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Abstract
This paper is concerned with the growth-driven shape-programming problem, which
involves determining a growth tensor that can produce a deformation on a hyperelastic
body reaching a given target shape. We consider the two cases of globally compati-
ble growth, where the growth tensor is a deformation gradient over the undeformed
domain, and the incompatible one, which discards such hypothesis. We formulate the
problem within the framework of optimal control theory in hyperelasticity. The Haus-
dorff distance is used to quantify dissimilarities between shapes; the complexity of
the actuation is incorporated in the cost functional as well. Boundary conditions and
external loads are allowed in the state law, thus extending previous works where the
stress-free hypothesis turns out to be essential. A rigorous mathematical analysis is
then carried out to prove the well-posedness of the problem. The numerical approxi-
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mation is performed using gradient-based optimisation algorithms. Our main goal in
this part is to show the possibility to apply inverse techniques for the numerical approx-
imation of this problem, which allows us to address more generic situations than those
covered by analytical approaches. Several numerical experiments for beam-like and
shell-type geometries illustrate the performance of the proposed numerical scheme.

Keywords Soft robotics · Differential growth · Hyperelasticity ·
Shape-programming · Optimal control · Numerical simulation methods

Mathematics Subject Classification 49J45 · 65K10 · 74B20 · 93A30

1 Introduction

Soft robotics is a biologically-inspired groundbreaking technology that aims to mimic
mechanical deformations, which take place in humans, animals, or plants, through
actuated softmaterials: dielectric elastomers ormagneto-active polymers, for instance.
Several actuation mechanisms, such as fluidic, heat, electric, or magnetic, may be used
to control thesematerials [1]. The range of potential applications of this newgeneration
of robots includes, among many others, medical assistance and ocean exploration [2,
3].

In addition to the development of new manufacturing technologies, mathematical
modelling, analysis, and numerical simulation are tools of paramount importance to
speed up progress in this field. Being composed of soft matter, nonlinear continuum
mechanics is the appropriate physical theory to model the kinematics and dynamics
of these materials. However, the mathematical control theory of hyperelastic mate-
rials is scarce. Indeed, the first mathematically rigorous study for control problems
in the hyperelasticity setting appears to be [4]. More recently, several papers have
addressed the control of soft materials from the viewpoints of mathematical analysis
and numerical simulation [5–9]. See also [10] for a recent survey.

Growth is another biological process susceptible to being mimicked by artificial
soft materials. As a matter of fact, [11] reports on a class of soft pneumatic robots
whosemovements are driven by growth. As for themathematical modelling of growth,
A. Goriley provides, in his seminal book [12], the required ingredients. Doubtless, the
topic of mathematical analysis and numerical simulation of growth control is in its
infancy, insofar as the mathematical analysis of soft materials actuated by growth is
missing in the literature, and only a fewworks have addressed the numerical simulation
counterpart. In this regard, it is worth mentioning [13, 14]. Both papers tackle the so-
called shape-morphing problem, where the goal is to find the growth tensor that can
produce the deformation of a given soft continuum to a desired shape. The paper [13]
copes with the complexity of the activation as well, and provides explicit solutions
in the case of affine shape changes. In a complementary manner, [14] focuses on the
case of shells and also finds analytical solutions under the stress-free assumption.

Fostered by [13, 14], this paper sets up the shape-morphing problem within the
framework of optimal control theory. Indeed, the control variable is the growth tensor.
We consider both cases in which the growth tensor is globally compatible, meaning

123



Applied Mathematics & Optimization (2024) 89 :49 Page 3 of 41 49

that it is a deformation gradient over the undeformed domain, and the incompatible
one, where it is no longer a gradient. From the viewpoint of mathematical modelling,
the former case is expressed as the composition of two mechanical deformations:
one of them accounts for growth and the other one incorporates boundary conditions
and other possible effects like external loads. The latter case relies on the theory
of Morphoelasticity, where a local elastic tensor restores the compatibility that is
lost by the growth tensor. The state variable is the deformation of the actuated soft
continuum. As usual in hyperelasticity theory, that deformation is a minimiser of
a polyconvex energy functional. The cost function uses the Hausdorff distance to
account for dissimilarities between the desired shape and the final configuration. It
also includes a term to deal with the complexity of the activation. In our work, we do
not neeed the stress-free hypothesis of [14].

The outline of this paper is as follows. Section2 contains themodelling details. Sec-
tion3 performs a rigorous mathematical analysis of the shape-programming problem
in the globally compatible case, which is more involved analytically than the incom-
patible one. More precisely, firstly, we prove that, for a given growth tensor, there exist
minimisers of the underlying energy functional. Secondly, we establish the existence
of solutions for the optimal control problem. We rely on the Direct Method of Cal-
culus of Variations in both cases. Section4 straightforwardly extends these existence
results to the incompatible case. Eventually, Sect. 5 addresses the numerical approxi-
mation of the shape-programming problem. Our purpose here is to show how inverse
techniques may be used for the numerical resolution of this problem, thus address-
ing more generic situations than those covered by analytical approaches. We adopt
a pragmatic point of view in this part as we are not concerned about the compatible
or incompatible nature of the growth tensor; in practise, this amounts to accept the
incompatibility and, hence, the study lies in the theory of Morphoelasticity. Likewise,
we take the right Cauchy–Green deformation tensor as the main variable since, by a
suitable parametrisation, it highly simplifies the numerical approximation of the prob-
lem. We also derive explicit formulae for the gradients of the functional involved, and
transfer those to cutting-edge optimization algorithms that use gradients, in particular,
the interior-point method, to obtain the desired solutions. Several numerical examples
for beam-like and shell-type applications, as well as a problem converting a square
into a circular geometry, illustrate the performance of the proposed numerical scheme.

2 Problem Setting

2.1 Modelling Differential Growth in Nonlinear Elasticity

Let �0 ⊂ R
N , N = 2, 3, be an open, bounded and connected domain which repre-

sents the reference (or undeformed) configuration of an elastic and soft body. If �0
experiences a growth effect (as happens in plants or in human tissues, for instance),
then it changes its size or shape.

There are two ways to understand and model this phenomenon. In the first, we
postulate that there is an underlying deformation that produces the growth. Let us then
denote by�g : �0 → R

N the deformationmapping induced by this phenomenon, and
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by �g := �g (�0) the deformed body once growth has taken place. It is assumed that
�g is a Sobolevmap.Although driven by growth,�g is still assumed to be amechanical
deformation, hence it satisfies the properties required to any such deformation; in
particular, it preserves the orientation and does not interpenetrate [15]. Let us denote
by G = G(X) the deformation gradient tensor associated with �g, i.e., G := ∇�g,
where ∇ is the material gradient operator with respect to X ∈ �0. The orientation-
preserving condition is modeled with the constraint

det G(X) > 0 for almost every X ∈ �0, (2.1)

while the non-interpenetration is modelled by imposing that �g is injective almost
everywhere (hereafter abbreviated to a.e.), so that the restriction of �g to the comple-
ment of a set of measure zero is injective [16].

For the second possibility, and according to the general modelling of growth and
morphoelasticity in [12], the postulate that there is an underlying deformation �g
responsible for growth is discarded, so the tensor G is not assumed to come from any
deformation, though still (2.1) is retained.

Since the first alternative is more involved analytically, we will keep our general
discussion (this section and Sect. 3) in that context, and defer some comments on the
second one (Sect. 4), once the main analysis has been performed. Even so, numerical
experiments in Sect. 5 are explored in the morphoelasticity scenario.

Since �g is an elastic and soft material, it has an internal elastic energy, which is
able to induce a new deformation �e on the body �g. For this initial exposition of the
problem, we can think that �e is Lipschitz, but this assumption is not necessary in the
analysis. Although, in principle, the elastic energy might depend on the configuration
�g and the growth deformation �g, this is not the case in the current context, since
�g represents a growth that does not change the elastic properties of the material.
Thus, we assume that the constitutive parameters of the body occupying �0 and �g
are the same. This assumption requires additionally that the body is homogeneous,
i.e., its mechanical properties are the same at each point. This is modeled through an
energy function that does not depend explicitly on material points and is the same for
both configurations �0 and �g, regardless of the growth deformation �g. This stored
energy function is denoted by W0 : R

N×N+ → R, where R
N×N+ designates the set of

square N × N matrices with strictly positive determinant. The precise assumptions on
W0 will be listed in Sect. 2.3.

As is well known, equilibrium configurations �e are minimisers of the functional

∫
�g

W0(Fe) dY (2.2)

(towhich onemay add external forces) over a suitable class of admissible deformations
to be specified later. Here Fe is the deformation gradient of the elastic deformation
�e. The variables in �g have been denoted by Y , while the variables in �0 by X , so
that Y = �g(X).

Taking into consideration both growth �g and elastic �e deformation, the total
deformation � of the body �0 is expressed as the composition of both mappings, i.e.,
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Fig. 1 Themapping�between reference�0 and deformed� configurations is expressed as the composition
of the growth deformation �g and the elastic deformation �e

� = �e ◦ �g. Accordingly, the deformation gradient tensor F associated with � is
given by

F(X) = Fe(�g(X))G(X), (2.3)

where Fe is the deformation gradient of �e.
The three maps involved, �, �e and �g, are assumed to be orientation-preserving

and injective a.e. (see Fig. 1 for a graphical representation).
By (2.1) and the fact that �g is injective a.e., the change of variables Y = �g(X)

allows rewriting (2.2) in the undeformed configuration �0 as

∫
�0

WG(X, F) dX, (2.4)

where
WG(X, F) := W0(FG(X)−1) det G(X). (2.5)

Note that the tensor G breaks the symmetries of W0. Indeed, if W0 has a symmetry
group (for example, it is isotropic), then WG does not, in general.

Boundary conditions will be imposed in �, but not in �g or �e independently.
We will assume that the boundary �0 of �0 is Lipschitz and is decomposed into two
disjoint parts: �0D and �0N , with �0D of positive (N − 1)-dimensional area. On the
Dirichlet part �0D , it is imposed � = �̄ for a given deformation �̄ : �0 → R

N ,
while on �0N we prescribe the Piola–Kirchhoff stress vector s0 : �0N → R

N . The

123



49 Page 6 of 41 Applied Mathematics & Optimization (2024) 89 :49

latter is not explicitly stated in the admissible set but it is automatically satisfied for
minimisers when the surface energy term

−
∫

�0N

s0 · � dσ(X) (2.6)

is added to the total energy. The cases �0N = ∅ or s0 = 0 are not excluded. In fact,
volume forces can also be added, whose simplest form is linear:

−
∫

�0

f · � dX . (2.7)

In view of (2.4), the total energy is

�G (�) =
∫

�0

WG (X,∇�) dX −
∫

�0

f · � dX −
∫

�0N

s0 · � dσ(X). (2.8)

Other boundary conditions are also possible (see, e.g., [17, Ch. 5]), as well as more
general external forces.

Finally, we fix an exponent p > 1 related to the growth at infinity of the function
W0 (see Sect. 2.3 for details) and define the class U of admissible deformations � in
(2.8) as

U :=
{
� ∈ W 1,p(�0, R

N ) : � = �̄ on �0D ,� injective, and det∇� > 0 a.e.
}

,

where W 1,p is the notation for the Sobolev space. Naturally, we suppose that U is not
empty and that �G is not identically infinity in U, which amounts to assuming that
�̄ ∈ U and �G(�̄) < ∞.

2.2 Setting of the Shape-Programming Problem

Having inmindpotential applications in soft robotics, the so-called shape-programming
problem [14] amounts to finding the growth tensor field G in the initial configuration
�0 such that the final configuration is as close as possible to a desired target configura-
tion �target. Besides reaching this goal, and in order to facilitate its implementation in
a possible soft robot, the computed growth tensor field should be as simple as possible.

Inspired by [13], a general form of a complexity functional should have a regular-
isation term (typically, a squared gradient of G) plus a term penalising the difference
between the actual G and the target Gtarget; such target may well be the identity. These
two ingredients should give rise to a simple growth tensor; indeed, the regularising
term avoids oscillations, while the penalising termmakes G similar to Gtarget, which is
chosen to be simple, too. In Sect. 2.4 we will describe some possibilities of complexity
functions, but for the moment we can think of the functional

α1

∫
�0

‖G − Gtarget‖2 dX + α2

∫
�0

‖∇G‖2 dX,

123



Applied Mathematics & Optimization (2024) 89 :49 Page 7 of 41 49

for α1, α2 > 0, and develop the mathematical theory for general functionals of the
form

C(G) :=
∫

�0

φ(X, G) dX + α2

∫
�0

‖∇G‖2 dX

for a certain appropriate density φ. Here above, the norm of a second-order tensor
A is defined by ‖A‖2 = ∑N

i, j=1 A
2
i j . Similarly is defined the norm of vectors and

third-order tensors.
Wewill see in Sect. 3 that, in order to prove existence of minimisers� ∈ U of (2.8),

one needs that G be in L∞ and that det G is bounded away from zero. These facts are
in agreement with the requirement that G is easily reachable. The most general way
of expressing these assumptions is to fix a compact set K ⊂ R

N×N+ and impose that

G(X) ∈ K for a.e. X ∈ �0.

Two relevant examples of the set K are

K = {F ∈ R
N×N : ‖F‖ ≤ M and det F ≥ m}

for some M,m > 0, and

K = {F ∈ R
N×N+ : m1 ≤ σ(F) ≤ m2 for any singular value σ of F}

for some 0 < m1 ≤ m2. In addition, one may want to model the growth given by G
as incompressible; in this case, relevant sets K are

K = {F ∈ R
N×N : ‖F‖ ≤ M and det F = 1}

and

{F ∈ R
N×N : det F = 1 and m1 ≤ σ(F) ≤ m2 for any singular value σ of F}.

Concerning the goal that the final configuration is as close as possible to a desired
one, there are several options as for the distance between shapes. The simplest, but least
realistic, is to consider an L2 distance between the actual and a target deformation;
the disadvantage of this choice is that, in general, a distance between deformations is
only vaguely related to a distance between shapes. Introduced by [18] and analysed
in [8], we consider instead the Hausdorff distance between the image domain and
the target set as an adequate way of measuring distances between those sets. As in
those works, we use in fact the following smooth approximation of the Hausdorff
distance. Let �(G) = �(�0) be the image domain and �target the target domain.
We fix three exponents α, β, γ > 0 and a continuous and strictly decreasing function
ϕ : [0,∞) → (0,∞). We define

d̃�(G) ( y) = ϕ−1

((
1

|�(G) |
∫

�(G)

ϕα (‖ y − x‖) dx
)1/α

)
, y ∈ �target,
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d̃�target (x) = ϕ−1

⎛
⎝
(

1

|�target|
∫

�target

ϕα (‖ y − x‖) d y
)1/α

⎞
⎠ , x ∈ �(G) ,

d̃�target,�(G) :=
(

1

|�target|
∫

�target

d̃β

�(G)
( y) d y

)1/β

,

d̃�(G),�target :=
(

1

|�(G) |
∫

�(G)

d̃β
�target

(x) dx
)1/β

(where |A| is the volume of the set A), so that an approximation of the Hausdorff
distance is

ρH
(
�(G) ,�target

) =
(
d̃γ

�target,�(G)
+ d̃γ

�(G),�target

)1/γ
. (2.9)

Putting all things together, the formulation of the shape-programming problem is:

⎧⎪⎨
⎪⎩
Minimise in G : J (G) := ρH

(
�(G) ,�target

) + C (G)

subject to: G ∈ H1 (�0; K ) is the gradient of an a.e. injective map,

�(G) = � (�0) , with � ∈ U a minimiser of (2.8).
(2.10)

2.3 Choice of the Energy Density

The classical assumptions in nonlinear elasticity for the energy function are poly-
convexity and coercivity [17, 19, 20]. To be precise, we will assume the following
conditions for W0:

(W1) W0 is polyconvex, i.e., there exists a convex function e : R
N×N × R

N×N ×
(0,∞) → [0,∞] such that

W0(F) = e(F, cof F, det F), F ∈ R
N×N+ . (2.11)

If N = 2, the dependence on cof F can be dispensed with.
(W2) There exist exponents p ≥ N − 1 and q ≥ N

N−1 with p > 1, and a constant
c > 0 such that

W0(F) ≥ c
(‖F‖p + ‖cof F‖q) − 1

c
.

(W3) W0(F) → ∞ as det F → 0.
(W4) For every compact K ⊂ R

N×N+ there exists C > 0 such that for all F1 ∈ R
N×N+

and F2 ∈ K we have

W0(F1F2) ≤ C (1 + W0(F1)) .

Of course, cof denotes the cofactor matrix. Conditions (W1)–(W3) are standard
[19, 21]. Condition (W2), in fact, implies that any � ∈ U with �G(�) < ∞ satisfies
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cof ∇� ∈ Lq(�0, R
N×N ) and, thanks to a well-known inequality [21, Eq. (1.4)],

det∇� ∈ L
Nq
N−1 (�0). Condition (W4) is not standard, but a similar assumption has

been used, e.g., in [22]. In the following lemma we show sufficient conditions for the
fulfillment of (W4).

Lemma 2.1 The following statements hold:

(a) Let W0 ∈ C(RN×N+ , [0,∞)) be such that there exists C > 0 for which

W0 (F1F2) ≤ C (1 + W0 (F1)) (1 + W0 (F2)) , F1, F2 ∈ R
N×N+ .

Then W0 satisfies condition (W4).
(b) For i = 1, 2, let gi ∈ C(RN×N+ , [0,∞)) and g3 ∈ C((0,∞), [0,∞)). Assume

that there exists C > 0 such that for all F1, F2 ∈ R
N×N+ and t1, t2 > 0,

gi (F1F2) ≤ C (1 + gi (F1)) (1 + gi (F2))

and

g3 (t1t2) ≤ C (1 + g3 (t1)) (1 + g3 (t2)) .

Let m ∈ R. Then the function

W0 (F) = g1 (F) + g2 (cof F) + g3 (det F) + m

satisfies condition (W4) whenever W0 ≥ 0.
(c) For i = 1, 2, 3, let hi ∈ C((0,∞), [0,∞)). Assume that there exists C > 0 such

that for all t1, t2 > 0,

hi (t1t2) ≤ C (1 + hi (t1)) (1 + hi (t2)) . (2.12)

If h1, h2 are monotone increasing, and m ∈ R, then the function

W0 (F) = h1 (‖F‖) + h2 (‖cof F‖) + h3 (det F) + m

satisfies condition (W4) whenever W0 ≥ 0.
(d) Let a, b, c > 0. Then the function

W0(F) = a‖F‖2+b‖ cof F‖2+c (det F − 1)2−2(a+2b) log(det F)−3(a+b)
(2.13)

satisfies condition (W4).

Proof Part (a). Let K ⊂ R
N×N+ be compact. Let F1 ∈ R

N×N+ and F2 ∈ K . Then

W0 (F1F2) ≤ C (1 + W0 (F1)) (1 + W0 (F2))

≤ C
(
1 + ‖W0‖L∞(K )

)
(1 + W0 (F1)) .
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Part (b). For any F1, F2 ∈ R
N×N+ ,

g1 (F1F2) ≤ C (1 + g1 (F1)) (1 + g1 (F2))

≤ C (1 + W0 (F1) − m) (1 + W0 (F2) − m) ,

and, analogously,

g2 (cof(F1F2)) ≤ C (1 + W0 (F1) − m) (1 + W0 (F2) − m) ,

g3 (det(F1F2)) ≤ C (1 + W0 (F1) − m) (1 + W0 (F2) − m) .

Therefore,

W0 (F1F2) ≤ 3C (1 + W0 (F1) − m) (1 + W0 (F2) − m) + m.

If m ≥ 0 then

W0 (F1F2) ≤ 3C (1 + W0 (F1)) (1 + W0 (F2)) + m

≤ (3C + m) (1 + W0 (F1)) (1 + W0 (F2)) ,

while if m < 0 then

W0 (F1F2) ≤ 3C (1 + W0 (F1) − m) (1 + W0 (F2) − m)

≤ 3C (1 + W0 (F1)) (1 + W0 (F2)) ,

so W0 satisfies the assumptions of part (a).
Part (c). We define for i = 1, 2,

gi (F) = hi (‖F‖) , F ∈ R
N×N+

and g3 = h3. Then, for F1, F2 ∈ R
N×N+ we have

gi (F1F2) = hi (‖F1F2‖) ≤ hi (‖F1‖ ‖F2‖) ≤ C (1 + gi (F1)) (1 + gi (F2)) .

Thus, g1, g2, g3 and m satisfy the assumptions of part (b).
Part (d). Define

h1(t) = at2, h2(t) = bt2, h3(t)

= c(t − 1)2 − 2(a + 2b) log t + A and m = −3(a + b) − A,

where A ∈ R is chosen so that h3 ≥ 0. Then,

h1(t1t2) = at21 t
2
2 = 1

a
h1(t1)h1(t2) ≤ 1

a
(1 + h(t1)) (1 + h(t2)) .

An analogous bound holds for h2.
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As for h3, it is easy to check that there exist a1, a2, b2, c1, c2 > 0 such that

⎧⎪⎨
⎪⎩

−a1 log t ≤ h3(t) ≤ −a2 log t if 0 < t < 1
2 ,

h3(t) ≤ b2 if 1
2 ≤ t ≤ 2,

c1t2 ≤ h3(t) ≤ c2t2 if t > 2.

We argue by cases so as to show inequality (2.12) for h3. If t1, t2 < 1
2 ,

h3(t1t2) ≤ −a2 log(t1t2) = a2 (− log t1 − log t2) ≤ a2
a1

(h3(t1) + h3(t2))

≤ a2
a1

(1 + h3(t1)) (1 + h3(t2)) .

If t1 < 1
2 ≤ t2 ≤ 2 and t1t2 < 1

2 ,

h3(t1t2) ≤ a2 (− log t1 − log t2) ≤ a2

(
1

a1
h3(t1) + log 2

)

≤ a2

(
1

a1
+ log 2

)
(1 + h3(t1)) (1 + h3(t2)) .

If 1
2 ≤ t1t2 ≤ 2,

h3(t1t2) ≤ b2 ≤ b2 (1 + h3(t1)) (1 + h3(t2)) .

If t1 < 1
2 < 2 < t2 and t1t2 < 1

2 ,

h3(t1t2) ≤ a2 (− log t1 − log t2) ≤ a2
a1

h3(t1) ≤ a2
a1

(1 + h3(t1)) (1 + h3(t2)) .

If t1 < 1
2 < 2 < t2 and t1t2 > 2,

h3(t1t2) ≤ c2t
2
1 t

2
2 ≤ c2

4c1
h3(t2) ≤ c2

4c1
(1 + h3(t1)) (1 + h3(t2)) .

If 1
2 ≤ t1, t2 ≤ 2 and t1t2 < 1

2 ,

h3(t1t2) ≤ a2 (− log t1 − log t2) ≤ 2a2 log 2 ≤ 2a2 log 2 (1 + h3(t1)) (1 + h3(t2)) .

If 1
2 ≤ t1, t2 ≤ 2 and t1t2 > 2,

h3(t1t2) ≤ c2t
2
1 t

2
2 ≤ c2b

4
2 ≤ c2b

4
2 (1 + h3(t1)) (1 + h3(t2)) .

If 1
2 ≤ t1 ≤ 2 < t2 and t1t2 > 2,

h3(t1t2) ≤ c2t
2
1 t

2
2 ≤ 4c2

c1
h3(t2) ≤ 4c2

c1
(1 + h3(t1)) (1 + h3(t2)) .

123



49 Page 12 of 41 Applied Mathematics & Optimization (2024) 89 :49

If t1, t2 > 2,

h3(t1t2) ≤ c2t
2
1 t

2
2 ≤ c2

c21
h3(t1)h2(t2) ≤ c2

c21
(1 + h3(t1)) (1 + h3(t2)) .

We have thus shown that h1, h2, h3 and m satisfy the assumptions of part (c). 
�

Condition (a) of Lemma 2.1 appears in [22, Rk. 2.3]. It turns out that there are
many useful examples of energy densities satisfying (W1)–(W4) that are widely used
in nonlinear elasticity (see, e.g., [17, 19]). For example, condition (W1) is fulfilled
when assumption (c) in Lemma 2.1 holdswith hi convex,while conditions (W2)–(W3)
are, in general, easy to verify.

The numerical simulations of Sect. 5 will use the Mooney–Rivlin material in (2.13)
when N = 3. In this section we have shown that this W0 satisfies conditions (W1)
and (W4). Condition (W3), on the other hand, is clear, while condition (W2) is easily
seen to hold for the exponents p = q = 2.

2.4 Choices of Complexity Functionals

The work [13] introduces some examples of complexity functionals in the context
of different active materials. In the presence of isotropy, their functionals are based
on the right Cauchy–Green deformation tensor Cg = GTG associated with growth.
However, we have found several advantages to treat G, as opposed to Cg as the main
variable. Indeed, dealing with Cg involves the use of the so-called intrinsic elasticity
[23, Sect. 4.2] and needs to incorporate the constraint that Cg is a metric tensor, which
is difficult to handle.

One of the examples presented in [13] is

C1
(
Cg

) := α1

∫
�0

‖Cg − C target‖2 dX + α2

∫
�0

‖∇Cg‖2 dX, (2.14)

with C target a given target and α1, α2 > 0 weighting parameters. Although not explic-
itly mentioned in [13], similar in spirit is the functional

C2
(
Cg

) := α1

∫
�0

∥∥∥∥∥
Cg(

det Cg
)1/N − C target

∥∥∥∥∥
2

dX + α2

∫
�0

‖∇Cg‖2 dX, (2.15)

with det C target = 1, in which the penalizing term only accounts for the dissimilarity
of Cg from C target in shape but not in volume. Since in our context, we have decided
to work with G as the main variable, the counterparts of C1 and C2 are

C̄1 (G) := α1

∫
�0

dist
(
G, SO(N )Gtarget

)2
dX + α2

∫
�0

‖∇G‖2 dX,
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and

C̄2 (G) := α1

∫
�0

dist

(
G

(det G)1/N
, SO(N )Gtarget

)2

dX + α2

∫
�0

‖∇G‖2 dX,

respectively, for a given target Gtarget, which in C̄2 satisfies det Gtarget = 1. Here
SO(N ) denotes the set of (proper) rotations, and dist the distance between a matrix
a set of matrices, i.e., the minimum distance between the matrix and any element
of the set of matrices. Note that in C̄1 we wrote dist(G, SO(N )Gtarget) instead of
‖G − Gtarget‖ to guarantee frame-indifference and isotropy. Analogously for C̄2.

A final comment refers to the regularising term with integrand ‖∇G‖2 that is to be
used in any complexity functional involved. As a matter of fact, from a practical point
of view, it may be advantageous to substitute it by a standard regularising Helmholtz
filter Ĝ of the form {

Ĝ − l2�Ĝ = G in �0,

∇Ĝ · N = 0 on ∂�0.
(2.16)

Here l > 0 acts as a length-scale parameter controlling the amplitude of the regu-
larisation, � denotes the Laplacian operator, and N stands for the outer unit normal
vector to ∂�0. In this case, we replace the term

∫
�0

‖∇G‖2 dX

by the L2-norm of Ĝ. Note that the operation G �→ G̃ enjoys much better analytical
properties than G �→ ∇G: the former is a compact operation with nice properties
even from the approximation perspective, while the latter is not even continuous. In
addition, as just remarked, parameter l can be directly associated with the length-scale
of the regularization, a feature that is very convenient form the practical viewpoint.
At any rate, this filter has performed quite well in the simulations below. In fact, a
different version of the Helmholtz filter more suitable for the implementation will be
finally adopted in the numerical simulations. We will explain later how to adapt the
proof of existence to these cases.

3 Mathematical Analysis

This section aims at providing a rigorous mathematical analysis of the shape pro-
gramming problem (2.10). We shall proceed in two steps. We will first prove that for
a given growth tensor G, there exist minimisers of (2.8). Then, existence of solutions
for (2.10) is established.

The following lemma is an easy consequence of formula

A−1 = cof AT

det A
, A ∈ R

N×N+ .

123



49 Page 14 of 41 Applied Mathematics & Optimization (2024) 89 :49

Lemma 3.1 Let K ⊂ R
N×N+ be compact. Then there exist compact sets K1 ⊂ R

N×N+
and K2 ⊂ (0,∞) such that for all G ∈ L∞(�0, K ) we have cof G, G−1, cof G−1 ∈
L∞(�0, K1) and det G, det G−1 ∈ L∞(�0, K2). Moreover, if {G j } j∈N is a sequence
in L∞(�0, K ) such that

G j → G a.e.

then
cof G j → cof G and det G j → det G a.e. (3.1)

and

G−1
j → G−1, cof G−1

j → cof G−1 and det G−1
j → det G−1 a.e. (3.2)

The following lower semicontinuity result will help in the final steps of the main
proof. Recall that for each measurable G : �0 → R

N×N+ , the function WG : �0 ×
R

N×N+ → R ∪ {∞} is defined as in (2.5).

Lemma 3.2 Let W0 : R
N×N+ → R ∪ {∞} satisfy conditions (W1)–(W3) of Sect.2.3.

Let {� j } j∈N be a sequence in U such that

� j⇀�, cof ∇� j⇀ cof ∇�, det∇� j⇀ det∇� in L1(�0).

Let K ⊂ R
N×N+ be compact and let {G j } j∈N be a sequence in L∞(�0, K ) such that

G j → G a.e.

Then
∫

�0

WG(X,∇�) dX ≤ lim inf
j→∞

∫
�0

WG j (X,∇� j ) dX .

Proof Lemma 3.1 yields convegences (3.1) and (3.2). By a standard fact on the product
of two sequences, one factor converging weakly in L1 and the other one a.e. with and
L∞ bound (see, e.g., [24, Prop. 2.61]), we obtain thanks to Lemma 3.1 that

∇� jG
−1
j ⇀∇�G−1, cof ∇� j cof G

−1
j ⇀ cof ∇� cof G−1,

det∇� j det G
−1
j ⇀ det∇� det G−1 in L1(�0).

To sum up, we have the convergences

∇� jG
−1
j ⇀∇�G−1, cof

(
∇� jG

−1
j

)
⇀ cof

(
∇�G−1

)
,

det
(
∇� jG

−1
j

)
⇀ det

(
∇�G−1

)
in L1(�0),
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as well as det G j → det G a.e. with and L∞ bound, which allows us to apply a
standard lower semicontinuity result for polyconvex functions (see, e.g., [25, Th. 5.4]
or [24, Cor. 7.9]) and conclude that

∫
�0

W0(X,∇�G−1) det G dX ≤ lim inf
j→∞

∫
�0

W0(X,∇� jG
−1
j ) det G j dX .

This proves the result. 
�

3.1 Existence of8 Given G

Before presenting the existence theorems, we recall a property stating that the limit of
injective a.e. functions is injective a.e.

Proposition 3.3 Let p ≥ N − 1 and q ≥ N
N−1 . For each j ∈ N, let � j ,� ∈

W 1,p(�0, R
N ) satisfy � j → � a.e., det∇� j⇀ det∇� in L1(�0) and the

sequence {cof ∇� j } j∈N is bounded in L1(�0, R
N×N ). Assume that cof ∇� j ∈

Lq(�0, R
N×N ), � j is injective a.e. with det∇� j > 0 a.e. for each j ∈ N, and

det∇� > 0 a.e. Then � is injective a.e.

Proof Since p ≥ N − 1 and q ≥ N
N−1 , by [21, Th. 3.2] (see also [16, Prop. 3]), the

surface energy Ē defined in [16, Def. 2] satisfies Ē(� j ) = 0 for each j ∈ N. The fact
that� j is injective a.e. for each j ∈ N lets us conclude ( [16, Th. 2]) that� is injective
a.e. 
�

The following fundamental existence theorem in nonlinear elasticity will be used
throughout. Its proof is the sum of deep and fundamental results in Analysis that are
indicated below.

Theorem 3.4 Assume that W : �0 × R
N×N+ → [0,∞] satisfies the following condi-

tions:

(a) W is L× B-measurable, where L denotes the Lebesgue σ -algebra in �0, and B
stands for the Borel σ -algebra in R

N×N .
(b) W (X, ·) is polyconvex for a.e. X ∈ �0.
(c) There exist exponents p ≥ N −1 and q ≥ N

N−1 with p > 1, and a constant c > 0
such that

W (X, F) ≥ c
(‖F‖p + ‖ cof F‖q) − 1

c
, for a.e. X ∈ �0 and all F ∈ R

N×N+ .

(d) W (X, F) → ∞ as det F → 0, for a.e. X ∈ �0.

Assume that �0D is an (N − 1)-rectifiable subset of ∂� of positive (N − 1)-
dimensional measure and that �̄ : �0D → R

N is measurable. Let f ∈ L2(�0, R
N )

and s0 ∈ L2(�0N , R
N ).

Let the functional

I (�) :=
∫

�0

W (X,∇�(X)) dX −
∫

�0

f · � dX −
∫

�0N

s0 · � dσ(X).
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be defined in U. Assume that U �= ∅ and that I is not identically infinity in U. Then
there exists a minimiser of I in U.

Proof The treatment of the linear terms (2.6) and (2.7) is standard (e.g., [19, Sect. 7]
or [17, Ch. 5]), so we can assume f = 0 and s0 = 0.

Since U �= ∅ and I is not identically infinity in U, there exists a minimising
sequence {� j } j∈N of I in U. Thus, {I (� j )} j∈N is bounded and, by condition (c), we
have that {∇� j } j∈N is bounded in L p and {cof ∇� j } j∈N is bounded in Lq . Poincaré’s
inequality shows that {� j } j∈N is bounded in W 1,p. Since p > 1, there exist � ∈ L p

and a subsequence (not relabelled) such that� j⇀� inW 1,p. The continuity of traces
shows that � satisfies the boundary condition. By [21, Lemma 4.1],

cof ∇� j⇀ cof ∇� in Lq(F), and det∇� j⇀ det∇� in L1(F)

for any compact F ⊂ �0, as j → ∞. By the lower semicontinuity of polyconvex
functionals (see, e.g., [25, Th. 5.4]),

∫
F
W (X,∇�(X)) dX ≤ lim inf

j→∞

∫
F
W (X,∇� j (X)) dX ≤ lim inf

j→∞ I (� j ).

Since this is true for all compact F ⊂ �0, by monotone convergence, we obtain

I (�) ≤ lim inf
j→∞ I (� j ).

Nowwe show that det∇� > 0 a.e. Since det∇� j⇀ det∇� in L1 and det∇� j >

0 a.e. for all j ∈ N, we have that det∇� ≥ 0 a.e. Let A be the set of X ∈ � such that
det∇�(X) = 0. We have that det∇� j → 0 a.e. in A. If |A| > 0, by Fatou’s lemma
and (d),

∞ ≤ lim inf
j→∞

∫
A
W (X,∇� j (X)) dX ≤ lim inf

j→∞ I (� j ),

which is a contradiction. Therefore, |A| = 0 and det∇� > 0 a.e. By Proposition 3.3,
� is injective a.e. Therefore, � ∈ U, and it is a minimiser of I in U. 
�

Note that the integrability assumptions on f and s0 can be weakened; see, e.g., [19,
Sect. 7] or [17, Ch. 5].

In the following result we show how the properties of W0 are transferred to WG .

Lemma 3.5 Let W0 : R
N×N+ → [0,∞] satisfy conditions (W1)–(W3) of Sect.2.3. Let

G : �0 → R
N×N+ be measurable. Then:

(a) WG is L × B-measurable.
(b) WG(X, ·) is polyconvex for all X ∈ �0.
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(c) Let K ⊂ R
N×N+ be compact. Then there exists c1 > 0 (depending on K but not

on G) such that for any G ∈ L∞(�0, K ),

WG(X, F) ≥ c1
(‖F‖p + ‖cof F‖q) − 1

c1
,

for a.e. X ∈ �0 and all F ∈ R
N×N+ .

(d) WG(X, F) → ∞ as det F → 0, for a.e. X ∈ �0.

Proof We start by proving (a). As G is measurable, there exists a Borel function
Ḡ : �0 → R

N×N+ such that Ḡ = G a.e. Then the function X �→ Ḡ(X)−1

is Borel in �0 and the function (X, F) �→ FḠ(X)−1 is Borel in �0 × R
N×N+ .

As W0 : R
N×N+ → R ∪ {∞} is polyconvex, it is locally Lipschitz in the open

set {F ∈ R
N×N+ : W0(F) < ∞} (see, e.g., [20, Th. 5.3(iv)]), hence Borel in

R
N×N+ . Thus, the function (X, F) �→ W0(FḠ(X)−1) is Borel in �0 × R

N×N+ ,
and so is the function (X, F) �→ W0(FḠ(X)−1) det Ḡ(X). Therefore, the function
(X, F) �→ W0(FG(X)−1) det G(X) is L × B-measurable.

Now we show (b). By definition of polyconvexity, there exists a convex function

e : R
N×N × R

N×N × (0,∞) → R ∪ {∞}

such that (2.11) holds, so

WG(X, F) = e
(
FG(X)−1, cof F cof G(X)−1, det F det G(X)−1

)
det G(X).

Fix X ∈ �0. Since e is convex, so is the function ē : R
N×N × R

N×N × (0,∞) →
R ∪ {∞} given by

ē(F, H, J ) := e
(
FG(X)−1, H cof G(X)−1, J det G(X)−1

)
det G(X),

as a composition of a linear map with a convex function. Therefore, the function
WG(X, ·) is polyconvex.

As for (c), by Lemma 3.1 and using elementary properties of the algebra of square
matrices, for a.e. X ∈ �0,

∥∥∥FG(X)−1
∥∥∥ ≥ ‖G(X)‖−1 ‖F‖ ≥ ‖G‖−1

L∞ ‖F‖ ,∥∥∥cof
(
FG(X)−1

)∥∥∥ ≥ ‖cof G(X)‖−1 ‖cof F‖ ≥ ‖cof G‖−1
L∞ ‖cof F‖ .

Therefore, there exists c′ > 0 such that

∥∥∥FG(X)−1
∥∥∥p ≥ c′ ‖F‖p ,

∥∥∥cof
(
FG(X)−1

)∥∥∥q ≥ c′ ‖cof F‖q , F ∈ R
N×N+ ,

which implies (c).
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Property (d) is immediate. 
�

The existence of minimisers of (2.8) for each given, feasible G is now a straight-
forward consequence of Theorem 3.4 and Lemma 3.5.

Theorem 3.6 Let W0 : R
N×N+ → [0,∞] satisfy conditions (W1)–(W3) of Sect.2.3.

Let K ⊂ R
N×N+ be compact and G ∈ L∞(�0, K ). Assume that �0D is an (N − 1)-

rectifiable subset of ∂� of positive (N −1)-dimensional measure and that �̄ : �0D →
R

N is measurable. Let f ∈ L2(�0, R
N ) and s0 ∈ L2(�0N , R

N ). Assume that U �= ∅

and that �G is not identically infinity in U. Then there exists a minimiser of �G in U.

An important issue, which we overlook here, is the potential non-uniqueness of
minimiser� for givenG. Amuchmore delicate analysiswould be required to dealwith
potential bifurcation problems as the tensor G moves in the iterative, approximation
procedure implemented in Sect. 5 seeking an optimal G. However, if one sticks to a
selected continuous branch of solutions, one would end up with an optimal tensor G.
We have to report no difficulties here in the numerical approximations performed.

3.2 Existence of Optimal G

The lower semicontinuity of the function ρH , as given by (2.9), was shown in [8].
Although the framework here is somewhat different, the same proof is valid. For the
convenience of the reader, we state in a precise way the result inside the proof of [8,
Th. 4.2] that will be used in Theorem 3.9 below.

Proposition 3.7 Let {� j } j∈N be a sequence in W 1,p(�0, R
N ) such that

cof ∇� j ∈ L
N

N−1 (�0, R
N×N ), det∇� j > 0 a.e.,

and � j is injective a.e., for each j ∈ N. Assume that there exists � ∈ W 1,p(�0, R
N ),

with det∇� > 0 a.e., such that

� j → � a.e., det∇� j⇀ det∇� in L1(�0), sup
j∈N

∥∥cof ∇� j
∥∥
L1(�0,RN×N )

< ∞.

Then

ρH
(
�(�),�target

) ≤ lim inf
j→∞ ρH

(
� j (�),�target

)
.

The following result is an easy consequence of (W4).

Lemma 3.8 Let W0 : R
N×N+ → R ∪ {∞} satisfy condition (W4) of Sect.2.3. Let

K ⊂ R
N×N+ be compact. Let f ∈ L2(�0, R

N ) and s0 ∈ L2(�0N , R
N ). Let � ∈ U. If

�G(�) < ∞ for some G ∈ L∞(�, K ) then �G(�) < ∞ for all G ∈ L∞(�, K ).
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Proof Let G ∈ L∞(�, K ), F ∈ R
N×N+ and X ∈ �0. Condition (W4) and the fact

G ∈ L∞(�, K ) imply that

WG(X, F) = W0(FG(X)−1) det G(X) ≤ C (1 + W0(F)) , (3.3)

for some constant C > 0. Similarly,

W0(F) ≤ c1
(
1 + W0(FG(X)−1))

)
= c1

(
1 + WG(X, F)

det G

)
≤ c2 (1 + WG(X, F)) ,

for some constants c1, c2 > 0. The conclusion readily follows. 
�
Our main result is concerned with the existence of an optimal G.

Theorem 3.9 Let W0 : R
N×N+ → [0,∞] satisfy conditions (W1)–(W4) of Sect.2.3.

Let K ⊂ R
N×N+ be compact. Let f ∈ L2(�0, R

N ) and s0 ∈ L2(�0N , R
N ). Let

φ : �0 × R
N×N → [0,∞] satisfy:

(a) φ is L × B-measurable.
(b) φ(X, ·) is lower semicontinuous for a.e. X ∈ �0.

Assume that U �= ∅. Let α > 0. Define

J (G) = ρH
(
�(G) ,�target

) +
∫

�0

(
α‖∇G(X)‖2 + φ(X, G(X))

)
dX

in

A = {G ∈ H1 (�0; K ) is the gradient of an a.e. injective map, �G is not

identically infinity in U, � (G) = � (�0) , with � a minimiser of �G in U}.

Assume that A �= ∅ and that J is not identically infinity in A. Then there exists a
minimiser of J in A.

Proof We will rely on the Direct Method of Calculus of Variations. Let {G j } j∈N be a
minimising sequence of J inA. The coercivity of J with respect to ∇G and the fact
that {G j } j∈N is bounded in L∞ implies that {G j } j∈N is bounded in H1(�0, R

N×N ).
Thus, we can extract a subsequence (not relabelled) such that G j⇀G in H1 and
G j → G in L2 and a.e., for some G ∈ H1. Since K is closed, we see that G(X) ∈ K
for a.e. X ∈ �0. Thanks to (b), for a.e. X ∈ �0,

φ(X, G(X)) ≤ lim inf
j→∞ φ(X, G j (X)),

and so, by Fatou’s lemma,

∫
�0

φ(X, G(X)) dX ≤ lim inf
j→∞

∫
�0

φ(X, G j (X)) dX .
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By the weak convergence in H1,

∫
�0

‖∇G(X)‖2 dX ≤ lim inf
j→∞

∫
�0

‖∇G j (X)‖2 dX .

In addition, we ought to check that G ∈ A.
Let us check that G is the gradient of an a.e. injective map. To this aim, we use that

for each j ∈ N we have G j = ∇�g j for some Sobolev map �g j : �0 → R
N that is

injective a.e. Without loss of generality, we can assume that

∫
�0

�g j = 0.

As G j ∈ H1, we have that �g j ∈ H2. By the Poincaré–Wirtinger inequality,

∥∥�g j
∥∥
L2 ≤ C

∥∥G j
∥∥
L2 .

Therefore, the sequence {�g j } j∈N is bounded in H2, so we can extract a subsequence
weakly convergent in H2 to some �g ∈ H2. Moreover, we can assume that the
convergence �g j → �g also holds a.e. As G j⇀G in H1, we have that G = ∇�g.
Let us see that �g is injective. For this, we can apply Proposition 3.3, according to
which it is enough to show that

�g j ∈ W 1,N−1, cof ∇�g j ∈ L
N

N−1 , sup
j∈N

∥∥cof ∇�g j
∥∥
L1 < ∞,

�g j → �g a.e., det∇�g j > 0, det∇�g j⇀det∇�g in L1,

with det∇�g > 0 a.e. Those conditions are satisfied because of the convergence
�g j⇀�g in H2 and the Sobolev embeddings. Indeed, �g j ∈ W 1,N−1 because the
embedding H2 ⊂ W 1,N−1 is valid for N ≤ 4. In fact, H2 ⊂ W 1,N for N ≤ 4, so

∇�g j ∈ LN and cof ∇�g j ∈ L
N

N−1 . Likewise, for some constants ci > 0,

∥∥cof ∇�g j
∥∥
L1 ≤ c1

∥∥cof ∇�g j
∥∥
L

N
N−1

≤ c2
∥∥∇�g j

∥∥N−1
LN ≤ c3

∥∥�g j
∥∥N−1
H2 ,

so sup j∈N
∥∥cof ∇�g j

∥∥
L1 < ∞. Convergence �g j → �g a.e. was shown earlier.

Now, det∇�g j ≥ m for some m > 0, since G j ∈ K a.e. On the other hand, for
N ≤ 3 the compact embedding H2 ⊂ W 1,r holds for 1 ≤ r < 6, so ∇�g j → ∇�g
in Lr and, hence, det∇�g j → det∇�g in Ls for all s < 2. This implies the last
condition since det∇�g ≥ m.

Another main step should focus on the first contribution to the cost given in terms
of the Hausdorff distance ρH

(
�(G) ,�target

)
, as well as the minimising relationship

between � and G in (2.10) and (2.8). To treat this step, it is mandatory to work with
the minimiser � j ∈ U of (2.8) corresponding to G j , for each j ∈ N.
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Take �̃ ∈ U such that �G(�̃) < ∞. By minimality,

∫
�0

WG j (X,∇� j ) dX ≤
∫

�0

WG j (X,∇�̃) dX . (3.4)

By Lemma 3.5(c),

∫
�0

WG j (X,∇� j ) dX ≥ C1

∫
�0

(∥∥∇� j
∥∥p + ∥∥cof ∇� j

∥∥q) dX − 1

C1
(3.5)

for some C1 > 0. On the other hand, using (3.3), we find that

WG j (X,∇�̃(X)) ≤ C2

(
1 + W0(∇�̃(X))

)
(3.6)

for some C2 > 0. This inequality, together with (3.4) and (3.5) shows that {∇� j } j∈N
is bounded in L p and {cof ∇� j } j∈N is bounded in Lq .

As in the proof of Theorem 3.4, we obtain the existence of a � ∈ U such that
� j⇀� in W 1,p, together with

� j → � a.e., cof ∇� j⇀ cof ∇� in Lq(�0), det∇� j⇀ det∇� in L1(�0).

By Lemma 3.2,

∫
�0

WG(X,∇�) dX ≤ lim inf
j→∞

∫
�0

WG j (X,∇� j ) dX . (3.7)

On the other hand, using dominated convergence, bound (3.6) and Lemma 3.8, we
find that

lim
j→∞

∫
�0

WG j (X,∇�̃) dX =
∫

�0

WG(X,∇�̃) dX . (3.8)

Putting together (3.4), (3.7) and (3.8) we conclude that

∫
�0

WG(X,∇�) dX ≤
∫

�0

WG(X,∇�̃) dX,

and the arbitrariness of �̃ in U implies that � is a minimiser of (2.8) in U for our limit
G.

The final ingredient is provided by Proposition 3.7. Indeed, its assumptions have
already been checked, so

ρH
(
�(G) ,�target

) ≤ lim inf
j→∞ ρH

(
�

(
G j

)
,�target

)
.

Altogether, we see that

J (G) ≤ lim inf
j→∞ J (G j ),
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and the proof is finished. 
�

Remark 3.10 The same conclusion of Theorem 3.9 holds if we replace the term
‖∇G(X)‖ with the term ‖Ĝ(X)‖; see (2.16) and note that l > 0 is given. In this
case the new functional is

J (G) = ρH
(
�(G) ,�target

) +
∫

�0

(
α‖Ĝ(X)‖2 + φ(X, G(X))

)
dX .

Weexplain the only steps of the proof that differ from that of Theorem3.9. Let {G j } j∈N
be a minimising sequence of J in A. Then {G j } j∈N is bounded in L2(�), so there
exists G ∈ L2(�0) such that, for a subsequence, G j⇀G in L2(�). Let Ĝ j ∈ H2(�0)

be the solution of (2.16) with right-hand side G j , and Ĝ ∈ H2(�0) the solution with
right-hand side G. By standard elliptic regularity theory (see, e.g., [26, Prop. 9.26]),
Ĝ j⇀Ĝ in H2(�0), and, hence, Ĝ j → Ĝ in H1(�0). From here, the rest of the proof
is identical to that of Theorem 3.9.

4 The Theory of Morphoelasticity

Ourmain source in this section is the book [12]. The basic principle ofmorphoelasticity
postulates a multiplicative decomposition of the deformation gradient in the form

F(X) = A(X)G(X). (4.1)

This decomposition replaces (2.3), the main difference being that there is no interme-
diate mappings�g and�e to account for growth and elastic deformation, respectively:
tensors A and G are not associated with any deformation. “The growth tensor G takes
the initial configuration to a virtual stress-free state that may be incompatible. Then,
a local elastic tensor A restores compatibility of the body and enforces the bound-
ary conditions and body forces so that the body is in a compatible configuration in
mechanical equilibrium” ([12, p. 355]). Yet, the elastic constitutive law is formulated
through an internal energy densityW = W (A) that depends only on the elastic defor-
mation tensor A = FG−1, i.e., (2.4) and (2.5) are still valid, with F = ∇�. The rest
of Sect. 2.1 is also valid word by word.

The idea of a decomposition of the form (4.1) in Mechanics can be traced back to
the mid of the last century and first appeared in the contexts of anelasticity, placticity,
dislocations, thermoelasticity and, more recently, biomechanics and growth mechan-
ics. A survey of the history of this decomposition can be found in [27]. In fact, the
recent papers [28, 29] explore when “virtual, incompatible” state actually exists as a
global intermediate configuration.

Since our preceding analysis does not rely in any way on the fact that growth tensor
G comes from a gradient, i.e., is globally compatible, all of our previous results and
discussions are correct in this new setting aswell. In particular, the shape programming
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problem is formally the same as (2.10):

⎧⎪⎨
⎪⎩
Minimise in G : J (G) := ρH

(
�(G) ,�target

) + C (G)

subject to: G ∈ H1 (�0; K ) , � (G) = � (�0) ,

with � ∈ U a minimiser of (2.8).

(4.2)

Notice that the only difference with the gradient case is the non-occurrence of the
constraint that G must be the gradient of an a.e. injective Sobolev map, so the proof
of the existence result in this case would be shorter and less technical than that of
Theorem 3.9. For record purposes, we state the main existence theorem in this setting.

Theorem 4.1 Let W0 : R
N×N+ → [0,∞] satisfy conditions (W1)–(W4) of Sect.2.3.

Let K ⊂ R
N×N+ be compact. Let f ∈ L2(�0, R

N ) and s0 ∈ L2(�0N , R
N ). Let

φ : �0 × R
N×N → [0,∞] satisfy:

(a) φ is L × B-measurable.
(b) φ(X, ·) is lower semicontinuous for a.e. X ∈ �0.

Assume that U �= ∅. Let α > 0. Define

J (G) = ρH
(
�(G) ,�target

) +
∫

�0

(
α‖∇G(X)‖2 + φ(X, G(X))

)
dX

in

A ={G ∈ H1 (�0; K ) : �G is not identically infinity in U,

� (G) = � (�0) ,with � a minimiser of �G in U}.

Assume that A �= ∅ and that J is not identically infinity in A. Then there exists a
minimiser of J in A.

Remark 4.2 According to (2.16) and Remarks 3.10, the same conclusion of Theorem
holds if we replace the term ‖∇G(X)‖ with the term ‖Ĝ(X)‖ for a given l > 0. In
other words, the same result holds for the functional

J (G) = ρH
(
�(G) ,�target

) +
∫

�0

(
α‖Ĝ(X)‖2 + φ(X, G(X))

)
dX .

We anticipated in Sect. 2.4 that by isotropy one can work with Cg = GTG, instead
of G as the main variable. In Sects. 2 and 3 we opted for G so as not to deal with the
constraint that Cg is a metric tensor, but in the context of this section, the theory of
morphoelasticity only requires thatCg is afield of positive definite symmetricmatrices.
Let us see why isotropy allows working with Cg. Recall from Sect. 2.1 that the stored
energy function of the material is W0 and that, once the growth takes place, the total
energy of the deformation is given by the integral (2.4), where the new stored-energy
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function is WG given by (2.5). Now, if a growth tensor G1 changes to G2 = RG1 for
some R ∈ SO(N ), then, using (2.5) and the isotropy of W0, we find that

WG2(X, F) = W0(FG1(X)−1R−1) det (RG1(X)) = WG1(X, F).

Thus, by polar decomposition, the dependence of WG on G is only through Cg.
Likewise, the cost functional C should be isotropic (as well as frame-indifferent). The
required conditions for that were written in [13, Sect. 2(a)]. In the particular case of
functionals of the form

∫
�0

(
α‖∇Cg(X)‖2 + φ(X,Cg(X))

)
dX

(as in Theorem 4.3 below), the condition for φ is

φ(X,C) = φ(X, RCRT ) (4.3)

for a.e. X ∈ �0, all symmetric definite positive C ∈ R
N×N and all R ∈ SO(N ).

Since this is the framework of the numerical experiments in the next section, we
present the programming problem in the language of (4.2):

⎧⎪⎨
⎪⎩
Minimise in Cg : J (

Cg
) := ρH

(
�(G) ,�target

) + C (
Cg

)
subject to: Cg ∈ H1 (�0; K ) , � (G) = � (�0) , with G = C

1
2
g

and � ∈ U a minimiser of (2.8).

(4.4)

In this case, C (
Cg

)
can take the form (2.14), (2.15) or the general form given in the

following theorem, which we present without proof.

Theorem 4.3 Let W0 : R
N×N+ → [0,∞] be isotropic and satisfy conditions (W1)–

(W4) of Sect.2.3. Let K be a compact subset of symmetric positive definite N × N
matrices. Let f ∈ L2(�0, R

N ) and s0 ∈ L2(�0N , R
N ). Letφ : �0×R

N×N → [0,∞]
satisfy (a)–(b) of Theorem 4.1 as well as (4.3). For each Cg, let G be its symmetric
positive definite square root. Assume that U �= ∅. Let α > 0. Define

J (Cg) = ρH
(
�(G) ,�target

) +
∫

�0

(
α‖∇Cg(X)‖2 + φ(X,Cg(X))

)
dX

in

A ={Cg ∈ H1 (�0; K ) : �G is not identically infinity in U,

� (G) = � (�0) ,with � a minimiser of �G in U}.

Assume that A �= ∅ and that J is not identically infinity in A. Then there exists a
minimiser of J in A.
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In the above theorem we have taken G as the only symmetric positive definite
square root of Cg, but, as explained earlier, any square root of Cg gives rise to the
same problem. Indeed, �G1 = �G2 if G2 = RG1 for some R ∈ SO(N ).

5 Numerical Simulation

This section presents the numerical simulations of the shape-programmig problem
analyzed in the previous sections, all done in dimension N = 3. As noticed in
[13] and explained in Sect. 4, under the presence of isotropy it is more convenient
to implement numerically the growth-driven actuation by means of the right Cauchy–
Green strain tensor Cg = GTG. Indeed, this choice of the control variable introduces
less nonlinearity into the formulation of the problem, which facilitates its numerical
approximation. Moreover, in this section we use the theory of morphoelasticity, so it
is not relevant in practise whether or not the growth tensor is a deformation gradient.
All in all, this section addresses the numerical resolution of the shape-programming
problem (4.4).

The layout of this section is as follows. In Sect. 5.1, after parametrising Cg in
terms of its eigenvalues and eigenvectors, we find an equivalent formulation of (4.2),
which is more amenable to computing the gradients that are required in gradient-
based optimisation algorithms. We also present the numerical scheme. In Sect. 5.2
we perform several numerical experiments. A set of experiments deals with an initial
geometry resembling a beam and another set resembling a shell. For these experiments
it is enough to control the eigenvalues of the tensor Cg, while keeping the eigenvectors
fixed. In the final example we show that, when the initial configuration is a cube and
the final configuration is a cylinder, it is necessary to consider both eigenvalues and
eigenvectors as design variables to achieve a satisfactory match between the final and
the target configurations.

To accomodate the notation to that widely used in Computational Mechanics, from
now on in this section, we denote by H = cof F and by J = det F.

5.1 Numerical ResolutionMethod

5.1.1 Parametrisation of the Growth Tensor

Consider the following version of the Mooney–Rivlin density energy presented in
(2.13):

W0(F) = μ1

2
||F||2 + μ2

2
||H||2 − (μ1 + 2μ2) log J + λ

2
(J − 1)2.

This energy is isotropic, so it is valid to work with Cg instead of G. The actuated
energy density ψ(F,Cg), equivalent to WG in (2.5), adopts the expression
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ψ(F,Cg) = μ1

2

(
det Cg

)−1/2 tr
(
FT F cof Cg

)
+ μ2

2

(
det Cg

)−1/2 tr
(
HT HCg

)

− (μ1 + 2μ2)
(
det Cg

)1/2 log(J (
det Cg

)−1/2
)

+ λ

2

(
det Cg

)1/2 (
J
(
det Cg

)−1/2 − 1
)2

.

(5.1)
The eigenvalue decomposition of Cg is given by

Cg = V�V T , � =
⎡
⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ ,

where the ortonormal eigenvectors are encapsulated in the columns of V , i.e., V =[
v1 v2 v3

]
, whilst� encodes the eigenvalues {λ1, λ2, λ3} of Cg. Thus, Cg is rewritten

as

Cg =
3∑

i=1

λivi ⊗ vi . (5.2)

Positive definiteness ofCg entails positivity of the eigenvaluesλ1, λ2, λ3.Moreover, in
some applications onemaywish to impose incompressibility in Cg, which is modelled
by condition det Cg = 1 and is equivalent to a restriction only on�, namely, det� = 1.
This can be accomplished, for instance, by parametrising � as

� =
⎡
⎣λ1 0 0
0 λ2 0
0 0 1

λ1λ2

⎤
⎦ ,

although we have not included any experiment in this context.
It remains to define the eigenvectors {v1, v2, v3}. A possibility for that is to define

the matrix V by using the Rodrigues formula, according to which V is parametrised
in terms of a unitary vector k ∈ R

3, and a rotation angle θ3 ∈ [0, 2π [ around k as

V = V (k, θ3) = I − sin θ3K + (1 − cos θ3) K K ; K = E : k, (5.3)

where E is the third-order alternating tensor (or Levi–Civita tensor), and k is defined
through a spherical parametrisation as

k = [
cos θ1 sin θ2, sin θ1 sin θ2, cos θ2

]T ; θ1 ∈ [0, 2π [; θ2 ∈ [0, π [. (5.4)
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introducing the above parametrisation (5.4) into (5.3) yields

v1 =
⎡
⎣ (cos θ3 − 1)

(
cos2 θ2 + sin2 θ2 sin2 θ1

) + 1
cos θ2 sin θ3 − cos θ1 sin2 θ2 sin θ1(cos θ3 − 1)
sin θ2 (sin θ3 sin θ1 − cos θ2 cos θ1(cos θ3 − 1))

⎤
⎦ ,

v2 =
⎡
⎣− cos θ2 sin θ3 − cos θ1 sin2 θ2 sin θ1(cos θ3 − 1)

(cos θ3 − 1)
(
cos2 θ2 + cos2 θ1 sin2 θ2

) + 1
sin θ2 (sin θ3 cos θ1 − cos θ2 sin θ1(cos θ3 − 1))

⎤
⎦ ,

v3 =
⎡
⎣ sin θ2 (sin θ3 sin θ1 − cos θ2 cos θ1(cos θ3 − 1))

− sin θ2 (sin θ3 cos θ1 + cos θ2 sin θ1(cos θ3 − 1))
(cos θ3 − 1)

(
sin2 θ2 sin2 θ1 + cos2 θ1 sin2 θ2

) + 1

⎤
⎦ .

(5.5)

5.1.2 An Equivalent Formulation of the Optimisation Problem

This new set of design variables, λ = {λ1, λ2, λ3} and θ = {θ1, θ2, θ3}, allows us to
consider the new optimisation problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimise in (λ, θ) : J (λ, θ) := ρH

(
�

(
Cg

(
λ̂, θ̂

))
,�target

)

subject to

⎧⎨
⎩

λi , θi ∈ L2 (�0) , 1 ≤ i ≤ 3

�
(
λ̂(λ), θ̂(θ)

)
is a minimiser of (2.8),

(5.6)

where, in analogy to (2.16), the fields

λ̂(λ) = {λ̂1(λ1), λ̂2(λ2), λ̂3(λ3)} and θ̂(θ) = {θ̂1(θ1), θ̂2(θ2), θ̂3(θ3)}

are regularised versions of λ and θ , respectively. More precisely, for 1 ≤ i ≤ 3, the
functions λ̂i (X) and θ̂i (X) are in H1(�0)

and are the solutions of the boundary value problems

{
λ̂i − l2�λ̂i = λi , in �0,

∇λ̂i · N = 0, on ∂�0,

{
θ̂i − l2�θ̂i = θi , in �0,

∇ θ̂i · N = 0, on ∂�0,
(5.7)

where l is a length-scale parameter and N is the normal to �0.
Note that in (5.6) we have not included the compexity functional C described in

Sect. 2.4, although it can easily be incorporated. In any case, problem (5.6) fits in the
theory of Theorem 4.3, just by putting φ = 0, while the regularisation term based on
the L2 norm of ∇Cg is replaced by the regularisations λ̂ and θ̂ .

In addition, to account for the complexity of the actuation, we impose lower and
upper pointwise bounds on λi , namely λlbi ≤ λi ≤ λubi , 1 ≤ i ≤ 3, rather than an L2-
norm constraint. Indeed, those pointwise contraints are more effectively handled by
constrained optimisation methods as they prevent from tuning the weighting parame-
ters that appear in the complexity functional. Similarly, the angles θi are confined in
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suitable predefined intervals. Due to the maximum principle, the regularised variables
λ̂i and θ̂i satisfy the same bounds.

We present the existence result for (5.6).

Proposition 5.1 Let Fλ ⊂ (0,∞)3 and Fθ ⊂ R
3 be non-empty compact and convex

sets. Then there exists a solution for Problem (5.6) under the bounds λ ∈ Fλ and
θ ∈ Fθ .

Proof Let {(λ j , θ j
)} j∈N be a minimizing sequence. As Fλ and Fθ are compact,

the sequence {(λ j , θ j
)} j∈N is bounded in L∞(�0) and, hence, in Lq(�0) for all

q < ∞. Therefore, there exists (λ, θ) ∈ Lq(�0) such that, for a subsequence,(
λ j , θ j

)
⇀ (λ, θ) in Lq(�0). As Fλ and Fθ are compact and convex, we get that

λ ∈ Fλ and θ ∈ Fθ . Let
(
λ̂ j , θ̂ j

)
be the solution of the corresponding problems (5.7)

for right-hand side
(
λ j , θ j

)
, and analogously for

(
λ̂, θ̂

)
. By elliptic regularity theory,(

λ̂ j , θ̂ j

)
⇀

(
λ̂, θ̂

)
in W 2,q(�0) and, hence,

(
λ̂ j , θ̂ j

)
→

(
λ̂, θ̂

)
in W 1,q(�0). For

i = 1, 2, 3, let v̂ j
i be the vectors (5.5) corresponding to the angles θ̂ j , and analogously

for v̂i . Choosing q > 3, we can apply the result [30, Th. 3.1] on composition operators
to conclude that v̂ j

i → v̂i inW 1,q(�0). The same result also implies v̂
j
i ⊗v̂

j
i → v̂i⊗v̂i

inW 1,q(�0) and λ̂
j
i v̂

j
i ⊗ v̂

j
i → λ̂i v̂i ⊗ v̂i in W 1,q(�0), where λ̂

j
i are the components

of λ̂ j and analogously for λ̂i . By (5.2), Cg

(
λ̂ j , θ̂ j

)
→ Cg

(
λ̂, θ̂

)
in W 1,q(�0). The

rest of the proof is identical to that of Theorems 3.9, 4.1 and 4.3. 
�

5.1.3 Computation of Continuous Gradients

As is customary in gradient-based optimisation, in order to compute a descent direc-
tion, we use the standard Lagrangian method [31]. To this end, let us consider the
Lagrangian L defined as

L (�, p,λ, θ) = J (�) −
∫

�0

P
(
∇�,λ, θ

)
: ∇ p dX, (5.8)

which is defined for (�, p,λ, θ) ∈ H1(�0; R
3) × H1

0 (�0; R
3) × H1(�0; R

3) ×
H1(�0; R

3) and � satisfying the boundary condition in �0D . For the strain energy in
(5.1), the first Piola–Kirchhoff stress tensor P = ∂Fψ is

P(F,Cg(λ, θ)) = μ1
(
det Cg

)−1/2 F cof Cg + μ2
(
det Cg

)−1/2
(
HCg × F

)

+
(

− (μ1 + 2μ2)
(
det Cg

)1/2
J

+ λ
(
J
(
det Cg

)−1/2 − 1
))

H,

(5.9)
where (A × B)i I = Ei jkEI J K A j J BkK , for A, B ∈ R

3×3, and EI J K represents the
components of the third-order alternating tensor. Notice that (�, p,λ, θ) are consid-
ered as independent variables in (5.8). The stationary condition ofL (5.8) with respect
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to p

∂ pL(�, p,λ, θ)(v) = 0, for all v ∈ H1
(
�0, R

3
)
with v = 0 on �0D , (5.10)

yields indeed the stationary point of the functional�G in (2.8), namely the weak form
of the traslational equilibrium, since

∂ pL(�, p,λ, θ)(v) = −∂��(�, p,λ, θ)(v) =
∫

�0

P(∇�,λ, θ) : ∇v dX . (5.11)

Equation (5.10)with expression (5.11) is nonlinear.A consistent linearisation of (5.11)
has been carried out by means of the standard Newton–Raphson method in order to
obtain the deformed configuration x = �(X). Similarly, the stationary condition of
the Lagrangian L with respect to � yields

∂�L(�, p,λ, θ)(v) = ∂�J (�)(v) −
∫

�0

∇v : C(∇�,λ, θ) : ∇ p dX = 0,

(5.12)
where C represents the fourth order elasticity tensor, defined as

C(F) = ∇2
FFψ,

which takes the form

∇2
FFψ = ∂2FFW + F × ∂2HHW × F + ∂2J JWH ⊗ H + I × (∂HW + ∂JW F)

being

(
∂2FFW

)
i I j J

= μ1δi j
(
cof Cg

)
I J ,

(
∂2HHW

)
i I j J

= μ2δi j
(
Cg

)
I J ,

∂2J JW = (μ1 + 2μ2)
(
det Cg

)1/2
J 2

+ λ
(
det Cg

)−1/2
,

∂JW = − (μ1 + 2μ2)
(
det Cg

)1/2
J

+ λ
(
J
(
det Cg

)−1/2 − 1
)
,

∂HW = μ2
(
det Cg

)−1/2 HCg,

and

(A × A)i I j J = Ai I pP AqQE j pqEJ PQ, (A × A)i I j J = Ei pqEI PQ ApPAqQ j J ,

(A ⊗ A)i I j J = Ai I A j J , I i I j J = δi I δ j J ,

for A ∈ R
3×3 and A ∈ R

3×3×3×3. From the linear equation in (5.12) it is therefore
possible to obtain the adjoint state p.
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The directional derivative of the LagrangianL with respect to the design variables
{λ1, λ2, λ3} and {θ1, θ2, θ3} yields

∂λi
L(�, p,λ, θ)(δλi ) = −

∫
�0

∂λi
P(∇�,λ, θ)(δλi ) : ∇ p dX,

∂θ i
L(�, p,λ, θ)(δθi ) = −

∫
�0

∂θ i
P(∇�,λ, θ)(δθi ) : ∇ p dX,

which, for the specific expression for P in (5.9), takes the following form

∂λi
P(∇�,λ, θ)(δλi ) : ∇ p =: vi · Tvi ,

∂θ i
P(∇�,λ, θ)(δθi ) : ∇ p =:

3∑
j=1

∂θi v j ·
(
T + T T

)
v j ,

where the second order tensor T is defined as

T = −μ1

2
(det Cg)

−3/2 tr
((

F cof Cg
)T ∇ p

)
cof Cg

+ μ1(det Cg)
−1/2

(
Cg × FT∇ p

)

− μ2

2
(det Cg)

−3/2 tr
((

HCg
)T

(F × ∇ p)
)
cof Cg

+ μ2(det Cg)
−1/2HT

(
F × ∇ p

)

− tr
(
HT∇ p

)( μ1 + 2μ2

2J (det Cg)1/2
+ λJ

2(det Cg)3/2

)
cof Cg.

(5.13)

5.1.4 Numerical Scheme

In order to clarify how the different equations featured in the current section have
been embedded into a gradient algorithm, we summarise the steps involved in the
optimisation.

Starting from an initial guess (λ0, θ0), we proceed with the loop:

(i) Solve the state equation (5.10) with expression (5.11), which yields the new
deformation mapping � and the new deformed configuration �.

(ii) Based on the new deformation mapping �, compute the adjoint state field p by
means of (5.12).

(iii) Compute the objective function J (�(λ, θ)).
(iv) Compute descent directions for each of the design variables, namely ∂λi

L and
∂θ i

L, 1 ≤ i ≤ 3.
(v) Pass J (�(λ, θ)), ∂λi

L and ∂θ i
L, 1 ≤ i ≤ 3, to the gradient algorithm in order

to determine the step size and hence, the new value of the design variables
(λ1, λ2, λ3) and (θ1, θ2, θ3).
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Remark 5.2 Although the lower bound conditions λi > 0 ensuring the positive def-
initeness of the tensor Cg have not been explicitly included in the Lagrangian L
in (5.8), any standard gradient-based algorithm such as the interior-point, can easily
handle this type of constraint, by augmenting the Lagrangian L in (5.8) by means
of the method of Lagrange multipliers. Evaluation of this additional term and of its
derivatives with respect to the design variables (λ1, λ2, λ3) is therefore omitted in
the derivations included in this section. In fact, as mentioned in Sect. 5.1.2, pointwise
bounds on λi and θi , 1 ≤ i ≤ 3, have been included in the optimisation method.

5.2 Numerical Experiments

The objective of this section is to demonstrate the applicability of the proposed for-
mulation in the context of shape morphing, i.e., determining the value of the optimal
design variables {λ1, λ2, λ3} and {θ1, θ2, θ3} following a gradient-based approachwith
the aim of attaining the closest growth-driven configuration to a given target configu-
ration. As indicated in the introduction, one of the objectives of this paper is to present
an alternative formulation to other analytical approaches that make use of simplifying
assumptions such as the absence of boundary conditions, which permit to obtain a
closed-form solution of the optimal growth tensor [32, 33]. We do not intend to claim
that our formulation is more advantageous than others. On the contrary, as in other
areas of continuum mechanics, analytical solutions can be extremely useful. Our pur-
pose is to illustrate the possibility to apply inverse techniques for the optimal solution
of this problem, which can address more generic situations than those covered by
analytical approaches.

With regard to the constitutive model used, we consider the strain energy given by
(5.1). In all the examples, the values of {μ1, μ2, λ} are

μ1 = 0.5, μ2 = 0.5, λ = 3.

In the first two examples (Sects. 5.2.1 and 5.2.2), we will advocate for a widely
accepted formulation in engineering, according to which the eigenvectors {v1, v2, v3}
of Cg (see equation (5.2)) remain fixed, while only the eigenvalues {λ1, λ2, λ3} serve
as the unknown fields to be determined analytically [32, 33]. Although this approach is
less flexible compared to the more comprehensive formulation discussed in Sect. 5.1,
it has exhibited reasonably positive outcomes in terms of achieving the target config-
uration. Typically, the eigenvectors of Cg are considered coincident with the tangent
vectors associated with the curvilinear coordinate system that describes the geometry
of the initial solid configuration.

However, in the final example of Sect. 5.2.3, we will illustrate a scenario where
incorporating additionally the eigenvectors as design variables (specifically, the three
angular fields {θ1, θ2, θ3} in equation (5.5)) allows for a higher degree of flexibility.
This enhanced formulation enables a significantly better approximation to the target
configuration.
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In all the examples, the upper and lower bounds used for the eigenvalues λi (i =
{1, 2, 3}) (see (5.6)) are

λlbi = 0.01; λubi = 12.

With respect to the upper and lower bounds used for {θ1, θ2, θ3} (see (5.6)), these
are

θ lb1 = 0; θ lb2 = 0; θ lb3 = 0;
θub1 = 2π; θub2 = π; θub3 = 2π.

We have chosen these bounds since in the performed experiments, it is not expected
that rotations of more than one loop take place, but of course the above bounds can be
expanded if the geometry of the problem suggests so.

5.2.1 Beam-Like Applications

The first examples consider applications where the geometry of the undeformed
domain�0 resembles that of a beam. In particular, we consider the rectangular section
beam in Fig. 2a and the beam with circular cross-section in Fig. 2b. For both cases, the
eigenvectors {v1, v2, v3} featuring in the definition of Cg in (5.2) are defined as

v1 = [
1, 0, 0

]T
v2 = [

0, 1, 0
]T

v3 = [
0, 0, 1

]T

for the case in Fig. 2a and

v1 = [
1, 0, 0

]T
v2 = [

0, − sin θ, cos θ
]T

v3 = [
0, cos θ, sin θ

]T
for the case in Fig. 2b. In both cases, the boundary conditions are such that the dis-
placements in X1 = 0 are 0 in the three directions {E1, E2, E3} of the configuration
{X1, X2, X3}. Three target configurations, �target = �d (�0), have been prescribed:

(i) Shapemorphing configuration 1: rectangular cross-section beamwith target con-
figuration given by

�d(X) =
[
X1, X2, X3 + 0.15L sin

(
2π X1

L

)]T
. (5.14)

(ii) Shapemorphing configuration 2: rectangular cross-section beamwith target con-
figuration given by

�d(X) =
[

L
2π sin

(
2πX1
L

)
, X2, − L

2π cos
(
2πX1
L

)]T
. (5.15)

(iii) Shape morphing configuration 3: circular cross-section beam with target config-
uration given by

�d(X) =

⎡
⎢⎢⎣

−(R f + cos θ)r cos
(
2πX1
L f

+ πL
4

)

(R f + cos θ)r sin
(
2πX1
L f

+ πL
4

)
− 6

r sin θ + X1L f
L + 2

⎤
⎥⎥⎦ , (5.16)
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Fig. 2 Geometry, finite element mesh and vectors {v1, v2, v3} parametrising the growth tensor Cg. a
Rectangular section beam, with {L, b, t} = {1, 1/10, 1/50}. b Circular section beam with {L, R, t} =
{30, 1, 1/20}. In both cases, t is the thickness of the beam

with R f = 6 and L f = 4, and with (r , θ) given by

r =
√
X2
2 + X2

3, tan θ = X3

X2
.

For the case of the rectangular cross-section beam in Fig. 2a, the final configurations
attained at convergence are depicted in Fig. 3, correspondingwith the optimal solutions
that yield the closest growth-driven configurations to the target configurations denoted
as shape morphing configurations 1 and 2. In addition, Fig. 4 depicts the evolution of
the cost function for the case of the shape morphing configuration 1. The interior-point
algorithm has been used as the optimization method.

With regard to the circular cross-section beam in Fig. 2b, with target configuration
given in Eq. (5.16), the final growth-driven configuration is displayed in Fig. 5, along
with the contour plot distribution of the three design variables {λ̂1, λ̂2, λ̂3}. The tight
agreement with respect to the target configuration initially prescribed in Eq. (5.16) is
shown in Fig. 5d.

5.2.2 Shell-Type Applications

Next, we consider the two undeformed configurations given in Fig. 6a and the beam
with circular cross-section in Fig. 6b. For both cases, the eigenvectors {v1, v2, v3} are
defined as

v1 = [
cos θ, sin θ, 0

]T
v2 = [− sin θ, cos θ, 0

]T
v3 = [

0, 0, 1
]T

.
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Fig. 3 Representation of the computed optimal deformation � (indistinguishable from the target configu-

ration) and the contour plot distribution of λ̂1

(
�−1(x)

)
, for the beam with rectangular section in Fig. 2a

for target configurations: a equation (5.14); b equation (5.15). The translucid configuration represents the
undeformed configuration �0

0 20 40 60 80 100 120

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 4 Evolution of the objective function with the number of iterations for the target configuration given
in Eq. (5.14)

In both cases, the boundary conditions are such that the displacements vanish in X3
and r = R1 (for Fig. 6a) and r = R (for Fig. 6b) in the three directions {E1, E2, E3}
of the configuration {X1, X2, X3}. Two target configurations,�target = �d (�0), have
been prescribed:

(i) Shape morphing configuration 4: initial geometry given in Fig. 6a with target
configuration given by

�d(X) = [
r cos θ, r sin θ, 5

8 (r − R1) + X3
]T

.

123



Applied Mathematics & Optimization (2024) 89 :49 Page 35 of 41 49

Fig. 5 Representation of the computed optimal deformation � and contour plot distribution of a

λ̂1

(
�−1(x)

)
, b λ̂2

(
�−1(x)

)
and c λ̂3

(
�−1(x)

)
for the example with initial configuration depicted

in Fig. 2. The translucid geometry represents the initial configuration. d Agreement between the target con-
figuration (grey colour) and the deformed solid subjected to the optimal growth tensor (red) (Color figure
online)

(ii) Shape morphing configuration 5: initial geometry given in Fig. 6b with target
configuration given by

�d(X) = [
(X3 + 1) cos θ, (X3 + 1) sin θ,

(
6 − 1

8 (7 − 2(X3 + 1))2 − 23
8

)]T
,

with

r =
√
X2
1 + X2

2, tan θ = X2

X1

in both configurations.

For the case of the initial geometry in Fig. 6a, the final configuration attained can
be observed in Fig. 7, corresponding with the optimal solutions that yield the closest
growth driven configurations to the target configuration denoted as shape morphing
configuration 4. It is worth empashising how the optimal solution is capable of, starting
with a flat disk geometry, inducing a deformation of the continuum into the final conical
shape illustrated in this figure. From Fig. 7d, the almost perfect match between the
growth-driven and target configurations can be observed.

Finally, for the case of the initial geometry in Fig. 6b, the final configuration attained
can be observed in Fig. 8. In this case, attaining the target configuration entails a
considerable enlargement of the initial geometry along the X3 direction, in addition
to a bending in the X1 and X2 directions, yielding the conical shape illustrated in this
figure. Figure8d shows the almost perfect match between the growth-driven and target
configurations can be observed.
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Fig. 6 Geometry, finite element mesh and vectors {v1, v2, v3} parametrising the growth tensor Cg. a Disk
with {R1, R2, t} = {0.2, 1, 0.8/50}. b Cylinder with {L, R, t} = {0.7, 1, 1/20}

5.2.3 Cube to Cylinder Geometry

The objective of this example is to evidence what was anticipated in the introductory
part of Sect. 5.2. Specifically, although the examples shown in Sects. 5.2.1 and 5.2.2
have demonstrated that including only eigenvalues as design variables whilst main-
taining the eigenvectors fixed throughout the optimisation process can yield extremely
good results, this might not be the case for any predefined target configuration. In order
to illustrate that, we consider now the initial and target configurations shown in Fig. 9.
The problem requires a transformation from a cube into a cylinder, although the pic-
tures are represented in 2D.

We solved the problem using two formulations:
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Fig. 7 Representation of the computed optimal deformation � and contour plot distribution of a λ̂1, b λ̂2
and c λ̂3 for the example with initial configuration depicted in Fig. 6a. The translucid geometry represents
the initial configuration. d Agreement between the target configuration (grey meshed domain) and the
deformed solid subjected to the optimal growth tensor (red) (Color figure online)

• The first formulation involved exclusively the eigenvalues {λ1, λ2, λ3} as design
variables, whilst holding the eigenvectors fixed throughout the optimisation to
v1 = [1, 0, 0]T , v2 = [0, 1, 0]T and v3 = [0, 0, 1]T .

• The second formulation considered both {λ1, λ2, λ3} and {θ1, θ2, θ3} as design
variables, the latter used to parametrise the eigenvectors {v1, v2, v3} according to
(5.5).

Figure 10 includes the results yielded by both formulations. As expected, the
deformed configuration resulting from the second formulation (including both
{λ1, λ2, λ3} and {θ1, θ2, θ3} as design variables) yields a significantly better approx-
imation to the unattainable circular target configuration. This is corroborated by the
values of the objective function ρH attained by both formulations in the last opti-
misation iteration, when numerical convergence was observed. Specifically, the ratio
between the values yielded by both formulations were

ρH

(
�

(
Cg

(
λ̂
))

,�target

)

ρH

(
�

(
Cg

(
λ̂, θ̂

))
,�target

) = 13.8889,
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Fig. 8 Representation of the computed optimal deformation � and contour plot distribution of a λ̂1, b λ̂2
and c λ̂3 for the example with initial configuration depicted in Fig. 6b. The grey domain represents the initial
configuration. dAgreement between the target configuration (grey meshed domain) and the deformed solid
subjected to the optimal growth tensor (red) (Color figure online)

Fig. 9 Undeformed
configuration (red), representing
a square of side 4. The circular
geometry represents the target
configuration, with diameter 12
(Color figure online)

where the value in the numerator refers to the first formulation (only λ1, λ2, λ3 as
design variables).

Finally, Fig. 11 illustrates the optimal solution obtained for the eigenvectors
v1(θ1, θ2, θ3) and v2(θ1, θ2, θ3). This figure demonstrates the necessity to modify
spatially these eigenvectors in order to yield the observed higher flexibility.
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Fig. 10 a Deformed configuration for the optimal solution yielded by formulation including only
{λ1, λ2, λ3} as design variables whilst fixing v1 = [1, 0, 0]T , v2 = [0, 1, 0]T and v3 = [0, 0, 1]T ; b
Deformed configuration for the optimal solution obtained by the formulation that includes both {λ1, λ2, λ3}
and {θ1, θ2, θ3} as design variables

Fig. 11 Deformed configuration in the optimal solution obtained by formulation including eigenvalues
{λ1, λ2, λ3} and angular fields {θ1, θ2, θ3} parametrising the eigenvectors. a Representation of the eigen-
vector v1, where the colour of the vector is associated with the magnitude of λ1; b Representation of the
eigenvector v2, where the colour of the vector is associated with the magnitude of λ2
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