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Abstract
We consider an abstract concept of perimeter measure space as a very general frame-
work in which one can properly consider two of the most well-studied variational
models in image processing: the Rudin–Osher–Fatemi model for image denoising
(ROF) and the Mumford–Shah model for image segmentation (MS). We show the
linkage between the ROF model and the two phases piecewise constant case of MS
in perimeter measure spaces. We show applications of our results to nonlocal image
segmentation, via discrete weighted graphs, and to multiclass classification on high
dimensional spaces.

Keywords Perimeter measure space · Nonlocal · Segmentation · Denoising ·
Labeling · Graphs · Metric graphs · Fractional perimeter

Mathematics Subject Classification 94A08 · 49J10 · 05C21 · 68P99 · 94A13 ·
68R10 · 90C35

B Salvador Moll
j.salvador.moll@uv.es

Vicent Pallardó-Julià
vicent.pallardo@uv.es

Marcos Solera
marcos.solera@uv.es

1 Department d’Anàlisi Matemàtica, Universitat de València, C/ Dr. Moliner, 50, 46100 Burjassot,
Spain

2 Kimera Technologies, Lanzadera, La Marina de València, C/ del Moll de la Duana, s/n, Valencia,
Spain

3 Departmento de Matemáticas, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 7,
Facultad de Ciencias, módulo 17, 28049 Madrid, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-024-10134-5&domain=pdf
http://orcid.org/0000-0002-0589-4993
http://orcid.org/0000-0003-4352-2741
http://orcid.org/0000-0001-7774-4516


   66 Page 2 of 30 Applied Mathematics & Optimization            (2024) 89:66 

1 Introduction

Segmentation is a fundamental process in a variety of fields in Computer Science.
It arises in several areas related to image or video processing and computer vision.
Among the most successful mathematical approaches to partitioning an image into its
constituent parts, we find the variational approach introduced by Mumford and Shah
(MS) in [1].

In the particular case where one is interested in segmenting an image into two
different phases, the background and the foreground, the MS-model reduces to the
following optimization problem, which is known as Chan–Vese’s model [2] and which
we denote by CV:

Given an initial image f : � ⊂ R
2 → [0, 1], find a set of finite perimeter � ⊂ �

(representing the foreground region) and two constants 0 ≤ m∗
0,m

∗
1 ≤ 1 (representing

the mean of f in the background and in the foreground, respectively) that minimize

Per(�) + μ

(∫
�

(m1 − f (x))2 dx +
∫

�\�
(m0 − f (x))2 dx

)

among all finite perimeter sets � ⊂ � and constants 0 ≤ m0,m1 ≤ 1. Here μ > 0 is
a parameter acting on the fidelity term.

Obtaining a minimizer triplet of the above energy functional is not an easy task due
to the lack of convexity. However, as it was observed in [3], a partial minimizer can be
obtained with the help of the minimizer of the Rudin–Osher–Fatemi functional (ROF)
[4]:

∫
�

|Dw| + λ

2

∫
�

(w(x) − f (x))2 dx,

with parameter λ > 0. To be more precise (see [3, Theorem 3.4]), for 0 < m0 < m1 ≤
1 fixed, if u is a minimizer of the ROF functional with parameter λ = 2μ(m1 − m0),
then a suitable threshold of u provides the only minimizer of the CV functional (with
m0,m1 fixed). In this case,� := {x ∈ � : u(x) ≥ m0+m1

2 } is the set of finite perimeter
whichminimizes the energy.Moreover, the authors give a convergent algorithm to find
a triplet (�,m0,m1)which minimizes the CV-energy in each of its three components.

This linkage between the ROF problem for denoising and the CV model for seg-
mentation has been further studied in [5]. The authors showed that in the �1 anisotropic
case (i.e., changing the perimeter by the rectilinear perimeter in the CV functional and
the total variation term

∫
�

|Du| by the corresponding anisotropic one:
∫
�

|Du|1) the
same linkage holds. Moreover, in the case that f is piecewise constant on rectangles,
then a true minimizer triplet of the anisotropic CV model can be obtained thanks to
this relation.

The purpose of this paper is to generalise these results to many different settings.
Thus, we provide a unified framework in which the linkage between both problems
holds. A deep look at the results in [3] shows that the only mathematical tools that
are needed are suitable definitions of the perimeter of sets and of the total variation of
integrable functions, and a coarea formula relating these two concepts.
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In Sect. 3 we give the abstract setting inwhichwework andwhichwe call perimeter
measure space. This framework is so vast that we can gather together a big variety
of situations to which our results apply. In particular, we can generalise the results
to the case of a non-Euclidean setting. We give an up-to-date list of the possibilities;
including the cases of discrete weighted graphs or fractional perimeters.

Section 4 is devoted to stating and proving the linkage between both problems in
perimeter measure spaces, see Theorem 2. As we will observe in Sect. 3, the ROF-
model for denoising has been much more studied than the CV-model in a number
of non-Euclidean settings. Therefore, the results in this paper can be used to obtain
algorithms and properties of CV-minimizers or partial minimizers.

In Sect. 5, we use the previous results to build a two step algorithm (analogous to
the classical Chan–Vese algorithm, see [2]) to find an approximate minimizer triplet
to the CV problem in the case of locally finite weighted discrete graphs. Then, we
show two possible applications of segmentation in weighted graphs: nonlocal image
segmentation and labeling. In the case of image segmentation, we show how our
approach improves the results obtained with standard Euclidean segmentation. In the
case of labeling, a postprocess using theCVmodel to the results obtainedwith standard
linear diffusion (i.e., with harmonic extension on graphs) yields an accuracy in the
predictions of labeling comparable to Poisson learning.

2 RelatedWork

As we have already mentioned, the linkage between the ROF model for denoising and
the CV model for segmentation has already been observed in the particular cases of
the isotropic perimeter (and total variation) and of the �1-anisotropy; both in a domain
in R2.

On the other hand, segmentation in the non-Euclidean case and, in particular, in
the case of weighted undirected graphs, has been studied in [6]. The authors consider
the Mumford–Shah functional defined in a weighted undirected graph with n points
and a parameter ε representing the scale in which differences of the values of the
target minimizer function are considered large, and therefore can be interpreted as
jump points. The main result of this work is the �-convergence, when the graph is
considered in some domain in the Euclidean space RN , to the classical Euclidean MS
functional as the point cloud becomes denser in the domain and a suitable scaling in
ε is considered.

Concerning perimeter measure spaces, our definition of perimeter functional is
very close to the one of generalised perimeter given in [7]. However, their concept of
perimeter is restricted to the case of Lebesgue measurable sets. Moreover, a similar
definition of perimeter measure space is considered in [8]. There, the authors analyze a
perimeter functional alongside a range of potential assumptions and proceed to derive
multiple results by considering various combinations of these assumptions. Here,
we do not seek a profound study of the lower semicontinuity properties of the total
variation functional or the perimeter functional. Instead, we consider the necessary
assumptions for the existence and uniqueness of minimizers for the ROF functional, as
well as for the mentioned linkage to be valid. Concretely, weak lower semicontinuity
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of the functional with respect to the L2-convergence and finiteness of the measure are
assumed (see Sect. 3 for details).

We finally mention [9], in which the authors consider an energy functional very
similar to the CV one in the case of undirected weighted graphs. In their functional, the
total variation on graphs appears. However, their minimization problem only depends
on one variable. To be more precise, they minimize the total variation minus the
variance for functions taking values in the canonical basis of RN .

3 Perimeter Measure Spaces

3.1 Definitions

Definition 1 Let (X ,B, ν) be a measure space. We say that Per : B → [0,∞] is a
perimeter functional if the following conditions are satisfied:

(i) Per(∅) = 0;
(ii) Per(A) = Per(B) for every A, B ∈ B such that ν(A 
 B) = 0;
(iii) Per(A) = Per(X \ A) for every A ∈ B;
(iv) Per is sub-modular, i.e., Per(A∪ B)+Per(A∩ B) ≤ Per(A)+Per(B) for every

A, B ∈ B.
Definition 2 Let (X ,B, ν) be a measure space and Per : B → [0,∞] a perimeter
functional. For a function u ∈ L1(X , ν), and letting Et (u) := {x ∈ X : u(x) > t}
for every t ∈ R, we define its total variation by

TV(u) :=
∫ ∞

−∞
Per(Et (u))dt,

with the convention that TV(u) = ∞ if the map t 
→ Per(Et (u)) is not measurable.
Note that TV(χE ) = Per(E) for every E ∈ B.

A perimeter measure space (X ,B, ν,Per) (PMS in short) is a measure space
(X ,B, ν) such that ν(X) < +∞, together with a perimeter functional Per such that
the total variation functional TV is lower semi-continuous with respect to the weak
convergence in L2(X , ν). We will denote it by (X , ν,Per) for short.

Observe that the standard Euclidean perimeter in R
N endowed with the Lebesgue

measure is a PMS. Additional examples of PMS, including this one, are given in Sect.
3.3.

Proposition 1 Let (X , ν,Per)be aPMS. Then, the total variation is a convex functional
in L2(X , ν).

Proof The proof of this result essentially follows the lines of [10, Proposition 3.4].
We give the details for the sake of completeness.

Observe that, since ν(X) < +∞, L2(X , ν) ⊂ L1(X , ν) so the total variation is
well defined for L2(X , ν) functions. First of all, we show that TV is a positively
one-homogeneous functional. Let u ∈ L1(X , ν) and λ > 0. Then,
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TV(λu) =
∫ ∞

−∞
Per(Et (λu)) dt =

∫ ∞

−∞
Per
(
E t

λ
(u)
)
dt

= λ

∫ ∞

−∞
Per(Et (u))dt = λTV(u).

Then, to show the convexity, it suffices to prove the following inequality:

TV(u1 + u2) ≤ TV(u1) + TV(u2) for every u1, u2 ∈ L2(X , ν). (3.1)

We first prove the following representation formula for nonnegative, bounded and
integer valued measurable functions u in X :

TV(u) = min

{
m∑
i=1

Per(Ai ) : u =
m∑
i=1

χAi , Ai ∈ B, m ∈ N

}
. (3.2)

Note that, if u satisfies these assumptions, then u =∑M
i=1 χEi−1(u) for some M ∈ N.

Take Ai ∈ B, i = 1, . . . ,m, such that u = ∑m
i=1 χAi . Using the sub-modularity of

the perimeter, for any j �= k ∈ {1, . . . ,m},

Per(A j ∩ Ak) + Per(A j ∪ Ak) +
∑

i /∈{ j,k}
Per(Ai ) ≤

m∑
i=1

Per(Ai ).

From this inequality, by induction on m, one easily gets

m∑
i=1

Per(Ai ) ≥
M∑
i=1

Per(Ei−1(u)).

Indeed, ifm = 1 then A1 = E0(u) up to a ν-null set thus Per(A1) = Per(E0(u)). Now,
suppose that the inequality holds for m and let u = ∑m+1

i=1 χAi . Let v := ∑m
i=1 χAi .

By induction hypothesis we have that

m+1∑
i=1

Per(Ai ) ≥
m∑
i=1

Per(Ei−1(v)) + Per(Am+1).

Now,

E j (u) = E j (v) ∪ (Am+1 ∩ E j−1(v))

so, by submodularity:

Per(E j (v)) ≥ Per(E j (u)) + Per(Am+1 ∩ E j (v)) − Per(Am+1 ∩ E j−1(v)).
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Therefore,

m∑
i=1

Per(Ei−1(v)) ≥
m∑
i=1

Per(Ei−1(u)) + Per(Am+1 ∩ Ei−1(v)) − Per(Am+1 ∩ Ei−2(v))

=
m∑
i=1

Per(Ei−1(u)) + Per(Am+1 ∩ Em−1(v)) − Per(Am+1 ∩ E−1(v))

=
m∑
i=1

Per(Ei−1(u)) + Per(Am+1 ∩ Em−1(v)) − Per(Am+1)

=
m∑
i=1

Per(Ei−1(u)) + Per(Em(v) ∪ (Am+1 ∩ Em−1(v))) − Per(Am+1)

=
m∑
i=1

Per(Ei−1(u)) + Per(Em(u)) − Per(Am+1)

=
m+1∑
i=1

Per(Ei−1(u)) − Per(Am+1).

Thus, by taking the infimum, we conclude the proof of (3.2):

inf

{
m∑
i=1

Per(Ai ) : u =
m∑
i=1

χAi , Ai ∈ B
}

=
M∑
i=1

Per(Ei−1(u)) =
∫ M−1

0
Per(Et (u)) dt = TV(u).

We now prove (3.1): Observe that we can suppose that TV(ui ) is finite for i = 1, 2.
As a first step, suppose that 0 ≤ ui ≤ 1, i = 1, 2, and consider the following
approximations:

ui,n := 1

n

n∑
k=−1

χE k+t
n

(ui ) for n ∈ N, t ∈]0, 1[ and i = 1, 2.

By construction, 0 ≤ ui,n ≤ 3 and ui,n → ui in L1(X , ν), i = 1, 2. Then, we can
extract a subsequence (not renamed) converging a.e. to ui . Since ν(X) < +∞, we
obtain that ui,n → ui in L2(X , ν). Therefore, from the lower semicontinuity and the
one-homogeneity of the total variation we get

TV(u1 + u2) ≤ lim inf
n→∞ TV(u1,n + u2,n)

= lim inf
n→∞

1

n
TV

(
n∑

k=−1

χE k+t
n

(u1) + χE k+t
n

(u2)

)
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(3.2)≤ lim inf
n→∞

1

n

n∑
k=−1

Per
(
E k+t

n
(u1)
)

+ Per
(
E k+t

n
(u2)
)

.

Finally, applying [10, Lemma 3.3], we can choose t ∈ [0, 1[ such that, up to a
subsequence,

1

n

n∑
k=−1

Per
(
E k+t

n
(ui )
)

→
∫ 1

0
Per(Et (ui )) dt = TV(ui ) as n → ∞, i = 1, 2,

which finishes the proof in the case 0 ≤ ui ≤ 1.
The case where the ui are bounded, i = 1, 2, easily follows by considering ũi :=

ui−m
M−m with m ≤ ui ≤ M and applying the previous step.
Finally, if ui ∈ L2(X , ν), i = 1, 2, we choose as approximations the truncations at

level ±K ; i.e., uKi := max{min{ui , K },−K } (observe that uKi → ui in L2(X , ν) as
K → +∞) and use the lower semicontinuity of TV:

TV(u1 + u2) ≤ lim inf
K→∞ TV(uK1 + uK2 )

≤ lim inf
K→∞ TV(uK1 ) + TV(uK2 ) ≤ lim sup

K→∞
TV(uK1 ) + TV(uK2 )

= lim sup
K→∞

∫ K

−K
(Per(Et (u1)) + Per(Et (u2))) dt

= TV(u1) + TV(u2).

��

3.2 CV and ROFModels in PMS

We continue with the generalization of the CV and ROF models to the PMS setting:
From now on, we assume that (X , ν,Per) is a PMS. Let f : X → [0, 1] be a

measurable function not ν-a.e. equal to a constant. TheCVmodel on (X , ν,Per) aims
to minimize the following energy functional over � ∈ B and m0, m1 ∈ [0, 1]:

ECV
μ (�,m0,m1) := Per(�) + μ

(∫
�

(m1 − f )2 dν +
∫
X\�

(m0 − f )2 dν

)

where μ > 0 is a scale parameter.
The ROF model on the perimeter measure space (X , ν,Per) takes the following

form, for f ∈ L2(X , ν):

min

{
E ROF

λ (u) := TV(u) + λ

2

∫
X

|u(x) − f (x)|2dν(x) : u ∈ L2(X , ν)

}
. (3.3)

We now prove that (3.3) has a unique solution.
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Theorem 1 The E ROF
λ functional has a unique minimizer u ∈ L2(X , ν). Moreover, it

is the only function in L2(X , ν) satisfying 0 ∈ ∂(E ROF
λ )(u). If 0 ≤ f ≤ 1 ν-a.e., then

0 ≤ u ≤ 1 ν-a.e.

Here, the subdifferential of the E ROF
λ functional in L2(X , ν) is defined as follows:

v ∈ ∂(E ROF
λ )(u) if, and only if, u, v ∈ L2(X , ν) and, for all w ∈ L2(X , ν),

∫
X

v(w − u) dν ≤ E ROF
λ (w) − E ROF

λ (u).

Proof Since the TV functional is lower semicontinuous with respect to the weak
convergence in L2(X , ν), existence of a minimizer follows from the direct method of
the calculus of variations. Indeed, let {uk}k∈N ⊂ L2(X , ν) be a minimizing sequence.
Then,

∫
X

|uk(x)|2 dν(x) ≤ 2
∫
X
(uk(x) − f (x))2 dν(x) + 2

∫
X

| f (x)|2 dν(x)

≤ 4

λ
sup
k∈N

{E ROF
λ (uk)} + 2

∫
X

| f (x)|2 dν(x).

Therefore, up to a subsequence, uk converges to a function u ∈ L2(X , ν) weakly in
L2(X , ν). Finally, applying the lower semicontinuity of the total variation we obtain
that u is a minimizer of E ROF

λ .
Moreover, by Proposition 1, it is a convex functional. Therefore, the E ROF

λ

functional is strictly convex. This yields uniqueness of the minimizer.
Note that 0 ∈ ∂(E ROF

λ )(u) is equivalent to u being a minimizer.
Finally, if 0 ≤ f ≤ 1, the bound 0 ≤ u ≤ 1 is a direct consequence of the fact that

the truncation of any function v ∈ L2(X , ν) by T 1
0 (s) := max{min{1, s}, 0} satisfies

E ROF
λ (T 1

0 (v)) =
∫ 1

0
Per(Et (v)) dt + λ

2

∫
X

|T 1
0 (v(x)) − f (x)|2dν(x) ≤ E ROF

λ (v).

��

3.3 Examples of PMS

We now give an extensive list of examples of PMS:

3.3.1 Isotropic Euclidean Case

Let � ⊂ R
N be an open bounded set and ν = LN be the Lebesgue measure in R

N .
Recall that, for an integrable function u ∈ L1(�), the total variation of u is defined as

TV(u) := sup

{∫
�

u div z dx : z ∈ C∞
0 (�;RN ) , ‖z(x)‖ ≤ 1 a.e. in �

}
, (3.4)
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where ‖ · ‖ is the Euclidean norm. The perimeter of a Lebesgue measurable subset
E ⊂ � is defined as the total variation of the characteristic function of E ; i.e.,

Per(E) := TV(χE ).

By the coarea formula (see [11, Theorem 3.40]), we get that TV defined as above
coincides with the one in Definition 2. The submodularity of the perimeter can be
found in [11, Proposition 3.38]. On the other hand, the lower semicontinuity with
respect to weak convergence in L2(X , ν) follows easily from the expression in (3.4)
as we next show:

Suppose that un⇀u weakly in L2(X , ν). Then, for any z ∈ C∞
0 (�;RN ) such that

‖z(x)‖ ≤ 1,

∫
X
u(x)div z (x) dx = lim inf

n→∞

∫
X
un(x)div z (x) dx ≤ lim inf

n→∞ TV(un).

Taking the supremum in z we get that

TV(u) ≤ lim inf
n→∞ TV(un).

Therefore, (�, LN
∣∣
�

,Per) is a PMS.

3.3.2 Anisotropic Euclidean Case

Let � ⊂ R
N be an open bounded set, ν = LN be the Lebesgue measure in R

N and

 : � × R

N → [0,+∞[ be a coercive anisotropy; i.e.:
• 
(x, ·) is convex and lower semicontinuous for any x ∈ �;
• 
(x, tξ) = |t |
(x, ξ) for any (x, ξ) ∈ � × R

N and any t ∈ R (positive 1-
homogeneity);

• There exists C ≥ 1 such that 1
C ‖ξ‖ ≤ 
(x, ξ) ≤ C‖ξ‖ for all (x, ξ) ∈ � × R

N

(coercivity and sublinear growth).

We denote by 
0 the dual anisotropy of 
; i.e.,


0(x, ξ) := sup{ξ · η : η ∈ R
N , 
(x, η) ≤ 1}.

For any u ∈ L1(�), one can define

TV
(u) := sup

{∫
�

u div z dx : z ∈ Hφ(�)

}
,

with

Hφ(�) := {z ∈ L∞(�;RN ) : div z ∈ LN (�), 
0(x, z(x)) ≤ 1 a.e. in �}.
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We define the anisotropic perimeter as

Per
(E) := TV
(χE ) for every Lebesgue measurable set E ⊂ �.

The coarea formula and the submodularity of the perimeter can be found in [12] and
[13, Remark 2.4], respectively. Then, as in the previous example, we can easily show
that (�, LN

∣∣
�

,Per
) is a PMS.
The anisotropic ROF model (for anisotropies depending only on the gradient) was

proposed by Esedoglu and Osher in [14] as a tool for image denoising for images with
some particular geometric features. The subdifferential of the functional TV
 was
completely characterised (under Dirichlet constraints on the boundary or if � = R

N )
in [15].

3.3.3 Fractional Perimeter

Let � ⊂ R
N be an open bounded set. Given s ∈ (0, 1), the fractional Sobolev space

Ws,1(�) is defined as the set of functions

Ws,1(�) :=
{
u ∈ L1 (�) : TVs(u) :=

∫
�

∫
�

|u(x) − u(y)|
|x − y|N+s

dxdy < +∞
}

.

Moreover, defining the nonlocal perimeter as

Pers(E) :=
∫
E∩�

∫
(RN \E)∩�

1

|x − y|N+s
dxdy,

for every Lebesgue measurable set E ⊂ R
N , one can show as above that(

R
N , LN

∣∣
�

,Pers
)
is a PMS. In fact, the coarea formula for TVs can be found in

[16, Proposition 3.1] or [17, Lemma 10], the submodularity of the perimeter can be
proved as in [18, Sect. 2.1.2] and one also has [19, Theorem 3.4] for a representation
formula of TVs similar to that in (3.4). Let us mention that this nonlocal concept of
perimeter was first introduced in [20].

The ROF model for the fractional perimeter in the case � = R
N has been recently

studied in [21] (and in [22] or [23] with L1 fidelity term).

3.3.4 RandomWalk Spaces

Let (X ,B) be a measurable space such that the σ -field B is countably generated. A
random walk on (X ,B) is a family of probability measures (mx )x∈X on B such that
x 
→ mx (B) is a measurable function on X for each fixed B ∈ B. Moreover, a σ -
finite measure ν on B is reversible with respect to the random walk m if the following
balance condition holds:

dmx (y)dν(x) = dmy(x)dν(y) for every x, y ∈ X .
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(X ,B) together with a random walkm and a σ -finite measure ν which is reversible
with respect tom is called a reversible randomwalk space and denoted by [X ,B,m, ν].

Given E ∈ B, the m-perimeter of E is defined as

Perm(E) :=
∫
E

∫
X\E

dmx (y)dν(x)

and the m-total variation of a measurable function u : X → R is defined by

TVm(u) := 1

2

∫
X

∫
X

|u(y) − u(x)| dmx (y)dν(x).

Then, if ν(X) < +∞, (X , ν,Perm) is a PMS (see [24] or [25] for the coarea formula,
the submodularity of the perimeter and the lower semicontinuity result). The ROF
model in reversible randomwalk spaces has been studied in [26] and the subdifferential
of the m-total variation functional was completely characterized in [24].

We point out that many different examples can be included in this category of
reversible random walk spaces. We give a non-exhaustive list of them, including only
the more relevant to us and without entering into details, for which we refer to [24] or
[25]:

1. Nonlocal perimeter with an integrable Kernel: Let J : R
N → [0,+∞[ be

a Lebesgue measurable, nonnegative and radially symmetric function such that∫
RN

J (x)dx = 1. Let � ⊂ R
N be a closed set of finite Lebesgue measure and

mx (A) :=
∫
A
J (x − y)dy +

(∫
Rn\�

J (x − z)dz

)
δx (A)

for any x ∈ � and any Lebesgue measurable set A ⊂ �. Then, m = (mx ) is a
random walk on � with respect to which the Lebesgue measure on � is reversible.
This is the usual random walk arising from a nonsingular kernel J , but modified
so that it does not jump outside of � (immediately reflected back to the starting
position).

2. Markov chains on a countable space X with a reversible probability measure π :
Given a Markov Kernel K : X × X → R, one defines

mx (A) :=
∑
y∈A

K (x, y) for any x ∈ X and any A ⊂ X .

Then, if π is a reversible probability measure with respect to K , [X ,B,m, π ] is a
reversible random walk space (here B is the σ -algebra of all subsets of X ).

3. Locally finite undirected weighted discrete graphs. Let G = (V (G), E(G)) be
a locally finite weighted discrete graph with vertex set V (G) and suppose that
each edge (x, y) ∈ E(G) has a positive weight wxy = wyx assigned. For each
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x ∈ V (G), the random walk m is defined as follows:

mx :=
∑

y∼x wxyδy∑
y∼x wxy

,

with y ∼ x denoting that (x, y) ∈ E(G) (alternatively, we can suppose that
wxy = 0 if (x, y) /∈ E(G) and consider the sum over all the vertices y ∈ V (G)).
Then, for A ⊂ V (G), one considers

ν(A) :=
∑
x∈A

∑
y∼x

wxy .

It follows that ν is a reversible measure with respect to the random walk m.

3.3.5 Carnot-Carathéodory Spaces

Given an open set � ⊂ R
N , m < N and m locally Lipschitz vector fields X =

(X1, . . . , Xm), a distance in � is defined as follows:

d(x, y) = inf

{∫ 1

0
|γ̇ (t)| dt : γ (0) = x, γ (1) = y, γ̇ (t) =

m∑
i=1

ai (t)Xi , 0 < t < 1

}
.

Assuming that this distance is everywhere finite, the space of bounded variation
BVX (�) is defined as the space of functions u ∈ L1(�) such that

TVX (u) := sup

{∫
�

udivX∗z : z ∈ C1
0(�;RN ), ‖z‖∞ ≤ 1

}
,

where divX∗z =∑m
i=1 X

∗
i z

i , with X∗ the adjoint vector field of X . For any Lebesgue
measurable E ⊂ �, its perimeter is defined as

PerX (E) := TVX (χE ).

The coarea formula and the submodularity of the perimeter can be found in [27, Propo-
sitions 4.2 and 4.7] and the lower semicontinuity can be proved as in the Euclidean
case. Then, (�,LN ,PerX ) is a PMS (see [27]). The subdifferential of the total vari-
ation functional coupled with different Neumann or Dirichlet conditions in general
metric measure spaces (which includes the case of Carnot-Carathéodory spaces) has
been recently studied in [28].

3.3.6 Metric Graphs

We follow [29] for the definition of a metric graph, which we now briefly recall. Let
E be a finite set. Given {�e}e∈E ⊂]0,∞[, consider the family [0, �e]e∈E of metric
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measure subspaces of R (with the Euclidean metric de and Lebesgue measure λe) and
their disjoint union

E :=
⊔
e∈E

[0, �e].

We adopt the notation (x, e) for the element of E with x ∈ [0, �e] and e ∈ E . We
endow E with the disjoint union topology. For this, let ϕe : [0, �e] � x 
→ (x, e) ∈ E
be the canonical injection. Then, a set U ⊂ E is open if and only if each ϕ−1

e (U ) is a
union of sets of the form [0, ε1[, ]ε2, �e] or ]ε3, ε4[, for εi ∈]0, �e[.

Consider now the set

V :=
⊔
e∈E

{0, �e}

of endpoints ofE .Given any equivalence relation∼onV ,we extend it to an equivalence
relation on E by equality: i.e., two elements (x1, e1), (x2, e2) ∈ E belong to the same
equivalence class if and only if (x1, e1) = (x2, e2) or else (x1, e1), (x2, e2) ∈ V and
(x1, e1) ∼ (x2, e2). We continue to denote this equivalence relation on E by ∼.

We call � := E/∼ a metric graph and V := V/∼ its set of vertices.
Therefore, a metric graph is uniquely determined by a family {�e}e∈E and an equiv-

alence relation on V . Its vertices are the cells of the partition of V induced by ∼.
Two vertices v, w ∈ V are said to be adjacent if there exists some e ∈ E such
that {x, y} = {0, �e} for some representatives (x, e) of v and (y, e) of w; in this
case we write v ∼ w and, with an abuse of notation, also v ∼ e. The cardinality
deg(v) of the set {w ∈ V : w is adjacent to v} is called degree of v ∈ V . We denote
Ev := {e ∈ E : v ∼ e} and int(V ) := {v ∈ V : #Ev > 1} (here #Ev denotes
the cardinality of Ev). Moreover, � is a measure space with respect to the direct sum
measure μ =⊕e∈E λe (see [29] and the references therein).

A function u on a metric graph � is a collection of functions {[u]e}e∈E with [u]e :
]0, �e[→ R. If [u]e is integrable for all e ∈ E then

∫
�

u(x) dx :=
∑
e∈E

∫ �e

0
[u]e(x) dx .

The Sobolev space H1(�) is defined as the space of functions u such that [u]e ∈
H1(0, �e) for all e ∈ E and

∑
e∈E

‖[u]e‖H1(0,�e) < +∞;

if v ∼ e and (0, e) (alternatively, (�e, e)) is a representative of v, the trace of [u]e at 0
(alternatively, at �e) is denoted by [u]e(v).
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The total variation of a measurable function u is defined as

TV�(u) := sup

{∫
�

u(x)z′(x) dx : z ∈ Xk(�), ‖z‖L∞(�) ≤ 1

}
,

where Xk(�) is the set of vector fields in H1(�) satisfying a Kirchhoff condition on
all the vertices of the graph; i.e.,

XK (�) =
⎧⎨
⎩z ∈ H1(�) :

∑
e∈Ev

[z]e(v)νe(v) = 0, ∀v ∈ int(V )

⎫⎬
⎭ .

Here, νe is the unit outer exterior normal to e; i.e., νe(v) = 1 if (�e, e) is a representative
of v and νe(v) = −1 if (0, e) is a representative of v.

Note that, as in the previous subsections, weak lower semicontinuity holds by the
definition of T V� . In order to prove the coarea formula and the submodularity of the
perimeter, we will give a representation formula for T V� . We first introduce some
notation. Given v ∈ int(V ), we consider the maximum and the minimum of the traces
of u at v:

umax
v := max{[u]e(v) : e ∈ Ev} , umin

v := min{[u]e(v) : e ∈ Ev}.
For a function u on � such that each [u]e is a function of bounded variation, we
denote |Du|(�) :=∑e∈E |D[u]e|(0, �e). With this notation, we obtain the following
representation formula:

Proposition 2

TV�(u) = |Du|(�) +
∑

v∈intV (�)

(umax
v − umin

v ). (3.5)

Proof To prove (3.5) we use the following integration by parts formula [30]:

∫
�

uz′ dx = −(z, Du)(�) +
∑

v∈int(V )

∑
e∈Ev

[z]e(v)νe(v)[u]e(v), (3.6)

with

(z, Du)(�) :=
∑
e∈E

([z]e, D[u]e)(0, �e);

([z]e, D[u]e) being the one dimensional Anzellotti Radon measure product (see [31]).
We recall that |(z, Du)| ≤ ‖z‖∞|Du| as measures.

From (3.6) we directly have

TV�(u) ≤ |Du|(�) +
∑

v∈int(V )

max

⎧⎨
⎩
∑
e∈Ev

we[u]e(v) : we ∈ [−1, 1],
∑
e∈Ev

we = 0

⎫⎬
⎭ .
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The last maximum is easily computed by the simplex method and we obtain

TV�(u) ≤ |Du|(�) +
∑

v∈int(V )

(umax
v − umin

v ).

Let us see the opposite inequality. Since

|D[u]e|(0, �e) = sup

{
(z, Du)(0, �e) = −

∫ �e

0
[u]ez′ : z ∈ C1

c (0, �e)

}
,

we can find zn := {[zn]e}e∈E with [zn]e ∈ C1
c (0, �e) such that

dist(supp([zn]e), {0, �e}) > 1
n for all e ∈ Ev, and

|Du|(�) ≤ (zn, Du)(�) + 1

n
.

We now fix v ∈ int(V ) and take emax ∈ argmax{[u]e(v) : e ∈ Ev} and emin ∈
argmin{[u]e(v) : e ∈ Ev} with emax �= emin. Suppose for simplicity that (0, emin)

and (�emax , emax) are representatives of v (the other cases follow similarly). Then, we
define

[z̃n]emax :=

⎧⎪⎨
⎪⎩

nx − 1

n
if 0 ≤ x ≤ 1

n

[zn]emax otherwise

, [z̃n]emin :=

⎧⎪⎨
⎪⎩

1 − nx

n
if 0 ≤ x ≤ 1

n

[zn]emin otherwise

.

Then, repeating this with each v ∈ int (V ) (changing (0, 1
n ) with (�emin − 1

n , �emin) or
(�emax − 1

n , �emax) when necessary) we end up with z̃n such that

(z̃n, Du)(�) −
∑

v∈int(V )

∑
e∈Ev

[z]e(v)νe(v)[u]e(v)

= (zn, Du)(�) +
∑

v∈int(V )

(umax
v − umin

v )

+
∑

v∈int(V )

(([z̃n]emax , D[u]emax

) (
0,

1

n

)
+ ([z̃n]emin , D[u]emin

) (
0,

1

n

))

≥ |Du|(�) +
∑

v∈int(V )

(umax
v − umin

v ) −
∑

v∈int(V )

(|D[u]emax | + |D[u]emin |)
(
0,

1

n

)
− 1

n
.

Letting n → +∞, with the use of (3.6),we conclude that

TV�(u) ≥ |Du|(�) +
∑

v∈int(V )

(umax
v − umin

v ).
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Therefore,

TV�(u) = |Du|(�) +
∑

v∈int(V )

(umax
v − umin

v )

= |Du|(�) +
∑

v∈int(V )

max

⎧⎨
⎩
∑
e∈Ev

we[u]e(v) : we ∈ [−1, 1],
∑
e∈Ev

we = 0

⎫⎬
⎭ .

��
We define Per�(A) := TV�(χA) for any μ-measurable A ⊂ �.

Here, given a μ-measurable set A ⊂ � the function χA = {[χA]e}e∈E on � is defined
by

[χA]e (x) :=
{
1 if (x, e) is a representative of an element in A,

0 if (x, e) is not a representative of any element in A.

Then, (�, μ,Per�) is a PMS. Indeed, observe that, since the classical total variation
satisfies the coarea formula and the usual perimeter is submodular, and thanks to the
last equality, we only need to show that:

(i) The trace at the endpoints of an interval of a one dimensional BV function satisfies
the layer cake formula, in particular,

[u]e(v) =
∫ +∞

0

[
χEt (u)

]
e (v)dt −

∫ +∞

0

[
χ�\Et (u)

]
e (v)dt

for every v ∈ int(V ) and e ∈ Ev (here χEt (u) = {χEt ([u]e)
}
e∈E ).

(ii) The trace of the characteristic function of a set is submodular.

These two properties follow directly from the continuity of a precise representative of
a one dimensional BV function outside of the jump set since, working edge by edge,
we have that the precise representative of the extension of [u]e with constant value
[u]e(v) to the right of �e (or left of 0) is continuous at the point �e (or 0) and the
same thing happens with the precise representative of the extension of χA of any finite
perimeter set A.

4 Linkage

In this sectionwe prove the relation between the ROF andCVmodels in the framework
of PMS. We need several previous results concerning the ROF model and a related
minimization problem.

We consider the following energy functional defined on elements of the σ -algebra:

Eλ(�) := Per(�) − λ

∫
�

f dν , � ∈ B (4.1)
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for f ∈ L2(X , ν).
The following three results have been proved in the isotropic Euclidean case

(Example 3.3.1) in [32] (Proposition 2.1, Lemma 2.4 and Lemma 2.5, respectively).

Proposition 3 Given a minimizer u ∈ L2(X , ν) of

min
u ∈ L2(X , ν)

0 ≤ u ≤ 1

TV(u) − λ

∫
X
u f dν (4.2)

and t ∈ [0, 1), we have that Et (u) := {x ∈ X : u(x) > t} is a minimizer of (4.1).

Proof First of all, by the lower semi-continuity of TVwith respect to the weak conver-
gence in L2(X , ν), the direct method of the calculus of variations yields the existence
of a minimizer solving (4.2).

Now observe that for any u ∈ L2(X , ν) with 0 ≤ u ≤ 1 ν-a.e.,

∫
X
u f dν =

∫
X

(∫ u(x)

0
ds

)
f (x) dν(x)

=
∫
X

∫ 1

0
χEs (u)(x) f (x) ds dν(x) =

∫ 1

0

∫
Es (u)

f (x) dν(x) ds.

Therefore, it follows that

TV(u) − λ

∫
X
u f dν =

∫ 1

0
Eλ (Es(u)) ds ≥ min

�∈B
Eλ(�). (4.3)

Consequently, the minimum in (4.2) is greater than or equal to min�∈B Eλ(�). How-
ever, (4.2) is smaller than min�∈B Eλ(�) since min�∈B Eλ(�) is just (4.2) over
characteristic functions of Borel sets. Therefore, they coincide.

Moreover, from (4.3) it follows that, if u is a minimizer of (4.2) then, for a.e.
t ∈ (0, 1), Et (u) is a minimizer of (4.1). Let us see that, in fact, this is true for every
t ∈ [0, 1).

Let t ∈ [0, 1) and let (tn)n≥1 be a decreasing sequence such that Etn (u) is a

minimizer of (4.1) for every n ≥ 1 and tn ↓ t as n → ∞. Then, since χEtn (u)
n−→

χEt (u) in L2(X , ν), from the lower semi-continuity of TV with respect to the weak
convergence in L2(X , ν), we infer that

Eλ(Et (u)) ≤ lim inf
n→∞ Eλ(Etn (u)) = min

�∈B
Eλ(�)

as desired. ��
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As a consequence of Proposition 3, for a fixed τ ∈ R, the superlevel sets Et (u),
t ∈ [0, 1), of a minimizer u ∈ L2(X , ν) of

min
u ∈ L2(X , ν)

0 ≤ u ≤ 1

TV(u) + λ

∫
X
u(τ − f ) dν (4.4)

are minimizers of

Eλ,τ (�) := Per(�) + λ

∫
�

(τ − f ) dν , � ∈ B.

Lemma 1 Let τ0 < τ1. If �λ,τ0 and �λ,τ1 ∈ B are minimizers of Eλ,τ0 and Eλ,τ1 ,
respectively, then �λ,τ1 ⊆ �λ,τ0 up to a ν-null set.

Proof Since �λ,τ0 and �λ,τ1 are minimizers we have that

Per(�λ,τ0) + λ

∫
�λ,τ0

(τ0 − f ) dν ≤ Per(�λ,τ0 ∪ �λ,τ1) + λ

∫
�λ,τ0∪�λ,τ1

(τ0 − f ) dν,

Per(�λ,τ1) + λ

∫
�λ,τ1

(τ1 − f ) dν ≤ Per(�λ,τ0 ∩ �λ,τ1) + λ

∫
�λ,τ0∩�λ,τ1

(τ1 − f ) dν.

Adding these equations we get

Per(�λ,τ0) + Per(�λ,τ1) + λ

∫
�λ,τ0

(τ0 − f ) dν + λ

∫
�λ,τ1

(τ1 − f ) dν

≤ Per(�λ,τ0 ∪ �λ,τ1) + Per(�λ,τ0 ∩ �λ,τ1)

+λ

∫
�λ,τ0∪�λ,τ1

(τ0 − f ) dν + λ

∫
�λ,τ0∩�λ,τ1

(τ1 − f ) dν

which, by the sub-modularity of Per, yields

∫
�λ,τ0

(τ0 − f ) dν +
∫

�λ,τ1

(τ1 − f ) dν ≤
∫

�λ,τ0∪�λ,τ1

(τ0 − f ) dν

+
∫

�λ,τ0∩�λ,τ1

(τ1 − f ) dν,

i.e.,

∫
�λ,τ1\�λ,τ0

(τ1 − f ) dν ≤
∫

�λ,τ1\�λ,τ0

(τ0 − f ) dν,

thus (τ1 − τ0)ν
(
�λ,τ1 \ �λ,τ0

) ≤ 0. ��
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Remark 1 It follows that the minimizer�λ,τ of Eλ,τ is unique up to a ν-null set, except
for atmost countablymany values of τ . Indeed, for each τ ∈ R, fix aminimizer�λ,τ of
Eλ,τ . Then, τ 
→ ν(�λ,τ ) is monotone so it is continuous except for at most countably
many values. Let us see that if τ is a continuity point then �λ,τ is unique up to a
ν-null set. Suppose otherwise that there exist two minimizers �1

λ,τ and �2
λ,τ such that

ν
(
�1

λ,τ 
 �2
λ,τ

)
> 0. Then, �1

λ,τ ∪ �2
λ,τ ⊆ �τ ′ up to a ν-null set for any τ ′ < τ ;

and �1
λ,τ ∩ �2

λ,τ ⊇ �τ� up to a ν-null set for any τ � > τ . However, this implies that

ν (�τ ′) ≥ ν (�τ�) + ν
(
�1

λ,τ 
 �2
λ,τ

)

so τ cannot be a continuity point.

Let Q be a countable dense subset of R such that the minimizer �λ,τ of Eλ,τ is
unique for every τ ∈ Q.

Lemma 2 Let �λ,τ be a minimizer of Eλ,τ . Then, the function

uλ(x) := sup{τ ∈ Q : x ∈ �λ,τ }

is the unique minimizer of E ROF
λ in L2(X , ν).

Proof Let us first see that uλ ∈ L2(X , ν). Since

Per(�λ,τ ) + λ

∫
�λ,τ

(τ − f ) dν ≤ 0 = Eλ,τ (∅)

we have that

τν(�λ,τ ) ≤
∫

�λ,τ

f dν.

Thus

∫ M

0
τν(�λ,τ )dτ ≤

∫ M

0

∫
�λ,τ

f dνdτ. (4.5)

Now, by Fubini’s theorem,

∫ M

0
τν(�λ,τ )dτ =

∫ M

0

∫
�λ,0

τχ�λ,τ (x) dν(x) dτ

=
∫

�λ,0

∫ M

0
τχ[0,uλ(x)](τ ) dτ dν(x)
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=
∫

�λ,0

∫ min{uλ(x),M}

0
τ dτ dν(x)

=
∫

�λ,0

1

2
(min{uλ(x), M})2 dν(x)

and, similarly,

∫ M

0

∫
�λ,τ

f (x) dν(x) dτ =
∫

�λ,0

min{uλ(x), M} f (x) dν(x).

Consequently, by (4.5),

1

2

∫
�λ,0

(min{uλ, M})2 dν ≤
∫

�λ,0

min{uλ, M} f dν

≤
(∫

�λ,0

(min{uλ, M})2dν
∫

�λ,0

f 2dν

) 1
2

thus
∫

�λ,0

(min{uλ, M})2 dν ≤ 4
∫

�λ,0

f 2 dν.

From this, letting M → ∞, it follows that

∫
{uλ>0}

u2λ dν ≤ 4
∫

{uλ≥0}
f 2 dν. (4.6)

Similarly, we get that

∫
{uλ<0}

u2λ dν ≤ 4
∫

{uλ≤0}
f 2 dν. (4.7)

Indeed, since Per(E) = Per(X \ E) for every E ∈ B, we have that {−uλ > −τ } =
{uλ < τ } is a minimizer of

min
�

Per(�) + λ

∫
�

( f − τ) dν = min
�

Per(�) + λ

∫
�

(−τ − (− f )) dν.

Therefore, it follows that if we replace f with − f in Eλ,τ then we obtain −uλ instead
of uλ.

It follows from (4.6) and (4.7) that uλ ∈ L2(X , ν).
We now consider

�−
λ,τ :=

⋃
τ ′>τ, τ ′∈Q

�λ,τ ′ , τ ∈ R.
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Observe that �−
λ,τ = Eτ (uλ) up to a ν-null set.

Let us prove that �−
λ,τ is a minimizer of Eλ,τ . Let {τn}n∈N ⊂ Q be a decreasing

sequence such that τn ↓ τ as n → ∞. Since for any � ∈ B we have

Per(�) + λ

∫
�

(τn − f ) dν ≥ Per(�λ,τn ) + λ

∫
�λ,τn

(τn − f ) dν

and χ�λ,τn
is nonincreasing (thus χ�λ,τn

n−→ χ�−
λ,τ

in L2(X , ν)), the lower semi-

continuity of Per with respect to the weak convergence in L2(X , ν) yields

Per(�) + λ

∫
�

(τ − f ) dν ≥ Per(�−
λ,τ ) + λ

∫
�−

λ,τ

(τ − f ) dν.

Therefore, �−
λ,τ is a minimizer of Eλ,τ .

Now let v ∈ L2(X , ν). Since �−
λ,τ is a minimizer of Eλ,τ we have that, for every

M > 0,

∫ M

−M

(
Per(�−

λ,τ ) + λ

∫
�−

λ,τ

(τ − f )dν

)
dτ

≤
∫ M

−M

(
Per(Eτ (v)) + λ

∫
Eτ (v)

(τ − f )dν

)
dτ. (4.8)

Now, for any w ∈ L2(X , ν), by Fubini’s theorem,

∫ M

−M

∫
Eτ (w)

(τ − f (x)) dν(x) dτ =
∫
X

∫ M

−M
χEτ (w)(x)(τ − f (x)) dτ dν(x)

=
∫
X

∫ min{w(x),M}

−M
(τ − f (x)) dτ dν(x)

= 1

2

∫
X
((min{w, M} − f )2 − (−M − f )2) dν.

Thus

∫ M

−M

∫
Eτ (w)

(τ − f (x)) dν(x)dτ + 1

2

∫
X
(M + f )2 dν

= 1

2

∫
X
(w − f )2 dν + 
(w, M) (4.9)

where


(w, M) = 1

2

∫
X

(
(min{w, M} − f )2 − (w − f )2

)
dν,
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satisfies

lim
M→∞ 
(w, M) = 0

for any w ∈ L2(X , ν). Therefore, from (4.8) and (4.9), it follows that

∫ M

−M
Per(Eτ (uλ)) dτ + λ

2

∫
X
(uλ − f )2 dν + 
(uλ, M)

≤
∫ M

−M
Per(Eτ (v)) dτ + λ

2

∫
X
(v − f )2 dν + 
(v, M).

Then, letting M → ∞, we get

TV(uλ) + λ

2

∫
X
(uλ − f )2 dν ≤ TV(v) + λ

2

∫
X
(v − f )2 dν.

Consequently, since v ∈ L2(X , ν) is arbitrary, uλ is a minimizer for the ROF model.
��

Remark 2 Note that, in the case that 0 ≤ f ≤ 1:

• If τ > 1, then ∅ is the unique (up to ν-null sets) minimizer of Eλ,τ .
• If τ < 0, then X is the unique (up to ν-null sets) minimizer of Eλ,τ .

Therefore, 0 ≤ uλ ≤ 1 and the proof of Lemma 2 becomes much simpler.

We have obtained the following result.

Proposition 4 A function u solves the ROF model (3.3) if, and only if, Eτ (u) is a
minimizer of Eλ,τ for every τ ∈ R.

As in [32, Proposition 2.6], we observe that the change of τ from almost any value
to all value in R is achieved by approximation.

Next, we will show the relation between the ROF and CV models. We recall that
an n-tuple is a partial minimizer of some functional defined on a product space X1 ×
· · · × Xn if it minimizes the functional over each space Xi , i = 1, . . . , n, when the
other components are fixed.

Theorem 2 Given a measurable function f : X → [0, 1], let uλ be the unique
minimizer of the ROF functional E ROF

λ . Let 0 < m0 < m1 ≤ 1 be such that
�̃ := E(m0+m1)/2(uλ) satisfies 0 < ν(�̃) < ν(X). Then ECV

μ (�̃,m0,m1) ≤
ECV

μ (�,m0,m1) for all � ∈ B and μ := λ
2(m1−m0)

. In particular,
(
�̃,m0,m1

)
is

a partial minimizer of the Chan–Vese model if

m0 := 1

ν(X \ �̃)

∫
X\�̃

f dν and m1 := 1

ν(�̃)

∫
�̃

f dν.
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Proof First of all, observe that, thanks to Proposition 4, �̃ minimizes E
λ,

m0+m1
2

. Then,

it is obvious that it is also a minimizer of E
λ,

m0+m1
2

+ C for any C ∈ R; in particular

for C := λ
2(m1−m0)

∫
X (m0 − f )2dν. On the other hand, for any � ∈ B,

E
λ,

m0+m1
2

(�) + C = Per(�) + λ

∫
�

(
m0 + m1

2
− f

)
dν + C

= Per(�) + λ

2(m1 − m0)

∫
�

(
(m1 − f )2 − (m0 − f )2

)
dν + C

= Per(�) + λ

2(m1 − m0)

(∫
�

(m1 − f )2 dν +
∫
X\�

(m0 − f )2 dν

)

= ECV
μ (�,m0,m1).

Thus ECV
μ (�̃,m0,m1) ≤ ECV

μ (�,m0,m1) for any � ∈ B.
Now let

m̃0 = 1

ν(X \ �̃)

∫
X\�̃

f dν and m̃1 := 1

ν(�̃)

∫
�̃

f dν.

It is straightforward to check that theyminimize ECV
μ (�̃, ·, ·). To finish, wemust prove

that m̃0 < m̃1.

Since E
λ,

m̃0+m̃1
2

(�̃) ≤ E
λ,

m̃0+m̃1
2

(∅) = 0, we have that
∫
�̃

(
m̃0+m̃1

2 − f
)
dν ≤ 0.

Thus m̃0+m̃1
2 ≤ m̃1. If m̃0 = m̃1, then ∅ is a minimizer of E

λ,
m̃0+m̃1

2
(·) thus, by

uniqueness (up to a ν-null set) of the minimizer, we get ν(�̃) = 0, a contradiction.
Therefore, m̃0 < m̃1. ��

5 Applications

In this section we see how our previous results allow us to use the classical CV model
for image segmentation in settings different than those for which it was originally
designed. We consider a locally finite weighted discrete graph G = (V (G), E(G)),
where the edge weights {wxy}x,y∈V (G) are given by the Gaussian kernel ησ (x, y) =
exp(−d(x, y)/σ 2) for some distance d defined on V (G). We recall the definition of
the CV and ROF functionals in a discrete graph (see Example 3.3.4):

ECV
μ (�,m0,m1) = PerG(�) + μ

∑
x∈�

(m0 − f (x))2dx + μ
∑

x∈V (G)\�
(m1 − f (x))2dx ,

EROF
λ (u) = 1

2

∑
x,y∈V (G)

|u(x) − u(y)|wxy + λ

2

∑
x∈V (G)

(u(x) − f (x))2dx
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where f : V (G) → [0, 1], � ⊆ V (G), u ∈ L2(V (G), νG), m0,m1 > 0,

dx :=
∑
y∼x

wxy and PerG(A) =
∑
x∈A

∑
y∈V (G)\A

wxy for allA ⊆ V (G).

Thanks to the results in Sect. 4, we know that it suffices to minimize the ROF problem
to obtain a partial minimizer of ECV

μ . To compute the approximate minimizer of EROF
λ ,

we will use the source code provided in [6], based on the IRLS method [33]. In our
experiments, we will specify the parameters ε, σ and K used in this method, which we
will denote hereafter by IRLS(ε,σ,K ). We recall that σ is the parameter of the kernel ησ

and that K is the number of active edges per vertex (i.e., with wxy �= 0), a choice that
will be determined by the K nearest neighbours to each node. That said, we present
the following strategy based on Theorem 2 to estimate a ECV

μ minimizer:

Algorithm 1 ECV
μ approximate minimizer

initiation: k = 1, μ > 0, (m0,m1) ∈ [0, 1]2 s.t. m1 > m0 .

w ← EROF
2μ(m1−m0)

minimizer using IRLS(ε,σ,K ).

�0 ← ∅.
�1 ← {x ∈ V : w(x) > 1

2 (m1 − m0)}.
while |�k 
 �k−1|2 > εtol ∧ k < nmax do

m0 ← |�k |−1∑
x∈�k

f (x), m1 ← |V \ �k |−1∑
x∈V \�k

f (x).

w ← EROF
2μ(m1−m0)

minimizer using IRLS(ε,σ,K ).

�k+1 ← {x ∈ V : w(x) > 1
2 (m1 − m0)}, k ← k + 1.

end while

return �k , w

where nmax and εtol denote the maximum number of iterations and the tolerance of the
algorithm, respectively. In our experiments, we set nmax = εtol = 10 and we take d as
the Euclidean distance.We note that the above scheme is equivalent to those presented
in [3, 5], proposed for the classical CV model in its isotropic and anisotropic forms,
respectively.

5.1 Nonlocal Image Segmentation

As a first example, we define f : � → {0, 1} such that the image represented by f
consists of diagonal lines with added noise. The noise fulfills the condition that the
closer it is to a line, the denser it is (cf. Fig. 1a, b). Suppose that � := {1, ..., n} ×
{1, ...,m}, where (n,m) is the image size. Taking into account the particular features
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(a) Graph of f . (b) Graph of f without added noise.

(c) [3]’s approach with µ = 1.2 (d) Our approach with µ = 3 on each Vi

Fig. 1 Comparison of approximate solutions to the CV model

of this image, we will divide � into disjoint subsets {Vi }10i=1 as follows:

Vi :=
{{

x ∈ � : f̄ (x) ≤ Di
(
f̄ (�)
)}

if i = 1,{
x ∈ � \ Vi−1 : f̄ (x) ≤ Di

(
f̄ (�)
)}

if i > 1,

s.t. f̄ (x) :=
∑

y∈B1(x)

f (y)

|B1(x)| ,

where B1(x) is the �∞ unit ball in � centered at x , and Di ( f̄ (�)) is the i-th decile
of the finite set f̄ (�) ⊂ R. Then, we will minimize the CV functional on each(
Vi , νGi ,PerGi

)
(here Gi = (Vi (Gi ), E(Gi ))). With this procedure, the segmentation

process is carried out independently on each element of the partition, which is con-
structed taking into account the density of 1’s in the neighborhood of each node of
�.

We apply the Algorithm 1 with IRLS(3,0.3,10) and compare our approach with
the classical Euclidean CV segmentation. We computed the latter by making use
of the algorithm proposed in [3], conceptually equivalent to ours. In Fig. 1c and d,
we present the segmentations that differ the least, in quadratic error terms, from the
original denoised image shown in Fig. 1b. In these examples, we can see that these
approaches produce noticeably different segmentations, especially where the density
of the noise is highest. In fact, if we compute the Frobenius norm of the differences
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between the denoising results and Fig. 1b, we see that our approach, in this case,
is 13.27% more accurate than the classical one. This is due to the way in which
the segmentation process is carried out. The classical approach handles the image as a
whole, solving both problems from a global viewpoint. Our approach, however, solves
both problems in specific regions of the image, which have been previously identified
through a particular criterion (the noise density around each pixel). Therefore, our
proposal provides higher flexibility in the segmentation or denoising process.

5.2 Labeling

Additionally, extending the ROF and CV models to perimeter measure spaces allows
us to use these models in other fields beyond image processing. In the next example,
we show an application of these models in a multiclass classification problem in
higher-dimensional spaces: the labeling problem.

We consider again the PMS (V (G), νG ,PerG) associated to a weighted graph. The
labeling problem consists in assigning a label from the label set {yi }ki=1 to each vertex
in V (G). As the initial condition, we assume that labels have already been assigned
to each of the vertices in {xi }mi=1 for a given m ≤ k, i.e., y ji ∈ {y j }kj=1 is already
assigned to xi for 1 ≤ i ≤ m. One of the methods most commonly used to solve
this problem is the so-called Laplacian learning algorithm. It finds an approximate
solution as follows: First, an approximate solution u = (ui )ki=1 : V (G) → [0, 1]k of
the following PDE on the graph is found:

{
Lu(xi ) = 0 if i > m,

u(xi ) = e ji otherwise,
(5.1)

where {ei }ki=1 is the canonical basis of Rk and L is the graph Laplacian functional
defined as

Lu(x) :=
∑
y∈V

wxy(u(x) − u(y)) for x ∈ V .

Then, a label is assigned to each x ∈ V (G)\{xi }mi=1 corresponding to the largest
component of u(x). Unfortunately, this labeling method can be inconsistent and is
largely influenced by the number of vertices per label initially known [34, 35].

Alternatively, we will use the CV model to improve the results. First, we obtain an
approximate solution u of (5.1) by using the well-known algorithm proposed in [36].
However, we then follow a different approach to assign the labels, first using the CV
model on a modified version of each ui , 1 ≤ i ≤ k. To begin with, let

ũ = (ũi )
k
i=1 : ũi (x) := ui (x) − wi , x ∈ V (G),

where wi is the mean of {ui (x)}x∈V (G); and then normalize between 0 and 1 (without
renaming) the values of {ũi (x)}1≤i≤k for each x ∈ V (G). This first step balances out
the prevalence of the different labels. Then, for each 1 ≤ i ≤ k, we use Algorithm 1
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Table 1 Average accuracy for the MNIST dataset

nk 1 2 3 4 5

PoissonMBO learning 96.1 (2.5) 97.0 (0.2) 97.2 (0.1) 97.2 (0,1) 97.2 (0.1)

Laplacian learning 16.8 (6.1) 27.5 (7.8) 41.1 (12.4) 57.9 (11.5) 69.1 (12.3)

CV post-processing 83.3 (4.7) 94.2 (2.6) 95.5 (0.3) 96.1 (0.3) 96.3 (0.3)

Table 2 Average accuracy for the FashionMNIST dataset

nk 1 2 4 8 16

PoissonMBO learning 61.9 (5.8) 67.0 (4.9) 72.2 (2.5) 74.2 (2.1) 76.9 (1.8)

Laplacian learning 17.4 (7.2) 32.0 (8.1) 51.6 (5.9) 69.7 (3.3) 74.6 (1.3)

CV post-processing 64.3 (6.7) 65.4 (5.8) 69.5 (3.3) 72.1 (1.7) 76.3 (1.3)

Table 3 Average accuracy for the CIFAR-10 dataset

nk 10 20 40 80 160

PoissonMBO learning 61.6 (2.3) 64.6 (1.7) 66.7 (0.7) 68.5 (0.6) 70.4 (0.5)

Laplacian learning 21.5 (7.3) 38.2 (7.9) 55.0 (4.7) 62.8 (1.8) 66.5 (1.2)

CV post-processing 57.8 (3.3) 62.0 (2.1) 66.2 (1.5) 68.3 (0.9) 70.5 (0.5)

with f = ũi and denote the output by (�i , w̃i ). Finally, we define v := (w̃iχ�i )
k
i=1 :

V → R
k and assign a label to x ∈ V (G)\{xi }mi=1 according to the largest component

of v(x).
In order to evaluate the effectiveness of this post-processingwewill compare it with

the PoissonMBO learning [37], which, to the best of our knowledge, is one of the best
ways to solve the labeling problem (see, for example, [37, Sect. 4]). To compare the
accuracy, we will use three databases composed by k = 10 categories: MNIST [38],
FashionMNIST [39] (in both cases, n = 60,000 andV ⊂ {0.1}784) andCIFAR-10 [40]
(n = 70000 and V ⊂ {0, ..., 255}3072). We perform experiments with varying number
nk of initially labeled elements per label. To compute the approximate solutions of the
Laplacian (u according to the previous notation) and PoissonMBO learnings, we use
the source code provided in [37]; while v = (w̃iχ�i )

10
i=1 is computed by minimizing

ECV

5 (via Algorithm 1 with IRLS(3,1,4)). Note that, to reduce the computational cost of
obtaining v, we have split the set of vertices V (G) into 30 disjoint subsets {Vi }30i=1 of
equal size and used the CV model on each of the Vi with f = ũ|Vi .

The results are shown in Tables 1, 2 and 3; where the same scheme as the one in [37]
is used. To be more precise, we show the average accuracy for each of the approaches
over 100 trials together with the standard deviation inside the brackets.

According to the above tables, the application of the CV post-processing to the
Laplacian approximation provides a considerable increase in accuracy in the labeling
process. This increase is significant in all three datasets, specially in the cases where
the number nk is small. Moreover, the accuracy obtained is comparable to that of the
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PoissonMBO learning. Consequently, we see that our CVmodel proposal can improve
existing processes in settings different from image segmentation, such as the classical
Laplacian learning algorithm for labeling.
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