Skip to main content

Advertisement

Log in

Intensive Care Unit Analgosedation After Cardiac Surgery in Children with Williams Syndrome : a Matched Case–Control Study

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Objective

Cardiovascular abnormalities are common in patients with Williams syndrome and frequently require surgical intervention necessitating analgesia and sedation in a population with a unique neuropsychiatric profile, potentially increasing the risk of adverse cardiac events during the perioperative period. Despite this risk, the overall postoperative analgosedative requirements in patients with WS in the cardiac intensive care unit have not yet been investigated. Our primary aim was to examine the analgosedative requirement in patients with WS after cardiac surgery compared to a control group. Our secondary aim was to compare the frequency of major ACE and mortality between the two groups.

Design

Matched case–control study.

Setting

Pediatric CICU at a Tertiary Children’s Hospital.

Patients

Patients with WS and age-matched controls who underwent cardiac surgery and were admitted to the CICU after cardiac surgery between July 2014 and January 2021.

Interventions

None.

Measurements and Main Results

Postoperative outcomes and total doses of analgosedative medications were collected in the first six days after surgery for the study groups. Median age was 29.8 (12.4–70.8) months for WS and 23.5 (11.2–42.3) months for controls. Across all study intervals (48 h and first 6 postoperative days), there were no differences between groups in total doses of morphine equivalents (5.0 mg/kg vs 5.6 mg/kg, p = 0.7 and 8.2 mg/kg vs 10.0 mg/kg, p = 0.7), midazolam equivalents (1.8 mg/kg vs 1.5 mg/kg, p = 0.4 and 3.4 mg/kg vs 3.8 mg/kg, p = 0.4), or dexmedetomidine (20.5 mcg/kg vs 24.4 mcg/kg, p = 0.5 and 42.3 mcg/kg vs 39.1 mcg/kg, p = 0.3). There was no difference in frequency of major ACE or mortality.

Conclusions

Patients with WS received similar analgosedative medication doses compared with controls. There was no significant difference in the frequency of major ACE (including cardiac arrest, extracorporeal membrane oxygenation, and surgical re-intervention) or mortality between the two groups, though these findings must be interpreted with caution. Further investigation is necessary to elucidate the adequacy of pain/sedation control, factors that might affect analgosedative needs in this unique population, and the impact on clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins RT (2018) Cardiovascular disease in Williams syndrome. Curr Opin Pediatr 30(5):609–615. https://doi.org/10.1097/MOP.0000000000000664

    Article  PubMed  Google Scholar 

  2. Beuren AJ, Apitz J, Harmjanz D (1962) Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 26:1235–1240. https://doi.org/10.1161/01.cir.26.6.1235

    Article  CAS  PubMed  Google Scholar 

  3. Williams JC, Barratt-Boyes BG, Lowe JB (1961) Supravalvular aortic stenosis. Circulation 24:1311–1318. https://doi.org/10.1161/01.cir.24.6.1311

    Article  CAS  PubMed  Google Scholar 

  4. Keating MT (1995) Genetic approaches to cardiovascular disease. Supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome. Circulation 92(1):142–147. https://doi.org/10.1161/01.cir.92.1.142

    Article  CAS  PubMed  Google Scholar 

  5. Pober BR, Johnson M, Urban Z (2008) Mechanisms and treatment of cardiovascular disease in Williams–Beuren syndrome. J Clin Invest 118(5):1606–1615. https://doi.org/10.1172/JCI35309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collins RT, Kaplan P, Somes GW, Rome JJ (2010) Long-term outcomes of patients with cardiovascular abnormalities and Williams syndrome. Am J Cardiol 105(6):874–878. https://doi.org/10.1016/j.amjcard.2009.10.069

    Article  PubMed  Google Scholar 

  7. Collins RT (2013) Cardiovascular disease in Williams syndrome. Circulation 127(21):2125–2134. https://doi.org/10.1161/CIRCULATIONAHA.112.000064

    Article  PubMed  Google Scholar 

  8. Matisoff AJ, Olivieri L, Schwartz JM, Deutsch N (2015) Risk assessment and anesthetic management of patients with Williams syndrome: a comprehensive review. Paediatr Anaesth 25(12):1207–1215. https://doi.org/10.1111/pan.12775

    Article  PubMed  Google Scholar 

  9. Staudt GE, Eagle SS (2021) Anesthetic considerations for patients with Williams syndrome. J Cardiothorac Vasc Anesth 35(1):176–186. https://doi.org/10.1053/j.jvca.2020.01.022

    Article  PubMed  Google Scholar 

  10. Wessel A, Gravenhorst V, Buchhorn R, Gosch A, Partsch CJ, Pankau R (2004) Risk of sudden death in the Williams–Beuren syndrome. Am J Med Genet A 127A(3):234–237. https://doi.org/10.1002/ajmg.a.30012

    Article  PubMed  Google Scholar 

  11. Collins Ii RT, Collins MG, Schmitz ML, Hamrick JT (2017) Peri-procedural risk stratification and management of patients with Williams syndrome. Congenit Heart Dis 12(2):133–142. https://doi.org/10.1111/chd.12447

    Article  PubMed  Google Scholar 

  12. Atkinson J, Braddick O (2011) From genes to brain development to phenotypic behavior: “dorsal-stream vulnerability” in relation to spatial cognition, attention, and planning of actions in Williams syndrome (WS) and other developmental disorders. Prog Brain Res 189:261–283. https://doi.org/10.1016/B978-0-444-53884-0.00029-4

    Article  PubMed  Google Scholar 

  13. Atkinson J, Braddick O, Anker S et al (2003) Neurobiological models of visuospatial cognition in children with Williams syndrome: measures of dorsal-stream and frontal function. Dev Neuropsychol 23(1–2):139–172. https://doi.org/10.1080/87565641.2003.9651890

    Article  PubMed  Google Scholar 

  14. Bellugi U, Lichtenberger L, Jones W, Lai Z, St GM, I. (2000) The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J Cogn Neurosci 12(Suppl 1):7–29. https://doi.org/10.1162/089892900561959

    Article  PubMed  Google Scholar 

  15. Doyle TF, Bellugi U, Korenberg JR, Graham J (2004) “Everybody in the world is my friend” hypersociability in young children with Williams syndrome. Am J Med Genet A 124A(3):263–273. https://doi.org/10.1002/ajmg.a.20416

    Article  PubMed  Google Scholar 

  16. Dykens EM (2003) Anxiety, fears, and phobias in persons with Williams syndrome. Dev Neuropsychol 23(1–2):291–316. https://doi.org/10.1080/87565641.2003.9651896

    Article  PubMed  Google Scholar 

  17. Järvinen-Pasley A, Bellugi U, Reilly J et al (2008) Defining the social phenotype in Williams syndrome: a model for linking gene, the brain, and behavior. Dev Psychopathol 20(1):1–35. https://doi.org/10.1017/S0954579408000011

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jones W, Bellugi U, Lai Z et al (2000) II. Hypersociability in Williams syndrome. J Cogn Neurosci 12(Suppl 1):30–46. https://doi.org/10.1162/089892900561968

    Article  PubMed  Google Scholar 

  19. Kirchner RM, Martens MA, Andridge RR (2016) Adaptive behavior and development of infants and toddlers with Williams syndrome. Front Psychol 7:598. https://doi.org/10.3389/fpsyg.2016.00598

    Article  PubMed  PubMed Central  Google Scholar 

  20. Klein-Tasman BP, Li-Barber KT, Magargee ET (2011) Honing in on the social phenotype in Williams syndrome using multiple measures and multiple raters. J Autism Dev Disord 41(3):341–351. https://doi.org/10.1007/s10803-010-1060-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leyfer OT, Woodruff-Borden J, Klein-Tasman BP, Fricke JS, Mervis CB (2006) Prevalence of psychiatric disorders in 4 to 16-year-olds with Williams syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 141B(6):615–622. https://doi.org/10.1002/ajmg.b.30344

    Article  Google Scholar 

  22. Martens MA, Wilson SJ, Reutens DC (2008) Research review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. J Child Psychol Psychiatry 49(6):576–608. https://doi.org/10.1111/j.1469-7610.2008.01887.x

    Article  PubMed  Google Scholar 

  23. Mervis CB, John AE (2010) Cognitive and behavioral characteristics of children with Williams syndrome: implications for intervention approaches. Am J Med Genet C Semin Med Genet 154C(2):229–248. https://doi.org/10.1002/ajmg.c.30263

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mervis CB, Kistler DJ, John AE, Morris CA (2012) Longitudinal assessment of intellectual abilities of children with Williams syndrome: multilevel modeling of performance on the Kaufman brief intelligence test-second edition. Am J Intellect Dev Disabil 117(2):134–155. https://doi.org/10.1352/1944-7558-117.2.134

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morris CA (2010) The behavioral phenotype of Williams syndrome: a recognizable pattern of neurodevelopment. Am J Med Genet C Semin Med Genet 154C(4):427–431. https://doi.org/10.1002/ajmg.c.30286

    Article  PubMed  Google Scholar 

  26. Woodruff-Borden J, Kistler DJ, Henderson DR, Crawford NA, Mervis CB (2010) Longitudinal course of anxiety in children and adolescents with Williams syndrome. Am J Med Genet C Semin Med Genet 154C(2):277–290. https://doi.org/10.1002/ajmg.c.30259

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yokota R, Kwiatkowski DM, Journel C et al (2022) Postoperative acute kidney injury in Williams syndrome compared with matched controls. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 23(3):e162–e170. https://doi.org/10.1097/PCC.0000000000002872

    Article  Google Scholar 

  28. American Pain Society (2009) Principles of analgesic use in the treatment of acute pain and cancer pain, 6th edn. American Pain Society, Glenview, IL

    Google Scholar 

  29. Barr J, Zomorodi K, Bertaccini EJ, Shafer SL, Geller E (2001) A double-blind, randomized comparison of iv lorazepam versus midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology 95(2):286–298. https://doi.org/10.1097/00000542-200108000-00007

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt AR, Collins RT, Adusumelli Y et al (2021) Impact of modified anesthesia management for pediatric patients with Williams syndrome. J Cardiothorac Vasc Anesth 35(12):3667–3674. https://doi.org/10.1053/j.jvca.2021.04.019

    Article  PubMed  Google Scholar 

  31. Curley MAQ, Harris SK, Fraser KA, Johnson RA, Arnold JH (2006) State behavioral scale (SBS) a sedation assessment instrument for infants and young children supported on mechanical ventilation. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 7(2):107–114. https://doi.org/10.1097/01.PCC.0000200955.40962.38

    Article  Google Scholar 

  32. Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B (2001) The faces pain scale-revised: toward a common metric in pediatric pain measurement. Pain 93(2):173–183. https://doi.org/10.1016/S0304-3959(01)00314-1

    Article  PubMed  Google Scholar 

  33. Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S (1997) The FLACC: a behavioral scale for scoring postoperative pain in young children. Pediatr Nurs 23(3):293–297

    CAS  PubMed  Google Scholar 

  34. Castarlenas E, Jensen MP, von Baeyer CL, Miró J (2017) Psychometric properties of the numerical rating scale to assess self-reported pain intensity in children and adolescents: a systematic review. Clin J Pain 33(4):376–383. https://doi.org/10.1097/AJP.0000000000000406

    Article  PubMed  Google Scholar 

  35. Hornik CP, Collins RT, Jaquiss RDB et al (2015) Adverse cardiac events in children with Williams syndrome undergoing cardiovascular surgery: an analysis of the society of thoracic surgeons congenital heart surgery database. J Thorac Cardiovasc Surg 149(6):1516-1522.e1. https://doi.org/10.1016/j.jtcvs.2015.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berger JT, Holubkov R, Reeder R et al (2017) Morbidity and mortality prediction in pediatric heart surgery: physiological profiles and surgical complexity. J Thorac Cardiovasc Surg 154(2):620-628.e6. https://doi.org/10.1016/j.jtcvs.2017.01.050

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar SR, Gaynor JW, Jones LA et al (2023) The society of thoracic surgeons congenital heart surgery database: 2022 update on outcomes and research. Ann Thorac Surg 115(4):807–819. https://doi.org/10.1016/j.athoracsur.2022.12.040

    Article  PubMed  Google Scholar 

Download references

Funding

No financial support was required for this study.

Author information

Authors and Affiliations

Authors

Contributions

MM, CA, RC designed the study and wrote the main manuscript. CA performed the statistical analysis. CJ, KL, and GS collected the data. AS and DK made significant revisions to the the initial manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Marcos Mills.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors did not receive any support from any organizations for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, M., Algaze, C., Journel, C. et al. Intensive Care Unit Analgosedation After Cardiac Surgery in Children with Williams Syndrome : a Matched Case–Control Study. Pediatr Cardiol 45, 107–113 (2024). https://doi.org/10.1007/s00246-023-03321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-023-03321-8

Keywords

Navigation