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Abstract
In this article, we study an electrically conductive Rosensweig model for ferrofluids,
whose Bloch–Torrey regularization was studied by Hamdache and Hamroun (Appl
Math Optim 81(2):479–509, 2020). We mainly prove the global existence of weak
solutions to the non-regularized model under a certain smallness condition on the
electric conductivity. Hence, our result not only solves a problem that was left open
by Hamdache and Hamroun, but it can also serve as a confirmation that ferrofluids are
naturally poor conductors of electric current. The proof, which is interesting in itself,
is quite involved and relies on the Helmohltz–Leray decomposition of the magnetic
fields and the use of renormalized solutions for the magnetization. We also give a
rigorous and detailed description of the convergence of the global weak solutions
towards the quasi-equilibrium in the relaxation time limit regime τ → 0.

Keywords Ferrofluids · Navier–Stokes equations · Quasi-static Maxwell equations ·
Internal rotations · Relaxation time

1 Introduction

Ferrofluids were developed by NASA in the 1960s and consist of ferromagnetic par-
ticles suspended in a liquid carrier (water, oil, etc.). The particles suspended in a
ferrofluid conform to Brownian motion, which means particles’ movement is gener-
ally random. The ferrofluids also become strongly magnetized in the presence of a
external magnetic field and can be controlled to flow via the positioning and strength
of the applied field. Thus, the ferrofluid can be positioned very exactly. This property
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gives an impetus to numerous ferrofluid applications in industry, technology, engi-
neering and medicine: pumping fuel in spacecraft without mechanical action, liquid
seal around the computer hard-drives rotating shaft, improving the heat transfer in
electrical transformers, carrying medications to exact locations within the body. We
refer to [14, 17, 19, 20] for an overview of the physics and applications of ferrofluids.

There are two commonly accepted mathematical models for ferrofluids: the
Rosensweig and the Shliomis models. The Rosensweig model describes the dynamics
of ferrofluids with internal rotations and is seen as a generalization of the simpler
Shliomis model. In this paper, we will mainly consider a Rosensweig model which
governs the motion of electrically conductive ferrofluids (see [19]). The ferrofluid
system fills a connected and bounded open subset O ⊂ R

3, with a smooth boundary
∂O (i.e., of class C∞). The fluid carrier is assumed to be an incompressible Newtonian
fluid. The model is described by the following system of partial differential equations:

∂tu + (u · ∇)u + ∇ p − ν�u − μ0(M · ∇)H

= μ0(∇ × H) × H − α∇ × (∇ × u − 2w), (1.1a)

∂tw + (u · ∇)w − (λ1 + λ2)∇ divw − λ1�w

= 2α(∇ × u − 2w) + μ0M × H, (1.1b)

∂tM + (u · ∇)M = w × M − 1

τ
(M − χ0H), (1.1c)

∂t B + 1

σ
∇ × (∇ × H) = ∇ × (u × B), (1.1d)

B = μ0(M + H), div B = 0, (1.1e)

div u = 0. (1.1f)

We call this system the electrically conductiveRosensweig equations (ECREs for short
notation). The unknown functions are the velocity u of the fluid, its pressure p, the fluid
internal rotationw, themagnetization M, and themagnetic field H . Here, the viscosity
coefficients ν, λ1 and λ2, the relaxation time τ , the magnetic susceptibility coefficient
χ0 and the electric conductivity σ are all positive and assumed to be constant. The
constant μ0 is a fundamental constant called magnetic permeability of the vacuum.
The forcing term μ0(M · ∇)H in the linear momentum equation is the so-called
Kelvin force. The term μ0M represents the vector moment per unit volume. The
equation div B = 0 (cf. (1.1e)) is the Maxwell equation for the magnetic induction
B = μ0(M+H) inO and B = μ0H outsideO, where themagnetizationM vanishes.

We endow problem (1.1a)–(1.1f) with the following boundary conditions

u = w = 0, on (0, T ) × ∂O,

div M = 0, H × n = M × n = 0, on (0, T ) × ∂O, (1.2)

where ∂O is the boundary of O and n is its outward normal.
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The initial condition is given by

(u,w, M, H)(t = 0) = (u0,w0, M0, H0) in O,

div u0 = div(M0 + H0) = 0 in O, (1.3)

where (u0,w0, M0, H0) is a given initial data.
Compared to the classical models introduced in [17], the present model, which was

introduced in [13, 19], presents three novelties. Firstly, the Navier–Stokes equations
contain an additional volume force, which is the Lorentz force μ0(∇ × H)× H . Sec-
ondly, the magnetic field H satisfies the quasi-static Maxwell equations (1.1d) instead
of the magnetostatic ones. Thirdly, the effective magnetizing field H is considered in
the case where there are both currents and magnetic charges.

Despite the numerous ferrofluids applications, the mathematical analysis of the
ferrofluids models is still quite recent. The mathematical analysis of the ferrofluids
started with the investigation of weak solutions of the Bloch–Torrey regularization of
the either electrically non-conductive Shliomis or Rosensweig models (see, e.g., [1,
2, 6]). Later on, results on local existence of strong solutions to the non-regularized
models were established in [3, 4]. It is only recently that the global existence of weak
solutions of the non-regularized and electrically non-conductivemodelwas established
in [17]. Since then, the electrically non-conductive ferrofluids models has been the
subject of intensive mathematical analysis which has generated several important
results (see, e.g., [7, 21, 22, 28] and references therein). As far as the electrically
conductive ferrofluids models are concerned, the analysis is very recent. The existence
of global weak solutions and local strong solutions of the conductive ferrofluids were
only proved in the recent papers [5, 13].

Since the paper [13] deals only with the global weak solution of the Bloch–Torrey
regularization of an electrically ferrofluids model, there remain many unsolved math-
ematical questions for the non-regularized electrically conductive ferrofluids models.
We will address two examples of these open problems in this paper. In fact, we will
mainly show that under a smallness constraint on the electric conductivity σ , the
ECREs (1.1) has at least one global weak solution (see Theorem 2.4). This constraint
on σ confirms the fact that ferrofluids are naturally very poor conductor of electric
current or dielectric.

In the presence ofmagnetic field, the ferrofluid relaxation time, which is the average
time needed by the ferrofluid to recover an equilibrium state once perturbed, is of
order τ � 10−9. This motivates us to give a rigorous and detailed description of
the behavior of the global weak solutions in the relaxation time limit regime τ →
0 (cf. Theorem 4.2). The proof of these results are difficult even in the case of
non-conductive ferrofluids. The main difficulties being the non-parabolicity of the
magnetization equation (1.1c) and the irregularity of the Kelvin force μ0(M ·∇)H on
one hand, and the nonlinear couplings among the velocity, pressure, magnetic field,
magnetization field on the other hand. In order to overcome these difficulties, we use
the approximation of the problem by the Bloch–Torrey regularization problem studied
in [13] and employ the notion of renormalized weak solution, as was done in [17].
The latter approach is motivated by the fact that (1.1c) is a transport equation with
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linear perturbations. Note that in [17], the magnetic field H solves the magnetostatic
equations

{
div H = − div M,

curl H = 0.
(1.4)

Thus, it can be expressed as the gradient of a potential, which is essential to deal with
the irregularity of the Kelvin force and to obtain strong convergence in the passage to
the limit. In contrast to [17], our magnetic field H is not the gradient of a potential
because it solves the quasi-static Maxwell equations (1.1d). In order to obtain the right
convergence for the passage to the limit, we decompose H as the sum of a curl-free
and a divergence-free fields and establish several non-trivial estimates for these fields
and their time derivatives. This is an interesting technique in itself and may help in
further analysis of the electrically conductive ferrofluids models.

We close this introduction with a presentation of the layout of the present paper. In
Sect. 2, we fix the frequently used notation in the manuscript and the mathematical
tools used in the analysis. We also introduce the notion of weak solutions we shall
work with in this work and state in Theorem 2.4 our existence result. The existence
proof is inspired by the Diperna–Lions theory of renormalized solutions [8, 10, 15],
and it is part of Sect. 3. Section 4 is devoted to the zero limit of the relaxation time
to Problem (1.1a)–(1.3). We report in Sect. 5 a general conclusion drawn from the
presented research and outline future directions.

2 Preliminaries

2.1 Notation, Functions Spaces, and Auxiliary Results

Throughout the paper, we will use the notation Qt := (0, t) ×O for every t ∈ (0, T ]
and set 
 := (0, T ) × ∂O. Next we introduce some notations and background fol-
lowing the mathematical theory of hydrodynamic equations such as Navier–Stokes
equations or Rosensweig equations. For any q ∈ [1,∞) and s ∈ R, we denote
by Lq(O) and Ws,q(O) the usual Lebesgue and Sobolev spaces of scalar functions,
respectively.When q = 2, wewriteWs,2(O) = Hs(O).We denote by H1

0 (O) the clo-
sure of C∞

0 (O) in H1(O) and by H−1(O) its dual space. We use the notations Lq(O),
W

s,q(O),Hs(O), to denote the spaces Lq(O)3, [Ws,q(O)]3, [Hs(O)]3, respectively.
We use the same notations ‖ · ‖ and (·, ·) to denote the norms and the scalar products
of the Hilbert spaces L2(O) and L

2(O). We also introduce the space

E2(O) := {v : v = ∇h, h ∈ L2
loc(O), ∇h ∈ L

2(O)},

equipped with the norm

‖v‖E2(O) = ‖∇h‖L2(O) for v = ∇h ∈ E2(O).
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We also consider the space

E3(O) := {v : v = ∇h ∈ E2(O), �h ∈ L2(O)}

equipped with the following norm

‖v‖E3(O) := (‖∇h‖2 + ‖�h‖2) 1
2 for v = ∇h ∈ E3(O).

Let X be a real Banach or Hilbert space with norm denoted by ‖ · ‖X . The symbol
〈·, ·〉X ′,X (or simply 〈·, ·〉 if there is no confusion) will stand for the duality product
between X and its dual X ′. We let Cw(0, T ; X) be the space of functions that are
weakly continuous in time, i.e., if u ∈ Cw(0, T ; X), then for any s → t ,

〈u∗, u(s)t〉X ′,X → 〈u∗, u(t)〉X ′,X ∀u∗ ∈ X ′.

We will also use the symbol C1c ([0, T ); X) for the space of functions φ = ζ1ζ2 with
ζ1 ∈ C([0, T ]) ∩ C1(0, T ), ζ1(T ) = 0, and ζ2 ∈ X .

Notations for the Velocity Field u

We denote by V the space of divergence free vector fields in C∞
0 (O). Let

E(O) = {v ∈ L
2(O) : div v ∈ L2(O)},

H = the closure of V in L
2(O),

V = the closure of V in [H1
0 (O)]3.

The space E(O) is a Hilbert space with a scalar product

(u, v)E(O) = (u, v) + (div u, div v).

We endow the set H with the inner product (·, ·) and the norm ‖ · ‖ induced by L2(O).
The space H can also be characterized in the following way (see [27, Theorem I.1.4]
or [26, Theorem 1.4])

H = {u ∈ E(O) : div u = 0 in O, u · n|∂O = 0},

and also by (see [23, Theorem 1.4])

H = {u ∈ L
2(O) : 〈u,∇h〉 = 0 ∀ ∇h ∈ (E2(O))′}.

The space V has the following characterization (see [26, Theorem 1.6])

V = {u ∈ H
1(O) : div u = 0 in O, u|∂O = 0}.
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The space V is a separable Hilbert space when endowed with the inner product and
norm

(u, v)V := (∇u,∇v) =
∫
O

∇u : ∇v dx and ‖u‖V = ‖∇u‖, with u ∈ V .

Notations for the Magnetization Field M and the Magnetic Field H

The following is an abridged version of notations and preliminaries of the paper [13].
We introduce the following Hilbert spaces

Hn = {M ∈ L
2(O); M × n = 0 on ∂O},

V1 = {M ∈ H
1(O); M × n = 0 on ∂O},

V 1
div = {B ∈ V1 : div B = 0 in O}.

The spaces Hn and H are equipped with the L2(O)-norm, and the spaces V , V1 and
V 1
div are equipped with the norm inhereted fromH

1(O). Hence, V 1
div is a closed subset

of V1. Furthermore, the space V1 admits the following orthogonal decomposition (see
[13]):

V1 = V 1
div ⊕ H,

H = {w : w = ∇φ, φ ∈ H1
0 (O) ∩ H2(O)}.

Hereafter, we set

H = H × L
2(O) × Hn × Hn, V = V × [H1

0 (O)]3 × V1 × V1.

By identifying H with its dual through the Riesz isomorphism, we see that

V ↪→ H ∼= H ′ ↪→ V ′,

is a Gelfand triple, i.e. both embeddings are continuous and have dense images.
Moreover, the embeddings are also compact. We will use the notations Hs

div(O) :=
H

s(O) ∩ V and H
s
0(O) := [H1

0 (O)]3 ∩ H
s(O), s � 1, to denote the space of

divergence-free functions inHs(O)with vanishing trace, and the space of functions in
H

s(O) with vanishing trace, respectively. Their dual spaces are denoted by H
−s
div(O)

and H
−s
0 (O), respectively.

We recall the classical result: there exists a positive constant C > 0 such that for all
M1 ∈ V1, we have

‖∇M1‖2 � C(‖M1‖2 + ‖ curl M1‖2 + ‖ div M1‖2), (2.1)

which provides V1 and V 1
div with the equivalent norm associated to the inner product

defined by

[M; M1] = (M, M1) + (curl M, curl M1) + (div M, div M1), M, M1 ∈ V1.
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We recall the following result taken from [25].

Lemma 2.1 Let X, Y be two Banach spaces such that X ↪→ Y and Y ′ ↪→ X ′ densely.
Then, L∞(0, T ; X) ∩ Cw([0, T ]; Y ) ↪→ Cw([0, T ]; X).

2.2 Main Assumptions

With the aim of solving Problem (1.1)–(1.3), we make the following assumption on
the initial data

(u0,w0, M0, H0) ∈ H

div u0 = 0, div(M0 + H0) = 0 in O. (2.2)

General Agreement

Throughout the paper, the symbol C will denote a generic positive constant that does
not depend on the data, but can depend onO, T , and the physical parameters appearing
in the equations.Any further dependencewill be explicitly pointed outwhen necessary.
In particular, the notation CT , Cε, or C(T , . . .) denotes a positive constant which
explicitly depends on the quantities T or ε or C(T , . . .).

2.3 Existence ofWeak Solutions

We now define the notion of weak solutions to the problem (1.1)–(1.3).

Definition 2.2 Aquadriplet of functions (u,w, M, H) is aweak solution to theECREs
(1.1)–(1.3) if:

(i) The functions u,w, M, H satisfy

(u,w, M, H) ∈ L∞(0, T ;H),

u ∈ L2(0, T ; V ) ∩ Cw([0, T ]; H),

w ∈ L2(0, T ; [H1
0 (O)]3) ∩ Cw([0, T ];L2(O)),

M ∈ Cw([0, T ];L2(O)), H ∈ Cw([0, T ];L2(O)),

div(H + M) = 0, a.e. in QT .
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(ii) The following equations hold

−
∫
QT

u · ∂tv dx dt −
∫
QT

(u · ∇)v · u dx dt + ν

∫
QT

∇u : ∇v dx dt

+μ0

∫
QT

[(M + H) · ∇]v · H dx dt

=
∫
O
u0 · v(0) dx − α

∫
QT

(curl u − 2w) · curl v dx dt,

−
∫
QT

w · ∂tψ dx dt−
∫
QT

(u · ∇)ψ · w dx dt+(λ1+λ2)

∫
QT

divw divψ dx dt

+λ1

∫
QT

∇w : ∇ψ dx dt

=
∫
O
w0 · ψ(0) dx + 2α

∫
QT

u · curlψ dx dt

−4α
∫
QT

w · ψ dx dt + μ0

∫
QT

(M × H) · ψ dx dt,

−
∫
QT

M · ∂tψ1 dx dt −
∫
QT

(u · ∇)ψ1 · M dx dt

=
∫
O
M0 · ψ1(0) dx+

∫
QT

(w × M) · ψ1 dx dt−1

τ

∫
QT

(M−χ0H) · ψ1 dx dt

(2.3)

and

−
∫
QT

M · ∂t (∇φ) dx dt −
∫
QT

(u · ∇)∇φ · M dx dt −
∫
QT

div M�φ dx dt

=
∫
O
M0 · ∇φ(0) dx +

∫
QT

(w × M) · ∇φ dx dt

−1

τ

∫
QT

(M − χ0H) · ∇φ dx dt,

−μ0

∫
QT

(M + H) · ∂tψ1 dx dt + 1

σ

∫
QT

curl H · curlψ1 dx dt

= μ0

∫
O

(M0 + H0) · ψ1 dx − μ0

∫
QT

((M + H) · ∇)ψ1 · u dx dt

+μ0

∫
QT

(u · ∇)ψ1 · (M + H) dx dt, (2.4)

where the test functions arev ∈ C1c ([0, T ); V∩H3(O)),ψ ∈ C1c ([0, T ); [H1
0 (O)]3

∩ H
2(O)), ψ1 + ∇φ = ζ ζ1 + ζ∇ζ2 ∈ C1c ([0, T ); [V 1

div ∩ H
2(O)] ⊕ H), with

ζ ∈ C([0, T ]) ∩ C1(0, T ), ζ(T ) = 0, ζ1 ∈ V 1
div ∩ H

2(O) and ∇ζ2 ∈ H.
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(iii) We also require that (u,w, M, H) is right-continuous at t = 0, i.e., as t → 0+

u(t) → u(0) = u0 in L2(O),

M(t) → M(0) = M0 in L2(O),

w(t) → w(0) = w0 in L2(O),

H(t) → H(0) = H0 in L2(O).

We state the following remarks with regard to the above definition.

Remark 2.3 (1) We should note that Eqs. (2.3)–(2.4) are the weak formulations of Eqs.
(1.1a)–(1.1d).

(2) We also note that since div(M + H) = 0 in O, we have

μ0

∫
O

∂t (M + H) · ∇φ dx = −μ0

∫
O

(M + H) · ζ ′∇ζ2 dx = 0.

With the above definition in mind, we are now ready to formulate our first main result.

Theorem 2.4 Let O ⊂ R
3 be a simply connected bounded domain of class C∞, and

T be a fixed positive time. Suppose that μ0 = σ = 1 or σμ2
0 > 2. Assume also that

(2.2) holds. Then, there exists a weak solution (u,w, M, H) to system (1.1)–(1.3) in
the sense of Definition 2.2. Moreover, (u,w, M, H) satisfies the following inequality

1

2
Etot(u(t),w(t), M(t), H(t)) +

∫ t

0
[ν‖∇u(s)‖2 + (λ1 + λ2)‖ divw(s)‖2] ds

+
∫ t

0
[λ1‖∇w(s)‖2 + α‖ curl u(s) − 2w(s)‖2] ds

+
∫ t

0

[
1

τ
‖M(s)‖2 + μ0χ0

τ
‖H(s)‖2 + 1

σ
‖ curl H(s)‖2

]
ds

� 1

2
Etot(u0,w0, M0, H0) + μ0 + χ0

τ

∫
Qt

H(s) · M(s) dx ds, ∀t ∈ [0, T ].
(2.5)

Here Etot(u,w, M, H) = ‖u‖2 + ‖w‖2 + ‖M‖2 + μ0‖H‖2.
Furthermore, the function H admits the decomposition H = Ha + Hd with the

functions Ha and Hd satisfying:

• Ha ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) and

div Ha = 0 in O,

curl Ha = curl H in O,

• Hd ∈ L∞(0, T ; [E2(O)]3), i.e., there exists ϕd ∈ L∞(0, T ; H1(O)) such that

Hd = ∇ϕd ∈ L∞(0, T ;L2(O)).
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Moreover, Hd solves

curl Hd = 0 in O,

div Hd = − div M in O,

Hd · n = ∂ϕd

∂n
= −M · n on ∂O. (2.6)

Furthermore, for all ψ ∈ H1(O),∫
O

∇ϕd · ∇ψ dx =
∫
O

(H − Ha) · ∇ψ dx =
∫
O

H · ∇ψ dx = −
∫
O
M · ∇ψ dx .

Renormalized Solutions

We now state the following important lemmas. In particular, Lemma 2.6 will play a
crucial role in the proof of Proposition 3.7 below. Indeed, it will be used to derive the
strong convergence of the sequence Mγ , γ ∈ (0, 1), cf. (3.80).
Roughly speaking, the Eq. (1.1c) for M is a transport equation. In order to overcome
the lack of regularity of M, we need to use the regularization technique developed
by DiPerna–Lions [8, 10, 15] so as to “renormalize” the magnetization field M as
follows.

Lemma 2.5 Let M ∈ L∞(0, T ;L2(O)) be a weak distributional solution of

∂tM + (u · ∇)M = w × M − 1

τ
(M − χ0H)

for a given u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), w ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ; [H1
0

(O)]3), and H ∈ L∞(0, T ;L2(O)). Then the components M i of M satisfy, for any
b ∈ C1(R) with b′(·) bounded and b(0) = 0,

∂t b(M i ) + u · ∇b(M i ) = b′(M i )(w × M)i − 1

τ
b′(M i )(M i − χ0H i )

in the sense of distributions. Here (w × M)i and H i denote the i th component of the
vectors w × M and H , respectively.

Proof We refer to [17] for the proof. ��
The following lemma easily follows from the previous one (see [17]).

Lemma 2.6 Let M ∈ L∞(0, T ; Hn) be a weak distributional solution of

∂tM + (u · ∇)M = w × M − 1

τ
(M − χ0H)

for given u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), w ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ;
[H1

0 (O)]3), H ∈ L∞(0, T ; Hn), and initial data M0 ∈ L
2(O). Then M satisfies
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1

2
‖M(t)‖2 = 1

2
‖M0‖2 − 1

τ

∫ t

0
‖M(s)‖2 ds + χ0

τ

∫
Qt

M(s) · H(s) dx ds ∀t ∈ [0, T ].
(2.7)

3 Existence of Global Weak Solutions to the ECREs

In this section, we prove the global existence of weak solutions to the ECREs, i.e., the
problem (1.1)–(1.3). The proof is based on approximation of the ECREs by a family
of systems of parabolic equations that admit global weak solutions. We then prove
that the approximating sequences of solutions are compact in appropriate spaces and
converge to a global weak solution of the ECREs. The main tools of the proof are
Propositions 3.2 and 3.5 below, and the final step of the proof is given in Subsect. 3.3.

3.1 The Approximating Problems

We consider an approximation of the ECREswhich is the Bloch–Torrey regularization
of the ECREs called BT-ECREs. The BT-ECREs are obtained by adding the term
γ∇ × (∇ × M) − γ∇ div M on the left-hand side of Eq. (1.1c) for the magnetization
M, where γ > 0 is a small parameter. More precisely, the BT-ECREs are given by

∂tuγ + (uγ · ∇)uγ + ∇ pγ − ν�uγ − μ0(Mγ · ∇)Hγ

= μ0(∇ × Hγ ) × Hγ − α∇ × (∇ × uγ − 2wγ ), (3.1a)

∂twγ + (uγ · ∇)wγ − (λ1 + λ2)∇ divwγ − λ1�wγ

= 2α(∇ × uγ − 2wγ ) + μ0Mγ × Hγ , (3.1b)

∂tMγ + (uγ · ∇)Mγ + γ∇ × (∇ × Mγ ) − γ∇ div Mγ

= wγ × Mγ − 1

τ
(Mγ − χ0Hγ ), (3.1c)

∂t Bγ + 1

σ
∇ × (∇ × Hγ ) = ∇ × (uγ × Bγ ), (3.1d)

Bγ = μ0(Mγ + Hγ ), div Mγ = − div Hγ , (3.1e)

div uγ = 0. (3.1f)

We endow problem (3.1a)–(3.1f) with the following boundary conditions

uγ = 0, wγ = 0, on 
.

div Mγ = 0, Hγ × n = Mγ × n = 0, on 
. (3.2)

The initial condition is given by

(uγ ,wγ , Mγ , Hγ )(t = 0) = (u0,w0, M0, H0) in O,

div u0 = 0, div(M0 + H0) = 0, in O. (3.3)

We now state the definition of weak solution of the BT-ECREs (3.1)–(3.3).
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Definition 3.1 We say that (uγ ,wγ , Mγ , Hγ ) is a global weak solution of the BT-
ECREs (3.1)–(3.3) if the following conditions hold:

(i) The functions uγ ,wγ , Mγ , Hγ satisfy

(uγ ,wγ , Mγ , Hγ ) ∈ L∞(0, T ;H) ∩ L2(0, T ;V),

div(Hγ + Mγ ) = 0 a.e. in QT .

(ii) The Eqs. (3.1a)–(3.1d) hold in the weak sense, meaning that for any test functions

v ∈ C1c ([0, T ); V ), ψ ∈ C1c ([0, T ); [H1
0 (O)]3),

ψ1 + ∇φ ∈ C1c ([0, T ); V 1
div ⊕ H),

we have

−
∫
QT

uγ · ∂tv dx dt −
∫
QT

(uγ · ∇)v · uγ dx dt + ν

∫
QT

∇uγ : ∇v dx dt

+μ0

∫
QT

[(Mγ + Hγ ) · ∇]v · Hγ dx dt

=
∫
O
u0 · v(0) dx − α

∫
QT

(curl uγ − 2wγ ) · curl v dx dt,

−
∫
QT

wγ · ∂tψ dx dt −
∫
QT

(uγ · ∇)ψ · wγ dx dt

+(λ1 + λ2)

∫
QT

divwγ divψ dx dt + λ1

∫
QT

∇wγ : ∇ψ dx dt

=
∫
O
w0 · ψ(0) dx + 2α

∫
QT

uγ · curlψ dx dt

−4α
∫
QT

wγ · ψ dx dt + μ0

∫
QT

(Mγ × Hγ ) · ψ dx dt,

−
∫
QT

Mγ · ∂tψ1 dx dt −
∫
QT

(uγ · ∇)ψ1 · Mγ dx dt

+γ

∫
QT

curl Mγ · curlψ1 dx dt

=
∫
O
M0 · ψ1(0) dx +

∫
QT

(wγ × Mγ ) · ψ1 dx dt

−1

τ

∫
QT

(Mγ − χ0Hγ ) · ψ1 dx dt

(3.4)

and

−
∫
QT

Mγ · ∂t (∇φ) dx dt −
∫
QT

(uγ · ∇)∇φ · Mγ dx dt
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−γ

∫
QT

div Mγ �φ dx dt

=
∫
O
M0 · ∇φ(0) dx +

∫
QT

(wγ × Mγ ) · ∇φ dx dt

−1

τ

∫
QT

(Mγ − χ0Hγ ) · ∇φ dx dt,

−μ0

∫
QT

(Mγ + Hγ ) · ∂tψ1 dx dt + 1

σ

∫
QT

curl Hγ · curlψ1 dx dt

= μ0

∫
O

(M0 + H0) · ψ1 dx + μ0

∫
QT

(uγ × (Mγ + Hγ )) · curlψ1 dx dt .

(iii) We also require that (uγ ,wγ , Mγ , Hγ ) is right-continuous at t = 0, i.e., as
t → 0+

uγ (t) → uγ (0) = u0 in L2(O),

Mγ (t) → Mγ (0) = M0 in L2(O),

wγ (t) → wγ (0) = w0 in L2(O),

Hγ (t) → Hγ (0) = H0 in L2(O).

(iv) The energy inequality holds

Etot(uγ (t),wγ (t), Mγ (t), Hγ (t)) +
∫ t

0
[‖∇uγ ‖2 + ‖ divwγ ‖2 + ‖∇wγ ‖2]ds

+
∫ t

0
[‖∇ × Mγ ‖2 + ‖∇ × uγ − 2wγ ‖2]ds +

∫ t

0

[
‖ div Mγ ‖2 + ‖Mγ ‖2

]
ds

+
∫ t

0

[
‖ div Hγ ‖2 + ‖ div Hγ ‖2 + ‖∇ × Hγ ‖2 + ‖Hγ ‖2

]
ds

� C(ν, λ1, λ2, α, γ, τ, μ0, χ0, σ, T )Etot(u0,w0, M0, H0) (3.5)

for all t ∈ [0, T ], where

Etot(uγ ,wγ , Mγ , Hγ ) = ‖uγ ‖2 + ‖wγ ‖2 + ‖Mγ ‖2 + μ0‖Hγ ‖2.

We now recall the following result, which follows from [13, Theorem 1].

Proposition 3.2 Assume that the initial data (u0,w0, M0, H0) satisfies (2.2). Then,
for anyγ > 0 there exists a globalweak solution (uγ ,wγ , Mγ , Hγ ) ∈ L∞(0, T ;H)∩
L2(0, T ;V) of the BT-ECREs.

In the next subsection we will derive an energy inequality, which is similar to (3.5)
but uniform in the parameter γ . Before doing so, we state several important remarks
and results.
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Remark 3.3 Notice that∫
QT

(curl Mγ ) · curl(∇φ) dx dt = 0,∫
QT

(curl Hγ ) · curl(∇φ) dx dt = 0,∫
QT

(uγ × (Mγ + Hγ )) · curl(∇φ) dx dt = 0,

for all ∇φ ∈ C1c ([0, T );H) so that

1

σ

∫
QT

curl Hγ · curlψ1 dx dt − μ0

∫
QT

(uγ × (Mγ + Hγ )) · curlψ1 dx dt

= 1

σ

∫
QT

curl Hγ · curlψ1 dx dt − μ0

∫
QT

(uγ × (Mγ + Hγ )) · curlψ1 dx dt

for all ψ1 := ψ1 + ∇φ ∈ C1c ([0, T ); V 1
div ⊕ H).

When the parameter γ > 0 is sufficiently small, Mγ and Hγ will eventually have
spatial regularity no more than L

2(O). Thus, in order to control the Kelvin force
μ0(Mγ · ∇)Hγ (cf. (3.44)) and properly define the weak solutions in Definition 3.1,
we shall use the following identity.

Lemma 3.4 Let v ∈ V . Then, Mγ and Hγ satisfy∫
O

(Mγ · ∇)Hγ · v dx = −
∫
O

[(Mγ + Hγ ) · ∇]v · Hγ dx

−
∫
O
curl Hγ · (Hγ × v) dx . (3.6)

Proof Let v ∈ V be arbitrary. Using (3.1e), the fact that v|∂O = 0, div v = 0 along
with an integration by parts, we obtain the chain of equations

∫
O

(Mγ · ∇)Hγ · v dx =
∫
O
Mγ

i (∂xiH
γ

j )v j dx

=
∫
O

[Mγ

i + Hγ

i ](∂xiHγ

j )v j dx −
∫
O

Hγ

i (∂xiH
γ

j − ∂x jH
γ

i )v j dx

−
∫
O

Hγ

i (∂x jH
γ

i )v j dx

= −
∫
O

[Mγ

i + Hγ

i ](∂xiv j )H
γ

j dx −
∫
O

[∂xi (Mγ

i + Hγ

i )]Hγ

j v j dx

−
∫
O

Hγ

i (∂xiH
γ

j − ∂x jH
γ

i )v j dx − 1

2

∫
O

∂

∂x j
|Hγ

i |2v j dx

= −
∫
O

[(Mγ + Hγ ) · ∇]v · Hγ dx −
∫
O
curl Hγ · (Hγ × v) dx .
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Here we have also used the summation convention on repeated indices. The last line
of the chain of equations completes the proof of the lemma. ��

3.2 Energy Inequality of the Approximating Sequences

Let us set

Etot(u, w,m, h) = ‖u‖2 + ‖w‖2 + ‖m‖2 + μ0‖h‖2,

and

F(u, w,m, h) = ν‖∇u‖2 + (λ1 + λ2)‖ divw‖2 + λ1‖∇w‖2 + γ ‖ divm‖2

+α ‖curl u − 2w‖2 + γ

2
‖ curlm‖2 + 1

2τ
‖m‖2

+γ ‖ div h‖2 + 1

2σ
‖∇ × h‖2,

where (u, w,m, h) are taken in a subspace of [H1(O)]4.
Let

Iγ =
{

(0, 2
σμ2

0
) if σμ2

0 > 2

(0, 1) if σ = μ0 = 1.
(3.7)

Hereafter, we will derive an energy inequality similar to (3.5) but independent of the
parameter γ . More precisely, we will prove the following result.

Proposition 3.5 Assume that the hypotheses of Theorem 2.4 hold. Let (uγ ,wγ , Mγ ,

Hγ ) be the global weak solution to the BT-ECREs given by Proposition 3.2. Then,
there exists a positive constant C > 0 such that for all γ ∈ Iγ , we have

Etot(uγ (t),wγ (t), Mγ (t), Hγ (t)) + 2
∫ t

0
F(uγ (s),wγ (s), Mγ (s), Hγ (s)) ds

� C[1 + Etot(u0,w0, M0, H0)]. (3.8)

As mentioned in the proposition statement, the existence of a global weak solution
(uγ ,wγ , Mγ , Hγ ) ∈ L∞(0, T ;H) ∩ L2(0, T ;V) of the BT-ECREs satisfying the
energy inequality (3.5) is insured by Proposition 3.2whichwas proved in [13, Theorem
1]. However, since the uniform energy estimates (3.8) is a refinement of (3.5), we will
repeat some of the arguments in [13] in the proof of Proposition 3.5 below.

Proof of Proposition 3.5 In this proof, we will restrict ourselves to the case where σ

and μ0 satisfy

2 < σμ2
0. (3.9)
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Note that the analysis below still holds for σ = μ0 = 1. With this in mind, we fix an
arbitrary γ ∈ (0, 1

σμ2
0
). Observe that due to (3.9), we have γ ∈ (0, 1

σμ2
0
) ⊂ (0, 1).

The proof of Proposition 3.5 will now be done in several steps. ��
Step 1: Galerkin approximation scheme

Let A be the Stokes operator, see, for instance [11, Appendix B] for its definition
and some of its properties. We consider the family of eigenfunctions {υ j }∞j=1 of A

as a Hilbert basis in V , the family1 {� j }∞j=1 as a Hilbert basis in [H1
0 (O)]3, and the

family {ψ̄ j }∞j=1 ∪ {∇φ̄ j }∞j=1 given by [13, Lemma 5] as a Hilbert basis in V1. For any

integer m � 1, we define the finite-dimensional subspaces of V , [H1
0 (O)]3 and V1,

respectively, by

Vm =span{υ1, . . . , υm},
H1
0m =span{�1, . . . , �m},

V1m =span{ψ̄1, . . . , ψ̄m} ∪ span{∇φ̄1, . . . ,∇φ̄m}.

We denote by P1
m,P2

m and P3
m the orthogonal projections on Vm , H1

0m and V1m with
respect to the inner product in H , L2(O) and in L2(O), respectively.
For any m ∈ N, we consider the quadriplet (uγ

0m,wγ
0m, Mγ

0m, Hγ
0m), where

uγ
0m = P1

mu0, wγ
0m = P2

mw0, Mγ
0m = P3

mM0, and Hγ
0m = P3

mH0.

As m → ∞ we have

uγ
0m → u0 strongly in L2(O),

wγ
0m → w0 strongly in L2(O),

Mγ
0m → M0 strongly in L2(O),

Hγ
0m → H0 strongly in L2(O). (3.10)

Thus, from (3.10), we see that

‖uγ
0m‖ � ‖u0‖, ‖wγ

0m‖ � ‖w0‖, ‖Mγ
0m‖ � ‖M0‖, ‖Hγ

0m‖ � ‖H0‖.
We now look for approximate solutions (uγ

m,wγ
m, Mγ

m, Hγ
m) of the BT-ECREs (3.1)–

(3.3) of the form

uγ
m(t) =

m∑
k=1

aγ,m
k (t)υk,

wγ
m(t) =

m∑
k=1

bγ,m
k (t)�k,

1 {� j }∞j=1 is aHilbert basis in [H1
0 (O)]3 ([H1

0 (O)]3 is endowedwith the natural inner product), orthogonal
in [H1

0 (O)]3, orthonormal in L2(O) and satisfying the spectral problem −�� j = ι j� j in O.
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Mγ
m(t) = Mγ

m,1(t) + Mγ
m,2(t) =

m∑
k=1

cγ,m
k (t)ψ̄k +

m∑
k=1

dγ,m
k (t)∇φ̄k,

Hγ
m(t) = Hγ

m,1(t) + Hγ
m,2(t) =

m∑
k=1

eγ,m
k (t)ψ̄k −

m∑
k=1

dγ,m
k (t)∇φ̄k . (3.11)

The decompositions of Mγ
m and Hγ

m were chosen in such a way that Bγ
m = μ0(M

γ
m +

Hγ
m) satisfies

div Bγ
m = 0 in QT .

We observe that Bγ
m(t) = ∑m

k=1(c
γ,m
k (t) + eγ,m

k (t))ψ̄k .
Let k = 1, . . . ,m. Then, arguing as in [13], there exists a short interval [0, Tm) ⊂
[0, T ] and sequences aγ,m

k , bγ,m
k , cγ,m

k , dγ,m
k , eγ,m

k ∈ C([0, Tm]) ∩ C1(]0, Tm[) such
that the sequence (uγ

m,wγ
m, Mγ

m, Hγ
m, Bγ

m) defined in (3.11) solve the following
approximating problem

(∂tu
γ
m, υk) + ((uγ

m · ∇)uγ
m, υk) + ν(∇uγ

m,∇υk) − μ0((M
γ
m · ∇)Hγ

m, υk) (3.12a)

= μ0((∇ × Hγ
m) × Hγ

m, υk) − α(∇ × (∇ × uγ
m − 2wγ

m), υk),

(∂tw
γ
m,�k) + ((uγ

m · ∇)wγ
m,�k) + (λ1 + λ2)(divw

γ
m, div�k) + λ1(∇wγ

m,∇�k)

(3.12b)

= 2α((∇ × uγ
m − 2wγ

m),�k) + μ0(M
γ
m × Hγ

m,�k),

(∂tM
γ
m, ψ̄k) + ((uγ

m · ∇)Mγ
m, ψ̄k) + γ (∇ × Mγ

m,∇ × ψ̄k) − γ (∇ div Mγ
m, ψ̄k)

(3.12c)

= (wγ
m × Mγ

m, ψ̄k) − 1

τ
((Mγ

m − χ0H
γ
m), ψ̄k) and

(∂tM
γ
m,∇φ̄k) + ((uγ

m · ∇)Mγ
m,∇φ̄k) − γ (∇ div Mγ

m,∇φ̄k) (3.12d)

= (wγ
m × Mγ

m,∇φ̄k) − 1

τ
((Mγ

m − χ0H
γ
m),∇φ̄k),

(∂t B
γ
m, ψ̄k) + 1

σ
(∇ × (∇ × Hγ

m), ψ̄k) = (∇ × (uγ
m × Bγ

m), ψ̄k) and (3.12e)

(∂t B
γ
m,∇φ̄k) = 0. (3.12f)

It will follow from the a priori estimates below that (uγ
m,wγ

m, Mγ
m, Hγ

m) may be
extended to the whole interval [0, T ].
Step 2: Uniform estimates for the approximating sequences
Multiplying (3.12a) by aγ,m

k and summing over k, we find

1

2

d

dt
‖uγ

m‖2 + ν‖∇uγ
m‖2 − μ0

∫
O

(Mγ
m · ∇)Hγ

m · uγ
m dx

= μ0

∫
O

[(∇ × Hγ
m) × Hγ

m] · um dx − α

∫
O

[∇ × (∇ × uγ
m − 2wγ

m)] · uγ dx .

(3.13)
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As in [13], we rewrite the third term on the left-hand side of (3.13) as follows∫
O

(Mγ
m · ∇)Hγ

m · uγ
m dx =

∫
O
curl Hγ

m · (Mγ
m × uγ

m) dx

−
∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx

=
∫
O

(curl Hγ
m × Mγ

m) · uγ
m dx

−
∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx . (3.14)

Now, plugging (3.14) into (3.13) yields:

1

2

d

dt
‖uγ

m‖2 + ν‖∇uγ
m‖2 −

∫
O

[(∇ × Hγ
m) × Bγ

m] · uγ
m dx

+μ0

∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx

= −α

∫
O

[∇ × (∇ × uγ
m)] · uγ

m dx + 2α
∫
O

[∇ × wγ
m] · uγ

m dx . (3.15)

Multiplying (3.12b) by bγ,m
k and summing over k the resulting equation, we obtain

1

2

d

dt
‖wγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2 + λ1‖∇wγ

m‖2

= μ0

∫
O

(Mγ
m × Hγ

m) · wγ
m dx + 2α

∫
O

(∇ × uγ
m − 2wγ

m) · wγ
m dx .

Moreover, in light of the relations

2α
∫
O

(∇ × uγ
m − 2wγ

m) · wγ
m dx = 4α

∫
O

(
1

2
∇ × uγ

m − wγ
m

)
· wγ

m dx

= −4α

∥∥∥∥12∇ × uγ
m − wγ

m

∥∥∥∥
2

+ α

∫
O

(∇ × uγ
m) · (∇ × uγ

m) dx

−2α
∫
O

[∇ × uγ
m] · wγ

m dx

= −4α

∥∥∥∥12∇ × uγ
m − wγ

m

∥∥∥∥
2

+ α

∫
O

[∇ × (∇ × uγ
m)] · uγ

mdx

−2α
∫
O

[∇ × wγ
m] · uγ

m dx,

we deduce that

1

2

d

dt
‖wγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2 + λ1‖∇wγ

m‖2 + 4α

∥∥∥∥12∇ × uγ
m − wγ

m

∥∥∥∥
2
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= μ0

∫
O

(Mγ
m × Hγ

m) · wγ
m dx + α

∫
O

[∇ × (∇ × uγ
m)] · uγ

m dx

−2α
∫
O

[∇ × wγ
m] · uγ

m dx . (3.16)

Adding up (3.15) and (3.16) side by side, we arrive at

1

2

d

dt
(‖uγ

m‖2 + ‖wγ
m‖2) + ν‖∇uγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2 + λ1‖∇wγ

m‖2

+ 4α

∥∥∥∥12∇ × uγ
m − wγ

m

∥∥∥∥
2

=
∫
O

[(∇ × Hγ
m) × Bγ

m] · uγ
m dx − μ0

∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx

+ μ0

∫
O

(Mγ
m × Hγ

m) · wγ
m dx . (3.17)

Multiplying (3.12c) and (3.12d) by cγ,m
k and by dγ,m

k , respectively, summing over k
and adding up the resulting equalities side by side, we obtain

1

2

d

dt
‖Mγ

m‖2 + γ ‖∇ × Mγ
m‖2 + γ ‖ div Mγ

m‖2 + 1

τ
‖Mγ

m‖2 = χ0

τ

∫
O

Hγ
m · Mγ

m dx .

(3.18)

We note that in (3.18), we used the fact that

γ

m∑
k=1

(∇ × Mγ
m,∇ × bγ,m

k ψ̄k) = γ

m∑
k=1

(∇ × Mγ
m,∇ × bγ,m

k ψ̄k + ∇ × dγ,m
k (∇φ̄k))

= γ

∫
O

∇ × Mγ
m · ∇ × Mγ

m dx = γ ‖∇ × Mγ
m‖2.

Wemultiply (3.12c) by eγ,m
k and (3.12d) by−dγ,m

k , add up the corresponding equalities
and sum from k = 1 to k = m. Then we obtain∫

O
∂tM

γ
m · Hγ

m dx +
∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx − γ

∫
O

∇ div Mγ
m · Hγ

m dx

+ γ

∫
O

(∇ × Mγ
m) · (∇ × Hγ

m) dx

=
∫
O

(wγ
m × Mγ

m) · Hγ
m dx − 1

τ

∫
O
Mγ

m · Hγ
m dx + χ0

τ
‖Hγ

m‖2.

Besides, since div(Hγ
m + Mγ

m) = 0 and (wγ
m × Mγ

m) · Hγ
m = (Mγ

m × Hγ
m) · wγ

m , we
further obtain

123



55 Page 20 of 57 Applied Mathematics & Optimization (2024) 89 :55

−μ0

∫
O

∂tM
γ
m · Hγ

m dx − γμ0

∫
O

(∇ × Mγ
m) · (∇ × Hγ

m) dx

+γμ0‖ div Hγ
m‖2 + μ0χ0

τ
‖Hγ

m‖2

= μ0

∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx − μ0

∫
O

[Mγ
m × Hγ

m] · wγ
m dx

+μ0

τ

∫
O
Mγ

m · Hγ
m dx .

(3.19)

Multiplying (3.12e) and (3.12f) by eγ,m
k and by −dγ,m

k , respectively, and summing
over k, we find

μ0

2

d

dt
‖Hγ

m‖2 + μ0

∫
O

∂tM
γ
m · Hγ

m dx + 1

σ
‖∇ × Hγ

m‖2

=
∫
O

[∇ × (uγ
m × Bγ

m)] · Hγ
m dx . (3.20)

Adding (3.19) and (3.20) side by side, we get

μ0

2

d

dt
‖Hγ

m‖2 + γμ0‖ div Hγ
m‖2 + μ0χ0

τ
‖Hγ

m‖2 + 1

σ
‖∇ × Hγ

m‖2

= γμ0

∫
O

(∇ × Mγ
m) · (∇ × Hγ

m) dx +
∫
O

[∇ × (uγ
m × Bγ

m)] · Hγ
m dx

+μ0

∫
O

(uγ
m · ∇)Mγ

m · Hγ
m dx − μ0

∫
O

[Mγ
m × Hγ

m] · wγ
m dx

+μ0

τ

∫
O
Mγ

m · Hγ
m dx .

(3.21)

Notice that∫
O

[(∇ × Hγ
m) × Bγ

m] · uγ
m dx = −

∫
O

[∇ × (uγ
m × Bγ

m)] · Hγ
m dx .

Summing (3.17), (3.18) and (3.21), integrating the corresponding equality over [0, t],
t ∈ [0, Tm], we arrive at

12Etot(uγ
m(t),wγ

m(t), Mγ
m(t), Hγ

m(t)) +
∫ t

0
[ν‖∇uγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2] ds

+
∫ t

0
[λ1‖∇wγ

m‖2 + α
∥∥∇ × uγ

m − 2wγ
m
∥∥2 + γ ‖∇ × Mγ

m‖2 + γ ‖ div Mγ
m‖2] ds

+
∫ t

0

[
1

τ
‖Mγ

m‖2 + γμ0‖ div Hγ
m‖2 + μ0χ0

τ
‖Hγ

m‖2 + 1

σ
‖∇ × Hγ

m‖2
]
ds
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= 1

2
Etot(u0m,w0m, M0m, H0m) + μ0 + χ0

τ

∫
Qt

Hγ
m · Mγ

m dx ds

+γμ0

∫
Qt

(∇ × Mγ
m) · (∇ × Hγ

m) dx ds ∀t ∈ [0, Tm], (3.22)

having set

Etot(uγ
m,wγ

m, Mγ
m, Hγ

m) = ‖uγ
m‖2 + ‖wγ

m‖2 + ‖Mγ
m‖2 + μ0‖Hγ

m‖2.

By Young’s inequality, we have

μ0 + χ0

τ

∫
Qt

Hγ
m · Mγ

m dx ds

� μ0 + χ0

τ

∫ t

0
‖Hγ

m‖‖Mγ
m‖ds

� 1

2τ

∫ t

0
‖Mγ

m‖2ds + (μ0 + χ0)
2

2τ

∫ t

0
‖Hγ

m‖2 ds, (3.23)

and

γμ0

∫
Qt

(∇ × Mγ
m) · (∇ × Hγ

m) dx ds � γμ0

∫
Qt

‖∇ × Mγ
m‖‖∇ × Hγ

m‖ dx ds

�
∫ t

0

[
1

2σ
‖∇ × Hγ

m‖2 + σγ 2μ2
0

2
‖∇ × Mγ

m‖2
]
ds.

(3.24)

Plugging (3.23) and (3.24) into (3.22), for m sufficiently large, we obtain

1

2
Etot(uγ

m(t),wγ
m(t), Mγ

m(t), Hγ
m(t)) +

∫ t

0
[ν‖∇uγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2] ds

+
∫ t

0
[λ1‖∇wγ

m‖2 + α
∥∥∇ × uγ

m − 2wγ
m
∥∥2 + γ ‖ div Mγ

m‖2] ds

+
(

γ − σγ 2μ2
0

2

)∫ t

0
‖∇ × Mγ

m‖2 ds

+
∫ t

0

[
1

2τ
‖Mγ

m‖2 + γμ0‖ div Hγ
m‖2 + μ0χ0

τ
‖Hγ

m‖2 + 1

2σ
‖∇ × Hγ

m‖2
]
ds

�1

2
Etot(u0,w0, M0, H0)+ (μ0+χ0)

2

2μ0τ

∫ t

0
Etot(uγ

m(s),wγ
m(s), Mγ

m(s), Hγ
m(s)) ds,

(3.25)

where we used the inequality

Etot(uγ
m,wγ

m, Mγ
m, Hγ

m) ≤ Etot(u0,w0, M0, H0).
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Thus, applying Grönwall’s inequality to (3.25) for the function

y(t) = 1

2
Etot(uγ

m(t),wγ
m(t), Mγ

m(t), Hγ
m(t)),

we find

1

2
Etot(uγ

m(t),wγ
m(t), Mγ

m(t), Hγ
m(t)) +

∫ t

0
[ν‖∇uγ

m‖2 + (λ1 + λ2)‖ divwγ
m‖2] ds

+
∫ t

0
[λ1‖∇wγ

m‖2 + α
∥∥∇ × uγ

m − 2wγ
m
∥∥2 + γ ‖ div Mγ

m‖2] ds

+
(

γ − σγ 2μ2
0

2

) ∫ t

0
‖∇ × Mγ

m‖2 ds

+
∫ t

0

[
1

2τ
‖Mγ

m‖2 + γμ0‖ div Hγ
m‖2 + μ0χ0

τ
‖Hγ

m‖2 + 1

2σ
‖∇ × Hγ

m‖2
]
ds

� C(Etot(u0,w0, M0, H0) + 1),

(3.26)

whereC only depends on χ0,μ0, and τ . With (3.26) we can conclude that the solution
(uγ

m,wγ
m, Mγ

m, Hγ
m) can be extended on the whole interval [0, T ]. Moreover, owing

to (3.26), we have the following uniform bounds with respect to m and γ :

‖uγ
m‖L∞(0,T ;H) � C(1 + E

1
2
tot), ‖uγ

m‖L2(0,T ;V ) � C(1 + E
1
2
tot),

‖wγ
m‖L∞(0,T ;L2(O)) � C(1 + E

1
2
tot), ‖wγ

m‖L2(0,T ;[H1
0 (O)]3) � C(1 + E

1
2
tot),

‖Mγ
m‖L∞(0,T ;Hn) � C(1 + E

1
2
tot), ‖Hγ

m‖L∞(0,T ;Hn) � C(1 + E
1
2
tot).

(3.27)

Additionally,

‖∇ × Hγ
m‖L2(0,T ;L2(O)) � C(1 + E

1
2
tot),

‖√γ div Mγ
m‖L2(0,T ;L2(O)) � C(1 + E

1
2
tot),

‖√γ div Hγ
m‖L2(0,T ;L2(O)) � C(1 + E

1
2
tot),

‖√γ (∇ × Mγ
m)‖L2(0,T ;L2(O)) � C(1 + E

1
2
tot),∥∥∇ × uγ

m − 2wγ
m
∥∥
L2(0,T ;L2(O))

� C(1 + E
1
2
tot).

Here we used the notation Etot = Etot(u0,w0, M0, H0).
Step 3: Passage to the limit
Thanks to (3.27), we infer that up to a subsequence

(uγ
m,wγ

m, Mγ
m, Hγ

m)
∗
⇀ (uγ ,wγ , Mγ , Hγ ) weakly-star in L∞(0, T ;H),
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(uγ
m,wγ

m, Mγ
m, Hγ

m) ⇀(uγ ,wγ , Mγ , Hγ ) weakly in L2(0, T ;V).

(3.28)

Moreover, from uniform bounds (3.27) and similar reasoning as in [13], we infer that
up to a subsequence

(uγ
m,wγ

m) → (uγ ,wγ ) strongly in L2(0, T ;L2(O) × L
2(O)),

(Mγ
m, Hγ

m) → (Mγ , Hγ ) strongly in L2(0, T ;L2(O) × L
2(O)). (3.29)

Next we multiply (3.22) by υ(t), where υ ∈ C∞
c (0, T ) such that υ(t) � 0. After

integrating in time over the interval [0, T ], we pass to the limit by exploiting (3.10),
(3.28) and (3.29). After passage to the limit we find that

∫ T

0

[
1

2
Etot(uγ (t),wγ (t), Mγ (t), Hγ (t))

]
υ(t) dt

+
∫ T

0

∫ t

0
[ν‖∇uγ (s)‖2+(λ1+λ2)‖ divwγ (s)‖2] ds υ(t) dt

+
∫ T

0

∫ t

0
[λ1‖∇wγ (s)‖2+α

∥∥∇ × uγ (s)−2wγ (s)
∥∥2] ds υ(t) dt

+
∫ T

0

∫ t

0
[γ ‖∇ × Mγ (s)‖2+γ ‖ div Mγ (s)‖2] ds υ(t) dt

+
∫ T

0

∫ t

0

[
μ0χ0

τ
‖Hγ (s)‖2+ 1

σ
‖∇ × Hγ (s)‖2

]
ds υ(t) dt

+
∫ T

0

∫ t

0

[
1

τ
‖Mγ (s)‖2+γμ0‖ div Hγ (s)‖2

]
ds υ(t) dt

�
∫ T

0

1

2
Etot(u0,w0, M0, H0)υ(t) dt

+μ0+χ0

τ

∫ T

0

[∫
Qt

Hγ (s) · Mγ (s) dx ds

]
υ(t)dt

+γμ0

∫ T

0

[∫
Qt

(∇ × Mγ (s)) · (∇ × Hγ (s)) dx ds

]
υ(t) dt, (3.30)

which in turn implies that

1

2
Etot(uγ (t),wγ (t), Mγ (t), Hγ (t))+

∫ t

0
[ν‖∇uγ (s)‖2+(λ1+λ2)‖ divwγ (s)‖2] ds

+
∫ t

0
[λ1‖∇wγ (s)‖2 + α

∥∥∇ × uγ (s) − 2wγ (s)
∥∥2 + γ ‖∇ × Mγ (s)‖2] ds

+
∫ t

0
[γ ‖ div Mγ (s)‖2 + 1

τ
‖Mγ (s)‖2 + γμ0‖ div Hγ (s)‖2] ds

+
∫ t

0

[
μ0χ0

τ
‖Hγ (s)‖2 + 1

σ
‖∇ × Hγ (s)‖2

]
ds

� 1

2
Etot(u0,w0, M0, H0) + μ0 + χ0

τ

∫
Qt

Hγ (s) · Mγ (s) dx ds
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+γμ0

∫
Qt

(∇ × Mγ (s)) · (∇ × Hγ (s)) dx ds, ∀t ∈ [0, T ]. (3.31)

Arguing as in [13], we can show that (uγ ,wγ , Mγ , Hγ ) is a weak solution to the
problem (3.1a)–(3.1f) in the sense of Definition 3.1.

In order to obtain the energy inequality (3.5), we multiply (3.26) by υ(t), with
υ ∈ C∞

c (0, T ) such that υ(t) � 0. Then, after integrating in time, we can pass to the
limit by using (3.10), (3.28), and (3.29), and the weak lower semicontinuity of the
norms.

Let us now derive an energy inequality similar to (3.5) but which is independent of
the parameter γ .
By Young’s inequality, we have

μ0+χ0

τ

∫
Qt

|Hγ · Mγ | dx ds � 1

2τ

∫ t

0
‖Mγ (s)‖2 ds+ (μ0+χ0)

2

2τ

∫ t

0
‖Hγ (s)‖2 ds.

Similarly,

γμ0

∫
Qt

|(∇ × Mγ ) · (∇ × Hγ )| dx ds

� σγ 2μ2
0

2

∫ t

0
‖∇ × Mγ (s)‖2 ds + 1

2σ

∫ t

0
‖∇ × Hγ (s)‖2 ds.

Plugging the two previous estimates into (3.31) and using the assumption (3.9), we
obtain

1

2
Etot(uγ (t),wγ (t), Mγ (t), Hγ (t)) +

∫ t

0
F(uγ (s),wγ (s), Mγ (s), Hγ (s)) ds

� 1

2
Etot(u0,w0, M0, H0) + μ2

0 + χ2
0

2τ

∫ t

0
‖Hγ (s)‖2 ds. (3.32)

We note that in (3.32) we used the fact that γ
2 <

γ(2−σγμ2
0)

2 , since γ ∈ (0, 1
σμ2

0
).

Applying Grönwall’s inequality to (3.32) for the function

X(t) := Etot(uγ (t),wγ (t), Mγ (t), Hγ (t))

= ‖uγ (t)‖2 + ‖wγ (t)‖2 + ‖Mγ (t)‖2 + μ0‖Hγ (t)‖2,

we find

Etot(uγ (t),wγ (t), Mγ (t), Hγ (t)) + 2
∫ t

0
F(uγ (s),wγ (s), Mγ (s), Hγ (s)) ds

� C[1 + Etot(u0,w0, M0, H0)],
(3.33)
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for some positive constantC whichmay depend onμ0,χ0, τ , and T , but is independent
of γ ∈ (0, 1). This completes the proof of the Proposition 3.5.

3.3 Completion of the Proof of Theorem 2.4: Passage to the Limit

We will now prove the existence of weak solutions to Problem (1.1)–(1.3). Before we
do that, we shall state and prove a property of Hγ which will play a crucial role in the
subsequent analysis.

Proposition 3.6 Let the assumptions of Proposition 3.2 hold. Let (uγ ,wγ , Mγ , Hγ )

be a weak solution of (3.1)–(3.3). Then, there exist two functions Hγ
a and Hγ

d such
that Hγ = Hγ

a + Hγ

d and

Hγ
a ∈ L∞(0, T ; Hn) ∩ L2(0, T ; V ),

Hγ

d ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ;H1(O)),

div Hγ
a = 0 and curl Hγ

a = curl Hγ in QT ,

Hγ

d = ∇ϕ
γ

d , curl Hγ

d = 0, div Hγ

d = − div Mγ in QT , (3.34)

where for almost every t ∈ [0, T ], ∇ϕ
γ

d (t) ∈ E2(O) and the potential ϕ
γ

d solves the
problem

{−�ϕ
γ

d = div Mγ in QT ,
∂ϕ

γ
d

∂n = −Mγ · n on 
,
(3.35)

in the distributional sense.

Proof Let (uγ ,wγ , Mγ , Hγ ), γ > 0, be a weak solution to the BT-ECREs. Then, by
Definition 3.1 (uγ ,wγ , Mγ , Hγ ) ∈ L∞(0, T ;H) ∩ L2(0, T ;V). Furthermore, since
a.e. t ∈ [0, T ], Hγ ∈ L

2(O) ∩ E(O), we infer from [23, Corollary 5.5] that for a.e.
t ∈ [0, T ], there exists a unique Hγ

a ∈ E(O) with div Hγ
a = 0 in O, and Hγ

a · n = 0
on ∂O and a unique ∇ϕ

γ

d ∈ E2(O) ∩ E3(O) such that Hγ = Hγ
a + ∇ϕ

γ

d and

{
�ϕ

γ

d = div Hγ = − div Mγ in O,
∂ϕ

γ
d

∂n = ∇ϕ
γ

d · n = Hγ · n on ∂O.

The spaces E2(O) and E3(O) have been defined in Sect. 2. We put Hγ

d = ∇ϕ
γ

d . It is

clear that curl Hγ

d = 0 and Hγ · n = Hγ

d · n = ∂ϕ
γ
d

∂n = −Mγ · n. Now, since by the
energy inequality (3.33), Hγ ∈ L∞(0, T ; Hn), thus we infer from [23, Theorem 1.4]
that

Hγ
a ∈ L∞(0, T ; H) and Hγ

d = ∇ϕ
γ

d ∈ L∞(0, T ;L2(O)).

In addition, we have curl Hγ ∈ L2(0, T ;L2(O)). Thus, we obtain Hγ
a ∈ L2(0, T ; V )

because curl Hγ
a = curl Hγ and div Hγ

a = 0. Finally, since Hγ ∈ L2(0, T ; V1),
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Hγ ∈ L∞(0, T ; Hn) and curl Hγ ∈ L2(0, T ;L2(O)), we easily see that ∇ϕ
γ

d =
Hγ

d = Hγ − Hγ
a ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ;H1(O)). ��

We now state and prove the following proposition, which is the main step of the proof
of Theorem 2.4.

Proposition 3.7 Let the assumptions of Theorem 2.4 hold. Let Iγ be the set defined
in (3.7). Let {γn}n∈N ⊂ Iγ be a real sequence converging to 0 as n → ∞, and let
(un,wn, Mn, Hn) be the solution of the BT-ECREs (3.1)–(3.3) with γ replaced by
γn. Then, as n → ∞ a subsequence of {(un,wn, Mn, Hn)}n∈N converges to a weak
solution of (1.1)–(1.3) satisfying the results of Theorem 2.4.

Proof From (3.33), we infer that there exists a positive constant C depending possibly
on μ0, σ , ν, λ1, λ2, χ0, τ , α, and T , such that

‖un‖L∞(0,T ;H) � C(1 + E
1
2
tot),

‖un‖L2(0,T ;V ) � C(1 + E
1
2
tot),

‖wn‖L∞(0,T ;L2(O)) � C(1 + E
1
2
tot),

‖wn‖L2(0,T ;[H1
0 (O)]3) � C(1 + E

1
2
tot),

‖Mn‖L∞(0,T ;Hn) � C(1 + E
1
2
tot),

‖Hn‖L∞(0,T ;Hn) � C(1 + E
1
2
tot),

‖∇ × Hn‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),

‖√γ n div Mn‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),

‖√γ n div Hn‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),

‖√γ n(∇ × Mn)‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),∥∥∇ × un − 2wn

∥∥
L2(0,T ;L2(O))

� C(1 + E
1
2
tot). (3.36)

Here we used the notation Etot = Etot(u0,w0, M0, H0), and the positive constant C
doesn’t depend on n.
It follows from (3.36) and the Banach–Alaoglu theorem that (up to a subsequence)

un
∗
⇀ u weakly-star in L∞(0, T ; H),

un⇀u weakly in L2(0, T ; V ),

wn ∗
⇀ w weakly-star in L∞(0, T ;L2(O)),

wn⇀w weakly in L2(0, T ; [H1
0 (O)]3),

Mn ∗
⇀ M weakly-star in L∞(0, T ;L2(O)),

Hn ∗
⇀ H weakly-star in L∞(0, T ;L2(O)).

(3.37)
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Let B = μ0(M + H). Since div(Mn + Hn) = 0 in QT , then

div(M + H) = 0 in QT .

Estimates of the Time Derivatives

We now proceed to the estimates of the time derivatives of un and wn , which will
enable us to apply the Aubin–Lions compactness lemma (see [24]).
By using (3.1b), (3.36)1, (3.36)4–(3.36)6 and (3.36)11, we deduce that

∫ T

0
‖∂twn(s)‖2

H
−2
0 (O)

ds � C(1 + E
1
2
tot)

4, (3.38)

with C independent of n. Hence, the sequence {∂twn}n is uniformly bounded in
L2(0, T ;H−2

0 (O)).
Let L2

(0)(O) be the space of L2(O)-functions with vanishing trace. By the embed-

dings [H1
0 (O)]3 c

↪→ L
2
(0)(O) ↪→ H

−2
0 (O), where the first embedding is compact and

the second one continuous, we can apply Aubin–Lions compactness lemma and obtain
(up to a subsequence) that as n → ∞

wn → w in L2(0, T ;L2
(0)(O)). (3.39)

Using an interpolation argument, the Hölder inequality and (3.36)4, we infer that

∫ T

0
‖wn(t) − w(t)‖2

Lp(O) dt

� C(O)

∫ T

0
‖wn − w‖ 6−p

p ‖∇(wn − w)‖ 3(p−2)
p dt

� C(O)

(∫ T

0
‖wn − w‖2 dt

) 6−p
2p

(∫ T

0
‖∇(wn − w)‖2dt

) 3(p−2)
2p

� C(O, p)(1 + E
1
2
tot)

3(p−2)
p

(∫ T

0
‖wn − w‖2 dt

) 6−p
2p

,

from which along with the strong convergence (3.39) of wn in L2(0, T ;L2
(0)(O)), we

get

wn → w in L2(0, T ;Lp(O)), ∀p ∈ [2, 6). (3.40)

From the variational formulation (3.4), we have

〈∂tun, v〉 =
∫
O

(un · ∇)v · un dx − ν

∫
O

∇un · ∇v dx
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+μ0

∫
O

[(Mn + Hn) · ∇]v · Hn dx

−α

∫
O

(curl un − 2wn) · curl v dx, (3.41)

for all v ∈ V , in particular for any v ∈ H
3
div(O) = V ∩ H

3(O) ⊂ V .
Using (3.36)1, we deduce that

∫ T

0

∣∣∣∣
∫
O

(un · ∇)v · undx
∣∣∣∣
2

ds �
∫
QT

|(un · ∇)v · un|2 dx ds

� C‖v‖2
H3(O)

∫ T

0
‖un‖4 ds � CT ‖v‖2

H3(O)
(1 + E

1
2
tot)

4. (3.42)

By (3.36)2, we obtain

∫ T

0

∣∣∣∣ν
∫
O

∇un · ∇v dx

∣∣∣∣
2

ds � ν2‖v‖2V
∫ T

0
‖∇un(t)‖2 dt

� Cν2‖v‖2V (1 + E
1
2
tot)

2. (3.43)

Using the Hölder inequality together with the embedding of H2 in L∞, we derive that

∫
O

μ0|[(Mn + Hn) · ∇]v · Hn|dx � μ0‖∇v‖L∞(O)‖Mn + Hn‖‖Hn‖
� Cμ0‖v‖H3(O)(‖Mn‖ + ‖Hn‖)‖Hn‖.

This, together with (3.36)5 and (3.36)6, implies

∫ T

0

∣∣∣∣
∫
O

μ0[(Mn + Hn) · ∇]v · Hndx

∣∣∣∣
2

ds

� Cμ2
0‖v‖2

H3(O)
sup

t∈[0,T ]
‖Mn(t)‖2 sup

t∈[0,T ]
‖Hn(t)‖2

+Cμ2
0‖v‖2

H3(O)
sup

t∈[0,T ]
‖Hn(t)‖4 � Cμ2

0‖v‖2
H3(O)

(1 + E
1
2
tot)

4. (3.44)

Notice that

α

∫
O

|(curl un − 2wn) · curl v|dx � α‖ curl un − 2wn‖‖ curl v‖
� α‖ curl un − 2wn‖‖v‖V ,

which along with (3.36)11 leads us to

∫ T

0

∣∣∣∣α
∫
O

(curl un − 2wn) · curl v dx
∣∣∣∣
2

ds � Cα2‖v‖2V (1 + E
1
2
tot)

2. (3.45)
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Here C > 0 is a positive constant that does not depend on n.
Collecting now the estimates (3.42)–(3.45), we may deduce from (3.41) that

∫ T

0
‖∂tun(s)‖2

H
−3
div(O)

ds � C(1 + E
1
2
tot)

2 + C(1 + E
1
2
tot)

4, (3.46)

where C is a positive large constant which is independent of n. This proves that
the sequence {∂tun}n is uniformly bounded in L2(0, T ;H−3

div(O)). Furthermore as

un ∈ L2(0, T ; V ) (cf. (3.36)2), and since V
c

↪→ H ↪→ H
−3
div(O), where the first

embedding is compact and the second one continuous, we can apply again the Aubin–
Lions compactness lemma (see [24]) to have

un → u in L2(0, T ; H), (3.47)

as n → ∞ (up to a subsequence). Hence, by a similar reasoning as in (3.40), we get

un → u in L2(0, T ;Lp(O)), ∀p ∈ [2, 6). (3.48)

By integration by parts, using the Hölder inequality, and the embedding of H1(O) in
L
4(O), we obtain

∫ T

0
‖(un(t) · ∇)Mn(t)‖2

H−2(O)
dt � C sup

t∈[0,T ]
‖Mn(t)‖2

∫ T

0
‖∇un(t)‖2 dt

� C(1 + E
1
2
tot)

4,

where we have also used (3.36)2 and (3.36)5.
From (3.36)4, (3.36)5, and the embedding of H1(O) in L4(O), we deduce that

∫ T

0
‖wn(t) × Mn(t)‖2

(L4(O))′ dt � C sup
t∈[0,T ]

‖Mn(t)‖2
∫ T

0
‖wn(t)‖2[H1

0 (O)]3 dt

� C(1 + E
1
2
tot)

4.

Using the Hölder inequality, the uniform bounds (3.36)10 and (3.36)8 together with
the fact that 0 < γn < 1, we obtain

∫ T

0
‖γn∇ × (∇ × Mn)‖2

H−1(O)
dt � γn

∫ T

0
γn‖∇ × Mn‖2 dt

� C(1 + E
1
2
tot)

2γn � C(1 + E
1
2
tot)

2,

and
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∫ T

0
‖ − γn∇ div Mn(t)‖2

H−1(O)
dt � γn

∫ T

0
γn‖ div Mn(t)‖2 dt

� C(1 + E
1
2
tot)

2.

Therefore, we are led to

∫ T

0
‖∂tMn(s)‖2

H−2(O)
ds � C(1 + E

1
2
tot)

4 + C(1 + E
1
2
tot)

2, (3.49)

where C is a positive constant which is independent of n. This proves that {∂tMn}n∈N
is uniformly bounded in L2(0, T ;H−2(O)).
Notice that the following equality holds

∂tHn = − 1

σ
∇ × (∇ × Hn) + ∇ × (un × Bn) − ∂tMn

in the weak sense, i.e.,

〈∂tHn, ψ〉X ′,X = − 1

σ

∫
O
curl Hn · curlψ dx

+
∫
O

(un × Bn) · curlψ dx − 〈∂tMn, ψ〉X ′,X (3.50)

for all ψ ∈ X := V1 ∩H
2(O) ⊂ V1. This will enable us to obtain a uniform estimate

for ∂tHn . Indeed, let ψ ∈ X with ‖ψ‖X � 1. We denote by X ′ = V ′
1 + H

−2(O) its
dual space.
Thanks to the Hölder inequality in conjunction with (3.36)7, we obtain

∫ T

0

∣∣∣∣
∫
O

1

σ
curl Hn(s) · curlψ dx

∣∣∣∣
2

ds � 1

σ 2

∫ T

0
‖ curl Hn(s)‖2‖ curlψ‖2ds

� 1

σ 2 ‖ψ‖2X‖ curl Hn‖2L2(0,T ;L2(O))

� C(1 + E
1
2
tot)

2. (3.51)

Next we claim that the second term on the right-hand side of (3.50) can be split as
follows:

∫
O

(un × Bn) · curlψ dx = −
∫
O

(Bn · ∇)ψ · un dx

+
∫
O

(un · ∇)ψ · Bn dx a.e. in (0, T ). (3.52)
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For this, we consider the sequence (uγ
m, Mγ

m, Hγ
m, Bγ

m) introduced in Step 1 and
which satisfies (3.27)–(3.29).
By Green’s formula (see [12, Eq. (2.18), p. 21]) and since ψ × n|∂O = 0, we have

∫
O

(uγ
m × Bγ

m) · curlψ dx =
∫
O
curl(uγ

m × Bγ
m) · ψ dx

=
∫
O

[(Bγ
m · ∇)uγ

m − (uγ
m · ∇)Bγ

m] · ψ dx .

Besides, by integration by parts and the fact that div Bγ
m = 0 and div uγ

m = 0 in O,
along with the boundary condition for uγ

m , we obtain∫
O

[(Bγ
m · ∇)uγ

m − (uγ
m · ∇)Bγ

m] · ψ dx = −
∫
O

(Bγ
m · ∇)ψ · uγ

m dx

+
∫
O

(uγ
m · ∇)ψ · Bn dx .

Consequently,

∫
O

(uγ
m(t) × Bγ

m(t)) · curlψ dx = −
∫
O

(Bγ
m(t) · ∇)ψ · uγ

m(t) dx

+
∫
O

(uγ
m(t) · ∇)ψ · Bγ

m(t) dx

for a.e. t ∈ [0, T ]. Passing to the limit as m → ∞ and using (3.29), we deduce that

∫
O

(uγ × Bγ ) · curlψ dx = −
∫
O

(Bγ · ∇)ψ · uγ dx

+
∫
O

(uγ · ∇)ψ · Bγ dx a.e. in (0, T ). (3.53)

Hence, we reach the desired conclusion, i.e., the claim (3.52) holds.
In light of (3.52), (3.36)2, (3.36)5 and (3.36)6, we deduce that

∫ T

0

∣∣∣∣
∫
O

(uγ × Bγ ) · curlψ dx

∣∣∣∣
2

ds � C sup
s∈[0,T ]

‖Bn(s)‖2
∫ T

0
‖un(s)‖2

L4(O)
ds

� C sup
s∈[0,T ]

‖Bn(s)‖2
∫ T

0
‖∇un(s)‖2 ds

� C(1 + E
1
2
tot)

4. (3.54)

Finally, invoking (3.49), (3.51), (3.54), and making use of (3.50), we infer that

{∂tHn}n is uniformly bounded in L2(0, T ; X ′) with respect to n. (3.55)
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Next we will estimate ∂tHn
d .

Let Y = E3(O) ∩ E(O) ∩ H
2(O) and Y ′ its dual space. Let ψ = ∇ζ ∈ Y . Then, By

integrations by parts and the fact that Hn · n = ∂ϕn
d

∂n = ∇ϕn
d · n, we have

∫
O

∂tHn
d · ψ dx =

∫
O

∂t∇ϕn
d · ∇ζ dx =

∫
∂O

ζ∂t∇ϕn
d · n dS −

∫
O

ζ∂t�ϕn
d dx

=
∫

∂O
ζ∂t∇ϕn

d · n dS +
∫
O

ζ∂t div Mn dx

=
∫

∂O
ζ∂t∇ϕn

d · n dS −
∫
O

ζ div ∂tHn dx

=
∫

∂O
ζ∂t∇ϕn

d · ndS

−
(∫

∂O
ζ∂tHn · ndS −

∫
O

∇ζ · ∂tHn dx

)

=
∫
O

∇ζ · ∂tHndx =
∫
O

∂tHn · ψ dx .

(3.56)

In (3.56), we have also used the fact div Hn = − div Mn in O, and

∂t�ϕn
d = div ∂tHn

d = − div ∂tMn = div ∂tHn in QT .

Hence, from (3.56), we infer that

sup
‖ψ‖Y�1

|〈∂tHn
d , ψ〉| � sup

‖ψ‖Y�1
‖∂tHn‖H−2(O)‖ψ‖H2(O)

� sup
‖ψ‖Y�1

‖∂tHn‖X ′ ‖ψ‖Y = ‖∂tHn‖X ′ ,

fromwhich and (3.55),we derive that {∂tHn
d}n∈N is uniformly bounded in L2(0, T ;Y ′)

with respect to n. Now, since ∂tHn
a = ∂tHn−∂tHn

d , wewill see that ∂tH
n
a is uniformly

bounded in L2(0, T ; X ′ + Y ′).
In fact, let Y1 = H ∩ H

2(O) and Y ′
1 its dual space. Let ψ ∈ Y1. Then, we have

∫
O

∂tHn
a · ψ dx =

∫
O

∂tHn · ψ dx −
∫
O

∂tHn
d · ψ dx

=
∫
O

∂tHn · ψdx −
∫
O

∂t∇ϕn
d · ψ dx

=
∫
O

∂tHn · ψ dx −
∫
O

∂tϕ
n
d divψ dx

=
∫
O

∂tHn · ψ dx,
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where we used an integration by parts and the fact that divψ = 0 in O. Hence,

sup
‖ψ‖Y1�1

| 〈∂tHn
a, ψ

〉 | � ‖∂tHn‖H−2(O) � ‖∂tHn‖X ′ ,

from which and (3.55), we also derive that

{∂tHn
a}n∈N is uniformly bounded in L2(0, T ;Y ′

1) with respect to n. (3.57)

Thus, as claimed, {∂tHn
a}n∈N is uniformly bounded in L2(0, T ;Y ′

1) ∩ L2(0, T ; X ′ +
Y ′).

Due to (3.36)6–(3.36)7 and Proposition 3.6, we infer that Hn
a is uniformly bounded

in L∞(0, T ;L2(O)), L2(0, T ;L2(O)) and L2(0, T ;H1(O)), respectively.
Now, since {∂tHn

a}n and {Hn
a}n∈N are uniformly bounded in L2(0, T ;Y ′

1) and

L2(0, T ; V ), respectively, and since Y1
c

↪→ H ↪→ Y ′
1, where the first embedding

is compact and the second one continuous, we can apply the Aubin–Lions compact-
ness lemma and obtain that up to a subsequence

Hn
a → Ha in L2(0, T ; H), (3.58)

as n → ∞. We also note that the limit function Ha satisfies

Ha ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).

We now claim that up to a subsequence as n → ∞

Mn → M strongly in L2(0, T ;L2(O)), Hn → H strongly in L2(0, T ;L2(O)).

(3.59)

This is the most difficult part of the proof of Theorem 2.4 and we will need to use
new technique in order to prove these convergence results. The main idea is to use the
notion of renormalisation and the decomposition given in Proposition 3.6. We start
with noticing that similar to (3.18), we have

1

2
‖Mn(t)‖2 + γn

∫ t

0
(‖ curl Mn(s)‖2 + ‖ div Mn(s)‖2) ds

= 1

2
‖M0‖2 − 1

τ

∫
Qt

(|Mn(s)|2 − χ0Hn(s) · Mn(s)) dx ds. (3.60)

By dropping the second (positive) term on the left-hand side of (3.60), we obtain

1

2

∫
O

|Mn(t, x)|2 dx � 1

2
‖M0‖2 − 1

τ

∫ t

0

∫
O

×(|Mn(s)|2

−χ0Hn(s) · Mn(s)) dx ds. (3.61)
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Let ψ1 ∈ C1c ([0, T ); V 1
div ∩H

2(O)) be arbitrary but fixed. Next multiplying (3.1c) by
ψ1, integrating over QT the resulting equation and using an integration by parts, we
infer that

−
∫
QT

Mn · ∂tψ1 dx dt −
∫
QT

(un · ∇)ψ1 · Mn dx dt

+γn

∫
QT

(∇ × Mn) · (∇ × ψ1) dx dt

=
∫
O
M0 · ψ1(0) dx +

∫
QT

(wn × Mn) · ψ1 dx dt

−1

τ

∫
QT

(Mn − χ0Hn) · ψ1 dx dt . (3.62)

We rewrite the second term on the right-hand side of (3.62) as follows

∫
QT

(wn × Mn) · ψ1 dx dt −
∫
QT

(w × M) · ψ1 dx dt

= −
∫
QT

Mn · ((wn − w) × ψ1) dx dt

−
∫
QT

(Mn − M) · (w × ψ1) dx dt ≡ I 21n + I 22n . (3.63)

By the Hölder inequality and (3.36)5, we see that

|I 21n| �
∫ T

0
‖Mn(t)‖‖wn(t) − w(t)‖L4(O)‖ψ1(t)‖L4(O) dt

� T
1
2 sup
t∈[0,T ]

‖Mn(t)‖ sup
t∈[0,T )

‖ψ1(t)‖L4(O)‖‖wn − w‖L2(0,T ;L4(O))

� C sup
t∈[0,T )

‖ψ1(t)‖L4(O)(1 + E
1
2
tot)‖wn − w‖L2(0,T ;L4(O)),

where the constant C > 0 is independent of n. Hence, from this inequality and (3.48),
we infer that I 21n → 0 as n → ∞. Furthermore, thanks to (3.37)5, one has

I 22n = −
∫
QT

(Mn − M) · (w × ψ1) dx dt → 0 as n → ∞.

Hence, we deduce that

∫
QT

(wn × Mn) · ψ1 dx dt →
∫
QT

(w × M) · ψ1 dx dt as n → ∞. (3.64)
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For the first nonlinear term on the left-hand side of (3.62), we have

∫
QT

(un · ∇)ψ1 · Mn dx dt −
∫
QT

(u · ∇)ψ1 · M dx dt

=
∫
QT

[(un − u) · ∇]ψ1 · Mn dx dt +
∫
QT

(u · ∇)ψ1 · (Mn − M) dx dt .

Using the Hölder inequality, the estimate (3.36)5 and the strong convergence (3.48),
we obtain

∣∣∣∣
∫
QT

[(un − u) · ∇]ψ1 · Mn dx dt

∣∣∣∣
�

∫ T

0
‖∇ψ1(t)‖L4(O)‖un(t) − u(t)‖L4(O)‖Mn(t)‖ dt

� C sup
t∈[0,T )

‖ψ1(t)‖H2(O) sup
t∈[0,T ]

‖Mn(t)‖‖wn − w‖L2(0,T ;L4(O))

� C sup
t∈[0,T )

‖ψ1(t)‖H2(O)(1 + E
1
2
tot)‖wn − w‖L2(0,T ;L4(O)) → 0 as n → ∞.

Since (u · ∇)ψ1 ∈ L1(0, T ;L2(O)), we deduce from (3.37)6 that

∫
QT

(u · ∇)ψ1 · (Mn − M) dx dt → 0 as n → ∞.

Using the two previous convergences, we see that

∫
QT

(un · ∇)ψ1 · Mn dx dt →
∫
QT

(u · ∇)ψ1 · M dx dt .

By (3.36)10, we obtain

γn

∫
QT

(∇ × Mn) · (∇ × ψ1) dx dt

� √
γn‖√γn(∇ × Mn)‖L2(0,T ;L2(O))‖∇ × ψ1‖L2(0,T ;L2(O))

� C(1 + E
1
2
tot)‖∇ × ψ1‖L2(0,T ;L2(O))

√
γn → 0,

since the constant C > 0 is independent of n and γn → 0 as n → ∞. Therefore, we
proved that

γn

∫
QT

(∇ × Mn) · (∇ × ψ1) dx dt → 0 as n → ∞. (3.65)
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Combining (3.64)–(3.65) along with (3.37)5 and (3.37)6, after passing to the limit in
(3.62), we are led to

−
∫
QT

M · ∂tψ1 dx dt −
∫
QT

(u · ∇)ψ1 · M dx dt

=
∫
O
M0 · ψ1(0) dx +

∫
QT

(w × M) · ψ1 dx dt − 1

τ

∫
QT

(M − χ0H) · ψ1 dx dt .

(3.66)

Let ∇φ := ζ1∇ζ2 ∈ C1c ([0, T );H) be arbitrary but fixed, with ζ1 ∈ C([0, T ]) ∩
C1(0, T ), ζ1(T ) = 0, and ∇ζ2 ∈ H. Then from (3.1c) and Remark 3.3, we infer that

−
∫
QT

Mn · ∂t (∇φ) dx dt −
∫
QT

(un · ∇)∇φ · Mn dx dt − γn

∫
QT

div Mn�φ dx dt

=
∫
O
M0 · ∇φ(0) dx +

∫
QT

(wn × Mn) · ∇φ dx dt − 1

τ

∫
QT

(Mn − χ0Hn) · ∇φ dx dt .

Next arguing similarly as we did in (3.66), we can pass to the limit in the previous
equality. Then we obtain

−
∫
QT

M · ∂t (∇φ) dx dt −
∫
QT

(u · ∇)∇φ · M dx dt

=
∫
O
M0 · ∇φ(0) dx +

∫
QT

(w × M) · ∇φ dx dt

−1

τ

∫
QT

(M − χ0H) · ∇φ dx dt . (3.67)

From (3.66) and (3.67), we can write

∂tM + (u · ∇)M = w × M − 1

τ
(M − χ0H) (3.68)

in the sense of distributions in QT . We are now in position to apply Lemma 2.6 since
all its hypotheses are satisfied. Hence, by Lemma 2.6 the weak limit M given by (3.37)
satisfies

1

2

∫
O

|M(t, x)|2 dx = 1

2
‖M0‖2 − 1

τ

∫
Qt

(|M|2 − χ0M · H)dx ds ∀t ∈ [0, T ].
(3.69)

It then follows from (3.61) and (3.69) that

1

2

∫
O

(|Mn(t, x)|2 − |M(t, x)|2)dx � −1

τ

∫
Qt

(|Mn|2 − |M|2 − χ0

×(Hn · Mn − H · M))dx ds. (3.70)
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We recall that Hn
d = ∇ϕn

d . Now, combining (3.36)5 with Proposition 3.6, we infer
that Hn

d is uniformly bounded in L∞(0, T ;L2(O)). Hence, from the Banach–Alaoglu
theorem, we obtain that Hn

d has a weak-star convergent subsequence, which is still
denoted by Hn

d for convenience, such that as n → ∞

Hn
d

∗
⇀ Hd weakly-star in L∞(0, T ;L2(O)), (3.71)

where the limit satisfies

Hd ∈ L∞(0, T ;L2(O)).

Besides, recalling that Hn = Hn
a + Hn

d , we have

Ha + Hd = H ∈ L∞(0, T ;L2(O)),

due to (3.37)6, (3.58), (3.71)1 and the uniqueness of the limit. Furthermore, we have
div Ha = 0 a.e. in QT , Ha · n = 0, H · n = Hd · n a.e. in 
.
Now, since H ∈ L

2(O) for a.e. t ∈ [0, T ], by the Helmholtz–Leray decomposition
(see [23, Corollary 5.5]), there exists a unique H̃a ∈ E(O)with div H̃a = 0, H̃a ·n =
0 and a unique ∇ϕd ∈ E2(O) such that H = H̃a + ∇ϕd , div(H − ∇ϕd) = 0 in O
and (H − ∇ϕd)|∂O = 0. Because of uniqueness of the Helmholtz decomposition, it
then follows that H̃a = Ha and Hd = ∇ϕd a.e. in O.
Next we claim that∫

O
|Hn|2dx = −

∫
O
Mn · Hndx +

∫
O

(Mn + Hn) · Hn
a dx

= −
∫
O
Mn · Hndx

+
∫
O

(Mn + Hn) · (Hn
a − Ha)dx +

∫
O

(Mn + Hn) · Hadx .

(3.72)

In fact, by integration by parts along with the fact that div Hn = − div Mn , Hn
d =

∇ϕn
d , H

n = Hn
d + Hn

a in O, and Hn · n = −Mn · n on ∂O, we obtain

∫
O

|Hn|2 dx =
∫
O

Hn · Hn
d dx +

∫
O

Hn · Hn
a dx

=
∫
O

Hn · Hn
d dx −

∫
O
Mn · Hn

a dx +
∫
O

(Hn + Mn) · Hn
a dx

=
∫
O

Hn · ∇ϕn
d dx −

∫
O
Mn · Hn

a dx +
∫
O

(Hn + Mn) · Hn
a dx

=
∫

∂O
ϕn
d H

n · n dS −
∫
O

ϕn
d div Hn dx −

∫
O
Mn · Hn

a dx

+
∫
O

(Hn + Mn) · Hn
a dx
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=
∫

∂O
ϕn
d H

n · n dS +
∫
O

ϕn
d div Mn dx −

∫
O
Mn · Hn

a dx

+
∫
O

(Hn + Mn) · Hn
a dx

=
∫

∂O
ϕn
d (Hn + Mn) · n dS

+
∫
O

[−Mn · ∇ϕn
d − Mn · Hn

a + (Hn + Mn) · Hn
a]dx

= −
∫
O
Mn · Hn

d dx −
∫
O
Mn · Hn

adx +
∫
O

(Hn + Mn) · Hn
a dx

= −
∫
O
Mn · (Hn

d + Hn
a) dx +

∫
O

(Hn + Mn) · Hn
a dx

= −
∫
O
Mn · Hn dx +

∫
O

(Hn + Mn) · Hn
a dx .

Passing to the limit as n → ∞ in (3.72), using (3.37)5, (3.37)6 and (3.58), we obtain

∫
O

|H|2 dx = −
∫
O
M · H dx +

∫
O

(M + H) · Ha dx

= −
∫
O
M · H dx +

∫
O

(M + H) · H dx

−
∫
O

(M + H) · Hd dx, a.e. t, (3.73)

where |H|2 and M · H denote the weak limits of the sequences |Hn|2 and Mn · Hn ,
respectively.
Using an integration by parts together with the fact that Hd = ∇ϕd in O, we get

∫
O

(M + H) · Hd dx =
∫
O

(M + H) · ∇ϕd dx

=
∫

∂O
ϕd(H + M) · n dS

−
∫
O
div(M + H)ϕd dx = 0, (3.74)

for a.e. t ∈ [0, T ]. Herewe used the fact that div(M+H) = 0 inO and H ·n = −M ·n
on ∂O. Finally, by inserting (3.74) into the right-hand side of (3.73), we further obtain

∫
O

|H|2 dx −
∫
O

|H|2 dx = −
∫
O
M · H dx +

∫
O
M · H dx, a.e. t ∈ [0, T ].

(3.75)
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Letting n → ∞ in (3.70), we find

1

2

∫
O

(
|M(t, x)|2 − |M(t, x)|2

)
dx

� −1

τ

∫
Qt

(
|M|2 − |M|2 − χ0(H · M − H · M)

)
dx ds, (3.76)

where we denote the weak limit of |Mn|2 by |M|2.
From (3.75), we can replace −H · M + H · M by |H|2 − |H|2 in (3.76), and we
obtain

1

2

∫
O

(
|M(t, x)|2 − |M(t, x)|2

)
dx

� −1

τ

∫
Qt

[
|M|2 − |M|2 + χ0(|H|2 − |H|2)

]
dx ds. (3.77)

We recall that in view of (see [18, Corollary 3.33])

∫
D

|v|2 dx � lim inf
n→∞

∫
D

|vn|2 dx �
∫
D

|v|2 dx and |v|2 � |v|2 a.e. on D,

(3.78)

with v ∈ {H, M}, D ∈ {O, [0, T ] × O}.
Due to (3.78) and since τ > 0, χ0 > 0, the left-hand side of (3.77) is nonnegative
while the right-hand side is nonpositive, respectively. Hence, we deduce that

1

2

∫
O

|M(t, x)|2 dx − 1

2

∫
O

|M(t, x)|2 dx = 0. (3.79)

Thus, by (3.78), we have |M(t, x)|2 = |M(t, x)|2 for a.e. (t, x) ∈ QT . By applying
now [9, Theorem 1.1.1, item (i i i)], we are led to

Mn → M in L2(0, T ;L2(O)). (3.80)

Exploiting (3.75) and (3.80), we obtain

∫
QT

(|H(t, x)|2 − |H(t, x)|2)dx dt = 0.

Hence, Hn → H strongly in L2(0, T ;L2(O)). This completes the proof of our claim
(3.59). Let � ∈ C1c ([0, T ); V 1

div ∩ H
2(O)) be arbitrary but fixed. From the weak

formulation of (3.1d) and under the assumption (3.9), we have

−
∫
QT

Bn · ∂t� dx dt =
∫
O

B0 · �(0) dx − 1

σ

∫
QT

curl Hn · curl� dx dt
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+
∫
QT

[(un × Bn)] · curl� dx dt . (3.81)

We claim that

∫
QT

curl Hn · curl� dx dt →
∫
QT

curl H · curl� dx dt,∫
QT

(un × Bn) · curl� dx dt → −
∫
QT

(B · ∇)� · u dx dt +
∫
QT

(u · ∇)� · B dx dt,

(3.82)

as n → ∞ (up to a subsequence), with � ∈ C1c ([0, T ); V 1
div ∩ H

2(O)).
Let us point out that, since {∇ × Hn}n is uniformly bounded in L2(0, T ;L2(O))

(cf. (3.36)7) and due to (3.59), we have up to a subsequence

curl Hn = curl Hn
a⇀ curl H = curl Ha weakly in L2(0, T ;L2(O)). (3.83)

Hence,

∫
QT

curl Hn · curl� dx dt →
∫
QT

curl H · curl� dx dt .

Let us now move to the proof of (3.82)2. First, we recall that (cf. (3.52))

∫
O

(un × Bn) · curl� dx = −
∫
O

(Bn · ∇)� · un dx

+
∫
O

(un · ∇)� · Bn dx a.e. in (0, T ). (3.84)

We now split the first term on the right-hand side of (3.84) as follows

−
∫
O

(Bn · ∇)� · un dx = −
∫
O

(Bn · ∇)� · (un − u) dx

−
∫
O

[(Bn − B) · ∇]� · u dx

−
∫
O

(B · ∇)� · u dx,

and its second term as

∫
O

(un · ∇)� · Bn dx =
∫
O

((un − u) · ∇)� · Bn dx +
∫
O

(u · ∇)� · (Bn − B) dx

+
∫
O

(u · ∇)� · B dx .
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Adding the two previous equalities, we further obtain

∫
QT

(un × Bn) · curl� dx dt

= −
∫
QT

(Bn · ∇)� · (un − u) dx dt −
∫
QT

[(Bn − B) · ∇]� · u dx dt

+
∫
QT

((un − u) · ∇)� · Bn dx dt +
∫
QT

(u · ∇)� · (Bn − B) dx dt

−
∫
QT

(B · ∇)� · u dx dt +
∫
QT

(u · ∇)� · B dx dt . (3.85)

In light of (3.36)5, (3.36)6 and (3.47), we obtain

∫
QT

(Bn · ∇)� · (un − u) dx dt → 0,
∫
QT

(u · ∇)� · (Bn − B) dx dt → 0,

(3.86)

as n → ∞.
From (3.37)5 and (3.37)6, we deduce that∫

QT

[(Bn − B) · ∇]� · u dx dt → 0 and
∫
QT

(u · ∇)� · (Bn − B) dx dt → 0.

(3.87)

Passing to the limit in (3.85) and using (3.86) and (3.87), we find

∫
O

(un × Bn) · curl� dx dt → −
∫
QT

(B · ∇)� · u dx dt

+
∫
QT

(u · ∇)� · B dx dt . (3.88)

This completes the proof of (3.82).
Exploiting now (3.37)5, (3.37)6 and (3.82), from (3.81), we infer that

−
∫
QT

B · ∂t� dx dt =
∫
O

B0 · �(0) dx − 1

σ

∫
QT

curl H · curl� dx dt

−
∫
QT

(B · ∇)� · u dx dt +
∫
QT

(u · ∇)� · B dx dt .

(3.89)

We are now in position to pass to the limit in the weak formulations of (3.1a)–(3.1c).
For this, let

v ∈ C1c ([0, T ); V ∩ H
3(O)), ψ ∈ C1c ([0, T ); [H1

0 (O)]3 ∩ H
2(O))
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be arbitrary but fixed. Recalling the assumption (3.9), these weak formulations are
respectively given by

−
∫
QT

un · ∂tv dx dt −
∫
QT

(un · ∇)v · un dx dt + ν

∫
QT

∇un : ∇v dx dt

+
∫
QT

μ0[(Mn + Hn) · ∇]v · Hn dx dt

=
∫
O
u0 · v(0) dx − α

∫
QT

(∇ × un − 2wn) · curl v dx dt, (3.90)

and

−
∫
QT

wn · ∂tψ dx dt−
∫
QT

(un · ∇)ψ · wn dx dt+(λ1+λ2)

∫
QT

divwn divψ dx dt

+ λ1

∫
QT

∇wn : ∇ψ dx dt =
∫
O
w0 · ψ(0) dx + 2α

∫
QT

un · curlψ dx dt

− 4α
∫
QT

wn · ψ dx dt +
∫
QT

μ0(Mn × Hn) · ψ dx dt .

(3.91)

Using the convergence (3.37), (3.40), (3.48), (3.59), and the estimates (3.36), we can
pass to the limit in (3.90) and (3.91). Hence, under the validity of (3.9), we deduce
that (by passing to the limit in (3.90) and (3.91), respectively)

−
∫
QT

u · ∂tv dx dt −
∫
QT

(u · ∇)v · u dx dt + ν

∫
QT

∇u : ∇v dx dt

+
∫
QT

μ0[(M + H) · ∇]v · H dx dt

=
∫
O
u0 · v(0) dx − α

∫
QT

(∇ × u − 2w) · curl v dx dt,

(3.92)

−
∫
QT

w · ∂tψ dx dt −
∫
QT

(u · ∇)ψ · w dx dt + (λ1 + λ2)

∫
QT

divw divψ dx dt

+λ1

∫
QT

∇w : ∇ψ dx dt =
∫
O
w0 · ψ(0) dx + 2α

∫
QT

u · curlψ dx dt

− 4α
∫
QT

w · ψ dx dt +
∫
QT

μ0(M × H) · ψ dx dt .

(3.93)

The identities (3.66), (3.67), (3.89), (3.92), and (3.93) allow us to conclude that
u,w, H , and M satisfy exactly the same weak formulations as in Definition 2.2 (cf.
item (i i)).
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TheWeak Time Continuity

Because of (3.37)2, (3.37)5 and the embedding of H1(O) in L4(O), we have

∫ T

0
‖(u(t) · ∇)M(t)‖2

(H2(O))′ dt � C sup
t∈[0,T ]

‖M(t)‖2
∫ T

0
‖∇u(t)‖2

L2(O)
dt < ∞.

Thanks to (3.37)4, (3.37)5 and the embedding of H1(O) in L4(O), we infer that

∫ T

0
‖w(t) × M(t)‖2

(L4(O))′ dt � C sup
t∈[0,T ]

‖M(t)‖2
∫ T

0
‖w(t)‖2[H1

0 (O)]3 dt < ∞.

Recalling that (3.68) holds almost everywhere and using the above estimates, we infer
that ∂tM ∈ L2(0, T ; (H2(O))′). Furthermore, since M ∈ L2(0, T ; (H2(O))′) due
to (3.37)5, we can apply [24, Lemma 4] to deduce that M ∈ C([0, T ]; (H2(O))′).
Finally, by applying Lemma 2.1, we get

M ∈ Cw([0, T ];L2(O)). (3.94)

Due to (3.38) and (3.37)5, (3.46) and (3.37)1, we can argue as in the proof of (3.94)
so as to get

w ∈ Cw([0, T ];L2(O)) and u ∈ Cw([0, T ]; H).

Let

X3
div = V 1

div ∩ H
2(O) and X−3

div its dual space.

Also, let

L2
div(O) = {B ∈ L

2(O); div B = 0 in O, B × n = 0 on ∂O}.

We observe that

〈∂t B, ψ〉 = − 1

σ

∫
O
curl H · curlψ dx

−
∫
O

(B · ∇)ψ · u dx +
∫
O

(u · ∇)ψ · B dx, (3.95)

for all ψ ∈ X3
div, where 〈·, ·〉 stands for the duality product between X3

div and X−3
div.

Next by Hölder’s inequality together with the fact that curl H ∈ L
2(O) a.e. in (0, T ),

we find

∣∣∣∣
∫
O

1

σ
curl H · curlψ dx

∣∣∣∣
2

� 1

σ 2 ‖ curl H‖2‖ curlψ‖2
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� 1

σ 2 ‖ψ‖2
X3
div

‖ curl H‖2. (3.96)

We control the second term on the right-hand side of (3.95) as follows:∣∣∣∣
∫
O

(B · ∇)ψ · u dx
∣∣∣∣ � ‖B‖‖∇ψ‖L4(O)‖u‖L4(O)

� C(O)‖B‖‖ψ‖X3
div

‖∇u‖,

where we used the embedding of H1(O) in L
4(O). Here C(O) is a positive constant

depending only on O.
Hence,

∣∣∣∣
∫
O

(B · ∇)ψ · u dx
∣∣∣∣
2

� C(O)‖B‖2‖ψ‖2
X3
div

‖∇u‖2 ∀ψ ∈ X3
div. (3.97)

In a similar way, we have

∣∣∣∣
∫
O

(u · ∇)ψ · B dx

∣∣∣∣
2

� C(O)‖ψ‖2
X3
div

‖B‖2‖∇u‖2 ∀ψ ∈ X3
div. (3.98)

Notice that∫ T

0
‖∂t B(t)‖2

X−3
div

dt =
∫ T

0
sup

‖ψ‖X3
div

�1
|〈∂t B(t), ψ〉|2dt

� 3
∫ T

0
sup

‖ψ‖X3
div

�1

∣∣∣∣ 1σ
∫
O
curl H(t) · curlψ dx

∣∣∣∣
2

dt

+ 3
∫ T

0
sup

‖ψ‖X3
div

�1

∣∣∣∣
∫
O

(B(t) · ∇)ψ · u(t) dx

∣∣∣∣
2

+ 3
∫ T

0
sup

‖ψ‖X3
div

�1

∣∣∣∣
∫
O

(u(t) · ∇)ψ · B(t) dx

∣∣∣∣
2

dt,

from which and (3.96)–(3.98), we infer that

∫ T

0
‖∂t B(t)‖2

X−3
div

dt � C(O)

×
(

sup
t∈[0,T ]

‖B(t)‖2
∫ T

0
‖∇u(t)‖2dt + 1

σ 2

∫ T

0
‖ curl H(t)‖2dt

)
< ∞,

(3.99)

since u ∈ L2(0, T ; V ) and curl H ∈ L2(0, T ;L2(O)).
In light of (3.99),wefind that ∂t B ∈ L2(0, T ; X−3

div). Now, since B ∈ L2(0, T ;L2(O))
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due to (3.37)5 and (3.37)6; div B = div(M + H) = 0 in QT and B × n = 0
on ∂O, we can say that B ∈ L2(0, T ; X−3

div). So, by [24, Lemma 4] one has B ∈
C([0, T ]; X−3

div). It then follows fromLemma 2.1 that B ∈ Cw([0, T ]; L2
div(O)). In par-

ticular, we have B ∈ Cw([0, T ];L2(O)). Finally, since M ∈ Cw([0, T ];L2(O)) and
B ∈ Cw([0, T ];L2(O)), with B = M+H , we conclude that H ∈ Cw([0, T ];L2(O)).
This completes the proof of item (i) in Definition 2.2.
Moreover, using the above estimates (cf. (3.36)) and convergence results (3.39), (3.47),
(3.59), (3.37)2 and (3.37)4, we can pass to the limit in (3.31), in order to obtain (2.5).

The Initial Data

Recalling that u ∈ Cw([0, T ];L2(O)), w ∈ Cw([0, T ];L2(O)),
M ∈ Cw([0, T ];L2(O)) and H ∈ Cw([0, T ];L2(O)), we have

∫
O

1

2
|u0|2 dx � lim inf

t→0+

∫
O

1

2
|u(t)|2 dx,

∫
O

1

2
|w0|2dx

� lim inf
t→0+

∫
O

1

2
|w(t)|2 dx,

∫
O

1

2
|M0|2 dx

� lim inf
t→0+

∫
O

1

2
|M(t)|2 dx,

∫
O

1

2
|H0|2 dx

� lim inf
t→0+

∫
O

1

2
|H(t)|2 dx . (3.100)

Taking the upper limit in (2.5) as t → 0+, we have

lim sup
t→0+

[∫
O

1

2
|u(t)|2 dx +

∫
O

1

2
|w(t)|2 dx +

∫
O

1

2
|M(t)|2 dx

+
∫
O

1

2
|H(t)|2 dx

]

�
∫
O

1

2
|u0|2 dx +

∫
O

1

2
|w0|2 dx +

∫
O

1

2
|M0|2 dx +

∫
O

1

2
|H0|2 dx .

(3.101)

In light of (3.100) and (3.101), we find

lim
t→0+

[∫
O

1

2
|u(t)|2 dx +

∫
O

1

2
|w(t)|2 dx +

∫
O

1

2
|M(t)|2 dx

+
∫
O

1

2
|H(t)|2 dx

]

=
∫
O

1

2
|u0|2 dx +

∫
O

1

2
|w0|2 dx +

∫
O

1

2
|M0|2 dx +

∫
O

1

2
|H0|2 dx .

(3.102)
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Exploiting (3.102) in conjunction with the fact that u ∈ Cw([0, T ];L2(O)), w ∈
Cw([0, T ];L2(O)),M ∈ Cw([0, T ];L2(O)), and H ∈ Cw([0, T ];L2(O)), we deduce
that

lim
t→0+

[ ∫
O

|u(t) − u0|2 dx +
∫
O

|w(t) − w0|2 dx +
∫
O

|M(t) − M0|2 dx

+
∫
O

|H(t) − H0|2 dx
]

= 0.

This concludes the proof of Theorem 2.4. ��

4 Zero Limit of the Relaxation Time for the System (1.1)–(1.3)

In this section,we aim to study the asymptotic behaviour of the solutions to the problem
(1.1)–(1.3) when τ → 0+. More precisely, we prove that as τ → 0+, the solutions
(uτ ,wτ , Mτ , Hτ ) of (1.1)–(1.3) converge to a solution (U,W ,m, h) of the following
system

∂tU + (U · ∇)U + ∇ p − ν�U − μ0(m · ∇)h

= μ0(∇ × h) × h − α∇ × (∇ × U − 2W), (4.1a)

∂tW + (U · ∇)W − (λ1 + λ2)∇ divW − λ1�W = 2α(∇ × U − 2W), (4.1b)

m = χ0h, (4.1c)

∂t b + 1

σ
∇ × (∇ × h) = ∇ × (U × b), (4.1d)

b = μ0(1 + χ0)h, div b = 0, (4.1e)

divU = 0 in QT , (4.1f)

U = 0, W = 0, m × n = 0, h × n = 0 on 
, (4.1g){
(U,W ,m, h)(0) = (U0,W0,m0, h0) in O,

divU0 = 0, divm0 = 0, in O.
(4.1h)

Before stating and proving the main result of this section, we define what we mean by
a weak solution to the problem (4.1a)–(4.1h).

Definition 4.1 A quadriplet of functions (U,W ,m, h) is a weak solution to the prob-
lem (4.1a)–(4.1h) if:

(i) The functions U,W ,m, h satisfy

U,W ,m, h) ∈ L∞(0, T ;H) ∩ L2(0, T ; V × [H1
0 (O)]3 × V 1

div × V 1
div),

(U,W ,m, h) ∈ Cw([0, T ]; H × L
2(O) × L

2(O) × L
2(O)),

m = χ0h, div h = 0, a.e. in QT .
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(ii) For any v ∈ C1c ([0, T ); V ∩ H
2(O)), ψ ∈ C1c ([0, T ); [H1

0 (O)]3 ∩ H
2(O)) and

ψ1 + ∇φ ∈ C1c ([0, T ); [V 1
div ∩ H

2(O)] ⊕ H), the following equations hold

−
∫
QT

U · ∂tv dx dt −
∫
QT

(U · ∇)v · U dx dt + ν

∫
QT

∇U : ∇v dx dt

+ μ0(1 + χ0)

∫
QT

[h · ∇]v · h dx dt

=
∫
O
U0 · v(0) dx − α

∫
QT

(∇ × U − 2W) · ∇ × v dx dt,

−
∫
QT

W · ∂tψ dx dt −
∫
QT

(U · ∇)ψ · W dx dt

+ (λ1 + λ2)

∫
QT

divW divψ dx dt + λ1

∫
QT

∇W : ∇ψ dx dt

=
∫
O
W0 · ψ(0) dx + 2α

∫
QT

U · ∇ × ψ dx dt

− 4α
∫
QT

W · ψ dx dt,

− μ0(1 + χ0)

∫
QT

h · ∂tψ1 dx dt + 1

σ

∫
QT

curl h · curlψ1 dx dt

= μ0(1 + χ0)

∫
O
h0 · ψ1 dx + μ0(1 + χ0)

∫
QT

(u × h) · curlψ1 dx dt .

(iii) The initial data is assumed in the following sense: U(t) → U(0) = U0 in
L
2(O), m(t) → m(0) = m0 in L

2(O), W(t) → W(0) = W0 in L
2(O),

h(t) → h(0) = h0 in L2(O), as t → 0+.

With this definition in mind, we now state in precise manner the main result of this
section.

Theorem 4.2 Let the assumptions of Theorem 2.4 be satisfied. In addition, we assume
that the physical parameters μ0 and χ0 satisfied

μ0 = χ0. (4.2)

Let {(uτ ,wτ , Mτ , Hτ )}τ>0 be the sequence of global weak solutions to the ECREs
(1.1)–(1.3) given by Theorem 2.4, where τ > 0 is a small relaxation time. Then,
when τ → 0+, there exists a subsequence of {(uτ ,wτ , Mτ , Hτ )}τ>0 convergent in
L2(0, T ;L2(O)) to a weak solution (U,W ,m, h) of problem (4.1a)–(4.1h).

Before proving the theorem, we state and prove the following auxiliary result.

Lemma 4.3 Let T > 0 be a fixed positive time. Let (uτ ,wτ , Mτ , Hτ ) be the solution
of problem (1.1)–(1.3) provided by Theorem 2.4, with τ > 0 be given. We have

μ0+χ0

τ

∫
Qt

Hτ (s) · Mτ (s) dx ds−1

τ

∫ t

0
‖Mτ (s)‖2 ds−μ0χ0

τ

∫ t

0
‖Hτ (s)‖2 ds

123



55 Page 48 of 57 Applied Mathematics & Optimization (2024) 89 :55

� − 1

2τ

∫ t

0
‖Mτ (s) − χ0Hτ (s)‖2 ds+ (μ0−χ0)

2

2τ

∫ t

0
‖Hτ (s)‖2 ds, ∀t ∈ [0, T ].

(4.3)

Proof of Lemma 4.3 Let t ∈ [0, T ] be fixed. Notice that

μ0 + χ0

τ

∫
Qt

Hτ (s) · Mτ (s) dx ds −
∫ t

0

1

τ
‖Mτ (s)‖2ds − μ0χ0

τ

∫ t

0
‖Hτ (s)‖2 ds

= μ0

τ

∫
Qt

Hτ (s) · Mτ (s)dx ds − 1

2τ

∫ t

0
‖Mτ (s)‖2ds

+χ0(χ0 − 2μ0)

2τ

∫ t

0
‖Hτ (s)‖2ds − 1

2τ

∫ t

0
‖Mτ (s) − χ0Hτ (s)‖2ds. (4.4)

By Hölder’s and Young’s inequalities, we have

μ0

τ

∫
Qt

Hτ · Mτ dx ds � μ0

τ

∫ t

0
‖Mτ (s)‖‖Hτ (s)‖ ds

� 1

2τ

∫ t

0
‖Mτ (s)‖2 ds + μ2

0

2τ

∫ t

0
‖Hτ (s)‖2 ds.

Hence, by inserting this inequality into (4.4), we easily derive (4.3). ��
Remark 4.4 The estimate (4.3) in Lemma 4.3 and the assumption (4.2) are necessary
and sufficient for the proof of Theorem 4.2. In fact,

(1) if for instance μ0 �= χ0, the term on the left-hand side of (2.5) can’t be bounded
independently of τ by using (4.3) in (2.5).

(2) If μ0 �= χ0, we can derive another estimate different from (4.3) and then bound
all the terms on the left-hand side of (2.5) independently of τ . The problem is that
with another bound different from (4.3), the left-hand side of (2.5) should contain
the terms 1

ιτ

∫ t
0 ‖Mτ‖2ds or c

ιτ

∫ t
0 ‖Hτ‖2ds, with ι > 0 sufficiently small and c

being a positive constant which may possibly depend onμ0 and χ0. This may lead
to an issue such as ‖Mτ‖L2(0,T ;L2(O)) � C

√
τ → 0 if τ → 0+. This does not

make sense since Mτ can’t be equal to zero a.e. in [0, T ] × O.

Following this important observation, we now provide the proof of Theorem 4.2.

Proof of Theorem 4.2 From (4.3), (4.2), and (2.5), we obtain

1

2
Etot(uτ (t),wτ (t), Mτ (t), Hτ (t)) +

∫ t

0
[ν‖∇uτ (s)‖2+(λ1+λ2)‖ divwτ (s)‖2]ds

+
∫ t

0
[λ1‖∇wτ (s)‖2+α‖ curl uτ (s) − 2wτ (s)‖2]ds+ 1

σ

∫ t

0
‖ curl Hτ (s)‖2ds

+ 1

2τ

∫ t

0
‖Mτ (s) − χ0Hτ (s)‖2ds � 1

2
Etot(u0,w0, M0, H0). (4.5)
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In view of (4.5), we see that (uτ ,wτ , Mτ , Hτ ) satisfies the following bounds

|uτ‖L∞(0,T ;H) + ‖uτ‖L2(0,T ;V ) � C(1 + E
1
2
tot),

‖wτ‖L∞(0,T ;L2(O)) + ‖wτ‖L2(0,T ;[H1
0 (O)]3) � C(1 + E

1
2
tot),

‖Mτ‖L∞(0,T ;Hn) � C(1 + E
1
2
tot),

‖Hτ‖L∞(0,T ;Hn) � C(1 + E
1
2
tot),

‖ curl uτ − 2wτ‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),

‖ curl Hτ‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot),

τ−1/2‖Mτ − χ0Hτ‖L2(0,T ;L2(O)) � C(1 + E
1
2
tot), (4.6)

for a given τ > 0. Here Etot = Etot(u0,w0, M0, H0), andC is a large positive constant
depending only on σ, ν, λ1, λ2, α, and χ0.
Arguing similarly as in (3.38) and (3.46), using (4.5) in place of (3.33), we can prove
that

{∂twτ }τ>0 is uniformly bounded in L2(0, T ;H−2
0 (O)) with respect to τ,

{∂tuτ }τ>0 is uniformly bounded in L2(0, T ;H−3
div(O)) with respect to τ. (4.7)

By the Banach–Alaoglu theorem and up to some subsequences, the estimates (4.6)1,
(4.6)2, and (4.7) imply that

uτ

∗
⇀ U weakly-star in L∞(0, T ; H),

uτ⇀U weakly in L2(0, T ; V ),

wτ

∗
⇀ W weakly-star in L∞(0, T ;L2(O)),

wτ⇀W weakly in L2(0, T ; [H1
0 (O)]3),

∂tuτ⇀∂tU weakly in L2(0, T ;H−2
0 (O)),

∂twτ⇀∂tW weakly in L2(0, T ;H−3
div(O)), as τ → 0+.

Besides, by (4.6)1, (4.6)2, (4.7) and [H1
0 (O)]3 c

↪→ L
2(O) ↪→ H

−2
0 (O), V

c
↪→ H ↪→

H
−3
div(O), where every first embedding is compact and every second one continuous,

we can use the Aubin–Lions compactness lemma so that

uτ → U, wτ → W strongly in L2(0, T ;Lp(O)), p ∈ [2, 6), (4.8)

up to a subsequence, for some limiting functions U ∈ L∞(0, T ; H) ∩ L2(0, T ; V )

and W ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ; [H1
0 (O)]3).
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By (4.6)3 and (4.6)4 in conjunction with the Banach–Alaoglu theorem, we infer that

Mτ

∗
⇀ m weakly-star in L∞(0, T ;L2(O)),

Hτ

∗
⇀ h weakly-star in L∞(0, T ;L2(O)), (4.9)

for limiting functions m, h ∈ L∞(0, T ;L2(O)). Moreover, we have m = χ0h a.e. in
QT . In fact, for any test function ψ ∈ L2(0, T ;L2(O)), using the Hölder inequality
along with the uniform bounds (4.6)7, we have∣∣∣∣

∫
QT

(m − χ0h) · ψ dx ds

∣∣∣∣ =
∣∣∣∣ lim
τ→0+

∫
QT

(Mτ − χ0Hτ ) · ψ dx ds

∣∣∣∣
� lim

τ→0+(‖Mτ − χ0Hτ‖L2(0,T ;L2(O)))‖ψ‖L2(0,T ;L2(O))

� C(1 + E
1
2
tot)‖ψ‖L2(0,T ;L2(O)) lim

τ→0+(
√

τ) = 0.

This proves that m = χ0h in L2(0, T ;L2(O)).
We recall that the following equalities hold true (since for fix τ > 0, {uτ ,wτ , Mτ , Hτ }
is a weak solutions of problem (1.1)–(1.3) provided by Theorem 2.4):

Hτ = Hτ
a + Hτ

d ,

div Hτ
a = 0, curl Hτ

a = curl Hτ in QT ,

curl Hτ
d = 0, Hτ

d = ∇ϕτ
d , div Hτ

d = − div Mτ in QT ,

∫
O

∇ϕτ
d · ∇ψ dx =

∫
O

(Hτ − Hτ
a) · ∇ψ dx =

∫
O

Hτ · ∇ψdx

= −
∫
O
Mτ · ∇ψ dx, ∀ψ ∈ H1(O),

and

Hτ
d · n = ∂ϕτ

d

∂n
= ∇ϕτ

d · n = −Mτ · n on 
.

In view of (4.6)4 and [23, Theorem 1.4], we deduce that Hτ
d = ∇ϕτ

d is uniformly
bounded in L∞(0, T ;L2(O)) with respect to τ . Hence, by the Banach–Alaoglu the-
orem, we derive that

Hτ
d

∗
⇀ H∗

d weakly-star in L∞(0, T ;L2(O)),

for a limiting function H∗
d ∈ L∞(0, T ;L2(O)).

We recall that Hτ
a = Hτ − Hτ

d in QT . Since Hτ
d and Hτ are uniformly bounded

in L∞(0, T ;L2(O)), respectively, we find that Hτ
a is also uniformly bounded in
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L∞(0, T ; H). Moreover, since curl Hτ
a = curl Hτ , div Hτ

a = 0, and curl Hτ is uni-
formly bounded in L2(0, T ;L2(O)) (due to (4.6)6), we deduce that Hτ

a is uniformly
bounded in L∞(0, T ; H)∩ L2(0, T ; V ). By applying again the Banach–Alaoglu the-
orem, we deduce that

Hτ
a

∗
⇀ H∗

a weakly-star in L∞(0, T ; H),

Hτ
a⇀H∗

a weakly in L2(0, T ; V ),

for a limiting function H∗
a ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).

Passing to the limit as τ → 0+ in Hτ = Hτ
a + Hτ

d , div(Mτ + Hτ ) = 0 and
div Hτ

d = − div Mτ , we obtain

h = H∗
a + H∗

d , 0 = div(m + h) = (1 + χ0) div h,

div H∗
d = − divm = div h = 0 in O. (4.10)

On the other hand, owing to [23, Corollary 5.5] and the uniqueness of the Helmholtz–
Leray decomposition, we find that there exists ∇ϕ∗

d ∈ E2(O) such that h := H∗
a +

H∗
d = H∗

a + ∇ϕ∗
d , �ϕ∗

d = 0 in QT and ∇ϕ∗
d · n = h · n on 
. Furthermore, we

observe that

∇ϕ∗
d = H∗

d ∈ L∞(0, T ;L2(O)) ∩ L2(0, T ;H1(O)).

We will now give an estimate for ∂tMτ .
Exploiting the Hölder, (4.6)1 and (4.6)3, we have

∫ T

0
‖(uτ (t) · ∇)Mτ (t)‖2H−2(O)

dt � C sup
t∈[0,T ]

‖Mτ (t)‖2
∫ T

0
‖∇uτ (t)‖2 dt

� C(1 + E
1
2
tot)

4,

where the constant C is independent of τ .
Due to (4.6)1, (4.6)2 and the embedding of H1(O) in L4(O), we see that

∫ T

0
‖wτ (t) × Mτ (t)‖2(L4(O))′ dt � C sup

t∈[0,T ]
‖Mτ (t)‖2

∫ T

0
‖wτ (t)‖2[H1

0 (O)]3 dt

� C(1 + E
1
2
tot)

4.

Here the positive constant C is independent of τ . Hence, by recalling also the uniform
bounds (4.6)3 and (4.6)4 for Mτ and Hτ , respectively, we easily see that {∂tMτ }τ>0
is uniformly bounded in L2(0, T ;H−2(O)).
Let X := V1 ∩ H

2(O). Then arguing as in (3.54), we can prove that

∫ T

0
‖∇ × (uτ (t) × Bτ (t))‖2X ′ dt � C sup

t∈[0,T ]
‖Bτ (t)‖2

∫ T

0
‖∇uτ (t)‖2 dt
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� C(1 + E
1
2
tot)

4, (4.11)

and ∫ T

0

1

σ 2 ‖∇ × (∇ × Hτ (t))‖2X ′ dt � 1

σ 2

∫ T

0
‖ curl Hτ

a(t)‖2 dt . (4.12)

We note that in (4.11) we have also used the uniform bounds (4.6)1, (4.6)3 and (4.6)4.
Furthermore, since Hτ

a is uniformly bounded in L2(0, T ;H1(O)), more precisely
in L2(0, T ; V ), we see that the left-hand side of (4.12) is uniformly bounded with
respect to τ . Finally, since (1.1d) holds almost everywhere, we derive that {∂tHτ }τ>0
is uniformly bounded in L2(0, T ; X ′) with respect to τ .
As in (3.57), we can prove that {∂tHτ

a}τ is uniformly bounded in L2(0, T ;Y ′
1) :=

L2(0, T ; (H ∩ H
2(O))′), and consequently (cf. (3.58))

Hτ
a → H∗

a in L2(0, T ; H), (4.13)

as τ → 0+, for a limiting function H∗
a ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).

Next using and integration by parts and the fact that div h = 0 in O, we find

(1 + χ0)

∫
O
h · H∗

d dx = (1 + χ0)

∫
O
h · ∇ϕ∗

d dx = −(1 + χ0)

∫
O

ϕ∗
d div h dx = 0.

Notice that
∫
O h · H∗

d dx = 0 and
∫
O m · H∗

d dx = 0, since div h = divm = 0 and
H∗

d = ∇ϕ∗
d . Hence, as h = H∗

d + H∗
a (cf. (4.10)), we obtain∫

O
|h|2 dx =

∫
O
h · H∗

a dx +
∫
O
h · H∗

d dx =
∫
O
h · H∗

a dx

=
∫
O
h · H∗

a dx −
∫
O
m · H∗

d dx

=
∫
O
h · H∗

a dx −
∫
O
m · (h − H∗

a) dx .

Thus, we deduce that∫
O

|h|2 dx = −
∫
O
m · h dx +

∫
O

(m + h) · H∗
a dx . (4.14)

Owing to (4.14) and the fact that m = χ0h, we have∫
O

(m + h) · H∗
a dx = (1 + χ0)

∫
O

|h|2 dx . (4.15)

Next we observe that∫
O

(Hτ + Mτ ) · Hτ dx =
∫
O

(Hτ + Mτ ) · (Hτ
a + Hτ

d) dx
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=
∫
O

(Hτ + Mτ ) · (Hτ
a − H∗

a) dx

+
∫
O

(Hτ + Mτ ) · H∗
a dx +

∫
O

(Hτ + Mτ ) · ∇ϕτ
d dx

=
∫
O

(Hτ + Mτ ) · (Hτ
a − H∗

a)dx +
∫
O

(Hτ + Mτ ) · H∗
a dx . (4.16)

Owing to the uniform bounds (4.6)3 and (4.6)4 for Mτ and Hτ , respectively, and the
strong convergence (4.13), we obtain that the first term on the right-hand side of (4.16)
converges to zero, as τ → 0+. Hence,

∫
O

(H + M) · H dx = 0 +
∫
O

(h + m) · H∗
a dx a.e. t ∈ [0, T ]. (4.17)

It then follows from (4.15) and (4.17) that

∫
QT

(H + M) · H dx dt = lim
τ→0+

∫
QT

(Hτ + Mτ ) · Hτ dx dt

=
∫
QT

(h + m) · H∗
a dx dt = (1 + χ0)

∫
QT

|h|2 dx dt .
(4.18)

Besides, from (4.6)4 and (4.6)7, we obtain∣∣∣∣(1 + χ0) lim
τ→0+

∫
QT

|Hτ |2 dx dt −
∫
QT

(H + M) · H dx dt

∣∣∣∣
=

∣∣∣∣(1 + χ0) lim
τ→0+

∫
QT

|Hτ |2 dx dt − lim
τ→0+

∫
QT

(Hτ + Mτ ) · Hτ dx dt

∣∣∣∣
=

∣∣∣∣ lim
τ→0+

∫
QT

Hτ · (χ0Hτ − Mτ ) dx dt

∣∣∣∣
� lim sup

τ→0+

∣∣∣∣
∫
QT

Hτ · (χ0Hτ − Mτ ) dx dt

∣∣∣∣
� lim sup

τ→0+

∫
QT

|Hτ ||(χ0Hτ − Mτ )| dx dt

� C(1 + E
1
2
tot)

2 lim sup
τ→0+

√
τ → 0, (4.19)

By (4.19) and (4.18), we deduce that

(1 + χ0) lim
τ→0+

∫
QT

|Hτ |2 dx dt =
∫
QT

(H + M) · H dx dt

= (1 + χ0)

∫
QT

|h|2 dx dt, (4.20)
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which along with (4.20) and (4.9) implies

lim
τ→0+

∫
QT

|Hτ − h|2 dx dt = lim
τ→0+

∫
QT

|Hτ |2 dx dt − 2 lim
τ→0+

∫
QT

Hτ · h dx dt

+
∫
QT

|h|2 dx dt

= 2
∫
QT

|h|2 dx dt − 2 lim
τ→0+

∫
QT

Hτ · h dx dt = 0.

This proves that a subsequence of {Hτ }τ>0 converges strongly to L2(0, T ;L2(O)).
We observe that∫

QT

|Mτ − χ0h| dx dt �
∫
QT

|Mτ − χ0Hτ | dx dt +
∫
QT

|χ0Hτ − χ0h| dx dt

� T
1
2 |O| 12 ‖Mτ − χ0Hτ‖L2(0,T ;L2(O))

+
∫
QT

|χ0Hτ − χ0h| dx dt .

Using (4.6)7 and the fact that Hτ → h in L2(0, T ;L2(O)), as τ → 0+, we find

lim
τ→0+

∫
QT

|Mτ − χ0h| dx dt

� C(1 + E
1
2
tot) lim

τ→0+
√

τ + lim
τ→0+

∫
QT

|χ0Hτ − χ0h| dx dt = 0,

which along with the fact that m = χ0h yields that Mτ → m strongly in
L2(0, T ;L2(O)), as τ → 0+.
Let � ∈ C1c ([0, T ); V 1

div ∩H
2(O)) be arbitrary but fixed. From (4.6)6, we deduce that

(up to a subsequence)

curl Hτ⇀ curl h weakly in L2(0, T ;L2(O)).

Consequently,

∫
QT

curl Hτ · curl� dx dt →
∫
QT

curl h · curl� dx dt as τ → 0+.

Observe that by Green’s formula (see [12, Eq. (2.18), p. 21]) and since� ×n|∂O = 0,
we have∫

O
(U × b) · curl� dx =

∫
O
curl(U × b) · � dx

=
∫
O

[(b · ∇)U − (U · ∇)b] · � dx
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= −
∫
O

(b · ∇)� · U dx +
∫
O

(U · ∇)� · b dx .

Hence, from (4.8) and (4.9), and arguing as we did in (3.82), we obtain

∫
QT

(uτ × Bτ ) · curl� dx dt → −
∫
QT

(b · ∇)� · U dx dt +
∫
QT

(U · ∇)� · b dx dt

=
∫
QT

(U × b) · curl� dx dt,

as τ → 0+ (up to a subsequence). So, we can pass to the limit in the weak formulation
of (1.1d) and derive (4.1d) in the sense of distributions.
The next step is to pass to the limit, but before doing that, we multiply both sides of
the weak formulation of (1.1d). With this in mind, the convergence results established
in this section enable us to pass to the limit in the weak formulation of (1.1)–(1.3)
(cf. (2.3)–(2.4)) and obtain that the limit (U,W ,m, h) satisfies (4.1a)–(4.1f). This
completes the proof of Theorem 4.2. ��

5 Conclusions

In this work, we studied a nonlinear coupling system of partial differential equations
proposed by Rosensweig for the dynamics of an incompressible viscous ferrofluid.
This system of partial differential equations, which we called the electrically conduc-
tive Rosensweig equations (ECREs for short), has been studied in a connected and
bounded open domain in R3, with no-slip boundary condition both for the velocity u
and angular velocityw, and electric boundary conditions for themagnetization fieldM
and the magnetic field H . First, we showed the existence of global weak solutions to
the non-regularized electrically conductive Rosensweig equations if the electric con-
ductivity coefficient σ is not too small. This enables us to send a message to ferrofluid
users that ferrofluids are naturally very poor conductors of electric current or dielec-
tric, and that one cannot develop non-conductive ferrofluid from conductive ferrofluid
with very small electric conductivity. Second, motivated by the smallness of the fer-
rofluids’ relaxation time, which is the average time needed by the ferrofluid to recover
an equilibrium state once perturbed, we gave a rigorous analysis of the behavior of the
global weak solutions in the relaxation time limit regime τ → 0 (cf. Theorem 4.2).
We mainly proved that as τ → 0, a sequence of global weak solutions of the ECREs
converges in appropriate topology towards the quasi-equilibrium, which is basically
a solution to the Navier–Stokes–Maxwell system with internal rotation. We conclude
this paper by mentioning some few open questions which will be the object of future
investigations:

• Well-posedness of strong solutions An interesting issue is to prove the existence
and uniqueness of the regular strong solutions to (4.1a)–(4.1h) whose existence of
the global weak solutions is proved in Theorem 4.2. More precisely, with smooth
initial data, is it possible to establish the existence and uniqueness of the limiting
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system (4.1a)–(4.1h), as discussed in [17, Appendix A] or [28], in the case where
the magnetic field is described by the magnetostatic equations?

• Stochastic caseAn extension of this paper to the analysis of the stochastic version
of the ECREs with a special type of noise is the subject of a work in progress. This
is motivated by the fact that the randomness of the environment and the stochastic
motions of the ferromagnetic particles in the ferrofluids may induce phenomena
that might be absent in the deterministic system. Despite the randomness of the
dynamics, previous mathematical analyses in the literature only considered deter-
ministic models.

• Boundary conditions Further interesting questions concern the analysis of system
(1.1a)–(1.1f) with Dirichlet boundary condition both for the velocity and angular
velocity, and other types of conditions such the magnetic boundary conditions or
the Robin-like boundary conditions (cf. [16, p. 5]) for the magnetization field and
the magnetic field, respectively.
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