at 1.5 T with surface coils
(Fig. 5). We think the diagnostic accuracy for detection of
tumor extent might improve, but there is currently no
published evidence for this.

Fig. 7 Recommended slice positions. One T2-weighted section in the
sagittal oblique plane and one in the transaxial plane should be
precisely aligned at the middle of the optic disk and the distal (at least
1 cm) end of the optic nerve. a Correct alignment of transaxial

sections. b Correct alignment of sagittal oblique sections. c Detailed
view of the distal optic nerve (line segment: imaging axis; distal 1 cm
of the optic nerve between red dots)

Fig. 8 In unilateral retinoblastoma (or bilateral disease with only
one eye strongly affected), high-resolution MRI is done in the
(most) affected eye only. Imaging example of a left unilateral
lesion. a Sagittal oblique T2-weighted (TR/TE 3,460/110 ms) image.

b Transaxial precontrast T1-weighted (TR/TE 360/13 ms) image. c
Transaxial postcontrast T1-weighted (TR/TE 360/13 ms) image.
Notice the inhomogeneous enhancement pattern, which is common
in retinoblastoma
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Imaging protocol

MRI protocols vary because of differences in available
equipment and individual preferences. However, despite
differences, certain basic elements are common to most
imaging protocols for retinoblastoma. The minimal require-
ments for diagnostic evaluation of retinoblastoma or
mimicking lesions according to the consensus reached
among members of the European Retinoblastoma Imaging
Collaboration (ERIC) are presented below and summarized
in Table 1. A typical MR imaging protocol for retinoblas-
toma should always include high-resolution imaging of the
affected eye(s) and imaging of the entire brain.

Orbits

Regardless of laterality, at least one transaxial thin-slice
(≤ 2 mm) T2-weighted sequence should cover both orbits.
For T2-weighted imaging based on a (fast) spin-echo
technique, it is recommended to use a long TE (heavily
T2-weighted; TE ≥ 120 ms) for generating the image
contrast necessary to provide an optimal differentiation of
retinoblastoma and surrounding vitreous or subretinal fluid
(Fig. 6). Fat saturation combined with T2-weighted
imaging is not recommended. When fat suppression is
used, the resulting loss in SNR should be compensated
(e.g., by increasing the number of acquisitions).

T2-W spin-echo may be replaced by gradient-echo T2-
weighted sequences such as 3D steady-state free precession
sequences with slice thickness ≤ 1 mm (Fig. 6; vendor-
specific acronyms: CISS [Constructive Interference in
Steady State, Siemens], FIESTA [Fast Imaging Employing
Steady State Acquisition, GE Healthcare]; DRIVE [Driven
Equilibrium, Philips]) (slice thickness, ≤ 1 mm). These
pulse sequences provide detailed images of both orbits and
eyes, and allow accurate comparison of eye size, anterior
chamber depth and laterality. Very small tumors can be
depicted with these techniques.

Eye and distal optic nerve

Increased spatial resolution will improve the accuracy of
MRI in assessing the anatomical details of the papilla,
lamina cribrosa and pre- and postlaminar segments of the
optic nerve [65]. The continuous improvement of MR units
and the use of small fields-of-view with either multi-
channel head coils or surface coils now allows much higher
image resolution. High spatial resolution means section
thickness ≤ 2 mm and in-plane pixel size ≤ 0.5 × 0.5 mm.
For optimal detection of optic nerve invasion, the image
plane through the orbit (transaxial and sagittal oblique)
should align with the orientation of the distal (1 cm) end of
the nerve, just posterior to the lamina cribrosa (Fig. 7). One

Fig. 9 MRI of bilateral retinoblastoma with extensive disease in both
eyes should be performed with two surface coils. The field of view
should be slightly increased to cover both eyes in the transaxial plane.
Imaging example of bilateral lesions: a Precontrast transaxial T1-
weighted (TR/TE, 360/13 ms) image. b Postcontrast transaxial T1-
weighted (TR/TE, 360/13 ms) image

Table 2 Retinoblastoma: Checklist for MRI radiology reports

Parameters

Tumor characteristics

SI relative to the vitreous body; moderately high on T1-W and low on
T2-W

Laterality

Growth pattern

Tumor size and location; in contact with optic nerve

Buphthalmia

Tumor extension

Optic nerve and meningeal sheath invasion

Ocular wall invasion (choroid and sclera)

Extraocular extension

Anterior eye segment

Anterior chamber depth

Enhancement

Tumor invasion; ciliary body

Brain

Trilateral retinoblastoma; pineal gland and supra- or parasellar region

Leptomeningeal metastases

Malformations

SI signal intensity

Pediatr Radiol (2012) 42:2–14 9



section in each of these sequences should be precisely
aligned within the distal part of the optic nerve at the level
of the middle of the optic disk. Although the use of the fat-
saturation technique is highly recommended for contrast-
enhanced MR imaging in orbital pathology, its use in high-
resolution contrast-enhanced T1-weighted MRI in retino-
blastoma is declining [44, 58]. In the minimal requirements
for diagnostic evaluation of retinoblastoma or mimicking
lesions according to the consensus reached among members
of the ERIC, the use of fat saturation in contrast-enhanced
T1-weighted sequences is no longer recommended.

& Transaxial or sagittal oblique T1-weighted spin-echo
helps detection of intraocular blood and subretinal fluid
with high protein content. Retinoblastoma is slightly
hyperintense with respect to the vitreous body.

& Transaxial or sagittal oblique heavily T2-weighted spin-
echo provides detailed information about the classic low
signal intensity of retinoblastoma and presence of
retinal detachment.

& Transaxial and sagittal oblique contrast-enhanced T1-
weighted spin-echo provides information about the
enhancement of lesions, optic nerve- and ocular wall
invasion, and anterior eye segment enhancement.

The recommended protocol for high-resolution MR
imaging of the eye(s) and distal optic nerve(s) differs
slightly between unilateral or bilateral disease (Table 1,
Figs. 8–9). Incidence of metastatic risk factors is highly

Fig. 10 Retinoblastoma with signs of increased intraocular pressure
following subretinal hemorrhage (fluid–fluid levels). a Bilateral
retinoblastoma with increased size of the left eye (buphthalmus) and
a shallow anterior chamber (arrow) seen on T2-weighted (TR/TE,
4,430/102 ms) image. b Bilateral retinoblastoma with focal bulging of
the posterior eye segment (arrow) of the right eye and a shallow
anterior chamber seen on T2-weighted (TR/TE, 4,430/102 ms) image

Fig. 11 Pre- (a) and postcontrast (b) transaxial T1-weighted (374/14)
MR images show small nodular enhancement at the optic nerve disk
(arrow), which represents superficial optic nerve invasion by

intraocular tumor seeding (predilection site). c Abnormal contrast-
enhancement of the anterior eye segment combined with macroscopic
tumor seedings (arrow)

10 Pediatr Radiol (2012) 42:2–14



dependent on tumor location and tumor size. Therefore, a
distinction is made between bilateral disease with only one
eye strongly affected (high-resolution MRI can be per-
formed in the worst affected eye only) and extensive
disease in both eyes (high-resolution MRI of both eyes).

Brain

The brain should always be imaged in retinoblastoma patients
for analysis of midline structures in order to depict trilateral
retinoblastoma (i.e. PNET located mainly in the pineal gland,
or more rarely in suprasellar area) or leptomeningeal spread.
For a patient presenting with leukocoria suspicious of having
retinoblastoma or already diagnosed as retinoblastoma based
on clinical findings and US, the baseline evaluation should
include an MR imaging of the brain that meets the
standardized protocol. Imaging of the brain is performed with
(multi-channel) headcoil only and should at least include the
following or similar types of sequences:

& Transaxial fast spin-echo T2-weighted sequence (slice
thickness, ≤ 4 mm). This sequence provides an
overview of the brain anatomy and structural abnor-
malities (patients with 13q deletion syndrome).

& Transaxial or sagittal contrast-enhanced T1-weighted se-
quence (2D spin-echo T1-weighted with slice thickness ≤
3 mm; or 3D gradient-echo with slice thickness ≤1 mm).
This sequence provides information about enhancement of
the pineal gland, presence of a midline PNET, leptome-
ningeal metastases and extensive optic nerve invasion.

& Coronal and sagittal high-resolution T2-weighted sequence
(slice thickness, 1.5 mm). These sequences are optional but
should be added to the protocol in case of an atypical pineal
gland (partially cystic, irregular, enlarged).

Fig. 12 Postcontrast transaxial T1-weighted (TR/TE, 374/14 ms)
MRI. Abnormal enhancement of the distal optic nerve in continuity
with tumor is a sign of postlaminar optic nerve invasion

Fig. 13 Postcontrast transaxial T1-weighted (TR/TE, 305/15 ms)
MRI. Intraocular enhancing retinoblastoma combined with focal
choroidal thickening and a discontinuity of the linear enhancement
pattern of the choroid (arrowheads) adjacent to the tumor mass is
suspicious for tumor invasion. Histopathological examination of this
eye showed massive choroidal invasion

Fig. 14 Pineoblastoma in a patient with hereditary unilateral
retinoblastoma. Postcontrast axial T1-weighted (TR/TE, 650/10 ms)
MRI shows a cystic enhancing mass of the pineal gland (arrow)
suspicious for pineoblastoma (trilateral retinoblastoma)
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Image analysis checklist for MR reporting (Table 2)

Tumor size and location

Compared to the vitreous body, retinoblastoma has moderate-
ly higher signal intensity on T1- and lower on T2-weighted
images. Increased size of the globe, globe deformation and
reduced anterior chamber depth are signs of increased
intraocular pressure and are usually associated with buphtal-
mia (Fig. 10). These signs should be mentioned since they
are associated with a higher risk of globe rupture and
secondary orbital seeding during enucleation. Laterality and
growth pattern should be mentioned as well as the location
of the tumor, with respect to the equator of the eye (anterior,
posterior or combined) and with respect to the papilla (the
optic nerve disk) and the macula. One should in particular
identify tumor close to the optic disk, because this may
invade the nerve [22] (Fig. 11).

Optic nerve and meningeal sheath invasion

In normal-size optic nerves, the direct radiological criterion
used to diagnose postlaminar nerve invasion is the presence
of abnormal contrast enhancement (enhancement ≥ 2 mm in
diameter) in the distal nerve [21] (Fig. 12). Interruption of
the normal linear enhancement at the optic nerve disk
(choroidoretinal complex) supports a suggestion of optic
nerve invasion [22]. Postlaminar optic nerve or optic nerve
menigeal sheath invasion should raise suspicion of lep-
tomeningeal metastases. In such situations, additional
contrast-enhanced sagittal T1-weighted imaging of the
whole spine is recommended.

Ocular wall invasion and extraocular extension

Discontinuity of the normal choroidal enhancement is the
leading criterion for infiltration [22, 24] (Fig. 13). Massive
choroidal invasion presents as focal choroidal thickening
(Fig. 13). Increased enhancement and thickening of the entire
uveal tract (choroid, ciliary body, iris) is a sign of uveitis,
usually secondary to massive (sub) total tumor necrosis [22].
Protrusion of enhancing tissue through the thickened choroid
into the (low signal-intensity) sclera or beyond is a sign of
scleral invasion or extraocular extension, respectively.

Anterior eye segment

Anterior eye segment enhancement occurs frequently in
retinoblastoma and is usually a sign of iris angiogenesis
[27, 30]. Tumor invasion into the anterior eye segment
(Fig. 11) is an infrequent finding, usually associated with
anteriorly located retinoblastoma. Enhancement of the

tumor extending into the ciliary body or beyond should
raise suspicion of anterior eye segment invasion. Transaxial
T2-weighted images of both orbits can be used to depict a
decreased anterior chamber depth (Fig. 10).

Brain

Careful analysis of midline structures should be performed
to depict trilateral retinoblastoma (i.e. PNET located mainly
in the pineal gland, or rarely in the suprasellar area)
(Fig. 14) or leptomeningeal spread (if patient shows
extensive postlaminar optic nerve invasion enhancement).
Congenital brain malformations occur mainly in patients
with 13q- deletion syndrome [10]. Benign pineal cysts
should not be misinterpreted as pineal PNET, even in
children with retinoblastoma [10, 66]. Thin-section T2-
weighted and contrast-enhanced T1-weighted slices are
helpful for differential diagnoses. In doubtful cases, close
follow-up with MRI is recommended.

Conclusion

Together with US, high-resolution MR imaging has
emerged as the most important imaging modality in the
assessment of retinoblastoma—for diagnostic confirmation
and for determination of local tumor extent and associated
intracranial abnormalities. CT is no longer indicated in
children with leukocoria because of (1) ionizing radiation
and (2) no added diagnostic value. US combined with MRI
using our suggested standardized retinoblastoma MRI
protocol provides state-of-the-art pretreatment diagnostic
evaluation in children with retinoblastoma.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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