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Abstract
Compressed Sensing (CS) encompasses a broad array of theoretical and applied tech-
niques for recovering signals, given partial knowledge of their coefficients, cf. Candés
(C. R. Acad. Sci. Paris, Ser. I 346, 589–592 (2008)), Candés et al. (IEEE Trans. Inf.
Theo (2006)), Donoho (IEEE Trans. Inf. Theo. 52(4), (2006)), Donoho et al. (IEEE
Trans. Inf. Theo. 52(1), (2006)). Its applications span various fields, including math-
ematics, physics, engineering, and several medical sciences, cf. Adcock and Hansen
(Compressive Imaging: Structure, Sampling, Learning, p. 2021), Berk et al. (2019
13th International conference on Sampling Theory and Applications (SampTA) pp.
1-5. IEEE (2019)), Brady et al. (Opt. Express 17(15), 13040–13049 (2009)), Chan
(Terahertz imaging with compressive sensing. Rice University, USA (2010)), Correa
et al. (2014 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) pp. 7789–7793 (2014, May) IEEE), Gao et al. (Nature 516(7529),
74–77 (2014)), Liu and Kang (Opt. Express 18(21), 22010–22019 (2010)), McEwen
and Wiaux (Mon. Notices Royal Astron. Soc. 413(2), 1318–1332 (2011)), Marim et
al. (Opt. Lett. 35(6), 871–873 (2010)), Yu and Wang (Phys. Med. Biol. 54(9), 2791
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(2009)), Yu andWang (Phys.Med. Biol. 54(9), 2791 (2009)).Motivated by our interest
in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ
convex analysis techniques to analytically determine equivalents of Lagrange multi-
pliers for optimization problems with inequality constraints, specifically a weighted
LASSOwith voxel-wise weighting.We investigate this problem under assumptions on
the fidelity term ‖Ax − b‖22, either concerning the sign of its gradient or orthogonality-
like conditions of its matrix. To be more precise, we either require the sign of each
coordinate of 2(Ax − b)T A to be fixed within a rectangular neighborhood of the ori-
gin, with the side lengths of the rectangle dependent on the constraints, or we assume
AT A to be diagonal. The objective of this work is to explore the relationship between
Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically
in the mentioned cases where this relationship can be computed explicitly. As they
scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as
tuning parameters for the weighted LASSO, prompting the question of their potential
effective use as tuning parameters in applications like MR image reconstruction and
denoising. This work represents an initial step in this direction.

Keywords Tuning parameters · LASSO · Convex optimization · Lagrange duality ·
MRI · Compressed Sensing

Mathematics Subject Classification 15A29 · 47N10 · 47A52 · 49K99 · 49N45 ·
65F20 · 65F22 · 92C55

1 Introduction

Basis Pursuit is a well-known convex minimization problem that was first introduced
by F. Santosa and W. W. Symes in 1986, cf. [50], in its simplest formulation:

minimize ‖x‖1 + λ ‖Ax − b‖22 , x ∈ Rn, (1)

where A ∈ Rm×n , the so-called design matrix, and b ∈ Rm are fixed. The same
problem was later applied to signal processing by S. S. Chen and D. Donoho in 1994,
cf. [15]. In 1996, R. Tibshirani re-introduced it as linear regression method, under
the name of LASSO. Namely, in [52], they consider the constrained minimization
problem:

minimize ‖Ax − b‖22 , x ∈ Rn, ‖x‖1 ≤ τ, (2)

for τ > 0 and

‖x‖1 :=
n∑

j=1
|x j |

is the �1 norm. We will discuss the equivalence between (1) and (2) in the following.
Mathematical analysis approaches to study LASSO problems in all their facets are

not new, and the literature is so vast that we can only limit ourselves to mention a few
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examples, cf. [5, 16, 18, 38, 42, 43, 51]. For instance, in [53, 54], the authors study
representation theorems for the solutions of general problems:

argmin
x

E(b, ν(x))+ γ (‖x‖),

in the framework of Banach space theory, where E is a loss functional, ν is a so-called
measurement mapping, γ is a strictly increasing convex function and ‖·‖ is a Banach
norm, we refer to [53, Theorem 2], [54, Theorem 2, Theorem 3] for more precise
statements. In [3], the authors use convex analysis and variational calculus to study
regularity properties of the set-valued mapping:

(b, λ) ∈ Rm × (0,+∞) �→ arg min
x∈Rn

1

2
‖Ax − b‖22 + λ ‖x‖1 .

The main purpose of this work is to shed new light on the analytic dependence
between the Lagrange multipliers, understood as explained below, and the constraints
of a specific version of a constrained generalized LASSO problem. In this version, the
relationship can be explicitly computed under further assumptions on target function.
Let us provide a detailed explanation and motivation for this interest. As aforemen-
tioned, in its simplest definition, LASSO consists in the minimization of the function:

‖Ax − b‖22 + λ ‖x‖1 , (3)

where A ∈ Rm×n and b ∈ Rm is a measurement vector. Clearly, problems (1) and (3)
have the sameminimizers and, therefore, for the purposes of thiswork,wewill consider
them as the same minimization problem. In short, (1) and (3) can be interpreted as
regularization problems, where the aim is to minimize simultaneously the fidelity
term ‖Ax − b‖22, that measures noise, and the regularization term ‖x‖1, that enforces
sparsity. Recall that a vector x = (x1, . . . , xn) is s−sparse if card{ j : x j �= 0} ≤ s.
When s is clear from the context or irrelevant, we drop s and say that x is sparse. In
several applications, x is not sparse itself, but it is sparse with respect to a so-called
sparsity-promoting transform � : Rn → RN . Stated differently, when �x is known
to be sparse, problem (3) can be generalized to:

minimize ‖Ax − b‖22 + λ ‖�x‖1 , x ∈ Rn, (4)

i.e. the regularization term‖x‖1 in (3) is replacedby‖�x‖1. Theparameterλ > 0 in (3)
acts as a tuningparameter that balances the contributions of thefidelity term‖Ax − b‖22
and regularization addendum ‖�x‖1: small values of λ lower the contribution of the
regularization, strengthening the effect of the fidelity term; vice-versa, large values of
λmake ‖Ax − b‖22 negligible and force ‖�x‖1 to be small in order for the overall sum
to be small. Consequently, solutions corresponding to λ	 1 will be noisy, being close
to the set A−1b, while solutions x# corresponding to λ 
 1 have �x# more sparse.
From this perspective, estimates of tuning parameters for inverse problems can be
performed pursuing different approaches. A posteriori rules can be used when some

123



31 Page 4 of 34 Applied Mathematics & Optimization (2024) 89 :31

a-priori knowledge on the amplitude of noise e ∈ Rm is available, say ‖e‖2 ≤ ε. For
instance, using Morozov’s discrepancy principle, λ can be chosen so that a solution
xλ of (3) satisfies ‖Axλ − b‖2 ≤ ε, cf. [9, 29, 33]. A priori rules require knowledge of
noise level, as before, but also a-priori information on the regularity of the solution.
For this reason, a-priori approaches are usually bad suited for applications, cf. [2].
Heuristic methods, such as the L-curve are also available, cf. [11, 28, 34]. The L-
curvemethod consists of choosing the optimal tuning parameter empirically by tracing
a trade-off curve (the L-curve), whereas the generalized cross-validation (GCV) is a
well-performing method that requires high-dimensional matrix calculus, cf. [26, 31,
55]. Other non-standard methods can be found in [32, 45], where the parameter is
chosen so that statistical properties of noise, such as whiteness, are optimized; an
implementation that avoids the computation of matrix inverses can be found in [6].
CNN and other learning methods were deployed in [30, 41], while a more statistical
point of view was adopted in [10].

However, the very reason why λ is interpreted as a trade-off between noise and
sparsity, in (1) and (3), is that it depends on estimates that are usually unavailable,
such as a-priori upper bounds for the �1 norm of the unknown vector, i.e. a-priori
information on the sparsity of the solution, or upper bounds for the noise, cf. [42]. For
A ∈ Rm×n , b ∈ Rm and η ≥ 0, the function:

L(x, λ) = ‖x‖1 + λ(‖Ax − b‖22 − η2) (5)

is the Lagrangian associated to the constrained minimization problem:

minimize ‖x‖1 , x ∈ Rn, ‖Ax − b‖22 ≤ η2, (6)

cf. [7]. Roughly speaking, this entails that (1) and (6) are equivalent, up to choosing:

λ = λ(η) (7)

or, equivalently,η = η(λ), properly. Please note thatηmaynot beuniquelydetermined.
We refer to [23, Proposition 3.2] for a more precise statement of this fact. Throughout
this work, we call the parameter λ in (7) a Lagrange multiplier associated to (6), since
it plays the same role of Lagrange multipliers in optimization problems with equality
constraints. We will use this terminology in a more general setting, see Definition 2.7
below. Since a slightly modified proof of [23, Theorem 3.1] shows that a solution
of (6), if unique, must be m-sparse, the �1 norm is said to enforce sparsity. For this
reason, the Lagrange multipliers in (5) could be used, in principle, in an equivalent
manner as tuning parameters for (1) to recover sparse vectors.

In the same way,

L(x, λ) = ‖Ax − b‖22 + λ(‖�x‖1 − τ) (8)

is the Lagrange function of the constrained problem:

minimize ‖Ax − b‖22 , x ∈ Rn, ‖�x‖1 ≤ τ. (9)
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A first question that may be addressed is whether the corresponding Lagrange mul-
tiplier λ of (9) could still be used as a tuning parameter in (4). If so, the relationship
between the Lagrangemultipliers and the constraints of the corresponding constrained
problems could be useful in concrete applications, such as static and dynamicMRI, cf.
[19, 24]. In MRI, indeed, vectors of interest are MR images, which tend to be approxi-
mately sparse with respect to the discrete Fourier transform (DFT), the discrete cosine
transform (DCT) or the discrete wavelet transform (DWT), cf. [36]. This means that
a solution of the generalized LASSO problem (4), where the design matrix A is a
proxy of the acquisition methods properties (coil sensitivity, undersampling schemes
and DFT), and b is an underdetermined, noisy measurement, will have a sparse regu-
larization term, i.e. sparse �x . We stress that (4) is known to admit a, in general not
unique, solution for any choice of A, b, λ and �, and for the sake of completeness
we report a proof, that uses only linear algebra, in the appendix. In order to exploit
more a-priori knowledge on the structure of MRI data, (4) can be generalized further
to consider target functions that are sum of more regularizing terms, cf. [22, 27, 44].

Let us note that sparsity is not always the correct assumption in MRI. For instance,
dynamic MR images (e.g. a sequence of images of a moving organ, cf. [19, 24])
are highly compressible, rather than sparse, cf. [37]. This means that most of their
coefficients with respect to some sparsity-promoting transform do not vanish, yet are
small or negligible.

Surprisingly, it is easier to identify an equivalent of the relationship (7), between
the parameter λ and the upper bound for the constraint, say η, when another weighted
version of LASSO is considered. Namely, we aim to utilize convex analysis to compute
the Lagrange multipliers for the constrained optimization problem:

minimize ‖Ax − b‖22 , x ∈ Rn, |x j | ≤ τ j , j = 1, . . . , n. (10)

For given τ1, . . . , τn > 0 and a given minimizer x# of (10) there exist λ1, . . . , λn ≥ 0
such that x# is also a minimizer of:

minimize ‖Ax − b‖22 +
n∑

j=1
λ j |x j |, (11)

see [7, Section 5.3.2] or Theorem 2.4 below for a complete statement. Other weighted
versions of this problem have been considered in the literature. For instance, in [41],
the authors present a total variation (TV) regularization-based weighted LASSO for
image denoising. Other references include [9], where the authors consider space-
variant problems, such as:

minimize
1

2
‖Ax − b‖22 +

k∑

j=1
λk
∥∥(Dx) j

∥∥
p ,

where A ∈ Rm×n , b ∈ Rm , D is the discrete gradient, p ∈ {1, 2}, and λ1, . . . , λk > 0.
In a certain sense, problem (11) can be considered as a space-variant problem, where
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every component of the unknown vector is weighted by a different parameter. In
[46], the author discusses the importance of space-variance in TV regularization, as a
mathematical modeling which has the advantage of recovering a description of local
features, which is lost by classical TV regularization, i.e. (4) with � = D.

As we shall see, the relationship between these parameters is non-trivial if A is
non orthogonal, due to the complicated geometry of (10). Loosely speaking, this is
due to the fact that if AT A is non-diagonal, A shuffles the coordinates of x in such
a way that each pair of sets Mj := {x ∈ Rn : x j = −τ j } and N j := {x ∈ Rn :
∂

∂x j
(‖Ax − b‖22) = 0} are no longer parallel.
To summarize, the results contained in this work serve as first steps towards the

understanding of the analytical relationship between Lagrange multipliers, as defined
in Definition 2.7 below, and tuning parameters for LASSO problems. This relationship
is non-trivial, since it involves a-priori estimates, such as estimates of the �2-norm of
the noise. Our interest is justified by the fact that, plugging the identity as regular-
ization term in (4), the results mentioned above tell that the corresponding Lagrange
multipliers yield to the recovery of sparse vectors. Since MR images are known to
be sparse or compressible with respect to several sparsify-promoting transforms, the
question that arises is whether it is possible to use Lagrange multipliers associated to
(9) as tuning parameters to retrieve good-quality anatomical MR images via LASSO
problems.

Overview. In Sect. 2, we establish preliminaries and notation. In Sect. 3we compute
the deterministic relationships between the parameters λ j ’s and the τ j ’s in order for
problems (10) and (11) to be equivalent, under the following specific assumptions:
given A such that AT A is diagonal, for instance when A is either a subsampling
matrix, the Fourier transform matrix or the identity matrix, the Lagrange multipliers
are explicitly given by:

λ#j = 2
∥∥a∗, j

∥∥2
2

(
|〈b, a∗, j 〉|∥∥a∗, j

∥∥2
2

− τ j

)
χ[

0,
|〈b,a∗, j 〉|
‖a∗, j‖22

](τ j ), (12)

where a∗, j denotes the j-th column of A and χ[
0,
|〈b,a∗, j 〉|
‖a∗, j‖22

] is the characteristic function

on
[
0,
|〈b,a∗, j 〉|
‖a∗, j‖22

]
, j = 1, ..., n. We also provide deterministic results for those cases

where there is a control on the sign of the gradient of ‖Ax − b‖22, providing the explicit
expression of the Lagrange multipliers under the assumption ∂

∂x j
(‖Ax − b‖22) ≤ 0 for

every j = 1, . . . , n in a properly defined hypercube. The conclusions are reported in
Sect. 4.

2 Preliminaries and notation

Notation. For the theory of this section, we refer to [7, 23, 49] as reference therein.
We denote by Rn the n-dimensional vector space of real column vectors, whereas

123



Applied Mathematics & Optimization (2024) 89 :31 Page 7 of 34 31

Rm×n denotes the space of real m × n matrices. To ease the notation, if x ∈ Rn , the
notation x = (x1, ..., xn)means that x is the column vector with coordinates x1, ..., xn .
If A ∈ Rm×n , AT denotes the transpose of A.

If A ∈ Rm×n , ker(A) and Im(A) denote the kernel and the image of A, respectively.
Mn denotes the set of n × n signature matrices and, for x ∈ Rn , sgn(x) denotes the
set of all the possible signatures of x , see Sect. 3.2 below.

For 1 ≤ p <∞, the �p-norm on Rn is defined as:

‖x‖p :=
⎛

⎝
n∑

j=1
|x j |p

⎞

⎠
1/p

, x ∈ Rn,

whereas ‖x‖∞ := max j=1,...,n |x j |. We denote by 〈·, ·〉 the canonical inner product of
Rn , i.e.

〈x, y〉 = xT y =
n∑

j=1
x j y j , x, y ∈ Rn .

If x ∈ Rn , x+ is its positive part, i.e. x+ ∈ Rn has coordinates (x+) j = max{x j , 0}
( j = 1, ..., n). If � ⊆ Rn , �⊥ denotes its orthogonal complement. For vectors
x, y ∈ Rn , x = (x1, . . . , xn), y = (y1, . . . , yn), the notation x � ymeans that x j ≤ y j
for every j = 1, . . . , n. Analogously, x ≺ y if x j < y j for every j = 1, . . . , n. The
relationships x � y and x � y are defined similarly.

We always consider Rn endowed with the Euclidean topology. If � ⊆ Rn , �̊

denotes the interior of � and ∂� denotes the boundary of �. If g is a real-valued
function defined on an open neighbourhood of x0 ∈ Rn , ∂g(x0) denotes the subdif-
ferential of g at x0, see Sect. 2.2 below for the definition of subdifferential. Using the
same notation to denote both the boundary of a set and the subdifferential of a function
shall not cause confusion. If� ⊆ Rn , a-int(�) denotes the algebraic interior of�, see
Definition 3.8 below. If g is a function and � is a subset of its domain, g|� denotes
the restriction of g to �. Finally, if � ⊆ Rn , χ� denotes the characteristic function of
�.

2.1 Lagrange Duality

Consider a constrained optimization problem in the form:

minimize F0(x), x = y, Fl(x) ≤ bl , l = 1, . . . , M, (13)

where  ∈ Rm×n , y ∈ Rm and F0, F1, . . . , FM : Rn → (−∞,+∞] are convex. We
always assume that a minimizer of (13) exists.

A point x ∈ Rn is called feasible if it belongs to the constraints, that is if:

x ∈ K :=
{
ζ ∈ Rn : ζ = y and Fl(ζ ) ≤ bl , l = 1, . . . , M

}
(14)
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and K is called the set of feasible points. To avoid triviality, we always assume
K �= ∅, in which case problem (13) is called feasible. In view of the definition of K ,
problem (13) can be implicitly written as:

minimize F0(x), x ∈ K .

Convex problems such as (6) and (10) can be approached by considering their
Lagrange formulation, see Sect. 2.3 below. The Lagrange function related to (13) is
the function L : Rn ×Rm × [0,+∞)M → (−∞,+∞] defined as:

L(x, ξ, λ) := F0(x)+ 〈ξ,x − y〉 +
M∑

l=1
λl(Fl(x)− bl).

Observe that for all ξ, λ and x ∈ K :

L(x, ξ, λ) = F0(x)+ 〈ξ,x − y〉︸ ︷︷ ︸
=0

+
M∑

l=1
λl︸︷︷︸
≥0

(Fl(x)− bl︸ ︷︷ ︸
≤0

) ≤ F0(x),

so that:
inf
x∈Rn

L(x, ξ, λ) ≤ inf
x∈K L(x, ξ, λ) ≤ inf

x∈K F0(x). (15)

Definition 2.1 The function H : Rm × [0,+∞)M → [−∞,+∞] defined as:

H(ξ, λ) := inf
x∈Rn

L(x, ξ, λ)

is called Lagrange dual function.

Inequalities (15) read as:
H(ξ, λ) ≤ inf

x∈K F0(x) (16)

for all ξ ∈ Rm and all λ ∈ [0,+∞)M . Stating (16) differently, we have the weak
duality inequality:

sup
ξ∈Rm

λ�0

H(ξ, λ) ≤ inf
x∈K F0(x). (W)

We point out that (W) is equivalent to:

sup
ξ,λ

inf
x

L(x, ξ, λ) ≤ inf
x
sup
ξ,λ

L(x, ξ, λ) (17)

(see [7, Subsection 5.4.1]).
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We are interested in computing the parameters (ξ, λ) such that (W) is an equality,
in which case (W) becomes:

sup
ξ∈Rm

λ�0

H(ξ, λ) = inf
x∈K F0(x), (S)

so that strong duality (S) holds for problem (13).

2.2 Subdifferential

Definition 2.2 (Subdifferential) Let � ⊆ Rn be open and g : � → R. Let x0 ∈ �.
The subdifferential of g at x0 is the set:

∂g(x0) := {v ∈ Rn g(x) ≥ g(x0)+ vT (x − x0) ∀x ∈ �}.

We refer to any v ∈ ∂g(x0) as a subgradient of g at x0.

We will use the following proposition.

Proposition 2.3 Let � ⊆ Rn be open and g : � → R be convex and continuous on
�. Let x0 ∈ �. Then, ∂g(x0) �= ∅.

2.3 Lagrange Formulation of Constrained Problems

Under the notation above, let F(x) := (F1(x), ..., FM (x)). In the convex framework,
if the constraint F(x) � b does not reduce to F(x) = b, namely if for all l = 1, . . . , M
the inequality Fl(x) < bl holds for some x ∈ Rn , then strong duality holds.

Theorem 2.4 (Cf. [7], Section 5.3.2)Assume that F0, F1, . . . , FM are convex functions
defined on Rn. Let x# be such that F0(x#) = inf x∈Rn F0(x). If:

(i) there exists x̃ ∈ Rn such that  x̃ = y and F(x̃) ≺ b or,
(ii) in absence of inequality constraints, if K �= ∅ (i.e. if there exists x̃ ∈ Rn such

that  x̃ = y),

then, there exists (ξ#, λ#) ∈ Rm × [0,+∞)M such that H(ξ#, λ#) = supξ,λ H(ξ, λ)

and H(ξ#, λ#) = F0(x#).

The proof of Theorem 2.4 contains the fundamental construction we will use in the
next sections and we report it for this reason. We refer to [7, Subsection 5.3.2] for the
complete proof. First, we need a result from functional analysis, which is well-known
as (geometrical) Hahn-Banach theorem.

Definition 2.5 (Separating hyperplane) Consider two subsets A,B ⊆ Rn . A hyper-
plane � := {x ∈ Rn 〈ξ, x〉 = α} satisfying:

〈ξ, x〉 ≤ α < 〈ξ, y〉, x ∈ A, y ∈ B, (18)

is a separating hyperplane between A and B.
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Theorem 2.6 (Cf. [49] Theorem 3.4) Let A,B ⊂ Rn be two convex and disjoint
subsets. If B is open, there exists ξ ∈ Rn and α ∈ R such that (18) holds for all x ∈ A
and all y ∈ B.

Idea of the proof of Theorem 2.4 First, one assumes that A has full row-rank.Moreover,
one reduces to consider the situation in which p∗ := inf x∈K F0(x) > −∞, otherwise
the assertion is trivial.

Consider the set:

G :=
{

(F(x)− b, x − y, F0(x)) ∈ RM ×Rm ×R : x ∈ Rn
}
, (19)

where, with an abuse of notation, x − y denotes the row vector with the same
(ordered) entries of x − y, and A be defined as the epigraph:

A := G + ((R≥0)M ×Rm ×R≥0) =
=
{
(u, v, t) ∈ RM ×Rm ×R : u � F(x)− b,

v = x − y, t ≥ F0(x) f or some x ∈ Rn
}
.

(20)

It is easy to verify that if F0, F1, . . . , FM are convex, than A is convex. Then,
consider the set:

B :=
{
(0, 0, s) ∈ RM ×Rm ×R s < p∗

}
.

A and B are clearly disjoint, B (which is an open half-line) being trivially convex and
open. Therefore, the assumptions of Theorem 2.6 are satisfied and we conclude that
there exists a triple of parameters (λ̃, ξ̃ , μ) �= 0 and α ∈ R such that:

(u, v, t) ∈ A �⇒ λ̃T u + 〈ξ̃ , v〉 + μt ≥ α, (21)

(u, v, t) ∈ B �⇒ λ̃T u + 〈ξ̃ , v〉 + μt < α. (22)

It is easy to see that the definition of A, together with (21), imply that λ̃l ≥ 0 for all
l = 1, . . . , M and μ ≥ 0. Also, applying the definition of B to (22), one finds that
μt < α for all t < p∗, which implies that μp∗ ≤ α. Therefore, for all x ∈ Rn ,

M∑

l=1
λ̃l(Fl(x)− bl)+ 〈ξ̃ , x − y〉 + μF0(x) ≥ α ≥ μp∗. (23)

If μ > 0, then (23) gives that L(x, ξ̃ /μ, λ̃/μ) ≥ p∗ for all x ∈ Rn , which implies
that H(ξ̃/μ, λ̃/μ) ≥ p∗. Since the other inequality holds trivially by the weak duality
inequality, we conclude that H(ξ̃/μ, λ̃/μ) = p∗. Finally, using the assumptions on
the rank of  and on the existence of a point satisfying the strict inequality constraint,
one proves by contradiction that it must be μ > 0. ��
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Definition 2.7 (Lagrange Multipliers) We refer to a couple (ξ#, λ#) ∈ Rm ×
[0,+∞)M as to Lagrange multipliers for the problem (13) if (ξ#, λ#) attend the
supremum in (S).

As a consequence of Theorem 2.4, we have the following result, which relates the
minimizers of (13) and those of the dual problem maxξ,λ H(ξ, λ), providing also the
Lagrange multipliers, that may not be unique.

Corollary 2.8 (Cf. [23] Theorem B.28) Let F0 : Rn → [0,+∞) and φ : [0,+∞) →
R be such that φ is monotonically increasing and φ ◦ F0 is convex. Let τ j > 0
( j = 1, . . . , M) and ψ j : Rn → R ( j = 1, . . . , M) be convex functions such that
ψ−1j ([0, τ j )) �= ∅ for all j = 1, . . . , M. Let x# be a minimizer of the problem:

minimize F0(x), x ∈ Rn ψ(x) � τ, (24)

where τ = (τ1, . . . , τM ). Then, there exist λ j ≥ 0 ( j = 1, . . . , M) such that x# is a
minimizer of:

minimize φ(F0(x))+
M∑

j=1
λ jψ j (x). (25)

Proof Since φ is monotonically increasing, (24) is obviously equivalent to:

minimize φ(F0(x)), x ∈ Rn ψ j (x) ≤ τ j , (26)

( j = 1, . . . , M) whose Lagrangian is given by:

L(x, λ) = φ(F0(x))+
M∑

j=1
λ j (ψ j (x)− τ j ). (27)

By the assumption, φ ◦ F0 and each ψ j are convex and the inequalities ψ j (x̃) < τ j
are satisfied by some x̃ ∈ Rn (observe that here we need τ j > 0), so we can apply
Theorem 2.4 to get H(λ#) = φ(F0(x#)) for some λ# ∈ [0,+∞)M . By (17), for all
x ∈ Rn :

L(x#, λ#) ≤ L(x, λ#),

so that x# is also a minimizer of the function x ∈ Rn �→ L(x, λ#). Since the constant
terms−λ jτ j in (27) do not affect the set of minimizers, we have that x# is a minimizer
of:

minimize φ(F0(x))+
M∑

j=1
λ#j (ψ j (x)− τ), x ∈ Rn .

��
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Remark 2.9 Theorem 2.6 has a complex version that holds with �〈z, w〉 =
�
(∑n

j=1 z jw j

)
(� denotes the real part of a complex number) instead of 〈·, ·〉. In

particular, the entire theory presented in this work is applicable in the complex frame-
work as well. This extension involves replacing the canonical real inner product of
Rn with the real inner product on Cn defined above. Therefore, we do not need to
study the complex case separately, as only the structure of Cn as a real vector space is
involved.

Remark 2.10 To sum up, Theorem 2.4 and Corollary 2.8 together tell that, up to the
sign, the coefficients of any hyperplane separating the two sets:

A =
{
(u, t) ∈ RM+1 u � F(x)− b, t ≥ F0(x) f or x ∈ Rn

}

and

B =
{
(0, t) ∈ RM+1 t < inf

x∈K F0(x)
}

define Lagrange multipliers for problem (13), in absence of equality constraints, i.e. if
y = 0 and = 0 in (13). This is the geometric idea that we will apply in the following
sections to the weighted LASSO.

3 TheWeighted LASSO

Let A ∈ Rm×n , b ∈ Rm and τ1, . . . , τn ≥ 0. We denote with a∗, j the j-th column of
A and set b = (b1, . . . , bm). We consider the constrained minimization problem:

minimize ‖Ax − b‖22 , x ∈ Rn, |x j | ≤ τ j , j = 1, . . . , n. (28)

We also assume that τ j �= 0 for all j = 1, . . . , n. In fact, if τ j = 0 for some
j = 1, . . . , n, then the solution x = (x1, . . . , xn) has x j = 0. In this case, problem
(28) reduces to

minimize
∥∥∥ Ãy − b

∥∥∥
2

2
, y ∈ Rn−r , |yi j | ≤ τi j , j = 1, . . . , n − r , (29)

where r = card{ j : τ j = 0} ≤ m, J = {1 ≤ i1 < . . . < in−r ≤ n} := { j : τ j �= 0}
and Ã = (a∗, j ) j∈J ∈ Rm×(n−r).

Let K denote the set of the feasible points of problem (28), that is:

K = {x ∈ Rn : |x j | ≤ τ j ∀ j = 1, . . . , n} (30)

and consider the Lagrange function associated to (28), i.e.

L(x, λ1, . . . , λn) = ‖Ax − b‖22 +
n∑

j=1
λ j (|x j | − τ j ). (31)
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We are interested in a vector of Lagrange multipliers λ# � 0 for (28). Based on the
proofs of Theorem 2.4 and Corollary 2.8, λ# can be chosen as the direction of any
hyperplane separating the sets:

A =
{
(u, t) ∈ Rn ×R : ul ≥ |xl | − τl (l = 1, . . . , n),

t ≥ ‖Ax − b‖22 for some x ∈ Rn
} (32)

and
B =

{
(0, t) ∈ Rn ×R : t < p∗

}
(33)

where p∗ := inf x∈K ‖Ax − b‖22.

3.1 The Scalar Case

To clarify the general procedure, we focus on the simple case m = n = 1 first, in
which (28) becomes:

minimize (Ax − b)2, x ∈ R, |x | ≤ τ, (34)

where A ∈ R \ {0} and b ∈ R. To find the Lagrange multipliers, we consider the set
G of points (u, t) ∈ R2 that satisfy:

{
u = |x | − τ,

t = (Ax − b)2,

which give a curve of the half-planeU = {(u, t) ∈ R2 : u ≥ −τ, t ≥ 0}parametrized
by x ∈ R. More precisely:

• if x ≥ 0,

{
x = u + τ,

t = (A(u + τ)− b
)2 = (Au + (Aτ − b))2,

which is a branch of parabola in U with vertex in ( b
A − τ, 0).

• If x < 0

{
x = −u − τ,

t = (− A(u + τ)− b
)2 = (Au + (Aτ + b))2,

which is, again, a branch of parabola in U , having its vertex in (− b
A − τ, 0).
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Proposition 3.1 Let τ > 0, A ∈ R\{0}, b ∈ R. A Lagrange multiplier for (34) is
given by:

λ# =
{
2A2(|b/A| − τ) if 0 < τ < |b/A|,
0 if τ ≥ |b/A| = 2A2(|b/A| − τ)+.

Namely, if x# is a minimizer of (34), then it is also a minimizer for the problem:

minimize (Ax − b)2 + λ#|x |, x ∈ R.

3.2 Properties ofA

Consider A ∈ Rm×n and b = (b1, ..., bm) ∈ Rm , with:

A =
⎛

⎜⎝
a11 . . . a1n
...

. . .
...

am1 . . . amn

⎞

⎟⎠ .

We consider the problem (28) and the associated Lagrange function:

L(x, λ) := ‖Ax − b‖22 +
n∑

j=1
λ j (|x j | − τ j ). (35)

Recall that p∗ was defined as p∗ := minx∈K ‖Ax − b‖22, being K the set of the points
x ∈ Rn such that |x j | ≤ τ j for all j = 1, . . . , n. It is not difficult to verify that:

p∗ = inf
{
t ∈ R : (u, t) ∈ G, u j ≤ 0 ∀ j = 1, . . . , n

}
. (36)

Let Mn be the set of the n-dimensional signature matrices, that are the diagonal
matrices S = (si j )ni, j=1 ∈ Rn×n such that |s j j | = 1 for all j = 1, . . . , n. Observe

that if S ∈ Mn , then S2 = In×n , where In×n denotes the identity matrix in Rn×n ,
in particular S is invertible with S−1 = S. If x ∈ Rn and S ∈ Mn is such that
Sx ∈∏n

j=1[0,+∞), we write S ∈ sgn(x).

Lemma 3.2 Let A ∈ Rm×n, b ∈ Rm and τ j > 0 for j = 1, . . . , n. Let S ∈Mn. There
exists u ∈∏n

j=1[−τ j , 0] such that ASu + ASτ − b = 0 if and only if S ∈ sgn(x) for
some x ∈ Rn such that Ax = b and |x j | ≤ τ j .

Proof Assume that there exists u ∈∏n
j=1[−τ j , 0] such that ASu+ ASτ − b = 0 and

let x := S(u + τ). Then, Sx = u + τ ∈ ∏n
j=1[0, τ j ], so that S ∈ sgn(x), |x j | ≤ τ j

for all j = 1, . . . , n and

0 = AS(u + τ)− b = Ax − b.
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Vice versa, assume that Ax = b for some x ∈ ∏n
j=1[0, τ j ]. Let S ∈ sgn(x) and

u := Sx − τ . Then, u ∈∏n
j=1[−τ j , 0] and

0 = Ax − b = A(Su + τ)− b = ASu + ASτ − b.

��
Recall the definitions of the two sets A and B given in (32) and (33) respectively.

First, if G is the set of the points (u, t) ∈ Rn+1 such that:

{
u j = |x j | − τ j j = 1, . . . , n,

t = ‖Ax − b‖22 ,
(37)

for some x ∈ Rn , then

A = G + [0,+∞)n+1,

that is, (u, t) ∈ A if and only if

{
u j ≥ |x j | − τ j j = 1, . . . , n,

t ≥ ‖Ax − b‖22 ,
(38)

for some x ∈ Rn . Finally, (u, t) ∈ B if and only if t < p∗ = minx j≤τ j ‖Ax − b‖22.
We will prove that the equations (37) defining G can be written in terms of Mn .

Lemma 3.3 Let τ1, . . . , τn > 0 and let G be the set of points satisfying (37). Then,

(i) G is closed.
(ii) (u, p∗) ∈ G for some u ∈ Rn such that −τ j ≤ u j ≤ 0 for all j = 1, . . . , n.

Moreover, p∗ = min
{
t ∈ R : (u, t) ∈ G, u j ≤ 0 ∀ j = 1, . . . , n

}
.

(iii) For every (u, t) ∈ G there exists S ∈Mn such that t = ‖ASu + (ASτ − b)‖22.
Viceversa, if t = ‖ASu + (ASτ − b)‖22 for some u ∈ Rn such that u j ≥ −τ j
and some S ∈Mn, then (u, t) ∈ G.

Proof We prove that G is closed. For, let (uk, tk) ∈ G converge to (u, t) ∈ Rn+1. We
prove that (u, t) ∈ G. Let xk ∈ Rn be such that (37) is satisfied for (uk, tk). Then,
|xkj | = ukj−τ j ≤ u j+1−τ j for j sufficiently large. In particular, the sequence {xk}k is
bounded and, thus, it converges up to subsequences.Without loss of generality, wemay
assume that (xk)k converges to x := limk→+∞ xk in Rn . Then, for all j = 1, . . . , n,

|x j | = lim
k→+∞ |x

k
j | = lim

k→+∞ ukj + τ j = u j + τ j

and, by continuity,

‖Ax − b‖22 = lim
k→+∞

∥∥∥Axk − b
∥∥∥
2

2
= lim

k→+∞ tk = t .
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This proves that (u, t) ∈ G and, thus, that G is closed. (ii) follows by (i) and (36).
It remains to check (iii). If (u, t) ∈ G, there exists x ∈ Rn satisfying (37). Let

S ∈ Mn be such that |x | = Sx , where |x | := (|x1|, . . . , |xn|). Then, using the fact
that S−1 = S,

|x | = u + τ �⇒ Sx = (u + τ) �⇒ x = S(u + τ).

By the last equation of (37), we have:

t = ‖Ax − b‖22 = ‖ASu + (ASτ − b)‖22 .

Viceversa, assume that t = ‖ASu + (ASτ − b)‖22 for some S ∈ Mn and u ∈ Rn

is such that u � −τ . Let x := S(u + τ), then |x j | = |u j + τ j | = u j + τ j for all
j = 1, . . . , n and t = ‖Ax − b‖22. This proves that (u, t) ∈ G and the proof of (iii) is
concluded. ��

Lemma 3.4 Let u ∈∏n
j=1[−τ j ,+∞),

hG(u) := min
S∈Mn

‖ASu + ASτ − b‖22 (39)

and

gG(u) := min
(u,s)∈G

s.

Then, hG(u) = gG(u).

Proof By Lemma 3.3 (iii), if (u, s) ∈ G, then s = ‖AS0u + AS0τ − b‖22 for some
S0 ∈Mn . Hence,

hG(u) = min
S∈Mn

‖ASu + ASτ − b‖22 ≤ ‖AS0u + AS0τ − b‖22 = s

for all s such that (u, s) ∈ G. Taking the minimum, we get hG(u) ≤ gG(u). On
the other hand, (u, hG(u)) ∈ G by Lemma 3.3 (iii). Therefore, gG(u) ≤ hG(u) by
definition of gG . ��

Lemma 3.5 LetG be the set of points satisfying (37)andAbe the set of points satisfying
(38). Then,

(i) G ⊆ A;
(ii) A is closed.

Proof (i) is obvious. We prove (ii).
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Let (uk, tk) ∈ A be a sequence such that (uk, tk) −−−−→
k→+∞ (u, t) inRn+1. We need

to prove that (u, t) ∈ A. For all k, let xk ∈ Rn be such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uk1 ≥ |xk1 | − τ1,

...

ukn ≥ |xkn | − τn,

tk ≥ ∥∥Axk − b
∥∥2
2 .

The sequence {xk}k is bounded, in fact for all j = 1, . . . , n, |xkj | ≤ ukj + τ j ≤
u j + 1 + τ j for k sufficiently large. Therefore, up to subsequences, we can assume
xk −−−−→

k→+∞ x in Rn . For all j = 1, . . . , n,

|x j | = lim
k→+∞ |x

k
j | ≤ lim

k→+∞ ukj + τ j = u j + τ j .

Moreover, by continuity,

‖Ax − b‖22 = lim
k→+∞

∥∥∥Axk − b
∥∥∥
2

2
≤ lim

k→+∞ tk = t .

��
Lemma 3.6 Let A be the set of points satisfying (38). Then,

(i) A is the epigraph of a convex non-negative function function g : ∏n
j=1[−τ j ,

+∞) → R which is continuous in
∏n

j=1(−τ j ,+∞);
(ii) ∂g(0) �= ∅;
(iii) g(u) = 0 if and only if (u, t) ∈ A for all t ≥ 0.

Proof First, observe that A ⊆ {(u, t) t ≥ 0} since t ≥ ‖Ax − b‖22 ≥ 0 for some
x ∈ Rn whenever (u, t) ∈ A.

For the sake of completeness, we check that A is the epigraph of the function:

g(u) = min
(u,s)∈A

s

⎛

⎝u ∈
∏

j

[−τ j ,+∞)

⎞

⎠ , (40)

which is well defined by Lemma 3.5.
By the observation at the beginning of the proof, g(u) ≥ 0. Let

epi(g) := {(u, t) t ≥ g(u)}

be the epigraph of g. If (u, t) ∈ A, then t ≥ min(u,s)∈A s = g(u), this means that
(u, t) ∈ epi(g). On the other hand, if (u, t) ∈ epi(g), then t ≥ s for some (u, s) ∈ A.
But, if t ≥ s (and (u, s) ∈ A), then (u, t) ∈ A as well, since A contains the vertical
upper half-lines having their origins in (u, s), namely (u, s)+ ({0} × [0,+∞)).
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This proves that A is an epigraph. Moreover, g is convex because A is convex
(see [48] Proposition 2.4). The continuity of g on

∏
j (−τ j ,+∞) follows from [47],

Theorem 10.1. This proves (i).
Moreover, since τ j > 0 for all j = 1, . . . , n, 0 ∈ Rn is an interior point of∏
j [−τ j ,+∞). Since g is continuous and convex in

∏
j (−τ j ,+∞), the subdifferen-

tial of g in 0 is non-empty and (ii) follows.
To prove (iii), assume that g(u) = 0. Then, min(u,s)∈A s = 0 implies (u, 0) ∈ A.

Since for all t ≥ 0, (u, 0) + ({0} × [0,+∞)) ∈ A, we have that (u, t) ∈ A for all
t ≥ 0. For the converse, assume that (u, t) ∈ A for all t ≥ 0. Then, (u, 0) ∈ A, so
that (by the non-negativity of g) 0 ≤ g(u) ≤ 0. This proves the equivalence in (iii). ��
Remark 3.7 As we observed in the general theory situation, (0, s) ∈ A if and only if
s ≥ p∗. This tells that g(0) = p∗ and (0, p∗) ∈ A.

We want to prove formally that g(u) defines the boundary ∂A of A in a neighbor-
hood of u = 0 and, then, find an explicit formula for g(u). Observe that,A = ∂A∪Å,
where Å denotes the topologic interior of A. Since A is closed and convex in Rn , Å
coincides with the algebraic interior of A, which is defined as follows:

Definition 3.8 Let X be a vector space andA ⊆ X be a subset. The algebraic interior
of A is defined as:

a-int(A) := {a ∈ A ∀x ∈ X ∃εx > 0 s.t . a + t x ∈ A ∀t ∈ (−εx , εx )}.

Lemma 3.9 Let A be as in Lemma 3.5. Then,

∂A ={(u, t) ∈ A : t = g(u), u j > −τ j ∀ j = 1, . . . , n}∪
∪ {(u, t) ∈ A : u j = −τ j f or some j = 1, . . . , n} (41)

and the union is disjoint. Moreover,

{(u, t) ∈ A u j = −τ j f or some j = 1, . . . , n}
= {(u, t) ∈ ∂A (u, t + α) ∈ ∂A ∀α ≥ 0}.

Proof Observe that the union in (41) is clearly disjoint. We first prove (41).

(⊇) None of the sets on the RHS of (41) is contained in Å. In fact,

• the definition of g(u) implies that for all ε > 0, −ε < t < ε, (u, t) ∈ A if and
only if t ≥ 0, so that (u, g(u)) /∈ a-int(A) = Å. This proves that the graph of g in∏

j (−τ j ,+∞) is a subset of ∂A.
• Analogously, assume that u j = −τ j for some j = 1, . . . , n, and for all ε > 0
consider the point (uε, t), where (uε)l = ul for all l �= j and (uε) j = −τ j − ε.
But g is defined on

∏
j [−τ j ,+∞) and A is its epigraph, hence all the points of

A must be in the form (u, g(u)+ α) for some u ∈∏ j [−τ j ,+∞), t = g(u)+ α

(α ≥ 0), hence (uε, t) /∈ A and this proves that (u, t) /∈ a-int(A).

The fact that ∂A = A \ Å proves the first inclusion.

123



Applied Mathematics & Optimization (2024) 89 :31 Page 19 of 34 31

(⊆) We prove that the complementary of the RHS of (41) in Rn+1 is contained in
Å. Let (u, t) be such that u > −τ j for all j and t > g(u) (as it is easy to check,
these are the conditions for (u, t) to belong to the complementary of the union
of the two set at the LHS of (41)).

Let d := t− g(u) > 0. Since g is continuous on
∏

j (−τ j ,+∞), there exists δ > 0
such that |g(u) − g(v)| < d/4 for all v ∈ Bδ(u) := {w ∈ Rn : |w − u| < δ}. In
particular, for all v ∈ Bδ(u), g(v) < t − 3

4d < t . Then, Bδ(u) × (t − 3
4d,+∞) is

all contained inA (becauseA is the epigraph of g) and it is an open neighborhood of
(u, t). Hence, (u, t) ∈ Å = A \ ∂A.

Next, we check the second part of the lemma:

(⊆) assume (u, t) ∈ A is such that u j = −τ j for some j . Then, by the first part of
this Lemma, (u, t + α) ∈ ∂A for all α ≥ 0, since (41) is a partition of ∂A.

(⊇) Assume that (u, t + α) ∈ ∂A for all α ≥ 0. Then, (u, t) ∈ ∂A. Assume by
contradiction that u j > −τ j for all j . Then, since (41) is a partition of ∂A,
g(u) = t + α for all α ≥ 0, which cannot be the case.

��
The function g, defined in Lemma 3.6, can be expressed in terms of the function

hG of Lemma 3.4, as shown in the following result.

Theorem 3.10 Let A be the set of points satisfying (38), hG and g be the functions
defined in (39) and (40), respectively. For u ∈ ∏n

j=1[−τ j ,+∞), u = (u1, . . . , un),
let Q(u) :=∏n

j=1[−τ j , u j ] and

h(u) := min
S∈Mn , v∈Q(u)

‖AS(v + τ)− b‖22 = min
v∈Q(u)

hG(v). (42)

Then, h(u) = g(u) for all u ∈∏ j [−τ j ,+∞).

Proof We first prove that g(u) ≤ h(u). For, it is enough to prove that (u, h(u)) ∈ A,
so that g(u) ≤ h(u) would follow by the definition of g. By definition of h, there exist
S0 ∈Mn and v ∈ Q(u) so that:

h(u) = ‖AS0v + AS0τ − b‖22 .

By Lemma 3.3 (iii), (v, h(u)) ∈ G. Since u j ≥ v j for all j = 1, . . . , n, it follows that
(u, h(u)) ∈ A by definition of A.

For the converse, since (u, g(u)) ∈ A, there exists (v′, t) ∈ G such that v′j ≤ u j

for all j = 1, . . . , n and g(u) ≥ t . In particular, v′ ∈ Q(u). By Lemma 3.3 (iii),
t = ∥∥AS1v′ + ASτ − b

∥∥2
2 for some S1 ∈Mn . Therefore,

g(u) ≥ ∥∥AS1v′ + AS1τ − b
∥∥2
2 ≥ min

S∈Mn , v∈Q(u)
‖ASv + ASτ − b‖22 = h(u).

This concludes the proof. ��
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Even if g = h, in what follows we still distinguish h and g when we want to stress
the explicit definitions of both. Namely, we write g(u) when we refer to min(u,s)∈A s
and h(u) when we refer to (42).

Corollary 3.11 Under the same notation as above,

g(u) = min−u−τ�v�u+τ
‖Av − b‖22 . (43)

Proof Using the second expression in (42),

g(u) = min
S∈Mn

min
v∈Q(u)

‖AS(v + τ)− b‖22 .

But,

fS(v) = ‖AS(v + τ)− b‖22 = f (S(v + τ)),

for f (v) = ‖Av − b‖22, that gives:

min−τ�v�u fS(v) = min
v∈Q(u)

f (S(v + τ)) = min
v∈S(Q(u)+τ)

‖Av − b‖22 ,

so that:

min
S∈Mn

min−τ�v�u fS(v) = min⋃
S∈Mn S(Q(u)+τ)

‖Av − b‖22

and the assertion follows by observing that

⋃

S∈Mn

S(Q(u)+ τ) = {v ∈ Rn : −u − τ � v � u + τ }.

��

3.3 A Result Under Conditions on the Gradient of
∥
∥Ax− b

∥
∥2
2

In general, the geometry ofA is so complicated that expressing g explicitly may turn
into a tough task. Nevertheless, it is obvious that if u is itself one of the minimizers of
(42), then g(u) = hG(u) = minS∈Mn ‖ASu + ASτ − b‖22. So, under further assump-
tions on∇(‖ASu − b‖22) granting the equality g(u) = hG(u) holds in a neighborhood
of 0, we can compute explicitly the Lagrange multipliers.

Theorem 3.12 Let f (v) = ‖Av − b‖22 and assume that for all k = 1, . . . , n the
condition:

n∑

j=1
u j 〈a∗, j , a∗,k〉 ≤ 〈b, a∗,k〉 (−τ � u � τ) (44)
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holds. Then, g(u) = f (u + τ) for all u ∈ Q(0) and λ# = AT (b − Aτ) is a set of
Lagrange multipliers for problem (28).

Proof The set of conditions (44) is equivalent to (Au−b)T A � 0 for all−τ � u � τ ,
that is ∇ f (u) � 0 for −τ � u � τ . We prove that, under this further condition,
g(u) = f (u + τ) for all u ∈ Q(0). Let u ∈ Q(0) and n � 0 be a unit vector. For all
t ∈ R, define:

fn(t) := f (u + τ + tn) = ‖A(u + τ + tn)− b‖22
= ‖An‖22 t2 + 2〈A(u + τ)− b, An〉t + ‖A(u + τ)− b‖22 ,

which is the restriction of f to the line {u + tn : t ∈ R}. If n ∈ ker(A), then fn ≡ 0
and it has a global minimum in t = 0. Assume n /∈ ker(A). The intersection of this
line with {−τ � v � τ } is contained in (−∞, 0]. If we prove that, for all n � 0, fn
has a constrained minimum in t = 0, we get the first assertion. For, it’s enough to
observe that

f ′n(0) = ∇ f (u + τ) · n ≤ 0,

because if u ∈ Q(0), then {−u − τ � v � u + τ } ⊆ {−τ � v � τ }. This proves that
g(u) = f (u + τ) for all u ∈ Q(0). In particular,

−∇g(0) = −∇ f (τ ) = (b − Aτ)T A � 0

is a set of Lagrange multipliers for (28). ��
Remark 3.13 It is not difficult to generalize Theorem 3.12 a bit further. If the hyper-
parallelogram {−τ � u � τ } is all contained in the region {u ∈ Rn : S∇ f (u) � 0}
for some S ∈Mn , then g(u) = f (S(u + τ)) for all u ∈ Q(0) and

λ# = −∇g(0) = −S∇ f (S(u + τ))T

defines a vector of Lagrange multipliers for (28). The proof goes exactly as in Theo-
rem 3.12.

3.4 Decoupling theVariables

In this subsection, we focus on the situation in which AT A is a diagonal matrix. Since:

AT A =

⎛

⎜⎜⎜⎜⎝

∥∥a∗,1
∥∥2
2 〈a∗,1, a∗,2〉 . . . 〈a∗,1, a∗,n〉

〈a∗,2, a∗,1〉
∥∥a∗,2

∥∥2
2 . . . 〈a∗,2, a∗,n〉

...
...

. . .
...

〈a∗,n, a∗,1〉 〈a∗,n, a∗,2〉 . . .
∥∥a∗,n

∥∥2
2

⎞

⎟⎟⎟⎟⎠
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and the rank of AT A is equal to that of A, it follows that in this case:

AT A = diag(
∥∥a∗,1

∥∥2
2 , ...,

∥∥a∗,n
∥∥2
2). (45)

Remark 3.14 Ifm ≤ n and AT A is diagonal, n−m of the norms in (45) above vanish.
In this case, we assume that a∗,m+1 = ... = a∗,n = 0, so that A can be written in
terms of its columns as:

A = (A′|0m×(n−m)

)
,

where A′ = (a∗,1|...|a∗,m) ∈ GL(m,R). Observe that:

‖Ax − b‖22 =
∥∥A′x ′ − b

∥∥2
2 ,

where x ′ = (x1, ..., xm)T , so that x# is a mimizer of (28) if and only if (x#)′ =
(x#1 , . . . , x

#
m) is a minimizer of the problem:

minimize
∥∥A′y − b

∥∥2
2 , y ∈ Rm, |y j | ≤ τ j , j = 1, . . . ,m, (46)

under the further condition that the remaining coordinates of x vanish.
For this reason, for the rest of this subsection, we focus on (46), both for the cases

n ≤ m and m ≤ n, and provide the Lagrange multipliers.

Remark 3.15 We point out that in this situation the Lagrange multipliers can be com-
puted directly from Proposition 3.1. Indeed, under the orthogonality assumption on
A, the target function in problem (46) becomes:

m∑

j=1
(
∥∥a∗, j

∥∥2
2 y

2
j − 2y〈a∗, j , n〉y j )+ ‖b‖22 .

Since the variables of all the addenda are decoupled, and the addenda are non-negative,

min
y

m∑

j=1
(
∥∥a∗, j

∥∥2
2 y

2
j − 2y〈a∗, j , n〉y j )+ ‖b‖22

=
m∑

j=1
min
y j

(
∥∥a∗, j

∥∥2
2 y

2
j − 2y〈a∗, j , n〉y j + ‖b‖

2
2

m

)

and a minimizer of (46) is also a minimizer of the problem:

minimize
∥∥a∗, j

∥∥2
2 y

2
j − 2y〈a∗, j , n〉y j + ‖b‖

2
2

m
, |y j | ≤ τ j
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for all j = 1, ...,m. In other words, it is enough to treat (46) as m 1-dimensional
constrainedminimization problems.However, our interest is testing the tools presented
in the previous section, computing the function g and the separating hyperplane.

To exhibit a vector of Lagrange multipliers, we start by the set

G := {(u, t) ∈ Rm+1 u j = |y j | − τ j ( j = 1, . . . ,m),

t = ∥∥A′y − b
∥∥2
2 for some y ∈ Rm}.

By Lemma 3.3 (iii), (u, t) ∈ G if and only if u � −τ and t = ∥∥A′S(u + τ)− b
∥∥2
2 for

some S ∈Mm . Let fS(u) = ∥∥A′S(u + τ)− b
∥∥2
2 and observe that:

fS(u) =
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j + τ j )

2 − 2
m∑

j=1
s j j 〈b, a∗, j 〉(u j + τ j )+ ‖b‖22 .

The functions fS are the equivalent of the parabolas in the 1-dimensional case and
they describe elliptic paraboloids. As it clear by Sect. 3.1, we need to understand what
is hG(u) := minS∈Mm fS(u). Observe that for all S ∈Mn ,

fS(u) ≥
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j + τ j )

2− 2
m∑

j=1
|〈b, a∗, j 〉|(u j + τ j )+‖b‖22 = fSβ (u), (47)

where Sβ = (sβ
j )

m
j=1 ∈Mm is a diagonal matrix such that sβ

j 〈b, a∗, j 〉 ≥ 0.

Lemma 3.16 Under the notation and the assumptions of this subsection,

hG(u) = fSβ (u) =
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j + τ j )

2 − 2
m∑

j=1
|〈b, a∗, j 〉|(u j + τ j )+ ‖b‖22 .

hG defines an elliptic paraboloid whose vertex V = (c, 0) ∈ Rm+1 is characterized
both by c = −τ + Sβ(A′)−1b and

c j = −τ j + |〈b, a∗, j 〉|∥∥a∗, j
∥∥2
2

( j = 1, . . . ,m). Moreover,

hG(u) =
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j − c j )

2. (48)

Proof We already proved the first part of the Lemma. We only need to compute the
vertex of fSβ . For, observe that the minimum of fSβ is (c, 0), where c satisfies fS(c) =
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0.This equation is satisfied if andonly if c = −τ+Sβ(A′)−1b.Moreover, theminimum
of fSβ is also characterized by ∇ fSβ (c) = 0, that is:

c j + τ j − |〈b, a∗, j 〉|∥∥a∗, j
∥∥2
2

= 0

( j = 1, . . . ,m). Finally, using the first characterization of c,

hG(u) = ∥∥ASβ(u + τ)− b
∥∥2
2 =
∥∥ASβ(u − c)+ ASβ(c + τ)− b

∥∥2
2

= ∥∥ASβ(u − c)
∥∥2
2 =

=
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j − c j )

2.

This concludes the proof. ��
In order to compute theLagrangemultipliers for the decoupled problem,we observe

that A + [0,+∞)m+1 is the epigraph of the function g(u) whose first properties
are proved in Lemma 3.6. Hence, this function describes the lower boundary of A,
that is the part of A we need to compute a separating hyperplane. By (42), g(u) =
minv∈Q(u) hG(v), where Q(u) =∏m

j=1[−τ j , u j ].
Theorem 3.17 Under the notation and the assumptions of this subsection,

g(u) = hG(Pu),

where P : ∏m
j=1[−τ j ,+∞) → Q(c) is the projection defined for all u ∈∏m

j=1[−τ j ,+∞) by

(Pu) j =
{
u j if − τ j ≤ u j ≤ c j ,

c j if u j > c j
= min{c j , u j } (49)

( j = 1, . . . ,m). Explicitly, under the assumptions of this subsection,

g(u) =
m∑

j=1

∥∥a∗, j
∥∥2
2 (u j − c j )

2χ[−τ j ,c j ](u j ). (50)

In particular, g ∈ C1(∏n
j=1(−τ j ,+∞)) with:

∂g

∂u j
(u) = 2

∥∥a∗, j
∥∥2
2 (u j − c j )χ[−τ j ,c j ](u j ) (51)

for all u ∈∏n
j=1(−τ j ,+∞).
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Proof Obviously, P is a projection of
∏n

j=1[−τ j ,+∞) onto Q(c). For all j =
1, . . . ,m,

argmin−τ j≤v j≤u j

∥∥a∗, j
∥∥2
2 (v j − c j )

2 =
{
u j if − τ j ≤ u j ≤ c j ,

c j otherwise
= (Pu) j .

Hence,

g(u) = min
v∈Q(u)

hG(v) =
m∑

j=1
min−τ j≤v j≤u j

∥∥a∗, j
∥∥2
2 (v j − c j )

2

=
m∑

j=1

∥∥a∗, j
∥∥2
2 ((Pu) j − c j )

2 = hG(Pu).

The explicit definition of Pu gives (50) and (51). The differentiability and formula
(51) are obvious by the expression (50) of g. ��
Remark 3.18 As a consequence of Theorem 3.17,

p∗ = g(0) =
m∑

j=1

∥∥a∗, j
∥∥2
2

(
−τ j + |〈b, a∗, j 〉|∥∥a∗, j

∥∥2
2

)2
χ[−τ j ,c j ](0).

Then, observe that:

− τ j ≤ 0 ≤ −τ j + |〈b, a∗, j 〉|∥∥a∗, j
∥∥2
2

⇐⇒ 0 ≤ τ j ≤ |〈b, a∗, j 〉|∥∥a∗, j
∥∥2
2

, (52)

so that:

p∗ =
m∑

j=1

∥∥a∗, j
∥∥2
2

(
−τ j + |〈b, a∗, j 〉|∥∥a∗, j

∥∥2
2

)2
χ[

0,
|〈b,a∗, j 〉|
‖a∗, j‖22

](τ j ).

Theorem 3.19 Under the notation of this subsection, the vector λ# ∈ [0,+∞)m given
by

λ#j = 2
∥∥a∗, j

∥∥2
2

(
|〈b, a∗, j 〉|∥∥a∗, j

∥∥2
2

− τ j

)+

defines a vector of Lagrange multipliers for (46).

Proof We apply (51) to u = 0 and use (52). Namely,

t = p∗ + 〈∇g(0), u〉
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is the tangent hyperplane of g in u = 0, which is also the hyperplane that separatesA
and B. The direction of this hyperplane is (∇g(0),−1), so that:

λ# = −∇g(0),

i.e. the assertion. ��
Remark 3.20 As far as the original problem (28) with m ≤ n is concerned, we get
the Lagrange multipliers for free by Theorem 3.19 simply observing that if A =
(a∗1| . . . |a∗m |0| . . . |0) ∈ Rm×n , A′ = (a∗1| . . . |a∗m) and x = (x ′, x ′′) ∈ Rm×Rn−m ,
then

min
x∈Rn

‖Ax − b‖22 +
n∑

j=1
λ j (|x j | − τ j ) = min

x ′∈Rm

∥∥A′x ′ − b
∥∥2
2 +

m∑

j=1
λ j (|x ′j | − τ j )+

+ min
x ′′∈Rn−m

n∑

j=m+1
λ j (|x j | − τ j )

︸ ︷︷ ︸
=

−
n∑

j=m+1
λ j τ j ,

so that, if λ# ∈ Rm defines a vector of Lagrange multipliers for (46), then (λ#|0) ∈
Rm ×Rn−m defines a vector of Lagrange multipliers for (28).

3.5 Explicit Solution

The conditions |x j | ≤ τ j are equivalent to x2j ≤ τ 2j . Under this point of view, (28) can
be restated as:

minimize ‖Ax − b‖22 , x2j ≤ τ 2j , (53)

that can be interpreted as a weighted Tikhonov problem. Assume that λ# is a vector of
Lagrangemultipliers for (28) or, equivalently, for (53).We are interested in computing

x# = argmin
x

L(x, λ),

where L is the Lagrange function associated to (53), i.e.

L(x, λ#) = ‖Ax − b‖22 +
n∑

j=1
λ#j (x

2
j − τ 2j ).

Since L ∈ C∞(Rn) and it is convex, they satisfy ∇L(x, λ#) = 0, that is:

(AT A +�λ)x = AT b,

where �λ = diag(λ#1, ..., λ
#
n). Hence, x

# satisfies:

(AT A +�λ)x
# = AT b, (54)
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that is, x# ∈ (AT A +�λ)
−1AT b.

Remark 3.21 Another way to compute the Lagrange multipliers associated to (28), or
equivalently to (53), can be by means of strong duality condition, namely using:

λ# = argmax
λ�0 min

x
L(x, λ).

However, we stress that the explicit value of minx L(x, λ) is still hard to compute
since the implicit relation (54) satisfied by x# cannot be made explicit by means of
Dini’s theorem.

4 Considerations and Conclusions

4.1 Applications

Despite the apparently heavy assumptions on A, Theorem 3.19 has itself interesting
applications. For instance, it can be applied to denoising problems, where A = In×n ,
i.e. problems in the form:

minimize ‖x − b‖22 , x ∈ Rn, |x j | ≤ τ j , j = 1, . . . , n. (55)

By Theorem 3.19, λ# = (λ#j )
n
j=1 is a vector of Lagrange multipliers for (55), where:

λ#j = 2(|b j | − τ j )
+. (56)

We can also apply Theorem 3.19 to the discrete Fourier transform, i.e. given a noisy
fully-sampled signal b ∈ Cn , we want to find a vector z ∈ Cn such that ‖�z − b‖22
is minimized under the constrains |z j | ≤ τ j , where � ∈ Cn×n denotes the (complex)
DFT matrix. Since �∗� = In×n , we can apply Theorem 3.19 to deduce that a set of
Lagrange multipliers for this problem is:

λ#j = 2
(|〈b, φ∗, j 〉| − τ j

)+
,

( j = 1, . . . , n), being φ∗, j the j-th column of �.
The question that naturally arises in the applications is whether the dependence of

λ1, . . . , λn on τ1, . . . , τn can be a critical issue in the applicability of the theory. Indeed,
τ1, . . . , τn are upper bounds for |x1|, . . . , |xn| respectively, which are not available in
the practice. However, whenever it is possible to estimate these local upper bounds,
our result may lead to high-quality imaging perfomances. For instance, for denoising,
(56) may be approximated by replacing τ1, . . . , τn with the voxel values obtained by
applying a Gaussian filter (or other types of filtering) to the noisy image. This opens
the question of which filtering technique could lead to optimal approximations of the
τ1, . . . , τn depending on the field of research in which (28) can be implemented. We
intend to investigate this topic in the immediate future.
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4.2 Open Problems

As long as AT A is not a diagonal matrix, the geometries of the sets G and A of the
points satisfying (37) and (38) respectively, become more involved, along with the
possible casuistry. However, the general case in which AT A is not diagonal would
be of great importance in applications. Indeed, as long as Lagrange multipliers are
proved to act as effective tuning parameters, the behavior of Lagrange multipliers for
the weighted LASSO problem (13) in terms of voxel-wise estimates would provide a
way to control the tuning parameters via estimates of the τ j .

Another open problem is whether it is possible to apply the same procedure to
compute the Lagrange multipliers for (3). Clearly, the corresponding sets G andA lie
inR2 so that g : R→ R. Despite this simplifying fact, the set G is characterized by:

{
u = s(x)T x − τ,

t = ‖Ax − b‖22
for some x ∈ Rn,

where s(x) ∈ Rn is a vector such that diag(s(x) j ) ∈ sgn(x) and, in this case, u and
x belong to different spaces and a closed form for t = t(u) is even more difficult to
provide.

The possibility of using Lagrange multipliers as tuning parameters in disciplines
that apply LASSO problems, such as MRI, is still open. Lagrange multipliers for (6),
however, depend on its constraint:

‖Ax − b‖2 ≤ η.

Consequently, even if the utilization of Lagrange multipliers as tuning parameters
were feasible in applications, unless a method for accurately estimating η is provided,
the focus would simply shift from Lagrange multipliers to estimating the �2 norm
of the noise. It is therefore crucial to determine whether slight perturbations in these
estimates lead to significant variations, for instance, of the quality of retrieved images
in MRI.

Finally, we stress that it would be important to generalize (28) up to consider
different inner products on Rn . Namely, this is the situation that occurs in MRI when
the undersampling pattern is non-cartesian. Problem (13) in this case becomes:

min
x
‖Ax − b‖2W +

∑

j

λ j |x j |,

where

‖x‖W = xT WTWx (x ∈ Rn),

for a definite positive diagonal matrix W . Since this topic falls beyond the purpose
of this work, we limit ourselves to mention the very mathematical reason why the
weighted norm shall definitely replace the Euclidean norm over Rn when sampling
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is not performed on a cartesian grid. Indeed, non-cartesian sampling patterns require
appropriate discretizations of the Fourier transform integral. Roughly speaking,

f̂ (ξ) ≈

∑

j

f (x j )e
−2π iξ ·x j �x j = 〈 f , e2π iξ ·〉W ,

where �x j is the Lebesgue measure of an adequate neighborhood of x j , weighting
the contribution of the sample x j , and W is the diagonal matrix whose entries are√

�x j . The inversion formula of the Fourier transform shall be modified accordingly.
For instance, if the sampling follows a spiral trajectory,�x j shall be bigger the further
x j is from the origin, since this value serves as an avarage of f on a portion of sphere
that is larger as x j is far from the origin. All the above-mentioned problems will be
object of our future investigations.
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Appendix

Since we did not find a direct proof in the existing literature, we provide a formal proof
of the existence of the minimizer of the generalized LASSO problem:

arg min
x∈Rn

‖Ax − b‖22 + λ ‖�x‖1 , (57)
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where b ∈ Rm , A ∈ Rm×n and � ∈ RN×n .
We state the result in the general framework of finite-dimensional vector spaces:

we denote by X ,Y , Z three finite-dimension real vector spaces. We denote by 〈·, ·〉X
an inner product on X and with ‖·‖X the induced norm. Analogous notation will be
used for Y , whereas we set:

‖z‖p =
⎛

⎝
dim(Z)∑

j=1
|z j |p

⎞

⎠
1/p

, z ∈ Z

for 0 < p ≤ ∞. Recall that ‖·‖p is a Banach quasi-norm (meaning that there exists
Cp ≥ 1 such that ‖x + y‖p ≤ Cp(‖x‖p + ‖y‖p) for all x, y ∈ Z ) replaces the
triangular inequality for 0 < p < 1, and it is a norm for 1 ≤ p ≤ ∞.

Then, for given λ ≥ 0, b ∈ Y , A : X → Y and � : X → Z linear, we define for
all x ∈ X ,

f (x) = ‖Ax − b‖2Y + λ ‖�x‖p .

Theorem For all 0 < p ≤ ∞, λ ≥ 0 there exists x# ∈ X such that

inf
x∈X f (x) = f (x#).

In particular, the generalized LASSO problem (57) has at least one solution.

Proof Clearly, the function f (x) = ‖b‖2Y + λ ‖�x‖p attains its minimum in x# = 0.
Hence, we may assume that

Im(A) �= {0}.

Since Image(A) is a vector subspace of Y , for all b ∈ Y there exists a unique y# ∈
Image(A) such that inf y∈Y ‖y − b‖2Y =

∥∥y# − b
∥∥2
Y . By definition, y# = Ax# for

some x# ∈ X . Hence,

inf
x∈X ‖Ax − b‖2Y = inf

y∈Image(A)
‖y − b‖2Y = min

y∈Y ‖y − b‖22 =
∥∥∥Ax# − b

∥∥∥
2

Y

and the assertion follows also for the case in which λ = 0 or Image(B) = {0}.
We will thereby assume that Im(A) �= {0}, Im(B) �= {0} and λ > 0. Let L :=
ker(A) ∩ ker(B) = {x ∈ X : Ax = 0,�x = 0} and denote the closed ball of X of
center 0 and radius r > 0 by BX (0, r) = {x ∈ X : ‖x‖X ≤ r}. The rest of the proof
is devided into three graded steps.
Step 1. We prove that if L = {0}, then lim‖x‖X→+∞ f (x) = +∞.

By convexity of ‖·‖Y ,
‖y1‖2Y ≤ 2(‖y1 − y2‖2Y + ‖y2‖2Y )

for all y1, y2 ∈ Y . Therefore,

‖Ax − b‖22 ≥
1

2
‖Ax‖2Y − ‖b‖2Y ,
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so that:

‖Ax − b‖2Y + λ ‖�x‖p ≥ 1

2
‖Ax‖2Y + λ ‖�x‖p − ‖b‖2Y .

Let

SX := {x ∈ X : ‖x‖X = 1}

denote the unit sphere of X and set η := minx∈SX
1
2 ‖Ax‖2Y + λ ‖�x‖p. If η = 0,

then,

min
x∈SX

1

2
‖Ax‖2Y + λ ‖�x‖p = 0,

together with the assumptions on Im(A), Im(B) and λ, yields to the existence of
x# ∈ SX such that 1

2

∥∥Ax#
∥∥2
Y +λ

∥∥�x#
∥∥
p = 0. But ‖·‖Y and ‖·‖p are (quasi-)norms,

so x# = 0 /∈ SX . This is a contradiction. Hence, η > 0.
Next, for ‖x‖X > 1, we have:

1

2
‖Ax‖2Y + λ ‖φx‖p − ‖b‖2Y =

1

2
‖x‖2X

∥∥∥∥A
x

‖x‖X

∥∥∥∥
2

Y
+ λ ‖x‖X

∥∥∥∥�
x

‖x‖X

∥∥∥∥
p
− ‖b‖2Y

> ‖x‖X
(
1

2

∥∥∥∥A
x

‖x‖X

∥∥∥∥
2

Y
+ λ

∥∥∥∥B
x

‖x‖X

∥∥∥∥
p

)
− ‖b‖2Y

≥ η ‖x‖X − ‖b‖2Y .

Therefore, for all x ∈ X such that ‖x‖X > 1,

f (x) = ‖Ax − b‖2Y + λ ‖�x‖p > η ‖x‖X + ‖b‖2Y
and the assertion follows, since η > 0 implies that the right hand-side goes to +∞ as
‖x‖X →+∞.
Step 2. We prove the assertion for L = {0}.

Let m := infx∈X f (x). By Step 1, there exist R > 0 such that f (x) > m + 1 for
‖x‖X > R. BX (0, R) is compact and convex, and infx∈X f (x) = inf x∈BX (0,R) f (x)
by definition of R. Let (x j ) j ⊆ BX (0, R) be a minimizing sequence. By compactness,
it admits a converging subsequence and, without loss of generality, we may assume
that lim j→+∞ x j = x# ∈ BX (0, R). By continuity, f (x#) = lim j→+∞ f (x j ) = m.
Step 3. We prove the assertion for L �= {0}.

Recall that X = L ⊕ L⊥, where the orthogonality is defined with respect to the
inner product 〈·, ·〉X . By definition of direct sum, for all x ∈ X there exist unique
x1 ∈ L and x2 ∈ L⊥ such that x = x1 + x2. Observe that since x1 ∈ L ,

f (x) = ‖Ax2 − b‖2Y + λ ‖�x2‖p = f (x2).
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In particular,

inf
x∈X f (x) = inf

x∈L⊥
f (x).

The restrictions of A and � to L⊥ are linear mappings between vector spaces. We
denote them with A|L⊥L⊥ → Y and �|L⊥ : L⊥ → Z respectively and set f |L⊥ :
L⊥ → Y as the restriction of f to L⊥. Obviously,

f |L⊥(x) = ∥∥A|L⊥x − b
∥∥2
Y + λ

∥∥�|L⊥x
∥∥
p = f (x)

for all x ∈ L⊥, so that:

inf
x∈X f (x) = inf

x∈L⊥
f (x) = inf

x∈L⊥
f |L⊥(x).

Obviously,

L⊥ := ker(A|L⊥) ∩ ker(�|L⊥) = ker(A) ∩ ker(B) ∩ L⊥ = L ∩ L⊥ = {0}.

Therefore, by Step 2, it follows that there exists x# ∈ L⊥ such that:

inf
x∈L⊥

f |L⊥(x) = f |L⊥(x#).

This implies that:

inf
x∈X f (x) = f |L⊥(x#) = f (x#),

since x# ∈ L⊥. ��
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