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Abstract
In this paper, we address an optimal distributed control problem for a non-local model
of phase-field type, describing the evolution of tumour cells in presence of a nutrient.
The model couples a non-local and viscous Cahn–Hilliard equation for the phase
parameter with a reaction-diffusion equation for the nutrient. The optimal control
problem aims at finding a therapy, encoded as a source term in the system, both in
the form of radiotherapy and chemotherapy, which could lead to the evolution of the
phase variable towards a desired final target. First, we prove strong well-posedness
for the system of non-linear partial differential equations. In particular, due to the
presence of a viscous regularisation, we can also consider double-well potentials of
singular type and cross-diffusion terms related to the effects of chemotaxis. Moreover,
the particular structure of the reaction terms allows us to prove new regularity results
for this kind of system. Then, turning to the optimal control problem, we prove the
existence of an optimal therapy and, by studying Fréchet-differentiability properties
of the control-to-state operator and the corresponding adjoint system, we obtain the
first-order necessary optimality conditions.

Keywords Non-local Cahn-Hilliard equation · Well-posedness · Regularity of
solutions · Optimal distributed control · Singular potential · Tumour growth
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1 Introduction

In recent years the mathematical modelling community has devoted much attention
towards the understanding of intrinsic phenomena behind tumour growth, as well
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as the possibility of simulating medical treatments, which could drive the evolution
of tumours. Without being by any means exhaustive, we cite [3, 4, 13, 37, 38] and
references therein. Regarding the mathematical analysis of these models, the main
questions concern not only well-posedness, regularity and long-time behaviour of
solutions, but also related issues such as optimal control or parameter identification
problems, see for example [1, 5, 12, 29, 30, 43].

In the present work, we consider a diffuse interface model, which is a non-local
and viscous variant of the model originally introduced in [34]. We start by recalling
the original model in [34], which can be written in the following form in � × (0, T ):

∂tϕ = div(m(ϕ)∇μ) + P(ϕ)(σ + χ(1 − ϕ) − μ), (1.1)

μ = AF ′(ϕ) − B�ϕ − χσ, (1.2)

∂tσ = div(n(ϕ)∇(σ + χ(1 − ϕ))) − P(ϕ)(σ + χ(1 − ϕ) − μ), (1.3)

together with homogenous Neumann boundary conditions and initial conditions. The
main variable of the model is ϕ, a phase-field which represents the difference in
volume fractions between tumour cells and healthy cells coexisting in the spatial
domain� ⊆ R

N , N = 2, 3. Physically, ϕ should assume only values between−1 and
1, where ϕ � 1 is identified as the tumour phase and ϕ � −1 as the healthy phase. As
a phase-field approximation, ϕ is free to assume values in (−1, 1), corresponding to
a mixture of the two cell types; however, the interfacial region is generally kept small
through an appropriate parameter. The evolving tumour region is, then, recovered
as a level set of ϕ at values close to 1. Besides being easier to deal with from a
numerical point of view, one of the main advantages of diffuse interface models, when
compared to free-boundary ones, where ϕ would assume only the values −1 or 1, is
the possibility of accounting for topological changes in the tumour mass, which can be
quite common in certain stages of its evolution. The other variable σ of the system is
related to the concentration of a nutrient in the extracellular water, such as oxygen or
glucose. The idea is that tumour cells proliferate by absorbing such substance, whereas
the concentration of nutrient consequently varies depending on the areas in which the
tumour evolves. Also in this case, σ should physically be between 0 and 1, where
σ � 0 represents low concentrations of nutrient and σ � 1 high ones. In particular, ϕ
satisfies a Cahn-Hilliard equation, which is well-suited in describing phase-separation
phenomena (see [39] and references therein), while the nutrient variable σ satisfies
a reaction-diffusion equation, and the two equations are coupled through an explicit
reaction term, which models the interaction between nutrient and evolving tumour.
We also account for another coupling term, associated with the parameter χ ≥ 0, that
is responsible for the chemotaxis phenomenon, which concerns the natural movement
of tumour cells towards regions with higher concentrations of nutrient.

As we briefly said at the beginning, we intend to consider a non-local and viscous
variant of the system (1.1)–(1.3). Regarding the non-local aspect of the model, this
is achieved by substituting the local term −B�ϕ with one involving a convolution
operatorwith a symmetric kernel J , possibly accounting formore complex interactions
between cells, involving long-range competition. In this way, ϕ satisfies a non-local
Cahn-Hilliard equation (see [26, 31]), which can be seen as an approximation of the
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local one, when the kernel J is suitably peaked around zero (see [14–16]). Analysis
and application of non-local phase-field models on tumour growth phenomena is still
flourishing; we just mention some interesting works in this direction [24, 25, 43]. The
second modification applied to the original model is the addition of a viscosity term
τϕt in the equation for the chemical potential μ. Physically, it can be interpreted as
a further dissipation acting on the system, coming from internal frictions (see [40]).
From the mathematical point of view, however, it acts as a regularising term, since
it allows some additional regularity estimates. Moreover, we also add two external
sources u and v, which will then represent possible therapies in our optimal control
problem.

In its most general form, the model that we are going to analyse is the following:

∂tϕ = div(m(ϕ)∇μ) + P(ϕ)(σ + χ(1 − ϕ) − μ) − h(ϕ)u in QT , (1.4)

μ = τ∂tϕ + AF ′(ϕ) + Baϕ − B J ∗ ϕ − χσ in QT , (1.5)

∂tσ = div(n(ϕ)∇(σ + χ(1 − ϕ))) − P(ϕ)(σ + χ(1 − ϕ) − μ) + v in QT , (1.6)

where T > 0 is a fixed final time, � ⊂ R
N , N = 2, 3, is an open bounded suffi-

ciently smooth domain and QT = � × (0, T ). We complement it with the following
homogeneous Neumann boundary conditions and initial conditions:

m(ϕ)∂nμ = n(ϕ)∂n(σ + χ(1 − ϕ)) = 0 on ∂� × (0, T ), (1.7)

ϕ(0) = ϕ0, σ (0) = σ0 in �, (1.8)

where n is the exterior normal unit vector to ∂�.
We now briefly introduce all the parameters that appear in the system. The auxiliary

variable μ can be interpreted as a chemical potential in the Cahn-Hilliard equation,
and, up to the additional viscosity term τ∂tϕ, with τ > 0, it is the variational derivative
of the non-local free energy of Ginzburg-Landau type

E(ϕ, σ ) =
∫

�

AF(ϕ) dx +
∫

�

∫
�

B

4
J (x − y)(ϕ(x) − ϕ(y))2 dx dy

+
∫

�

1

2
|σ |2 + χσ(1 − ϕ) dx .

The function F is generally a potential of double-well type, possessing two global
minima in correspondence of the two pure phases −1 and 1. In most applications,
typical choices of such potentials are a regular or polynomial one, a singular or log-
arithmic one, with derivatives exploding at ±1, or a double-obstacle one, which are
respectively of the following form:
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Freg(s) = 1

4
(1 − s2)2, s ∈ R,

Fsing(s) = θ

2

[
(1 + s) log(1 + s) + (1 − s) log(1 − s)

] − θ0

2
s2, s ∈ (−1, 1), 0 < θ < θ0,

Fobst(s) =
{

c(1 − s2) if s ∈ [−1, 1],
+∞ otherwise,

c > 0.

Actually, the global minima of the logarithmic potential Fsing are not exactly in−1 and
1, but in two intermediate values, which can be sufficiently close to them, depending
on the choice of the parameters θ and θ0. In this paper, we will consider only potentials
of regular or singular type, excluding the double obstacle case, which can generally
be treated with slightly different methods, as in [10, 45]. From a physical perspective,
potentials of singular type aremore fitting, since they can effectively limit the evolution
of ϕ in the interval [−1, 1]; in this case it is crucial to prove the so-called separation
property, see the recent work [26] for a detailed overview of the matter. This property
is related to the fact that, during its evolution, the phase variable stays strictly inside
the physical interval (−1, 1), which implies that the derivative of the potential does not
actually blow-up. This is to be expected, since the variational structure of the system
drives the evolution of ϕ towards the minima of the potential, which, in case of the
singular one, are strictly inside the interval. In general this property is not always easy to
prove and its validity is still an open problem in some situations, see however the recent
works [32, 41] for substantial advances in the three dimensional non-local case. When
considering a regular potential, instead, this property actually means that the phase
parameter stays globally bounded during its evolution. Here, thanks to the presence of
the viscosity term, we are able to simplify these arguments and consider both regular
and singular potentials, even in presence of reaction terms and sources. Proving this
kind of property is important since it allows to effectively treat the singular potential as
a regular one and compute its derivatives, and this is crucial to prove higher regularity
for the solution of the system. The second term in the energy stands as a non-local
approximation of the local term B|∇ϕ|2/2, which would penalise steep transitions in
the interfaces between the two phases. The convolution kernel J is generally taken
of Newton or Bessel type; however, when studying non-local to local asymptotics of
Cahn-Hilliard equations, one can also consider families of kernels suitably peaking
around zero, see for instance [14–16]. Finally, the parameters A > 0 and B > 0 are
related to the width of the diffuse interface between the two phases, and are generally
of the form A = 1/ε and B = ε, for ε � 1; whereas the parameter χ ≥ 0 and its
corresponding term are related to the chemotactic effect.

Going back to the system (1.4)–(1.8), the functions m(ϕ) and n(ϕ) are called
mobility functions and regulate the diffusion processes of the two variables. Generally,
they can be constant or bounded both above and below, but in some cases, especially
when F is singular, m can be degenerate on ±1. For instance, when dealing with
the logarithmic potential Fsing, one can choose m(s) = 1 − s2, in order to further
enforce the physical condition and to compensate the singularities of the potential,
see [19, 20, 23]. The function P is a proliferation function that calibrates the strength
of the reaction terms, which, in turn, are written in this form due to some chemical
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phenomenological laws (see [34]). Typically, P can be of the form

P(s) =

⎧⎪⎨
⎪⎩

P0 if s ≤ −1,
P1−P0

2 (s + 1) + P0 if − 1 < s < 1,

P1 if s ≥ 1,

so that P(−1) = P0 and P(1) = P1, with 0 ≤ P0 < P1, i.e. the proliferation is faster
in the tumour phase. Generally, one takes P0 = 0 and P1 = 1. Note that, for technical
reasons, we will be forced to assume that P is strictly positive, albeit still possibly
very close to zero. This will be needed in proving the existence of strong solutions
to (1.4)–(1.8); in case of a singular potential, it will be used also for weak solutions
(see Remark 2.5 below). However, this is not unprecedented; for example, the same
hypothesis was needed in [5] to study long-time dynamics of a similar tumour growth
model. Observe also that this kind of reaction term P(ϕ)(σ + χ(1 − ϕ) − μ), with
opposite signs in (1.4) and (1.6), implies the conservation of mass for the sum of ϕ

and σ , in absence of external sources (i.e. u = v = 0). Indeed, by multiplying (1.4)
and (1.6) by 1, integrating over � and summing up, we obtain the identity:

d

dt

∫
�

ϕ(t) + σ(t) dx =
∫

�

(−h(ϕ(t))u + v) dx .

Finally, the external sources u and v are the controls that we are going to use in our
optimal control problem to direct the evolution of the system towards a certain objec-
tive. They can be interpreted as external therapies acting on the tumour. In particular,
u can represent a radiotherapy directly acting on the proliferation of the tumour cells,
whereas v can be seen as a chemotherapy acting on the tumour through drugs. The
functionh(ϕ) is an additional parameter that can be used to distribute the radiotherapy
through particular strategies, see for example [7, 28].

Regarding thewell-posedness and regularity of this kind of system, there are already
many contributions to the local version of the model; we just cite [8, 18, 21]. On the
non-local model, there are fewer ones, but we recall [23], where the authors showed
well-posedness for the system without viscosity (i.e. τ = 0) in the case of a regular
potential and bounded mobility or of a singular potential and degenerate mobility.
Then, for the same system, but without chemotaxis (i.e. χ = 0), in [24] the authors
proved strong regularities for the solutions of the system, when considering singular
potentials and degeneratemobility. Finally, we also cite [44], where, with an additional
regularising termα∂tμ in (1.4) and τ > 0, the authors proved strongwell-posedness for
a similar system with full chemotaxis, constant mobility and both regular and singular
potentials. However, they consider a different reaction term, introduced by Garcke et
al. (see [27, 30]) through thermodynamic and kinetic considerations. Moreover, they
also perform an asymptotic analysis for α → 0, but they are not able to recover the
full strong regularity for the solutions, and only for regular potentials, if part of the
chemotactic effect is neglected. Regarding these themes, the main novelty of this work
is to prove strong well-posedness for (1.4)–(1.8), in the case of constant mobilities,
with full chemotaxis, positive viscosity and both regular and singular potentials, i.e. for
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the system:

∂tϕ = m�μ + P(ϕ)(σ + χ(1 − ϕ) − μ) − h(ϕ)u in QT , (1.9)

μ = τ∂tϕ + AF ′(ϕ) + Baϕ − B J ∗ ϕ − χσ in QT , (1.10)

∂tσ = n(�σ − χ�ϕ) − P(ϕ)(σ + χ(1 − ϕ) − μ) + v in QT , (1.11)

m∂nμ = n∂n(σ − χϕ) = 0 on ∂� × (0, T ), (1.12)

ϕ(0) = ϕ0, σ (0) = σ0 in �, (1.13)

where we take m(ϕ) ≡ m > 0 and n(ϕ) ≡ n > 0 constant. This can be done without
resorting to the additional regularisationα∂tμ, used in [44], which, in general, has little
physical meaning. The crucial point is that our different reaction term, with respect
to [44], together with the additional assumption that P is strictly positive, still allows
us to prove some further regularity on μ. For more details, see Theorems 2.3, 3.5 and
3.7 below.

The other main novelty, as well as the key objective of this paper, is the analysis
of an optimal distributed control problem on a non-local tumour growth model, with
different therapy techniques. Indeed, up to the author’s knowledge, this is the first
time that such a problem is considered for tumour growth phenomena in a non-local
framework (see for instance [22] for other optimal control problems in non-local phase-
field systems related to different applications).While we can countmany contributions
in the local case (see for instance [6, 12, 28]), in our setting we only have some
applications to parameter identification (see [43]) or inverse identification problems
(see [24]). In general, optimal control problems are being widely studied in applied
mathematics related to bio-medical issues due to their applicability in predicting and
directing possible effects of therapies, we cite for instance [11, 42]. In the present
work, we consider the following optimal control problem:
(CP) Minimise the cost functional

J (ϕ, σ, u, v) = α�

2

∫
�

|ϕ(T ) − ϕ�|2 dx + αQ

2

∫ T

0

∫
�

|ϕ − ϕQ |2 dx dt

+β�

2

∫
�

|σ(T ) − σ�|2 dx + βQ

2

∫ T

0

∫
�

|σ − σQ |2 dx dt

+αu

2

∫ T

0

∫
�

|u|2 dx dt + βv

2

∫ T

0

∫
�

|v|2 dx dt, (1.14)

subject to the control constraints

u ∈ Uad := {u ∈ L∞(QT ) ∩ H1(0, T ; L2(�)) | umin ≤ u ≤ umax a.e. in QT ,

‖u‖H1(0,T ;L2(�)) ≤ M},
v ∈ Vad := {v ∈ L∞(QT ) | vmin ≤ v ≤ vmax a.e. in QT },

(1.15)

and to the state system (1.9)-(1.13) with constant mobilities.
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Here α�, αQ, β�, βQ, αu, βv are non-negative parameters that can be used to select
which targets have to be privileged. Some, but not all of them, can clearly be equal to
zero, and their relative ratios determine which strategy is being pursued. The function
ϕ� is a final target for the tumour distribution, for instance one that could be suitable
for surgery or possibly one that, after some time, stabilises on a certain shape; whereas
ϕQ is a desired evolution. In the same way, σ� and σQ are respectively a final target
and a desired evolution for the nutrient. Finally, the last two terms in the cost functional
penalise large use of radiotherapy or drugs, which could still harm the patient. The aim
of the optimal control problem is, then, to find the best therapies u and v, which can
lead the evolution of the tumour to the desired targets. Indeed, this is a quite standard
tracking-type cost functional, which mostly measures the L2 distance between the
current solutions and some fixed targets. Regarding (CP), in Theorem 4.2 we show the
existence of an optimal pair (u, v). Then, through careful analysis of the control-to-
state operator and the introduction of the adjoint system, in Theorem 4.8 we prove the
first-order necessary optimality conditions, which have to be satisfied by the optimal
pair.Wewould like to stress that proving global boundedness of the solution in the right
function spaces, aswell as the separation property for the tumour phase parameter, is of
utmost importance when analysing the control-to-state operator. On this theme, let us
point out that in Theorem 4.4 we prove the Fréchet differentiability of said operator.
While Gâteaux-differentiability would be sufficient to derive first-order necessary
conditions,we choose to prove a stronger notion of differentiability since our regularity
setting allows to get it with relative ease. The point is that the key step in getting higher
regularity for the solution is proving the separation property, and, once one has that,
all the rest follows practically for free. However, one cannot do without the separation
property, even if resorting to Gâteaux-differentiability, since for example it is needed
for the first continuous dependence estimate, as well as the well-posedness of the
linearised system (see Theorems 3.7 and 4.3). Finally, let us remark that one could
go further with the study of the optimal control problem (CP) and try to prove also
second-order sufficient conditions, as done for instance in [12]. While very interesting
from an applicative point of view, this is presently out of the scope of this paper and
is left to further investigations.

The plan of the paper is the following. In Sect. 2, we introduce the notation and
the main hypotheses that we are going to use throughout the paper, and we also prove
the existence of weak solutions to (1.4)–(1.8). In Sect. 3, we focus on strong well-
posedness of the systemwith constantmobilities, by proving regularity and continuous
dependence results. In Sect. 4, we shift our attention to the optimal control problem, by
first proving an existence result. Then, we introduce the linearised system and prove
the Fréchet-differentiability of the control-to-state operator. Finally, after studying the
adjoint system, we shall prove the main result of the paper, namely the first-order
necessary optimality conditions for (CP).

2 Preliminaries and Existence of Weak Solutions

We now introduce some notation that will be used throughout the paper. We denote
with � ⊂ R

N , N = 2, 3 an open bounded domain with boundary ∂� of class C2,
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whereas T > 0 is a fixed final time. The C2 requirement for ∂� is needed for elliptic
regularity estimates in Sect. 3, while for weak solutions one can just assume that ∂�

is Lipschitz. For convenience, we also denote Qt = � × (0, t), for any t ∈ (0, T ].
Next, we recall the usual conventions regarding the Hilbertian triplet used in this

context. If we define

H = L2(�), V = H1(�), W = {u ∈ H2(�) | ∂nu = 0 on ∂�},

then we have the continuous and dense embeddings:

W ↪→ V ↪→ H ∼= H∗ ↪→ V ∗ ↪→ W ∗.

We denote by 〈·, ·〉V the duality pairing between V ∗ and V and by (·, ·)H the scalar
product in H . Regarding Lebesgue and Sobolev spaces, we will use the notation ‖·‖p

for the L p(�)-norm and ‖·‖k,p for the W k,p(�)-norm, with k ∈ N and 1 ≤ p ≤ ∞.
Moreover, we observe that, by elliptic regularity theory, an equivalent norm on W is

‖u‖2W = ‖u‖2H + ‖�u‖2H .

Finally, we recall the Riesz isomorphism N : V → V ∗:

〈Nu, v〉V :=
∫

�

∇u · ∇v + uv dx ∀u, v ∈ V .

It is well-known that for u ∈ W we haveNu = −�u +u ∈ H and that the restriction
ofN toW is an isomorphism fromW to H . Additionally, by the spectral theorem, there
exists a sequence of eigenvalues 0 < λ1 ≤ λ2 ≤ . . . , with λ j → +∞, and a family of
eigenfunctions w j ∈ W such that Nw j = λ jw j , which forms an orthonormal basis
in H and an orthogonal basis in V . In particular, w1 is constant.

Finally, we recall some useful inequalities that will be used throughout the paper:

• Gagliardo-Nirenberg inequality. Let � ⊂ R
N bounded Lipschitz, m ∈ N, 1 ≤

r , q ≤ ∞, j ∈ N with 0 ≤ j ≤ m and j/m ≤ α ≤ 1 such that

1

p
= j

N
+

(
1

r
− m

N

)
α + 1 − α

q
,

then

‖D j f ‖L p(�) ≤ C ‖ f ‖α
W m,r (�)‖ f ‖1−α

Lq (�).

In particular, we recall the following versions with N = 2, 3:

‖ f ‖L4(�) ≤ C‖ f ‖1/2
H1(�)

‖ f ‖1/2
L2(�)

if N = 2,

‖ f ‖L3(�) ≤ C‖ f ‖1/2
H1(�)

‖ f ‖1/2
L2(�)

if N = 3.
(2.1)
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• Agmon’s inequality. Let � ⊂ R
N bounded Lipschitz, 0 ≤ k1 < N/2 < k2 and

0 < α < 1 such that N/2 = αk1 + (1 − α)k2, then

‖ f ‖L∞(�) ≤ C ‖ f ‖α

Hk1 (�)
‖ f ‖1−α

Hk2 (�)
.

In particular, we recall the following versions with N = 2, 3:

‖ f ‖L∞(�) ≤ C‖ f ‖1/2
H1(�)

‖ f ‖1/2
L2(�)

if N = 2,

‖ f ‖L∞(�) ≤ C‖ f ‖1/2
H2(�)

‖ f ‖1/2
H1(�)

if N = 3.
(2.2)

Note that all constants C > 0 mentioned above depend only on the measures of the
sets and the parameters, not on the actual functions.

Nowwe introduce the structural assumptions on the parameters of our model (1.4)–
(1.8):

A1. A, B > 0, τ > 0, χ ≥ 0.
A2. J ∈ W 1,1

loc (RN ) is a symmetric convolution kernel, namely J (z) = J (−z) for
any z ∈ R

N . Moreover, we suppose that

a(x) := (J ∗ 1)(x) =
∫

�

J (x − y) dy ≥ 0 a.e. x ∈ �,

and also that

a∗ := sup
x∈�

∫
�

|J (x − y)| dy < +∞, b := sup
x∈�

∫
�

|∇ J (x − y)| dy < +∞.

A3. F : R → R ∪ {+∞} can be written as

F = F1 + F2,

where F1 is such that the effective domain of F1 is dom F1 = [−l, l], for
some l ∈ (0,+∞], and it is extended by +∞ outside of [−l, l]. Moreover
F1 ∈ C2((−l, l))∩C0([−l, l]) and it is convex, i.e. F ′′

1 (s) ≥ 0 for any s ∈ (−l, l).
Conversely, F2 ∈ C2(R), with F ′

2 : R → R Lipschitz and F ′
2(0) = 0.

A4. There exists c0 > 0 such that

AF ′′(s) + Ba(x) ≥ c0 ∀s ∈ (−l, l) a.e. x ∈ �.

A5. P ∈ C0(R) ∩ L∞(R) and there exists P0 > 0 such that

P(s) ≥ P0 > 0 ∀s ∈ R.

Moreover, call P∞ := ‖P‖L∞(R).
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A6. m, n ∈ C0(R) and there exist m, m, n, n ∈ R+ such that:

0 < m ≤ m(s) ≤ m < +∞ and 0 < n ≤ n(s) ≤ n < +∞ ∀s ∈ R.

A7. u ∈ L2(0, T ; H), h ∈ C0 ∩ L∞(R) and v ∈ L2(0, T ; V ∗). Moreover, call
h∞ := ‖h‖L∞(R).

A8. ϕ0 ∈ V with F(ϕ0) ∈ L1(�) and σ0 ∈ H .

Remark 2.1 Regarding hypotheses A3 and A4 on the potential, we wish to point out
the following aspects. Firstly, l = 1 corresponds to the physical case and here F can be
taken as the logarithmic potential Fsing. Moreover, if l = +∞, F is actually a regular
potential. Due to the strong hypothesisA5 on the proliferation function P , in principle
F could have any type of growth at infinity. However, by assuming polynomial growth
for F as in [23], one can relax the hypothesis on P . Indeed, P can have polynomial
growth up to a certain order and the hypothesis P0 > 0 can be avoided. This will be
more clear in Remark 2.4. Secondly, hypothesis A3 is needed to work with a Yosida
approximation of the singular potential within the proof. In particular, the logarithmic
singular potential shown before, and also the polynomial double-well, satisfy this
hypothesis.

Remark 2.2 Concerning hypothesis A2, instead, it is easily seen that Newton and
Bessel type kernels satisfy these requirements (see [2]). Another class of kernels
which satisfy A2 and A4 is for example the one used in [16] for non-local-to-local
asymptotics. Without going into the details, they are a class of kernels Jε, depending
on ε > 0, for which a∗

ε and bε are finite for any fixed ε, therefore Jε ∈ W 1,1
loc (RN ), but

they blow up to +∞ as ε → 0. In this way, also A4 is satisfied if ε is small enough.

Finally, we would like to stress that, in the following, we will extensively use the
symbol C > 0 to denote positive constants, which may change from line to line. They
will depend only on �, T , the parameters and on the norms of the fixed functions
introduced in hypotheses A1–A8 and possible subsequent ones. Sometimes, we will
also add subscripts on C to highlight some particular dependences of these constants.
Above all, when possible, we will focus on the dependence on the parameter τ , since
one may be interested in sending it to 0 in some future applications.

We can now start with the first result about existence of global weak solutions for
our tumour growth system (1.4)–(1.8).

Theorem 2.3 Under assumptions A1–A8, there exists a weak solution (ϕ, μ, σ ) to
(1.4)–(1.8), with

ϕ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ),

μ ∈ L2(0, T ; V ),

σ ∈ H1(0, T ; V ∗) ∩ L∞(0, T , H) ∩ L2(0, T ; V ),

which satisfies

ϕ(0) = ϕ0 in V and σ(0) = σ0 in H
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and the following variational formulation for a.e. t ∈ (0, T ) and for any ζ ∈ V :

(ϕt , ζ )H + (m(ϕ)∇μ,∇ζ )H = (P(ϕ)(σ + χ(1 − ϕ) − μ) − h(ϕ)u, ζ )H , (2.3)

(μ, ζ )H = τ(ϕt , ζ )H + (AF ′(ϕ) + Baϕ − B J ∗ ϕ − χσ, ζ )H , (2.4)

〈σt , ζ 〉V + (n(ϕ)∇(σ + χ(1 − ϕ)),∇ζ )H

= −(P(ϕ)(σ + χ(1 − ϕ) − μ), ζ )H + 〈v, ζ 〉V . (2.5)

In particular, there exists a constant C > 0, depending only on the parameters of the
model and on the data ϕ0, σ0 and u, v, such that:

τ‖ϕ‖H1(0,T ;H)∩L∞(0,T ,V ) + ‖F(ϕ)‖L∞(0,T ;L1(�)) + ‖μ‖L2(0,T ;V )

+ ‖σ‖H1(0,T ;V ∗)∩L∞(0,T ,H)∩L2(0,T ;V ) ≤ C .
(2.6)

Remark 2.4 In the case of a regular potential of polynomial growth, one can still prove
Theorem 2.3 with less restricting hypotheses on the function P . Indeed, following
[23], one can replace hypotheses A3, A5 and A7, respectively, with the following:

A3’. F ∈ C2(R) and there exist c1 ∈ R and c2 >
χ2

A such that

F(s) ≥ c2|s|2 − c1 ∀s ∈ R.

Moreover, there exist c3 > 0 and c4 ≥ 0 such that

|F ′(s)| ≤ c3F(s) + c4 ∀s ∈ R.

A5’. P ∈ C0(R) and there exist c5 > 0 and q ∈ [1, 4] such that

0 ≤ P(s) ≤ c5(1 + |s|q) ∀s ∈ R.

A7’. u ∈ L∞(QT ), h ∈ C0 ∩ L∞(R) and v ∈ L2(0, T ; V ∗).

In the following Remark 2.7, we provide some hints as to how to modify the proof in
this case.

Remark 2.5 Before starting the proof, we would like to briefly comment our strategy.
As usual with Cahn-Hilliard type equations, the main issue is to recover in some
way also an L2 bound on μ from the standard energy estimate used in this context.
This is generally done by means of an estimate on the mean value of μ, which then
allows the application of Poincaré-Wirtinger inequality. To do this, one either starts
studying the evolution of the mean value of ϕ, as in standard Cahn-Hilliard-Oono
equations (see for instance [17, 33, 35]), or directly imposes some growth conditions
on the potential F , as in [23]. In our framework, both these possibilities have to be
ruled out, since our reaction term is too complex to give some information on ϕ�(t)
and we need uniform estimates independent on the regularisation of our possibly
singular potential. Therefore, hypothesisA5 on the strict positivity of P , as well as its
boundedness, comes into play, together with the structure of our reaction term. Both
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properties of the proliferation function are needed already in the first energy estimate.
Clearly, this is an alternative way to the additional regularisation αμt introduced in
[44].

Proof of Theorem 2.3 For simplicity of exposition, we proceed with formal a priori
estimates. However, we would like to give some details on how to construct a nice
approximation framework. First, one needs to approximate the possibly singular poten-
tial with a one-parameter family of regular ones. By hypothesis A3, we can employ a
Yosida approximation of ∂ F1, where with this symbol we denote the subdifferential
in the sense of convex analysis, which coincides with F ′

1 inside (−l, l). Moreover, we
recall that we have extended F1 to +∞ outside [−l, l], so that it is proper, convex and
lower-semicontinuous by hypothesis. Then, we can approximate ∂ F1 with a family

F ′
1,λ : R → R, F ′

1,λ := I − (I − λ∂ F1)
−1

λ
, λ > 0,

where I stands for the identity operator. By the properties of the regularisation, we
know that F ′

1,λ is 1/λ-Lipschitz for any λ > 0. Then, we employ the Moreau regular-
isation of F1 by defining

F1,λ : R → R, F1,λ(s) := F1(0) +
∫ s

0
F ′
1,λ(r) dr , s ∈ R.

Finally, we set

Fλ = F1,λ + F2.

The second level of approximation is a Faedo-Galerkin discretisation schemewith dis-
crete spaces Wn , generated by the eigenvectors of the operatorN . Note that, within this
discretisation, all eigenfunctions satisfy homogeneousNeumann boundary conditions,
and this turns useful when integration by parts is needed in the following estimates. For
more details about the fully approximated problem, we refer the reader to the proof of
[44, Theorem 2.1]. Here, we assume to be working with both approximations, and we
show uniform estimates on the variables, independent of the regularisation parameters.
For simplicity, however, we suppress the dependences on these additional parameters.

For the main a priori energy estimate, we substitute ζ = μ in (2.3), ζ = −ϕt in
(2.4) and ζ = σ + χ(1 − ϕ) in (2.5). Note that all these substitutions are allowed
in the discretisation framework. By adding the resulting identities together and using
standard results on differentiation in Bochner spaces, we get:

d

dt
E(t) + τ‖ϕt‖2H + ‖√m(ϕ)∇μ‖2H + ‖√n(ϕ)∇(σ + χ(1 − ϕ))‖2H
+ ‖√P(ϕ)(σ + χ(1 − ϕ) − μ))‖2H = −(h(ϕ)u, μ)H + 〈v, σ + χ(1 − ϕ)〉V ,

(2.7)
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where

E(t) :=
∫

�

AF(ϕ) + B

2
aϕ2 − B

2
(J ∗ ϕ)ϕ + σ 2

2
+ χσ(1 − ϕ) dx

:= E J (t) +
∫

�

AF(ϕ) + σ 2

2
+ χσ(1 − ϕ) dx,

with

E J (t) :=
∫

�

B

2
aϕ2 − B

2
(J ∗ ϕ)ϕ dx =

∫
�

∫
�

B

4
J (x − y)(ϕ(x) − ϕ(y))2 dx dy.

In particular, we used hypothesis A2 on the symmetry of J to get the corresponding
term in the expression of E J (t). Now, we can rewrite the term involving P(ϕ) and, by
using A5, Cauchy-Schwarz and Young’s inequalities with carefully chosen constants,
we can estimate it in the following way:

‖√P(ϕ)(σ + χ(1 − ϕ) − μ))‖2H
= (P(ϕ)μ,μ)H + (P(ϕ)(σ + χ(1 − ϕ)), μ)H

+ (P(ϕ)(σ + χ(1 − ϕ) − μ), σ + χ(1 − ϕ))H

≥ P0‖μ‖2H − 2P∞‖σ + χ(1 − ϕ)‖H ‖μ‖H − P∞‖σ + χ(1 − ϕ)‖2H
≥ P0

2
‖μ‖2H − C‖ϕ‖2H − C‖σ‖2H .

Then, we can also treat the terms on the right-hand side of (2.7) by means of Cauchy-
Schwarz and Young’s inequalities, together with hypothesis A7, indeed:

(h(ϕ)u, μ)H ≤ h∞‖u‖H ‖μ‖H ≤ P0

8
‖μ‖2H + C‖u‖2H ,

〈v, σ + χ(1 − ϕ)〉V ≤ ‖v‖V ∗‖σ + χ(1 − ϕ)‖V ≤ n

2
‖σ + χ(1 − ϕ)‖2V + C‖v‖2V ∗ .

Now, by usingA2 and Cauchy-Schwarz and Young’s inequalities, we can estimate the
energy E(t) from below as

E(t) = A
∫

�

F(ϕ) dx + B

2

≥0︷ ︸︸ ︷
‖√aϕ‖2H +1

2
‖σ‖2H −

∫
�

B

2
(J ∗ ϕ)ϕ dx +

∫
�

χ(1 − ϕ)σ dx

≥ A
∫

�

F(ϕ) dx + 1

2
‖σ‖2H − B

2
a∗‖ϕ‖2H − χ‖σ‖H ‖1 − ϕ‖H

≥ A
∫

�

F(ϕ) dx + 1

4
‖σ‖2H −

(
B

2
a∗ + χ2

)
‖ϕ‖2H − C,
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where C depends only on the measure of � and χ . In a similar way, one can also
estimate the initial energy E(0) from above as

E(0) ≤ A‖F(ϕ0)‖1 +
(

Ba∗ + χ2

2

)
‖ϕ0‖2H + ‖σ0‖2H ≤ C < +∞,

owing to assumptionA8. It may be useful to note that at the discretisation level, one has
to work with Fλ(�nϕ0), where �nϕ0 is the projection of ϕ0 onto the discrete spaces.
In this case, one has to use the fact that, by construction, Fλ as at most quadratic
growth and the hypothesis on ϕ0 ∈ H , together with the properties of projections.
Then, after passing to the limit in the Galerkin discretisation, one can also recover
an upper bound independent of λ, by using the fact that Fλ ≤ F by construction and
the hypothesis F(ϕ0) ∈ L1(�). For more details, see [44, Theorem 2.1]. From the
previous inequality and by using A6, we get:

d

dt

(
A

∫
�

F(ϕ) dx + 1

4
‖σ‖2H −

(
B

2
a∗ + χ2

)
‖ϕ‖2H

)
+ P0

2
‖μ‖2H

+ m‖∇μ‖2H + τ‖ϕt‖2H + n

2
‖∇(σ + χ(1 − ϕ))‖2H

≤ C‖ϕ‖2H + C‖σ‖2H + C‖u‖2H + C‖v‖2V ∗ + C .

(2.8)

Now, to compensate the negative term −( B
2 a∗ + χ2)‖ϕ‖2H , we substitute ζ = ϕ in

(2.3) and we multiply both sides by a constant M > 0 such that

M > Ba∗ + 2χ2.

Then, by using hypothesesA5,A6,A7 and Cauchy-Schwarz andYoung’s inequalities,
we get:

M

2

d

dt
‖ϕ‖2H = −M(m(ϕ)∇μ,∇ϕ)H + M(P(ϕ)(σ + χ(1 − ϕ) − μ), ϕ)H

− M(h(ϕ)u, ϕ)H

≤ m

4
‖∇μ‖2H + P0

8
‖μ‖2H + C‖∇ϕ‖2H + C‖σ‖2H + C‖ϕ‖2H + C‖u‖2H .

(2.9)

Finally, to compensate also the termC‖∇ϕ‖2H , we substitute ζ = −�ϕ in (1.5), which
is possible within Galerkin’s discretisation, and, integrating by parts, without getting
any extra boundary terms, due to the discrete spaces, we obtain:

(∇μ,∇ϕ)H = τ(∇ϕt ,∇ϕ)H + ((AF ′′(ϕ) + Ba)∇ϕ,∇ϕ)H

+ (B∇a ϕ,∇ϕ)H − (B∇ J ∗ ϕ,∇ϕ)H − χ(∇σ,∇ϕ)H .
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Next, we add and subtract χ2‖∇ϕ‖2 on the right-hand side, and by using A2, A4,
Cauchy-Schwarz and Young’s inequalities, we obtain that

c0‖∇ϕ‖2H + τ

2

d

dt
‖∇ϕ‖2H

≤ m

4
‖∇μ‖2H + n

4
‖∇(σ + χ(1 − ϕ))‖2H + C‖∇ϕ‖2H + C‖ϕ‖2H .

(2.10)

At this point, we can add together (2.8), (2.9) and (2.10) and integrate on (0, t), for
any t ∈ (0, T ) to get:

(
M

2
− B

2
a∗ − χ2

)
‖ϕ(t)‖2H + 1

4
‖σ(t)‖2H + A

∫
�

F(ϕ(t)) dx + τ

2
‖∇ϕ(t)‖2H

+ τ

∫ t

0
‖ϕt‖2H ds + P0

4

∫ t

0
‖μ‖2H ds + m

2

∫ t

0
‖∇μ‖2H ds

+ n

4

∫ t

0
‖∇(σ + χ(1 − ϕ))‖2H ds

≤ C E(0) + C
∫ T

0
‖ϕ‖2V ds + C

∫ T

0
‖σ‖2H ds + C

∫ T

0
‖u‖2H ds

+ C
∫ T

0
‖v‖2V ∗ ds + CT .

Now, we can apply Gronwall’s inequality and infer that

τ‖ϕ‖H1(0,T ;H)∩L∞(0,T ,V ) + ‖F(ϕ)‖L∞(0,T ;L1(�)) + ‖μ‖L2(0,T ;V )

+ ‖σ‖L∞(0,T ,H) + ‖σ + χ(1 − ϕ)‖L2(0,T ;V ) ≤ C,
(2.11)

where the constant C depends only on �, T and all the parameters introduced in
hypotheses A1–A8, but not on the Galerkin approximation parameter n. At this stage,
C can still depend on λ, but this dependence can be eliminated after passing to the
limit as n → +∞, as explained before. Moreover, it is straight-forwards to deduce
that also

‖σ‖L2(0,T ;V ) ≤ C .

Finally, by comparison in (1.6), from (2.11) it follows that

‖σ‖H1(0,T ;V ∗) ≤ C .

Note that, to be rigorous within Galerkin’s approximation, one would have to test (1.6)
for any ζ ∈ Wn and use the orthogonality properties of the eigenvectors ofN , in order
to recover the same estimate.

Now, all that remains to do is to pass to the limit in the approximation frame-
work. Indeed, by the uniform estimates found before, one can extract weakly and
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strongly convergent subsequences, that can be used to pass to the limit in the dis-
cretised variational form as n → +∞. Then, by weak lower-semicontinuity and
the properties of the Yosida approximation, one can recover uniform estimates in
λ and then pass to the limit as λ ↘ 0. This is done very similarly to [44, Theo-
rem 2.1], so we leave the details to the interested reader. Finally, regarding initial
data, we observe that ϕ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ↪→ C0w([0, T ]; V ) and
σ ∈ H1(0, T ; V ∗) ∩ L2(0, T ; V ) ↪→ C0([0, T ]; H) by standard results, so they
make sense respectively in V and H . This concludes the proof of Theorem 2.3. ��

Remark 2.6 In case of a singular potential, i.e. for l < +∞, the uniform boundedness
of F(ϕ) in L∞(0, T ; L1(�)) readily implies that |ϕ(x, t)| ≤ l for a.e. (x, t) ∈ QT ,
since F is extended to +∞ outside of [−l, l]. Moreover, if one also assumes that

lim
s→(±l)∓

F ′(s) = ±∞,

which is the case for the logarithmic potential, one can also recover that |ϕ(x, t)| <

l for a.e. (x, t) ∈ QT . Indeed, by comparison in (1.5), since μ ∈ L2(0, T ; H),
also F ′(ϕ) ∈ L2(0, T ; H), which readily implies the thesis. By improving this kind
of hypothesis (see B2), in Sect. 3 we will also be able to prove the so-called strict
separation property for ϕ.

Remark 2.7 As anticipated before in Remark 2.4, we would like to give some hints
regarding the differences in the proof when considering only a regular potential of
polynomial growth, actually leaving most of the details to the interested reader.

The main energy estimate is still (2.7), however this time one can keep the reaction
term ‖√P(ϕ)(σ + χ(1 − ϕ) − μ))‖2H on the left-hand side and estimate differently
the energy E(t) and the term (h(ϕ)u, μ)H . Indeed, by using Hölder and Young’s
inequalities and the new hypothesis A3’, one has:

E(t) ≥ E J (t) + A

2

∫
�

F(ϕ) dx + A

2

∫
�

F(ϕ) dx + 1

2
‖σ‖2H − χ‖σ‖H ‖1 − ϕ‖H

≥ E J (t) + A

2

∫
�

F(ϕ) dx +
(

A

2
c2 − χ

4α

)
‖ϕ‖2H +

(
1

2
− χα

)
‖σ‖2H − C,

where this holds for any α > 0. Now, if χ = 0, one keeps the estimate as it is,
otherwise if χ > 0, one can choose α = 1

χ

( 1
2 − δ

)
with δ ∈ (

0, 1
2

)
and obtain:

E(t) ≥ E J (t) + A

2

∫
�

F(ϕ) dx +
(

A

2
c2 − χ2

4(1/2 − δ)

)
︸ ︷︷ ︸

:=γ>0

‖ϕ‖2H + δ‖σ‖2H − C .

Then, one can test (1.5) with ζ = 1, which is also possible within Galerkin’s discreti-
sation, since the first eigenfunction of N is constant, and integrate on (0, t), for any
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t ∈ (0, T ). Consequently, by usingA2,A3’, the continuous embedding of L2(�) into
L1(�) and Young’s inequality, one gets:

∫ t

0

∫
�

μ dx ds =
∫ t

0

∫
�

τϕt + F ′(ϕ) + Baϕ − B J ∗ ϕ − χσ dx ds

≤
∫ t

0

(
τ‖ϕt‖1 +

∫
�

(c3F(ϕ) + c4) dx + 2Ba∗‖ϕ‖1 + χ‖σ‖1
)

ds

≤ ετ

∫ t

0
‖ϕt‖2H ds +

∫ t

0

(
c3

∫
�

F(ϕ) dx + C(‖ϕ‖2H + ‖σ‖2H )

)
ds + Cε,

where ε > 0 is yet to be chosen. Therefore, by using also A7’, one can estimate the
source term as follows:

∫ t

0
(h(ϕ)u, μ)H dt ≤ h∞‖u‖L∞(QT )

∫ t

0
|(μ, 1)H | ds

≤
∫ t

0

τ

2
‖ϕt‖2H ds +

∫ t

0

(
c3

∫
�

F(ϕ) dx + C(‖ϕ‖2H + ‖σ‖2H )

)
ds + C,

by choosing ε = 1/(2 (h∞ + ‖u‖L∞(QT ))) and renaming the constants. Then, by
integrating in time and using Gronwall’s lemma, the following uniform estimate can
be obtained:

τ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;H) + ‖σ‖L∞(0,T ;H) + ‖∇μ‖L2(0,T ;H) + ‖E J ‖L∞(0,T )

+ ‖∇(σ + χ(1 − ϕ))‖L2(0,T ;H) + ‖F(ϕ)‖L∞(0,T ;L1(�))

+ ‖√P(ϕ)(σ + χ(1 − ϕ) − μ)‖L2(0,T ;H) ≤ C .

(2.12)

Moreover, observe that by testing again (1.5) with ζ = 1, one can see that

1

|�| |μ�| ≤ τ‖ϕt‖1 + ‖F(ϕ)‖1 + 2Ba∗‖ϕ‖1 + χ‖σ‖1 ∈ L2(0, T ),

uniformly with respect to the parameters. Therefore, by using Poincaré-Wirtinger’s
inequality, it follows that also:

‖μ‖L2(0,T ;V ) ≤ C .

Then, one tests (1.5) by−�ϕ to recover the remaining L∞(0, T ; V ) estimate on ϕ and
proceeds by comparison for the H1(0, T ; V ∗) estimate for σ . Here we have the second
main difference, which concerns the reaction term R := P(ϕ)(σ + χ(1 − ϕ) − μ).
As a matter of fact, observe that formally, by using the embedding L6/5(�) ↪→ V ∗
and Hölder’s inequality, one has:

‖R‖V ∗ = ‖P(ϕ)(σ + χ(1 − ϕ) − μ)‖V ∗ ≤ C‖P(ϕ)(σ + χ(1 − ϕ) − μ)‖6/5
≤ C‖√P(ϕ)‖3‖

√
P(ϕ)(σ + χ(1 − ϕ) − μ)‖H ∈ L2(0, T ).
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Indeed, one already knows that
√

P(ϕ)(σ + χ(1− ϕ) − μ) ∈ L2(0, T ; H) by (2.12)
and, by using hypothesis A5’ with q ≤ 4, one can estimate:

‖√P(ϕ)‖3 =
(∫

�

P(ϕ)3/2 dx

)1/3

≤
(∫

�

(c5(1 + |ϕ|q))3/2 dx

)1/3

≤ C + C‖ϕ‖q/2
3q/2 ≤ C + C‖ϕ‖26 ∈ L∞(0, T ),

thanks to the embedding V ↪→ L6(�). Hence, one obtains that

‖R‖L2(0,T ;V ∗) ≤ C,

and by comparison in (1.6) also:

‖σt‖L2(0,T ;V ∗) ≤ C .

Finally, one can similarly pass to the limit in the discretisation framework. For more
details, we refer to [23, Theorem 2.1], where the same system without viscosity is
studied. This would conclude the proof of Theorem 2.3.

3 StrongWell-Posedness

From now on, we consider the simplified version (1.9)-(1.13) of our starting system,
obtained by considering constant mobilities. Without loss of generality, we can fix the
values of the constant mobilities as m = n = 1. Then, we have the following system:

∂tϕ = �μ + P(ϕ)(σ + χ(1 − ϕ) − μ) − h(ϕ)u in QT , (3.1)

μ = τ∂tϕ + AF ′(ϕ) + Baϕ − B J ∗ ϕ − χσ in QT , (3.2)

∂tσ = �σ − χ�ϕ − P(ϕ)(σ + χ(1 − ϕ) − μ) + v in QT , (3.3)

paired with boundary and initial conditions:

∂nμ = ∂n(σ − χϕ) = 0 on ∂� × (0, T ), (3.4)

ϕ(0) = ϕ0, σ (0) = σ0 in �. (3.5)

Moreover, we also assume stronger hypotheses on the parameters and on the data.
First let us observe that, to gain further regularity, we would need to assume that
J ∈ W 2,1

loc (RN ), but this hypothesis is incompatible with widely used convolution
kernels, such as those of Newton or Bessel type. However, following [2, Definition 1],
we can still introduce a suitable class of kernels, which includes the ones mentioned
before and satisfies our needs. Indeed, we recall the following definition:

Definition 3.1 A convolution kernel J ∈ W 1,1
loc (RN ) is admissible if it satisfies the

following conditions:
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• J ∈ C3(RN \ {0}).
• J is radially symmetric and non-increasing, i.e. J (·) = J̃ (|·|) for a non-increasing
function J̃ : R+ → R.

• There exists R0 such that r �→ J̃ ′′(r) and r �→ J̃ ′(r)/r are monotone on (0, R0).
• There exists CN > 0 such that |D3 J (x)| ≤ CN |x |−N−1 for any x ∈ R

3\{0}.
We also need stronger hypotheses on F and on the initial data to guarantee the strict

separation property. Indeed, we assume the following:

B1. J ∈ W 2,1
loc (RN ) or J is admissible in the sense of Definition 3.1.

B2. F ∈ C4((−l, l)) and the constant c0 of hypothesis A4 is such that c0 > χ2 ≥ 0.
Moreover, we assume that

lim
s→(±l)∓

(AF ′(s) − χ2s) = ±∞.

B3. P,h ∈ C1 ∩ W 1,∞(R) and there exists P0 > 0 such that

P(s) ≥ P0 > 0 ∀s ∈ R.

Moreover, call P ′∞ = ‖P ′‖L∞(R) and h′∞ = ‖h′‖L∞(R).
B4. u ∈ L∞(QT ) ∩ H1(0, T ; H) and v ∈ L∞(QT ).
B5. σ0 ∈ V ∩ L∞(�), whereas ϕ0 ∈ H2(�) and it is separated, i.e. there exists

s0 ∈ (0, l) such that

‖ϕ0‖L∞(�) ≤ s0.

Remark 3.2 We recall that if J satisfies B1, then, by [2, Lemma 2], for any p ∈
(1,+∞) there exists a constant bp > 0 such that:

‖∇(∇ J ∗ ψ)‖L p(�)3×3 ≤ bp‖ψ‖L p(�) ∀ψ ∈ L p(�).

This is just what one needs to control second-order derivatives of the convolution term
J ∗ ϕ.

Remark 3.3 Assumption B2 is needed to have some coercivity, due to the presence
of chemotaxis, and a control on how F ′ blows up at the extrema, in order to prove
the separation property. Moreover, on hypothesis B5, note that ϕ0 being separated
does not take away from practical situations. Indeed, if F is regular, it simply means
that ϕ0 ∈ L∞(�). Whereas if F is singular, we recall that the actual minima of the
logarithmic potential are not exactly in ±1, but in two intermediate values close to
them (i.e. the actual pure phases in this setting). Therefore, we are just asking that
F ′(ϕ0) does not explode, in a uniform way.

Remark 3.4 We also observe that, since ϕ0 ∈ H2(�) and it is separated, one can
freely differentiate the potential F ′(ϕ0). Therefore, by comparison in the variational
formulations of (3.1) and (3.2) at time 0, we also have that:

μ(0) ∈ W and ϕt (0) ∈ H .
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Indeed, by considering (2.3) and (2.4) at time t = 0, we have that for any ζ ∈ V

(ϕt (0), ζ )H + (∇μ(0),∇ζ )H = (P(ϕ0)(σ0 + χ(1 − ϕ0) − μ(0)), ζ )H

− (h(ϕ0)u(0), ζ )H ,

(μ(0), ζ )H = τ(ϕt (0), ζ )H + (AF ′(ϕ0) + Baϕ0 − B J ∗ ϕ0 − χσ0, ζ )H .

Then, by substituting the first one into the second one and isolating the terms containing
μ(0), we infer that μ(0) satisfies the following variational problem:

τ(∇μ(0),∇ζ )H + ((1 + τ P(ϕ0))μ(0), ζ )H = ( f , ζ )H for any ζ ∈ V ,

where

f := τ P(ϕ0)(σ0 + χ(1 − ϕ0)) − τh(ϕ0)u(0) + AF ′(ϕ0)

+Baϕ0 − B J ∗ ϕ0 − χσ0 ∈ H .

Then, μ(0) is a weak solution of the following elliptic partial differential equation:

−τ�μ(0) + (1 + τ P(ϕ0))μ(0) = f in�, (3.6)

∂nμ(0) = 0 on ∂�, (3.7)

where the homogeneous Neumann boundary condition is a consequence of the test
functions ζ being in V = H1(�). Therefore, since, by B5, A5 and Sobolev embed-
dings, we have that f ∈ H , (1+ τ P(ϕ0)) ∈ C0(�) and it is non-negative, by standard
elliptic regularity theory we can infer that μ(0) ∈ W . Then, by comparison, we also
have that ϕt (0) ∈ H .

We have the following result about existence of strong solutions:

Theorem 3.5 Under assumptions A1–A4 and B1–B5, there exists a strong solution to
(3.1)–(3.5), with the following regularity:

ϕ ∈ W 1,∞(0, T ; H) ∩ H1(0, T ; H2(�)) ∩ L∞(0, T ; H2(�)),

μ ∈ L∞(0, T ; W ),

σ ∈ H1(0, T ; H) ∩ L∞(0, T , V ) ∩ L2(0, T ; H2(�)).

In particular, there exists a constant C > 0, depending only on the parameters of the
model and on the data ϕ0, σ0 and u, v, such that:

τ‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;H2(�))∩L∞(0,T ;H2(�)) + ‖μ‖L∞(0,T ;W )

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ,V )∩L2(0,T ;H2(�)) ≤ C .
(3.8)
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Moreover, ϕ satisfies the strict separation property, i.e. there exists s∗ ∈ (s0, l) such
that

sup
t∈[0,T ]

‖ϕ(t)‖L∞(�) ≤ s∗. (3.9)

Proof We proceed with only formal estimates for the sake of exposition. These can
be made rigorous by going back to the Galerkin discretisation and by using finite
differences operators for time derivatives of higher order.

Before starting, we observe that, from the weak regularities of Theorem 2.3, we
can immediately have more regularity on some terms, without extra assumptions. In
particular, regarding the reaction term, we can say that

‖R‖L2(0,T ;L6(�)) ≤ C,

since P ∈ L∞ and σ + χ(1 − ϕ) − μ ∈ L2(0, T ; V ) ↪→ L2(0, T ; L6(�)). In turn,
this implies, by comparison in (3.1), that

�μ = ϕt − R + h(ϕ)u ∈ L2(0, T ; H),

which means that we also have a uniform bound on μ in L2(0, T ; W ), i.e.

‖μ‖L2(0,T ;W ) ≤ C . (3.10)

For the first estimate, we test equation (3.3) by ∂t (σ − χϕ) and, by using Cauchy-
Schwarz and Young’s inequalities, we get:

‖σt‖2H + 1

2

d

dt
‖∇(σ − χϕ)‖2H

= χ(σt , ϕt )H + (P(ϕ)(σ + χ(1 − ϕ) − μ), σt − χϕt )H + (v, σt − χϕt )H

≤ 1

2
‖σt‖2H + C‖ϕt‖2H + C‖σ + χ(1 − ϕ) − μ‖2H + C‖v‖2H .

Then, by integrating on (0, t), for any t ∈ (0, T ), and by using Gronwall’s lemma,
hypothesis B5 and (2.6), we infer that

‖σ‖H1(0,T ;H) + ‖σ − χϕ‖L∞(0,T ;V ) ≤ C . (3.11)

Also, since ϕ ∈ L∞(0, T ; V ) by (2.6), we can conclude that

‖σ‖L∞(0,T ;V ) ≤ C . (3.12)

Next, we test again (3.3) by −�(σ − χϕ) and with analogous estimates we get:
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‖�(σ − χϕ)‖2H ≤ 1

2
‖�(σ − χϕ)‖2H

+C‖σt‖2H + C‖σ + χ(1 − ϕ) − μ‖2H + C‖v‖2H .

Then, again by integrating on (0, T ) and using (2.6) and (3.11), we infer that

‖σ − χϕ‖L2(0,T ;W ) ≤ C . (3.13)

Now, for the main estimate, we test (3.1) by ∂tμ and the time-derivative of (3.2) by
−∂tϕ and sum them up. To be precise, these time-derivatives should be done by using
the approximation ∂t f � (Th( f ) − f )/h, where Th( f ) = f (· + h) for h ∈ R, and
then by sending h → 0. However, to give the idea of the procedure, we stick to formal
estimates. Indeed, after cancellations, we obtain:

1

2

d

dt
‖∇μ‖2H + τ

2

d

dt
‖ϕt‖2H + ((AF ′′(ϕ) + Ba)ϕt , ϕt )H

= (P(ϕ)(σ + χ(1 − ϕ) − μ),μt )H − (h(ϕ)u, μt )H + B(J ∗ ϕt , ϕt )H

+ χ(σt , ϕt )H .

By using assumptionsA2,A4 and Cauchy-Schwarz and Young’s inequalities, we infer
that

1

2

d

dt
‖∇μ‖2H + τ

2

d

dt
‖ϕt‖2H

≤ C‖ϕt‖2H + C‖σt‖2H + (P(ϕ)(σ + χ(1 − ϕ) − μ),μt )H︸ ︷︷ ︸
:=I1

− (h(ϕ)u, μt )H︸ ︷︷ ︸
:=I2

.

Now, in order to estimate the term I1, we use Leibniz’s rule in time, generalised
Hölder’s inequality, Young’s inequality, hypothesesB3,B4 and the embeddings V ↪→
L6(�) and W ↪→ L∞(�), as follows:

I1 = d

dt
(P(ϕ)(σ + χ(1 − ϕ)), μ)H − (P ′(ϕ)ϕt (σ + χ(1 − ϕ)), μ)H

− (P(ϕ)(σt − χϕt ), μ)H − 1

2

d

dt
(P(ϕ)μ,μ)H + (P ′(ϕ)ϕt μ,μ)H

≤ − d

dt

[
1

2
(P(ϕ)μ,μ)H − (P(ϕ)(σ + χ(1 − ϕ)), μ)H

]

+ P ′∞‖ϕt‖H ‖σ + χ(1 − ϕ)‖4‖μ‖4
+ P∞‖σt − χϕt‖H ‖μ‖H + P ′∞‖ϕt‖H ‖μ‖∞‖μ‖H

≤ − d

dt

[
1

2
(P(ϕ)μ,μ)H − (P(ϕ)(σ + χ(1 − ϕ)), μ)H

]
+ C‖μ‖2V

+ C ‖σ + χ(1 − ϕ)‖2V︸ ︷︷ ︸
∈ L∞(0,T )

‖ϕt‖2H + C‖σt − χϕt‖2H + C ‖μ‖2∞︸ ︷︷ ︸
∈ L1(0,T )

‖ϕt‖2H .
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In a similar way, we also estimate the term I2:

I2 = d

dt
(h(ϕ)u, μ)H − (h′(ϕ)ϕt u, μ)H − (h(ϕ)ut , μ)H

≤ d

dt
(h(ϕ)u, μ)H + h′∞‖ϕt‖H ‖u‖∞‖μ‖H + h∞‖ut‖H ‖μ‖H

≤ d

dt
(h(ϕ)u, μ)H + C‖μ‖2H + C‖u‖2∞‖ϕt‖2H + C‖ut‖2H .

By putting all together, we have:

1

2

d

dt
‖∇μ‖2H + τ

2

d

dt
‖ϕt‖2H + d

dt
G(t)

≤ C
(
1 + ‖σ + χ(1 − ϕ)‖2V + ‖μ‖2∞ + ‖u‖2∞

)
‖ϕt‖2H

+ C‖σt − χϕt‖2H + C‖σt‖2H + C‖μ‖2V + C‖ut‖2H ,

where

G(t) = 1

2
(P(ϕ)μ,μ)H − (P(ϕ)(σ + χ(1 − ϕ)), μ)H − (h(ϕ)u, μ)H .

Now we can estimate function G at time t and at time 0, by using B3, Remark 3.4,
Hölder and Young’s inequalities as follows:

G(t) ≥ P0‖μ‖2H − P∞‖σ + χ(1 − ϕ)‖H ‖μ‖H − h∞‖u‖H ‖μ‖H

≥ P0

2
‖μ‖2H − C‖σ + χ(1 − ϕ)‖2L∞(0,T ;H) − C‖u‖2L∞(QT ),

G(0) ≤ P∞‖μ(0)‖2H + P∞‖σ0 + χ(1 − ϕ0)‖H ‖μ(0)‖H

+ h∞|�|‖u‖L∞(QT )‖μ(0)‖H ≤ C .

Finally, for some 0 < α < min{P0, 1}/2, after integrating on (0, t), for any t ∈ (0, T )

and using Remark 3.4, we obtain that

α‖μ(t)‖2V + τ

2
‖ϕt (t)‖2H

≤ C+C
∫ t

0

(
‖σt −χϕt‖2H +‖σt‖2H +‖ut‖2H

)
ds+C‖σ +χ(1 − ϕ)‖2L∞(0,T ;H)

+ C‖u‖2L∞(QT ) + C
∫ t

0
‖μ‖2V ds

+ C
∫ t

0

(
1 + ‖σ + χ(1 − ϕ)‖2V + ‖μ‖2∞ + ‖u‖2∞

)
︸ ︷︷ ︸

∈ L1(0,T )

‖ϕt‖2H ds,
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where the term in front of ‖ϕt‖2H on the right-hand side is in L1(0, T ), thanks to (2.6),
(3.12), (3.10) and B5. Recall also that ‖μ(0)‖V ≤ C and ‖ϕt (0)‖H ≤ C by Remark
3.4. Then, by Gronwall’s lemma, we infer the following uniform estimates:

τ‖ϕ‖W 1,∞(0,T ;H) + ‖μ‖L∞(0,T ;V ) ≤ C . (3.14)

In particular, we now observe that

R = P(ϕ)(σ + χ(1 − ϕ) − μ) ∈ L∞(0, T ; H),

then, by comparison in (3.1), we have that

�μ = ϕt − R − h(ϕ)u ∈ L∞(0, T ; H),

where both these inclusions hold uniformly with respect to the parameters and the
data. Therefore, we also have the uniform bound:

‖μ‖L∞(0,T ;W ) ≤ C, (3.15)

which in turn, thanks to the embedding W ↪→ L∞(�), also implies that

‖μ‖L∞(QT ) ≤ C .

Now, we mostly follow the procedure used in the proof of [44, Theorem 2.5], in
order to prove the strict separation property and get more regularity for ϕ. Even if the
argument is very similar to the referencedone,we repeat it for the sake of completeness.
First, we rewrite equation (3.2) as

τ∂tϕ + Baϕ + AF ′(ϕ) = μ + B J ∗ ϕ + χσ,

then we sum the term −χ2ϕ to both sides, to obtain the following evolution equation
in QT :

τ∂tϕ + Baϕ + AF ′(ϕ) − χ2ϕ = S := μ + B J ∗ ϕ + χ(σ − χϕ). (3.16)

Next, regarding the right-hand side, we observe that μ ∈ L∞(0, T ; W ) by (3.15),
σ − χϕ ∈ L2(0, T ; W ) by (3.13) and also J ∗ ϕ ∈ L∞(0, T ; H2(�)) by B1, since
ϕ ∈ L∞(0, T ; H). Indeed, one just has to pass the derivatives onto the convolution
kernel J , by using also Remark 3.2. Then, it follows that we have the uniform bound:

‖S‖L2(0,T ;H2(�)) ≤ C . (3.17)

Additionally, by adding −χϕt on both sides, we can rewrite (3.3) as

∂t (σ − χϕ) − �(σ − χϕ) = −P(ϕ)(σ + χ(1 − ϕ) − μ) − χϕt + v,
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where the right-hand side is in L∞(0, T ; H) by (3.14). Then, since σ0−χϕ0 ∈ L∞(�)

thanks to B5, by parabolic regularity theory (see [36, Theorem 7.1, page 181]), it
follows that σ − χϕ is uniformly bounded in L∞(QT ). Therefore, since H2(�) ↪→
L∞(�), we can actually infer that there exists a constant M such that

‖S‖L∞(QT ) ≤ M . (3.18)

Now we can prove the strict separation property. By hypothesis B5, we know that
there exists s0 ∈ (0, l) such that ‖ϕ0‖L∞(�) ≤ s0. Moreover, by hypothesis B2, we
also know that

lim
s→(±l)∓

(AF ′(s) − χ2s) = ±∞.

Therefore, there surely exists s∗ ∈ (s0, l) such that

AF ′(s) − χ2s ≥ M for any s ∈ (s∗, l), (3.19)

AF ′(s) − χ2s ≤ −M for any s ∈ (−l,−s∗), (3.20)

where M is the one of (3.18). Now, we test (3.16) by (ϕ − s∗)+ in H and we integrate
on (0, t), for any t ∈ (0, T ):

τ

∫
Qt

ϕt (ϕ − s∗)+ dx ds + B
∫

Qt

aϕ(ϕ − s∗)+ dx ds

=
∫

Qt

(S − (AF ′(ϕ) − χ2ϕ))(ϕ − s∗)+ dx ds.

Then, observe that (ϕ − s∗)+ = 0 if ϕ < s∗, therefore we can restrict the integrals on
Qt ∩ {ϕ > s∗}. In this way, we can infer that

τ

∫
Qt ∩{ϕ>s∗}

ϕt (ϕ − s∗)+ dx ds = τ

2

∫
Qt ∩{ϕ>s∗}

d

dt
‖(ϕ − s∗)+‖2H dx ds

= τ

2
‖(ϕ(t) − s∗)+‖2H ,

where (ϕ0−s∗)+ = 0 byB5, since s∗ > s0. Moreover, by (3.19) and (3.18), it follows
that

∫
Qt ∩{ϕ>s∗}

(S − (AF ′(ϕ) − χ2ϕ))(ϕ − s∗)+ dx ds ≤ 0.

Consequently, we have that

τ

2
‖(ϕ(t) − s∗)+‖2H +

∫
Qt ∩{ϕ>s∗}

Ba(ϕ − s∗)2+ dx ds ≤ 0,
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but the left-hand side is clearly non-negative, so the only possibility is that (ϕ(x, t) −
s∗)+ = 0 for a.e. (x, t) ∈ QT , which implies ϕ(x, t) ≤ s∗ a.e. in QT . By repeating
the same procedure with −(ϕ + s∗)+, one can also recover the estimate from below,
i.e. ϕ(x, t) ≥ −s∗ for a.e. (x, t) ∈ QT . Therefore, the separation property (3.9) is
proved.

Now, exactly as in [44, Section 3.7], we test the gradient of (3.16) by ∇ϕ|∇ϕ|p−2

with p > 1 to be set later. Note that, to be rigorous, here one should use a truncation
argument, even within the Galerkin discretisation. However, by proceeding formally,
we have:

τ(∇ϕt ,∇ϕ|∇ϕ|p−2)H + ((AF ′′(ϕ) + Ba)∇ϕ,∇ϕ|∇ϕ|p−2)H

+ (B∇a ϕ,∇ϕ|∇ϕ|p−2)H − χ2(∇ϕ,∇ϕ|∇ϕ|p−2)H = (∇S,∇ϕ|∇ϕ|p−2)H .

Next, by using hypotheses A4 and B2, we arrive at the inequality:

τ

p

d

dt
‖∇ϕ‖p

p + (c0 − χ2)‖∇ϕ‖p
p ≤ (∇S,∇ϕ|∇ϕ|p−2)H − (B∇a ϕ,∇ϕ|∇ϕ|p−2)H .

Now, we integrate both sides over (0, t), for any t ∈ (0, T ), and we use Hölder’s
inequality and the generalised Young’s inequality with conjugate exponents p and
p/(p − 1), in order to get:

τ

p

∫
�

|∇ϕ(t)|p dx + (c0 − χ2)

∫
Qt

|∇ϕ|p dx ds

=
∫

�

|∇ϕ0|p dx −
∫

Qt

B∇a ϕ · ∇ϕ|∇ϕ|p−2 dx ds +
∫

Qt

∇S · ∇ϕ|∇ϕ|p−2 dx ds

≤
∫

�

|∇ϕ0|p dx + Bb
∫ t

0
‖ϕ‖p‖∇ϕ‖

p−1
p

p ds +
∫ t

0
‖∇S‖p‖∇ϕ‖

p−1
p

p ds

≤
∫

�

|∇ϕ0|p dx + Bb sup
(0,t)

‖∇ϕ‖
p−1

p
p ·

∫ t

0
‖ϕ‖p ds + sup

(0,t)
‖∇ϕ‖

p−1
p

p ·
∫ t

0
‖∇S‖p ds

≤
∫

�

|∇ϕ0|p dx + τ

2p

(
sup
(0,t)

‖∇ϕ‖
p−1

p
p

) p
p−1

+ C

(∫ t

0
‖ϕ‖p ds

)p

+ C

(∫ t

0
‖∇S‖p ds

)p

≤
∫

�

|∇ϕ0|p dx + τ

2p
sup
(0,t)

‖∇ϕ‖p
p + C‖ϕ‖p

L1(0,T ;L p(�))
+ C‖∇S‖p

L1(0,T ;L p(�))
,

where, in the last line, we used the fact that, for p > 1, the real function x �→ x
p

p−1 is
strictly increasing and the supremum is preserved under increasing functions. Then,
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passing to the supremum over (0, t) also on the left-hand side, we get:

τ

2p
sup
(0,t)

∫
�

|∇ϕ|p dx + (c0 − χ2)

∫
Qt

|∇ϕ|p dx dt

≤ ‖∇ϕ0‖p
p + C‖ϕ‖p

L1(0,T ;L p(�))
+ C‖∇S‖p

L1(0,T ;L p(�))
,

where the terms on the right-hand side are uniformly bounded if p ≤ 6 by respectively
B5, (2.6) and (3.17). Then, we can conclude that

τ‖ϕ‖L∞(0,T ;W 1,6(�)) ≤ C . (3.21)

Finally, for any i, j = 1, 2, 3 we apply the differential operator ∂xi x j to (3.16) and we
test the resulting equation by ∂xi x j ϕ, indeed:

τ

2

d

dt
‖∂xi x j ϕ‖2H + ((AF ′′(ϕ) + Ba)∂xi x j ϕ, ∂xi x j ϕ)H

+ (B(∂xi a ∂x j ϕ + ∂x j a ∂xi ϕ), ∂xi x j ϕ)H

+ (B∂xi x j a ϕ, ∂xi x j ϕ)H + (AF ′′′(ϕ)∂xi ϕ ∂x j ϕ, ∂xi x j ϕ)H − χ2‖∂xi x j ϕ‖2H
= (∂xi x j S, ∂xi x j ϕ)H .

Then, by using A4, Hölder’s and Young’s inequality and B2 together with the already
proven separation property (see the following Remark 3.6 for more details), we infer
that

τ

2

d

dt
‖∂xi x j ϕ‖2H + (c0 − χ2)‖∂xi x j ϕ‖2H

≤ 2Bb‖∇ϕ‖H ‖∂xi x j ϕ‖H + Bb2‖ϕ‖H ‖∂xi x j ϕ‖H

+ A‖F ′′′(ϕ)‖L∞(QT )‖∇ϕ‖24‖∂xi x j ϕ‖H + ‖∂xi x j S‖H ‖∂xi x j ϕ‖H

≤ C‖∂xi x j ϕ‖2H + C‖ϕ‖2V + C‖∇ϕ‖44 + C‖S‖2H2(�)
,

therefore, by summing on i, j = 1, 2, 3, integrating on (0, t) for any t ∈ (0, T ) and
using Gronwall’s lemma, together with B5, (3.21) and (3.17), we get the uniform
estimate:

τ‖ϕ‖L∞(0,T ;H2(�)) ≤ C . (3.22)

In particular, since we already knew that σ − χϕ ∈ L2(0, T ; W ) by (3.13), we also
infer that

‖σ‖L2(0,T ;H2(�)) ≤ C . (3.23)
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To conclude, we observe that since F ∈ C3((−l, l)) and the separation property holds,
starting from (3.22) we can also get that

‖F ′(ϕ)‖L∞(0,T ;H2(�)) ≤ C .

Then, by comparison in (3.16), we can also see that

τϕt = μ − AF ′(ϕ) − Baϕ + B J ∗ ϕ − χσ ∈ L2(0, T ; H2(�)),

meaning that we also have the uniform bound

τ‖ϕ‖H1(0,T ;H2(�)) ≤ C . (3.24)

Finally, starting from all these estimates, a strong solution can then be recovered, up
to passing to the limit in the discretisation framework. Moreover, estimate (3.8) can
be deduced by weak lower-semicontinuity. This concludes the proof of Theorem 3.5.

��
Remark 3.6 Since F ∈ C4((−l, l)) by B2 and the separation property (3.9) holds, one
can freely use the chain rule to compute the derivatives of F ′(ϕ), as we already did
in the previous proof. In particular, since F and its derivatives are locally bounded in
(−l, l), by (3.9) we can deduce that

‖F (i)(ϕ)‖L∞(QT ) ≤ C for any i = 1, . . . , 4,

where the constant C > 0 depends only on F , s∗ and M .

We now want to prove that the solutions of system (3.1)–(3.5) depend continuously
from the controls u and v and from initial data ϕ0 and σ0. As a byproduct, this will also
give uniqueness of the strong solutions of Theorem 3.5. Indeed, we have the following
result:

Theorem 3.7 Assume hypothesesA1–A4 andB1–B5. Let ϕ01 , σ01 , u1, v1 and ϕ02 , σ02 ,
u2, v2 be two sets of data satisfyingB4 andB5 and let (ϕ1, μ1, σ1) and (ϕ2, μ2, σ2) two
corresponding strong solutions as in Theorem 3.5. Then, there exists a constant K > 0,
depending only on the data of the system and on the norms of {(ϕ0i , σ0i , ui , vi )}i=1,2,
but not on their difference, such that

τ‖ϕ1 − ϕ2‖2H1(0,T ;H)∩L∞(0,T ;H2(�))
+ ‖μ1 − μ2‖2L2(0,T ;W )

+ ‖σ1 − σ2‖2H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(�))

≤ K
(
‖u1 − u2‖2L2(0,T ;H)

+ ‖v1 − v2‖2L2(0,T ;H)
+ ‖ϕ01 − ϕ02‖2H2(�)

+ ‖σ01 − σ02‖2V
)

.

(3.25)

Remark 3.8 As a consequence of Theorem3.7, we also immediately obtain uniqueness
of strong solutions to (3.1)–(3.5). Indeed, if (ϕ1, μ1, σ1) and (ϕ2, μ2, σ2) are two
solutions with respect to the same data (ϕ0, σ0, u, v), then the right-hand side of
(3.25) is equal to 0 and uniqueness follows.
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Proof Let ϕ = ϕ1 − ϕ2, μ = μ1 − μ2, σ = σ1 − σ2, u = u1 − u2, v = v1 − v2,
ϕ0 = ϕ01 − ϕ02 and σ0 = σ01 − σ02 , then, up to adding and subtracting some terms,
they solve:

∂tϕ = �μ + P(ϕ1)(σ − χϕ − μ) + (P(ϕ1) − P(ϕ2))(σ2 + χ(1 − ϕ2) − μ2)

− h(ϕ1)u − (h(ϕ1) − h(ϕ2))u2 in QT ,

(3.26)

μ = τ∂tϕ + A(F ′(ϕ1) − F ′(ϕ2)) + Baϕ − B J ∗ ϕ − χσ in QT ,

(3.27)

∂tσ = �σ − χ�ϕ − P(ϕ1)(σ − χϕ − μ)

− (P(ϕ1) − P(ϕ2))(σ2 + χ(1 − ϕ2) − μ2) + v in QT ,

(3.28)

paired with boundary and initial conditions:

∂nμ = ∂n(σ − χϕ) = 0 on ∂� × (0, T ), (3.29)

ϕ(0) = ϕ0, σ (0) = σ0 in �. (3.30)

Now, for the main estimate, we test equation (3.26) by μ in H and, by using Cauchy-
Schwarz and Young’s inequalities and the fact that P and h are Lipschitz functions
on bounded intervals, together with the uniform estimates on the L∞(QT )-norms of
ϕ1,2, we obtain:

(ϕt , μ)H + ‖∇μ‖2H ≤ (P(ϕ1)(σ − χϕ − μ),μ)H + ε‖μ‖2H + Cε‖u‖2H
+ Cε

(
1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ + ‖u2‖2∞

) ‖ϕ‖2H ,
(3.31)

where ε > 0 is to be chosen later and ‖σ2+χ(1−ϕ2)−μ2‖2∞ ∈ L1(0, T ), since every
term is bounded in L2(0, T ; H2(�)) and H2(�) ↪→ L∞(�). Next, we test equation
(3.27) by −ϕt in H and we use Leibniz’s rule in time and rewrite the resulting terms
accordingly. Then, adding and subtracting (Baϕ, ϕt )H = 1

2
d
dt (Baϕ, ϕ)H and by using

the separation property together with the fact that F ′′ is Lipschitz on [−s∗, s∗], we
get:

− (μ, ϕt )H + τ‖ϕt‖2H = − d

dt
(A(F ′(ϕ1) − F ′(ϕ2)), ϕ)H

− d

dt
(Ba ϕ, ϕ)H + (Baϕ, ϕt )H

+ (A(F ′′(ϕ1) − F ′′(ϕ2))ϕ1,t + AF ′′(ϕ1)ϕt , ϕ)H + (B J ∗ ϕ, ϕt )H + χ(σ, ϕt )H

≤ − d

dt

(
(A(F ′(ϕ1) − F ′(ϕ2)) + Ba)ϕ, ϕ

)
H + χ(σ, ϕt )H + τ

2
‖ϕt‖2H

+ C‖σ‖2H + C(1 + ‖ϕ1,t‖2∞)‖ϕ‖2H ,

where ‖ϕ1,t‖2∞ ∈ L1(0, T ) by (3.24). Then, we test equation (3.27) by δμ in H ,
with δ > 0 to be chosen later, and, again since F ′ is Lipschitz on [−s∗, s∗] and the
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separation property holds, we infer that

δ‖μ‖2H = δτ(ϕt , μ)H + δ(A(F ′(ϕ1) − F ′(ϕ2)), μ)H + δ(Ba ϕ,μ)H

− δ(B J ∗ ϕ,μ)H − δχ(σ, μ)H

≤ γ δτ‖μ‖2H + Cγ δτ‖ϕt‖2H + ε‖μ‖2H + Cδ,ε‖ϕ‖2H + Cδ,ε‖σ‖2H ,

where we used Young’s inequality with γ > 0 to be set later and ε > 0 is the same one
used before. Finally, we test equation (3.28) by (σ −χϕ) and, with similar techniques,
we find that

1

2

d

dt
‖σ‖2H + ‖∇(σ − χϕ)‖2H ≤ χ(σt , ϕ)H − (P(ϕ1)(σ − χϕ − μ), σ − χϕ)H

+ C(1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞)‖ϕ‖2H
+ C‖σ‖2H + C‖v‖2H ,

where again ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ ∈ L1(0, T ). Therefore, by summing up the
previous four inequalities, after cancellations we get:

( τ

2
− Cγ δτ

)
‖ϕt‖2H + (δ − 2ε − γ δτ) ‖μ‖2H + ‖∇μ‖2H + ‖∇(σ − χϕ)‖2H + d

dt
G(t)

≤ Cδ,ε

(
1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ + ‖ϕ1,t‖2∞ + ‖u2‖2∞

) ‖ϕ‖2H
+ Cδ,ε‖σ‖2H + Cε‖u‖2H + C‖v‖2H −(P(ϕ1)(σ − χϕ − μ), σ − χϕ − μ)H︸ ︷︷ ︸

≤0

,

(3.32)

where

G(t) := 1

2
‖σ‖2H + (

(A(F ′(ϕ1) − F ′(ϕ2)) + Ba)ϕ, ϕ
)

H − χ(σ, ϕ)H .

Now, we can independently choose first ε > 0, γ = γ (τ) > 0 and then δ = δ(τ ) > 0,
for any value of τ > 0, such that

α1 = δ − 2ε − γ δτ > 0 and α2 = τ

2
− Cγ δτ > 0. (3.33)

Moreover, by using Lagrange’s theorem and the fact that ϕ1, ϕ2 ∈ C0(QT ) by standard
embeddings, we can say that F ′(ϕ1(x, t)) − F ′(ϕ2(x, t)) = F ′′(s)ϕ(x, t) for some
s = s(x, t) ∈ R, which is at least a measurable function, for a.e. (x, t) ∈ QT . Then,
by hypotheses A4 and B2, together with Cauchy-Schwarz and Young’s inequalities,
we can estimate G(t) from below as

G(t) ≥ 1

4
‖σ‖2H +

(
c0 − χ2

)
‖ϕ‖2H .
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Consequently, by integrating (3.32) on (0, t) for any t ∈ (0, T ), we infer that

1

4
‖σ‖2H + (

c0 − χ2) ‖ϕ‖2H + α2(τ )

∫ t

0
‖ϕt‖2H ds + α1(τ )

∫ t

0
‖μ‖2H ds +

∫ t

0
‖∇μ‖2H ds

+
∫ t

0
‖∇(σ − χϕ)‖2H ds ≤ ‖ϕ0‖2H + ‖σ0‖2H + Cτ

∫ t

0
‖σ‖2H ds

+ C
∫ T

0

(‖u‖2H + ‖v‖2H
)
ds

+ Cτ

∫ t

0

(
1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ + ‖ϕ1,t‖2∞ + ‖u2‖2∞

) ‖ϕ‖2H ds,

and, by using Gronwall’s lemma, we obtain the first continuous dependence estimate:

‖ϕ‖2L∞(0,T ;H) + τ‖ϕ‖2H1(0,T ;H)
+ ‖σ‖2L∞(0,T ;H) + ‖μ‖2L2(0,T ;V )

+ ‖∇(σ − χϕ)‖2L2(0,T ;H)

≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2H + ‖σ0‖2H

)
.

(3.34)

Observe that here the constant Cτ on the right-hand side depends on τ , but this can be
avoided under mild additional assumptions (see Remark 3.9 below). Next, we test the
gradient of equation (3.27) by ∇ϕ in H and, after a careful rewriting of the terms, we
get that

τ

2

d

dt
‖∇ϕ‖2H + ((AF ′′(ϕ1) + Ba)∇ϕ,∇ϕ)H = (∇μ,∇ϕ)H

+ (A(F ′′(ϕ1) − F ′′(ϕ2))∇ϕ2,∇ϕ)H − (B∇a ϕ,∇ϕ)H

+ (B∇ J ∗ ϕ,∇ϕ)H − χ(∇σ,∇ϕ)H .

Hence, by adding and subtracting χ2(∇ϕ,∇ϕ)H and by using hypotheses A2, A4,
B2, the Lipschitz properties of F ′′ and Hölder and Young’s inequalities, we infer that

τ

2

d

dt
‖∇ϕ‖2H + c0‖∇ϕ‖2H

≤ C‖ϕ‖4‖∇ϕ2‖4‖∇ϕ‖H + C‖∇μ‖2H + C‖ϕ‖2H + C‖∇ϕ‖2H + C‖∇(σ − χϕ)‖2H
≤ C

(
1 + ‖∇ϕ2‖2V︸ ︷︷ ︸

∈ L∞(0,T )

)‖ϕ‖2V + C‖∇μ‖2H + C‖∇(σ − χϕ)‖2H .

Then, by integrating on (0, t), for any t ∈ (0, T ), and applying Gronwall’s lemma,
together with (3.34), we obtain the estimate

τ‖ϕ‖2L∞(0,T ;V ) ≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2V + ‖σ0‖2H

)
, (3.35)

123



8 Page 32 of 60 Applied Mathematics & Optimization (2024) 89 :8

and by comparison with the previous estimate on σ − χϕ ∈ L2(0, T ; V ), we also get
that

‖σ‖2L2(0,T ;V )
≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2V + ‖σ0‖2H

)
. (3.36)

Now, we test equation (3.28) by ∂t (σ −χϕ) and, by using hypothesis B3 and Cauchy-
Schwarz and Young’s inequalities, we infer that

‖σt‖2H + 1

2

d

dt
‖∇(σ − χϕ)‖2H ≤ 1

2
‖σt‖2H + C(1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞)‖ϕ‖2H

+ C‖ϕt‖2H + C‖σ‖2H + C‖μ‖2H + C‖v‖2H .

Therefore, by integrating in (0, t) for any t ∈ (0, T ) and then applying Gronwall’s
lemma and (3.34), we deduce that

‖σ‖2H1(0,T ;H)
+ ‖σ‖2L∞(0,T ;V )

≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2V + ‖σ0‖2V

)
. (3.37)

Next, we test equation (3.28) by −�(σ − χϕ) and, by similar methods, we infer that

‖�(σ − χϕ)‖2H ≤ 1

2
‖�(σ − χϕ)‖2H + C(1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞)‖ϕ‖2H

+ C‖σt‖2H + C‖σ‖2H + C‖μ‖2H + C‖v‖2H ,

then, by integrating on (0, T ) and using (3.34) and (3.37), we get the estimate:

‖σ − χϕ‖2L2(0,T ;W )
≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2V + ‖σ0‖2V

)
.

(3.38)

Moreover, in a similar way, we can also test equation (3.26) by−�μ and then integrate
on (0, T ) to get:

‖μ‖2L2(0,T ;W )
≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2V + ‖σ0‖2V

)
. (3.39)

Finally, for any i, j = 1, 2, 3, we apply the differential operator ∂xi x j to (3.27), which
makes sense in H , and we test the resulting equation by ∂xi x j ϕ. Then, after careful
rewriting of the terms arising from the derivatives of F , we get:

(∂xi x j μ, ∂xi x j ϕ)H = τ

2

d

dt
‖∂xi x j ϕ‖2H + ((AF ′′(ϕ1) + Ba) ∂xi x j ϕ, ∂xi x j ϕ)H

+ ((F ′′(ϕ1) − F ′′(ϕ2))∂xi x j ϕ2, ∂xi x j ϕ)H + (F ′′′(ϕ1)(∂xi ϕ1 + ∂xi ϕ2) ∂x j ϕ, ∂xi x j ϕ)H

+ ((F ′′′(ϕ1) − F ′′′(ϕ2))∂xi ϕ2 ∂x j ϕ2, ∂xi x j ϕ)H + (B(∂xi a ∂x j ϕ + ∂x j a ∂xi ϕ), ∂xi x j ϕ)H
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+ (B∂xi x j a ϕ, ∂xi x j ϕ)H − B(∂xi (∂x j J ∗ ϕ), ∂xi x j ϕ)H

− χ(∂xi x j (σ − χϕ), ∂xi x j ϕ)H − χ2‖∂xi x j ϕ‖2H .

Hence, by using hypothesesA4, B1, B2, Remark 3.6 and the generalised Hölder’s and
Young’s inequalities, together with (2.1) and (2.2), we infer that

τ

2

d

dt
‖∂xi x j ϕ‖2H + (c0 − χ2)‖∂xi x j ϕ‖2H

≤ C‖ϕ‖∞‖∂xi x j ϕ2‖H ‖∂xi x j ϕ‖H + C‖∇ϕ1 + ∇ϕ2‖6‖∇ϕ‖3‖∂xi x j ϕ‖H

+ C‖ϕ‖6‖∇ϕ2‖26‖∂xi x j ϕ‖H + C‖∂xi x j ϕ‖2H + C‖ϕ‖2V + C‖σ − χϕ‖2W + C‖μ‖2W
≤ C‖∂xi x j ϕ2‖H ‖ϕ‖1/2V ‖ϕ‖3/2

H2(�)
+ C‖∇ϕ1 + ∇ϕ2‖6‖∇ϕ‖1/2H ‖ϕ‖3/2

H2(�)

+ C‖ϕ‖6‖∇ϕ2‖26‖∂xi x j ϕ‖H + C‖∂xi x j ϕ‖2H + C‖ϕ‖2V + C‖σ − χϕ‖2W + C‖μ‖2W
≤ C‖ϕ‖2H2(�)

+ C
(
1 + ‖ϕ2‖4H2(�)

+ ‖∇ϕ1 + ∇ϕ2‖46 + ‖∇ϕ2‖46
)

‖ϕ‖2V
+ C‖σ − χϕ‖2W + C‖μ‖2W ,

where ‖ϕ2‖4H2(�)
+ ‖∇ϕ1 + ∇ϕ2‖46 + ‖∇ϕ2‖46 ∈ L∞(0, T ), since, by (3.22),

ϕ2 ∈ L∞(0, T ; H2(�)), which is embedded into L∞(0, T ; W 1,6(�)). Therefore,
by summing on i, j = 1, 2, 3, integrating on (0, t), for any t ∈ (0, T ), and using
Gronwall’s lemma, together with the previous estimates (3.35), (3.38), (3.39), we
infer that

τ‖ϕ‖2L∞(0,T ;H2(�))
≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2H2(�)

+ ‖σ0‖2V
)

.

(3.40)

Moreover, by comparison with (3.38), we also deduce that

‖σ‖2L2(0,T ;H2(�))
≤ Cτ

(
‖u‖2L2(0,T ;H)

+ ‖v‖2L2(0,T ;H)
+ ‖ϕ0‖2H2(�)

+ ‖σ0‖2V
)

.

(3.41)

This concludes the proof of Theorem 3.7, since all the constants that appear in front of
the estimates depend only on parameters and possibly on the norms of {(ϕ0i , σ0i )}i=1,2,
but not on their difference. ��
Remark 3.9 We wish to point out that, under the additional assumption that 0 < τ ≤
M , for some M > 0, one can show that all constants Cτ appearing in the proof are
actually independent of τ for any τ ∈ (0, M]. This can be useful in applications, where
τ is generally kept very small and is possibly tending to 0.

Indeed, going back to (3.33), one can first choose ε > 0 and 0 < γ < 1/M in such
a way that

α1 = δ − 2ε − γ δτ > 0 ∀τ ∈ (0, M].
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Then, Cγ is now fixed independently of τ ∈ (0, M], therefore one can choose δ > 0
small enough such that

α2 = τ

2
− Cγ δτ = τα2 withα2 > 0 independently of τ ∈ (0, M].

At this point, it is clear that the constants Cτ , appearing from (3.34) onwards, depend
only on the other parameters and on M , which is fixed.

Remark 3.10 In the previous proof, in order to close the first continuous dependence
estimate (3.34),we need a positive termon the left-hand side for‖μ‖2H . This is obtained
by testing (3.27) by δμ, with a small constant δ, and leads to either constants depending
on τ or to an additional hypothesis on τ as in Remark 3.9. Another possibility could
be to directly use hypothesis B3 on P0 > 0 on the term (P(ϕ1)μ,μ), which can be
brought on the left when testing (3.26) byμ. Namely, inequality (3.31) would become

(ϕt , μ)H + ‖∇μ‖2H + (P(ϕ1)μ,μ)H

≤ (P(ϕ1)(σ − χϕ), μ)H + ε‖μ‖2H + Cε‖u‖2H
+ Cε

(
1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ + ‖u2‖2∞

)
‖ϕ‖2H ,

which then, by B3, Cauchy-Schwarz and Young, would immediately imply

(ϕt , μ)H + ‖∇μ‖2H + (P0 − 3ε)‖μ‖2H
≤ Cε‖ϕ‖2H + Cε‖σ‖2H + Cε‖u‖2H

+ Cε

(
1 + ‖σ2 + χ(1 − ϕ2) − μ2‖2∞ + ‖u2‖2∞

)
‖ϕ‖2H ,

thus removing the need of testing (3.27) by δμ. However, we choose the first method,
since the hypothesis P0 > 0 could be restrictive in applications, so we would like to
avoid heavy use of it, even if it is necessary in the proof of Theorem 3.5. Moreover,
the procedure we used could possibly be adapted to even different reaction terms,
provided that one is able to prove existence of strong solutions. The same strategy
shall be pursued also in Sect. 4.

4 Optimal Control Problem

From now on, we consider the initial data ϕ0, σ0, satisfying B5, fixed. We recall the
optimal control problem that we want to study:
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(CP) Minimise the cost functional

J (ϕ, σ, u, v) = α�

2

∫
�

|ϕ(T ) − ϕ�|2 dx + αQ

2

∫ T

0

∫
�

|ϕ − ϕQ |2 dx dt

+ β�

2

∫
�

|σ(T ) − σ�|2 dx + βQ

2

∫ T

0

∫
�

|σ − σQ |2 dx dt

+ αu

2

∫ T

0

∫
�

|u|2 dx dt + βv

2

∫ T

0

∫
�

|v|2 dx dt,

(4.1)

subject to the control constraints

u ∈ Uad := {u ∈ L∞(QT ) ∩ H1(0, T ; H) |
umin ≤ u ≤ umax a.e. in QT , ‖u‖H1(0,T ;H) ≤ M}

v ∈ Vad := {v ∈ L∞(QT ) | vmin ≤ v ≤ vmax a.e. in QT } (4.2)

and to the state system (3.1)-(3.5).
Regarding the parameters at play, we make the following hypotheses:

C1. α�, αQ, αu, β�, βQ, βv ≥ 0, but not all equal to 0.
C2. ϕ� ∈ L2(�), σ� ∈ H1(�) and ϕQ, σQ ∈ L2(QT ).
C3. umin, umax, vmin, vmax ∈ L∞(QT ), with umin ≥ 0 a.e. in �. Let also M ′ > 0 be

such that for any u ∈ Uad and for any v ∈ Vad

‖u‖L∞(QT ), ‖v‖L∞(QT ) ≤ M ′.

C4. P,h ∈ C2(R) ∩ W 1,∞(R).

Remark 4.1 The hypothesis umin ≥ 0 comes from modelling assumptions, see also
[7] and references therein. Moreover, we need the stronger hypothesis σ� ∈ H1(�)

to prove well-posedness of the adjoint system in Section 5.3.
Finally, we would like to comment on the structure of Uad. While the best choice,

from an applicative viewpoint, would be a subset of L∞(QT ) with box constraints,
e.g. {u ∈ L∞(QT ) | umin ≤ u ≤ umax a.e. in QT }, the presence of u as a source
term in the Cahn-Hilliard equation demands higher regularity, if one wants to achieve
strong well-posedness. Indeed, we also need a bound on the H1(0, T ; H)–norm, as
can be seen by B4 and Theorems 3.5 and 3.7.

By Theorems 3.5 and 3.7, we know that for any (u, v) ∈ Uad × Vad there exists a
unique strong solution (ϕ, μ, σ ) ∈ X to (3.1)–(3.5), where

X := (W 1,∞(0, T ; H) ∩ H1(0, T ; H2(�)) ∩ L∞(0, T ; H2(�)))

× L∞(0, T ; W ) × (H1(0, T ; H) ∩ L∞(0, T , V ) ∩ L2(0, T ; H2(�))),

therefore the optimal control problem (CP) is well-defined. Our goal is to prove exis-
tence of anoptimal control and thenfind thefirst-order necessary optimality conditions.
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Theorem 4.2 Assume hypotheses A1–A4, B1–B5 and C1–C4. Then the optimal con-
trol problem (CP) admits at least one solution (u, v) ∈ Uad×Vad, such that if (ϕ, μ, σ )

is the solution to (3.1)–(3.5) associated to (u, v), one has that

J (ϕ, σ , u, v) = min
(u,v) ∈Uad×Vad

J (ϕ, σ, u, v). (4.3)

Proof Let {(un, vn)}n∈N ⊂ Uad × Vad be a minimising sequence such that

0 ≤ inf
(u,v) ∈Uad×Vad

J (ϕ, σ, u, v) = lim
n→+∞J (ϕn, σn, un, vn), (4.4)

where (ϕn, μn, σn) are the solutions to (3.1)–(3.5) associated to (un, vn), with the
regularities given by Theorem 3.5.

Since {(un, vn)}n∈N ⊂ Uad × Vad, we have that {un} is uniformly bounded in
L∞(QT ) ∩ H1(0, T ; H) and {vn} is uniformly bounded in L∞(QT ), therefore, by
the Banach-Alaouglu theorem, we can deduce that there exists (u, v) ∈ (L∞(QT ) ∩
H1(0, T ; H)) × L∞(QT ) such that, up to a subsequence,

un
∗
⇀ u weakly star in L∞(QT ) ∩ H1(0, T ; H),

vn
∗
⇀ v weakly star in L∞(QT ).

Moreover, since Uad × Vad is convex and closed in the larger space H1(0, T ; H) ×
L2(QT ), it is also weakly sequentially closed and thus (u, v) ∈ Uad × Vad.

Now, consider the solutions (ϕn, μn, σn) ∈ X corresponding to (un, vn) for every
n ∈ N, then, by the uniform estimate (3.8), we have that these solutions are uniformly
bounded with respect to n in the spaces of strong solutions, given by Theorem 3.5.
Therefore, again by Banach-Alaoglu, we can say that, up to a subsequence,

ϕn
∗
⇀ ϕ weakly star in W 1,∞(0, T ; H) ∩ H1(0, T ; H2(�)) ∩ L∞(0, T ; H2(�)),

μn
∗
⇀ μ weakly star in L∞(0, T ; W ),

σn
∗
⇀ σ weakly star in H1(0, T ; H) ∩ L∞(0, T , V ) ∩ L2(0, T ; H2(�)).

In particular, by the compact embeddings of Aubin-Lions-Simon (see [46, Section 8,
Corollary 4]), it follows thatϕn → ϕ strongly in C0([0, T ], Hs(�)) for any 0 < s < 2,
which implies that ϕn → ϕ strongly in C0(QT ), since Hs(�) ↪→ C0(QT ) if s > 3/2
for N = 3. In particular, by uniform convergence, ϕ still satisfies the strict separation
property. This fact, by the continuity of the functions P , h and F ′, implies that

P(ϕn) → P(ϕ), F ′(ϕn) → F(ϕ), h(ϕn) → h(ϕ) strongly in C0(QT ).

Moreover, in the same way, we also have that σn → σ strongly in C0([0, T ], H).
Therefore, by using the weak and strong convergences written above, it is easy to show
that, starting from the equations (3.1)–(3.5) satisfied by (ϕn, μn, σn) with respect to
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(un, vn), also the limit functions (ϕ, μ, σ ) ∈ X satisfy (3.1)–(3.5) with respect to
(u, v). Then, we can infer that

inf
(u,v) ∈Uad×Vad

J (ϕ, σ, u, v) ≤ J (ϕ, σ , u, v).

Now, we observe that the functional J , if defined on the larger space H1(0, T ; V ,

V ∗)2 × L2(QT )2, where H1(0, T ; V , V ∗) = H1(0, T ; V ∗) ∩ L2(0, T ; V ) ↪→
C0([0, T ], H), is strongly continuous and convex, therefore it is weakly lower-
semicontinuous with respect to this weaker topology. Consequently, we can deduce
that

J (ϕ, σ , u, v) ≤ lim inf
n→+∞ J (ϕn, σn, un, vn)

= inf
(u,v) ∈Uad×Vad

J (ϕ, σ, u, v) ≤ J (ϕ, σ , u, v),

which means that (u, v) ∈ Uad × Vad is an optimal control. This concludes the proof
of Theorem 4.2. ��

4.1 Linearised System

As an ansatz for the Fréchet-derivative of the control-to-state operator, which maps
any (u, v) ∈ Uad × Vad into the corresponding solution of the state system, we now
start studying the linearised version of our system. Indeed, we fix an optimal state
(ϕ, μ, σ ) ∈ X corresponding to (u, v) ∈ Uad × Vad and linearise near (u, v):

ϕ = ϕ + ξ, μ = μ + η, σ = σ + ρ, u = u + h, v = v + k,

with h ∈ L∞(QT ) ∩ H1(0, T ; H) and k ∈ L∞(QT ). Then, by approximating the
non-linearities at the first order of their Taylor expansion, we see that (ξ, η, ρ) satisfy
the equations:

∂tξ = �η + P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ + P(ϕ)(ρ − χξ − η)

− h′(ϕ)u ξ − h(ϕ)h in QT , (4.5)

η = τ∂tξ + AF ′′(ϕ)ξ + Baξ − B J ∗ ξ − χρ in QT , (4.6)

∂tρ = �ρ − χ�ξ − P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ

− P(ϕ)(ρ − χξ − η) + k in QT , (4.7)

together with boundary and initial conditions:

∂nη = ∂n(ρ − χξ) = 0 on ∂� × (0, T ), (4.8)

ξ(0) = 0, ρ(0) = 0 in �. (4.9)
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Observe that to derive the linearised system, we needed to start from h ∈ L∞(QT ) ∩
H1(0, T ; H) and k ∈ L∞(QT ), however the system actually makes sense even for
h, k ∈ L2(0, T ; H). Indeed, we will prove well-posedness in this more general case.

We have the following result about existence and uniqueness of solutions to (4.5)–
(4.9):

Theorem 4.3 Assume hypotheses A1–A4, B1–B5 and let (ϕ, μ, σ ) ∈ X be the strong
solution to (3.1)–(3.5), corresponding to (u, v) ∈ Uad × Vad. Then, for any h ∈
L2(0, T ; H) and for any k ∈ L2(0, T ; H), the linearised system (4.5)–(4.9) admits a
unique solution such that

ξ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ),

η ∈ L2(0, T ; W ),

ρ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ),

ρ − χξ ∈ L2(0, T ; W ),

which fulfils (4.5)–(4.9) almost everywhere in the respective sets.

Proof We proceed with only formal estimates, which can be done rigorously through
a Faedo-Galerkin discretisation scheme, with discrete spaces made of eigenvectors of
the operator N . Then, one can pass to the limit in a standard matter to recover the
estimates also in the continuous case. For the first estimate, we test in H equation
(4.5) by η and we get:

(ξt , η)H + ‖∇η‖2H = (P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ, η)H + (P(ϕ)(ρ − χξ − η), η)H

− (h′(ϕ)uξ, η)H − (h(ϕ)h, η)H .

Then, by using hypothesisB3 andCauchy-Schwarz andYoung’s inequality with ε > 0
to be chosen later, we obtain:

(ξt , η)H + ‖∇η‖2H ≤ ε‖η‖2 + Cε

(
1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖u‖2∞

)
‖ξ‖2H

+ Cε‖ρ‖2H + Cε‖h‖2H + (P(ϕ)(ρ − χξ − η), η)H ,

where we recall the uniform bound on ‖σ + χ(1 − ϕ) − μ‖2∞ ∈ L1(0, T ), since
H2(�) ↪→ L∞(�), and on ‖u‖2∞ ∈ L∞(0, T ) by B4. Next, we test (4.6) in H by
−ξt , which is possible within the discretisation, and, by using Leibniz’s rule for the
time-derivative, we get:

− (η, ξt ) + τ‖ξt‖2H + 1

2

d

dt

(
(AF ′′(ϕ) + Ba)ξ, ξ

)
H

= (AF ′′′(ϕ)ϕtξ, ξ)H + (B J ∗ ξ, ξt )H + χ(ρ, ξt )H .
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We further estimate the right-hand side by using Hölder’s and Young’s inequalities
and by recalling that, by Theorem 3.5, we have the separation property for ϕ, indeed:

− (η, ξt ) + τ‖ξt‖2H + 1

2

d

dt

(
(AF ′′(ϕ) + Ba)ξ, ξ

)
H

≤ A‖F ′′′(ϕ)‖∞‖ϕt‖∞‖ξ‖2H + Ba∗‖ξ‖H ‖ξt‖H + χ(ρ, ξt )H

≤ τ

2
‖ξt‖2H + C(1 + ‖ϕt‖∞)‖ξ‖2H + χ(ρ, ξt )H ,

where ϕt ∈ L2(0, T ; H2(�)) ↪→ L2(0, T ; L∞(�)) by Theorem 3.5. Moreover, we
test (4.7) in H by ρ − χξ and, by similar techniques, we infer that

1

2

d

dt
‖ρ‖2H + ‖∇(ρ − χξ)‖2H − χ(ρt , ξ)H

= (P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ, ρ − χξ)H

− (P(ϕ)(ρ − χξ − η), ρ − χξ)H + (k, ρ − χξ)H

≤ C‖ρ‖2H + C(1 + ‖σ + χ(1 − ϕ) − μ‖2∞)‖ξ‖2H
+ C‖k‖2H − (P(ϕ)(ρ − χξ − η), ρ − χξ)H .

Then, by summing up all three inequalities, after cancellations, we get:

1

2

d

dt
G(t) + τ

2
‖ξt‖2H + ‖∇η‖2H

+ ‖∇(ρ − χξ)‖2H +
≥0︷ ︸︸ ︷

(P(ϕ)(ρ − χξ − η), ρ − χξ − η)H

≤ ε‖η‖2H + Cε

(
1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖ϕt‖∞ + ‖u‖2∞

)
‖ξ‖2H (4.10)

+ Cε‖ρ‖2H + Cε‖h‖2H + Cε‖k‖2H ,

where

G(t) = ((AF ′′(ϕ) + Ba)ξ, ξ)H + ‖ρ‖2H − χ(ρ, ξ)H .

Observe that, by hypothesis A4 and Young’s inequality, we can infer that

G(t) ≥ (c0 − χ2)‖ξ‖2H + 3

4
‖ρ‖2H ,

moreover, by the initial conditions, we know that G(0) = 0. Finally, we test again
(4.6) in H by δη to obtain:

δ‖η‖2H = δτ(ξt , η)H + δ(AF ′′(ϕ)ξ, η)H + δ(Baξ, η)H − δ(B J ∗ ξ, η)H − δχ(ρ, η)H .
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By using Remark 3.6, Cauchy-Schwarz and Young’s inequalities with γ > 0 to be
chosen later and the same ε > 0 used before, we can estimate

δ‖η‖2H ≤ Cγ δτ‖ξt‖2H + γ δτ‖η‖2H + ε‖η‖2H + Cδ,ε‖ξ‖2H + Cδ,ε‖ρ‖2H .

At this point, we can sum this last inequality to (4.10), integrate everything over (0, t),
for any t ∈ (0, T ), and infer that

1

2
(c0 − χ2)‖ξ(t)‖2H + 3

8
‖ρ(t)‖2H +

(τ

2
− Cγ δτ

) ∫ t

0
‖ξt‖2H ds

+ (1 − 2ε − γ δτ)

∫ t

0
‖η‖ ds +

∫ t

0
‖∇η‖2H ds +

∫ t

0
‖∇(ρ − χξ)‖2H ds

≤ Cε,δ

∫ t

0
‖ρ‖2H ds + Cε

∫ t

0
‖h‖2H ds + C

∫ t

0
‖k‖2H ds

+
∫ t

0
Cε,δ

(
1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖ϕt‖∞ + ‖u‖2∞

)
‖ξ‖2H ds.

Now, exactly as in the proof of Theorem 3.7 (see equation (3.33)), we can respectively
choose ε > 0, γ = γ (τ) > 0 and then δ = δ(τ ) > 0 such that the constants above
are strictly positive. Therefore, we can apply Gronwall’s inequality and recover the
estimate:

τ‖ξ‖2H1(0,T ;H)
+ ‖ξ‖2L∞(0,T ;H) + ‖ρ‖2L∞(0,T ;H) + ‖η‖2L2(0,T ;V )

+ ‖∇(ρ − χξ)‖2L2(0,T ;H)
≤ Cτ

(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
,

(4.11)

with Cτ > 0, depending only on the parameters of the system and on τ > 0. By
reasoning as in Remark 3.9, this dependence on τ can be avoided, if one additionally
assumes that the range of values that τ can assume is bounded from above. For sim-
plicity, from now on we will remove the explicit dependence on τ from the constants,
keeping in mind that the only constant that could depend on τ is the one in (4.11).

Now, we can test (4.6) in H by −�ξ , which makes sense in the Galerkin discreti-
sation, and by using integration by parts formulae, without any extra boundary terms,
due to the discrete spaces, we have:

(∇η,∇ξ)H = τ

2

d

dt
‖∇ξ‖2H

+ (AF ′′′(ϕ)∇ϕ ξ,∇ξ)H + A(F ′′(ϕ)∇ξ,∇ξ)H + (Ba∇ξ,∇ξ)H

+ (B∇a ξ,∇ξ)H − (B∇ J ∗ ξ,∇ξ)H − χ(∇ρ,∇ξ)H .
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In addition, if we add χ2(∇ξ,∇ξ)H on both sides of the equality, then, by rearranging
the terms and by using hypothesis A4 and Cauchy-Schwarz and Young’s inequalities,
we infer that

τ

2

d

dt
‖∇ξ‖2H + (c0 − χ2)‖∇ξ‖2H

≤ C‖∇ξ‖2H + C‖∇η‖2H + C‖ξ‖2H + C‖∇(ρ − χξ)‖2H + (AF ′′′(ϕ)∇ϕ ξ,∇ξ)H .

(4.12)

In order to estimate the last term, we use Remark 3.6, Hölder’s inequality, (2.1) and
the generalised Young’s inequality as follows:

(AF ′′′(ϕ)∇ϕ ξ,∇ξ)H ≤ A‖F ′′′(ϕ)‖∞‖∇ϕ‖6‖ξ‖3‖∇ξ‖H

≤ CT ‖∇ϕ‖6‖ξ‖1/2H ‖∇ξ‖3/2H ≤ C‖∇ξ‖2H + C ‖∇ϕ‖46︸ ︷︷ ︸
∈ L∞(�)

‖ξ‖2H .

Then, going back to (4.12) and integrating on (0, t) for any t ∈ (0, T ), we arrive at

τ

2
‖∇ξ(t)‖2H ≤ C

∫ t

0

(‖∇ξ‖2H + ‖∇η‖2H + ‖∇(ρ − χξ)‖2H + (
1 + ‖∇ϕ‖46

) ‖ξ‖2H
)
ds,

and, by using (4.11) together with Gronwall’s inequality, we deduce that

τ‖ξ‖2L∞(0,T ;V ) ≤ C
(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
. (4.13)

Moreover, since ρ − χξ ∈ L2(0, T ; V ) by (4.11), we also infer that

‖ρ‖2L2(0,T ;V )
≤ C

(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
.

Finally,we test (4.7) in H by ∂t (ρ−χξ),which is still possiblewithin the discretisation,
and by usual techniques we get:

‖ρt‖2H + 1

2

d

dt
‖∇(ρ − χξ)‖2H = χ(ρt , ξt )H

− (P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ, ρt − χξt )H

+ (P(ϕ)(ρ − χξ − η), ρt − χξt )H + (k, ρt − χξt )H

≤ 1

2
‖ρt‖2H + C‖ξt‖2H + C‖ρ‖2H + C‖η‖2H

+ C(1 + ‖σ + χ(1 − ϕ) − μ‖2∞)‖ξ‖2H + ‖k‖2H .

Then, by integrating on (0, t) for any t ∈ (0, T ) and by using Gronwall’s lemma and
(4.11), we infer that

‖ρ‖2H1(0,T ;H)
+ ‖ρ − χξ‖2L∞(0,T ;V ) ≤ C

(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
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and, by (4.13), we also get

‖ρ‖2L∞(0,T ;V ) ≤ C
(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
.

Before concluding, observe that, by comparison in (4.5) and (4.7), we can also deduce
that

‖η‖2L2(0,T ;W )
+ ‖ρ − χξ‖2L2(0,T ;W )

≤ C
(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
.

Indeed, due to the regularity of strong solutions given by Theorem 3.5, one just has to
notice that

‖P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ‖2L2(0,T ;H)

≤ P ′∞‖ξ‖2L∞(0,T ;H)

∫ T

0
‖σ + χ(1 − ϕ) − μ‖2∞ dt

︸ ︷︷ ︸
≤C

≤ C
(
‖h‖2L2(QT )

+ ‖k‖2L2(QT )

)
.

At this point, with all these uniform estimates, it is easy to pass to the limit in the dis-
cretisation framework and prove the existence of a strong solution with the prescribed
regularities. Moreover, since the system is linear, it is straightforward to prove the
uniqueness of the solution from the energy estimate (4.11). This concludes the proof
of Theorem 4.3. ��

4.2 Differentiability of the Control-to-State Operator

We nowwant to study the control-to-state operator S, which associates to any control
(u, v) ∈ Uad ×Vad the corresponding solution of the system (3.1)–(3.5). We introduce
the following space:

Y := (H1(0, T ; H) ∩ L∞(0, T ; H2(�))) × L2(0, T ; W )

× (H1(0, T ; H) ∩ L∞(0, T , V ) ∩ L2(0, T ; H2(�))).

Observe that the space of strong solutions X is continuously embedded into Y, which
is exactly the space where we proved the continuous dependence estimates. Indeed,
from Theorem 3.5 and Theorem 3.7 we respectively know that

S : (L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ) → X iswell − de f ined and

S : (L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ) → Y is locally Lipschit z − continuous.

Now, for R > 0, we fix an open setUR ×VR ⊆ (L∞(QT )∩ H1(0, T ; H))× L∞(QT )

such that Uad × Vad ⊆ UR × VR . Indeed, by hypothesis C3, we can take:

UR := {u ∈ L∞(QT ) ∩ H1(0, T ; H) | ‖u‖L∞(QT ) ≤ M ′ + R, ‖u‖H1(0,T ;H) ≤ M + R}

123



Applied Mathematics & Optimization (2024) 89 :8 Page 43 of 60 8

VR := {v ∈ L∞(QT ) | ‖v‖L∞(QT ) ≤ M ′ + R}.

Note that, in UR × VR , the continuous dependence estimate of Theorem 3.7 holds
with K depending only on R and the fixed data of the system. Our aim is to show that
S : UR × VR → W is also Fréchet-differentiable in the larger space:

W = (H1(0, T ; H) ∩ L∞(0, T ; V )) × L2(0, T ; V ) × (H1(0, T ; H) ∩ L∞(0, T ; V )).

Indeed, we can prove the following theorem:

Theorem 4.4 Assume hypothesis A1–A4, B1–B5 and C4. Then S : UR × VR → W

is Fréchet-differentiable, i.e. for any (u, v) ∈ UR × VR there exists a unique Fréchet-
derivative DS(u, v) ∈ L((L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ),W) such that:

‖S(u + h, v + k) − S(u, v) − DS(u, v)(h, k)‖W
‖(h, k)‖(L2(QT ))2

→ 0 as ‖(h, k)‖(L2(QT ))2 → 0.

(4.14)

Moreover, for any (h, k) ∈ (L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ), the Fréchet-
derivative at (h, k), which we denote by DS(u, v)(h, k), is defined as the solution
(ξ, η, ρ) to the linearised system (4.5)–(4.9) corresponding to (ϕ, μ, σ ) = S(u, v),
with data (h, k).

Remark 4.5 Note that, by Theorem 4.3, DS(u, v) as defined above actually belongs to
the space of continuous linear operatorsL((L∞(QT )∩H1(0, T ; H))×L∞(QT ),W).
Observe also that (4.14) shows Fréchet-differentiability with respect to the L2(QT )

norm, but clearly, since (L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ) ↪→ (L2(QT ))2, this
also implies Fréchet-differentiability in the correct space.

Proof Clearly, it is sufficient to prove the result for any small enough perturbation
(h, k), i.e. we fix � > 0 and consider only perturbations such that

‖(h, k)‖(L2(QT ))2 ≤ �. (4.15)

Now, we fix (u, v) and (h, k) as above and consider

(ϕ, μ, σ ) := S(u + h, v + k),

(ϕ, μ, σ ) := S(u, v),

(ξ, η, ρ) as the solution to (4.5)–(4.9) with respect to (h, k).

In order to show the Fréchet-differentiability, then, it is enough to show that there
exists a constant C > 0, depending only on the parameters of the system and possibly
on �, and an exponent s > 2 such that

‖(ϕ, μ, σ ) − (ϕ, μ, σ ) − (ξ, η, ρ)‖2
W

≤ C‖(h, k)‖s
(L2(QT ))2

.
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If we introduce the additional variables

ψ := ϕ − ϕ − ξ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ),

ζ := μ − μ − η ∈ L2(0, T ; W ),

θ := σ − σ − ρ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ),

θ − χψ ∈ L2(0, T ; W ).

which by Theorem 3.5 and Theorem 4.3 enjoy the regularities shown above, then this
is equivalent to showing that

‖(ψ, ζ, θ)‖2
W

≤ C‖(h, k)‖s
(L2(QT ))2

. (4.16)

Moreover, by inserting the equations solved by the variables in the definitions of ψ , ζ
and θ and exploiting the linearity of the involved differential operators, we infer that
these new variables satisfy the equations:

∂tψ = �ζ + Qh − U h in QT , (4.17)

ζ = τ∂tψ + AFh + Baψ − B J ∗ ψ − χθ in QT , (4.18)

∂tθ = �θ − χ�ψ − Qh in QT , (4.19)

together with boundary and initial conditions:

∂nζ = ∂n(θ − χψ) = 0 on ∂� × (0, T ), (4.20)

ψ(0) = 0, θ(0) = 0 in �, (4.21)

where:

Fh = F ′(ϕ) − F ′(ϕ) − F ′′(ϕ)ξ,

U h = h(u + h) − h(ϕ)u − h(ϕ) − h(ϕ)uξ,

Qh = P(ϕ)(σ + χ(1 − ϕ) − μ) − P(ϕ)(σ + χ(1 − ϕ) − μ)

− P(ϕ)(ρ − χξ − η) − P ′(ϕ)(σ − χ(1 − ϕ) − μ)ξ.

Before going on, we can rewrite in a better way the terms Fh , U h and Qh , by using
the following version of Taylor’s theorem with integral remainder for a real function
f ∈ C2 at a point x0 ∈ R:

f (x) = f (x0) + f ′(x0)(x − x0) +
(∫ 1

0
(1 − z) f ′′(x0 + z(x − x0)) dz

)
(x − x0)

2.

Indeed, with straightforward calculations one can see that

Fh = F ′′(ϕ) (ϕ − ϕ − ξ)︸ ︷︷ ︸
=ψ

+Rh
1 (ϕ − ϕ)2,
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U h = h′(ϕ) (ϕ − ϕ − ξ)︸ ︷︷ ︸
=ψ

u + (h(ϕ) − h(ϕ))h + Rh
2 (ϕ − ϕ)2u,

and also, up to adding and subtracting some additional terms, that

Qh = P(ϕ)(θ − χψ − ζ ) + P ′(ϕ)(σ + (1 − χ)ϕ − μ)ψ

+ (P(ϕ) − P(ϕ))[(σ − σ) − χ(ϕ − ϕ) − (μ − μ)]
+ Rh

3 (σ + (1 − χ)ϕ − μ)(ϕ − ϕ)2,

where

Rh
1 =

∫ 1

0
(1 − z)F ′′′(ϕ + z(ϕ − ϕ)) dz,

Rh
2 =

∫ 1

0
(1 − z)h′′(ϕ + z(ϕ − ϕ)) dz,

Rh
3 =

∫ 1

0
(1 − z)P ′′(ϕ + z(ϕ − ϕ)) dz.

Regarding these last remainder terms, we can immediately say that there exists a
constant C > 0, depending only on the parameters, � and T , such that

‖Rh
1‖L∞(QT ), ‖Rh

2‖L∞(QT ), ‖Rh
3‖L∞(QT ) ≤ C�. (4.22)

Indeed, by using the fact that F ∈ C3 and ϕ, ϕ are bounded uniformly in L∞(QT )

with values in [−s∗, s∗] by Theorem 3.5, we have that

‖Rh
1‖L∞(QT ) ≤

∫ 1

0
(1 − z)‖F ′′′(ϕ + z(ϕ − ϕ))‖L∞(QT ) dz ≤ C�

∫ 1

0
(1 − z) dz ≤ C�.

The other two terms are done in an analogous way, by exploiting hypothesis C4.
Moreover, for later purposes, we also observe that

‖∇ Rh
1‖L∞(0,T ;L6(�)) ≤ C�. (4.23)

Indeed, by using Lebesgue’s theorem to differentiate inside the integral sign, Jensen’s
inequality, Fubini’s theorem, the embedding H2(�) ↪→ W 1,6(�), F ∈ C4, the sep-
aration property and the uniform bound on ϕ, ϕ in L∞(0, T ; H2(�)) as before, we
have:

‖∇ Rh
1‖6 ≤

(∫
�

(∫ 1

0
(1 − z)|(∇ϕ + z(∇ϕ − ∇ϕ))F (4)(ϕ + z(ϕ − ϕ))| dz

)6

dx

)1/6

≤ C

( ∫ 1

0
(1 − z)‖(∇ϕ + z(∇ϕ − ∇ϕ))F (4)(ϕ + z(ϕ − ϕ))‖66 dz

)1/6
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≤ C

( ∫ 1

0
(1 − z) ‖F (4)(ϕ + z(ϕ − ϕ))‖6L∞(QT )︸ ︷︷ ︸

≤C�

‖∇ϕ + z(∇ϕ − ∇ϕ)‖66 dz

)1/6

≤ C�

(
2‖ϕ‖W 1,6(�) + ‖ϕ‖W 1,6(�)

)
≤ C�

(
2‖ϕ‖L∞(0,T ;H2(�)) + ‖ϕ‖L∞(0,T ;H2(�))

) ≤ C�.

Then, by taking the essential supremum on (0, T ) we deduce (4.23).
Now we can start with a priori estimates on the system (4.17)–(4.21). Firstly, we

test (4.17) in H by ζ and, by using (4.22), Cauchy-Schwarz and Young’s inequalities,
the embedding H2(�) ↪→ L∞(�) and the local Lipschitz continuity of h ∈ C1, we
get:

(ψt , ζ )H + ‖∇ζ‖2H = (Qh, ζ )H − (h′(ϕ)uψ, ζ )H − ((h(ϕ) − h(ϕ))h, ζ )H

+ (Rh
2 (ϕ − ϕ)2u, ζ )H

≤ (Qh, ζ )H + ε

2
‖ζ‖2H + Cε‖ψ‖2H + Cε‖ϕ − ϕ‖4H + ‖h(ϕ) − h(ϕ)‖∞‖h‖H ‖ζ‖H

≤ (Qh, ζ )H + ε‖ζ‖2H + Cε‖ψ‖2H + Cε‖ϕ − ϕ‖4H + Cε‖ϕ − ϕ‖2H2(�)
‖h‖2H ,

where ε > 0 from Young’s inequality is to be chosen later. Next, to estimate the term
(Qh, ζ )H , we use use again (4.22), Hölder and Young’s inequalities, the embedding
V ↪→ L4(�) and the local Lipschitz continuity of P ∈ C1, indeed:

(Qh, ζ )H = (P(ϕ)(θ − χψ − ζ ), ζ )H + (P ′(ϕ)(σ + (1 − χ)ϕ − μ)ψ, ζ )H

+ ((P(ϕ) − P(ϕ))[(σ − σ) − χ(ϕ − ϕ) − (μ − μ)], ζ )H

+ (Rh
3 (σ + (1 − χ)ϕ − μ)(ϕ − ϕ)2, ζ )H

≤ (P(ϕ)(θ − χψ − ζ ), ζ )H + ε‖ζ‖2H
+ Cε(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H
+ Cε‖ϕ − ϕ‖2V (‖σ − σ‖2V + χ‖ϕ − ϕ‖2V + ‖μ − μ‖2V )

+ Cε‖σ + (1 − χ)ϕ − μ‖2∞‖ϕ − ϕ‖4V ,

where again ε > 0 is yet to be chosen and without loss of generality, up to changing
the constants C > 0, can be thought the same as before. Then, by putting all together
and integrating on (0, t) for any t ∈ (0, T ), we have:

∫ t

0
(ψt , ζ )H ds +

∫ t

0
‖∇ζ‖2H ds −

∫ t

0
(P(ϕ)(θ − χψ − ζ ), ζ )H ds ≤ 2ε

∫ t

0
‖ζ‖2H ds

+ Cε

∫ t

0
‖θ‖2H ds + Cε

∫ t

0
(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H ds

+ Cε

∫ T

0
‖ϕ − ϕ‖4H ds

+ Cε‖ϕ − ϕ‖2L∞(0,T ;H2(�))

∫ T

0
‖h‖2H ds

123



Applied Mathematics & Optimization (2024) 89 :8 Page 47 of 60 8

+ Cε‖ϕ − ϕ‖4L∞(0,T ;V )

∫ T

0
‖σ + (1 − χ)ϕ − μ‖2∞ ds

+ Cε‖ϕ − ϕ‖2L∞(0,T ;V )

∫ T

0
(‖σ − σ‖2V + χ‖ϕ − ϕ‖2V + ‖μ − μ‖2V ) ds.

At this point, we use the continuous dependence estimate found in Theorem 3.7 and
the fact that ‖σ + (1 − χ)ϕ − μ‖2∞ ∈ L1(0, T ) uniformly, to obtain:

∫ t

0
(ψt , ζ )H ds +

∫ t

0
‖∇ζ‖2H ds −

∫ t

0
(P(ϕ)(θ − χψ − ζ ), ζ )H

≤ 2ε
∫ t

0
‖ζ‖2H ds + Cε

∫ t

0
‖θ‖2H ds

+ Cε

∫ t

0
(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H ds + Cε‖h‖4L2(QT )

+ Cε‖k‖4L2(QT )
.

(4.24)

Next, we test (4.18) in H by −∂tψ and, by using Leibniz’s rule, (4.22), Cauchy-
Schwarz andYoung’s inequalities, F ∈ C3, Remark 3.6 and the embedding H2(�) ↪→
L∞(�), as well as V ↪→ L4(�), we infer that

(ζ,−ψt )H + τ‖ψt‖2H + 1

2

d

dt
((AF ′′(ϕ) + Ba)ψ,ψ)H − χ(θ, ψt )H

= (AF ′′′(ϕ)ϕtψ,ψ)H − (ARh
1 (ϕ − ϕ)2, ψt )H + (B J ∗ ψ,ψt )H

≤ τ

2
‖ψt‖2H + C(1 + ‖ϕt‖H2(�))‖ψ‖2H + C‖ϕ − ϕ‖4V ,

where ‖ϕt‖H2(�) ∈ L2(0, T ) by Theorem 3.5. Then, by integrating on (0, t), for any
t ∈ (0, T ), and, by exploiting hypothesis A4 and the continuous dependence result of
Theorem 3.7, we find that

∫ t

0
(ζ,−ψt ) ds + c0

2
‖ψ(t)‖2H + τ

2

∫ t

0
‖ψt‖2H ds −

∫ t

0
χ(θ, ψt )H ds ≤

≤ C
∫ t

0
(1 + ‖ϕt‖H2(�))‖ψ‖2H ds + C‖h‖4L2(QT )

+ C‖k‖4L2(QT )
.

(4.25)

For the third estimate, we test (4.19) in H by θ − χψ and with similar techniques we
find that

1

2

d

dt
‖θ‖2H − χ(θt , ψ)H + ‖∇(θ − χψ)‖2H = (−Qh, θ − χψ)H

≤ −(P(ϕ)(θ − χψ − ζ ), θ − χψ)H + C‖θ‖2H
+ C(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H
+ C‖ϕ − ϕ‖2V (‖σ − σ‖2V + χ‖ϕ − ϕ‖2V + ‖μ − μ‖2V )

+ C‖σ + (1 − χ)ϕ − μ‖2∞‖ϕ − ϕ‖4V .
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Therefore, by integrating on (0, t) for any t ∈ (0, T ) and by using again Theorem 3.7,
we obtain:

1

2
‖θ(t)‖2H +

∫ t

0
‖∇(θ − χψ)‖2H ds −

∫ t

0
χ(θt , ψ)H ds

+
∫ t

0
(P(ϕ)(θ − χψ − ζ ), θ − χψ)H ds ≤ C

∫ t

0
‖θ‖2H ds

+ C
∫ t

0
(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H ds + C‖h‖4L2(QT )

+ C‖k‖4L2(QT )
.

(4.26)

Finally, we test (4.18) in H by δζ , with δ > 0 to be chosen later, getting:

δ‖ζ‖2H = δτ(ψt , ζ )H + δ(AF ′′(ϕ)ψ, ζ )H + δ(ARh
1 (ϕ − ϕ)2, ζ )H

+ δ(Baψ, ζ )H − δ(B J ∗ ψ, ζ )H − δχ(θ, ζ )H .

Exactly as we already did in the proof of Theorems 3.7 and 4.3, by using Cauchy-
Schwarz and Young’s inequalities with γ > 0 to be chosen later and the same ε > 0
used before, up to changing the constants C > 0, we can estimate

δ‖ζ‖2H ≤ Cγ δτ‖ψt‖2H + γ δτ‖ζ‖2H + ε‖ζ‖2H + Cε,δ‖ψ‖2H
+Cε,δ‖θ‖2H + Cε,δ‖ϕ − ϕ‖4V .

Then, by integrating on (0, t), for any t ∈ (0, T ) and using Theorem 3.7, we obtain:

(1 − ε − γ δτ)

∫ t

0
‖ζ‖2H ds

≤ Cγ δτ

∫ t

0
‖ψt‖2H ds + Cε,δ

∫ t

0

(
‖ψ‖2H + ‖θ‖2H

)
ds + Cε,δ‖h‖4L2(QT )

+ Cε,δ‖k‖4L2(QT )
. (4.27)

Now, we can sum the inequalities (4.24), (4.25), (4.26) and (4.27), so that after can-
cellations and after observing that

−
∫ t

0
(χ(ψt , θ)H + χ(ψ, θt )H ) ds = −χ

2
(ψ(t), θ(t))H ≥ −χ2

2
‖ψ(t)‖2H − 1

4
‖θ(t)‖2H ,

we arrive at the inequality:

1

2
(c0 − χ2)‖ψ(t)‖2H + 3

8
‖θ(t)‖2H + (1 − 3ε − γ δτ)

∫ t

0
‖ζ‖2H ds

+
(τ

2
− Cγ δτ

) ∫ t

0
‖ψt‖2H ds +

∫ t

0
‖∇(θ − χψ)‖2H ds +

∫ t

0
‖∇ζ‖2H ds

+
∫ t

0
(P(ϕ)(θ − χψ − ζ ), θ − χψ − ζ )H︸ ︷︷ ︸

≥0

ds
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≤ Cε,δ

∫ t

0
‖θ‖2H ds + Cε,δ

∫ t

0
(1 + ‖σ + (1 − χ)ϕ − μ‖2∞ + ‖ϕt‖H2(�))‖ψ‖2H ds

+ Cε,δ‖h‖4L2(QT )
+ Cε,δ‖k‖4L2(QT )

.

Observe that once again, exactly as in the proof of Theorem 3.7 (see equation (3.33)),
we can respectively choose ε > 0, γ = γ (τ) > 0 and then δ = δ(τ ) > 0 such that the
constants above are strictly positive, Therefore, we can apply Gronwall’s inequality
and recover the estimate:

τ‖ψ‖2H1(0,T ;H)
+ ‖ψ‖2L∞(0,T ;H) + ‖ζ‖2L2(0,T ;V )

+ ‖θ‖2L∞(0,T ;H)

+ ‖∇(θ − χψ)‖2L2(0,T ;H)
≤ Cτ‖h‖4L2(QT )

+ Cτ‖k‖4L2(QT )
,

(4.28)

where the constant Cτ > 0 depends only on the parameters of the system, R, � and
possibly on τ . As in the previous proofs, the dependence on τ can be avoided by
arguing as in Remark 3.9.

To conclude, we just need two more estimates. First we test the gradient of (4.18)
by∇ψ in H and, after using the chain rule and adding and subtracting χ2(∇ψ,∇ψ)H ,
we have:

(∇ζ,∇ψ)H = τ

2

d

dt
‖∇ψ‖2H + ((AF ′′(ϕ) + Ba)∇ψ,∇ψ)H + (AF ′′′(ϕ)∇ϕψ, ∇ψ)H

+ (B∇aψ,∇ψ)H + (A∇ Rh
1 (ϕ − ϕ)2, ∇ψ)H + (2ARh

1 (ϕ − ϕ)(∇ϕ − ∇ϕ),∇ψ)H

− (B∇ J ∗ ψ.∇ψ)H − χ(∇(θ − χψ),∇ψ)H − χ2(∇ψ, ∇ψ)H .

Then, by using (4.22), (4.23), F ∈ C3, Remark 3.6, Hölder’s inequality, (2.1) and
Sobolev embeddings, we can infer that

τ

2

d

dt
‖∇ψ‖2H + (c0 − χ2)‖∇ψ‖2H

≤ ‖∇ζ‖H ‖∇ψ‖H + C‖F ′′′(ϕ)‖∞‖∇ϕ‖6‖ψ‖1/2H ‖∇ψ‖3/2H + 2Bb‖ψ‖H ‖∇ψ‖H

+ A‖∇ Rh
1‖6‖ϕ − ϕ‖26‖∇ψ‖H + 2A‖Rh

1‖∞‖ϕ − ϕ‖6‖∇ϕ − ∇ϕ‖3‖∇ψ‖H

+ χ‖∇(θ − χψ)‖H ‖∇ψ‖H

≤ C‖∇ψ‖2H + C‖∇ζ‖2H + C‖∇(θ − χψ)‖2H + C(1 + ‖∇ϕ‖46)‖ψ‖2H
+ ‖ϕ − ϕ‖4V + ‖ϕ − ϕ‖4H2(�)

,

where ‖∇ϕ‖46 ∈ L∞(0, T ). Therefore, by integrating on (0, t) for any t ∈ (0, T ),
using Theorem 3.7 and the previous estimate (4.28), after applying Gronwall’s lemma
we obtain the following:

‖ψ‖2L∞(0,T ;V ) ≤ C‖h‖4L2(QT )
+ C‖k‖4L2(QT )

.
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Moreover, by comparison with the estimate for ∇(θ − χψ), we can also see that

‖θ‖2L2(0,T ;V )
≤ C‖h‖4L2(QT )

+ C‖k‖4L2(QT )
.

Finally, we test (4.19) in H by ∂t (θ − χψ) and, with Cauchy-Schwarz and Young’s
inequalities, we get:

‖θt‖2H + 1

2

d

dt
‖∇(θ − χψ)‖2H = χ(θt , ψt )H − (Qh, θt − χψt )H

≤ 1

2
‖θt‖2H + C‖ψt‖2H + C‖Qh‖2H .

Regarding ‖Qh‖2H , one can argue exactly like we did for the first estimate and then,
after integrating in time and applying Theorem 3.7, arrive at:

1

2

∫ t

0
‖θt‖2H ds + ‖∇(θ − χψ)(t)‖2H

≤ C
∫ t

0

(
‖ψt‖2H + ‖θ‖2H + ‖ζ‖2H

)
ds

+ C
∫ t

0
(1 + ‖σ + (1 − χ)ϕ − μ‖2∞)‖ψ‖2H ds

+ C‖h‖4L2(QT )
+ C‖k‖4L2(QT )

.

Hence, by applying Gronwall’s lemma and the previous estimate (4.28), we infer that

‖θ‖2H1(0,T ;H)
+ ‖θ − χψ‖2L∞(0,T ;V ) ≤ C‖h‖4L2(QT )

+ C‖k‖4L2(QT )
,

and then also by comparison

‖θ‖2L∞(0,T ;V ) ≤ C‖h‖4L2(QT )
+ C‖k‖4L2(QT )

.

In the end, by putting all together, we showed that

‖ψ‖2H1(0,T ;H)∩L∞(0,T ;V )
+ ‖ζ‖2L2(0,T ;V )

+ ‖θ‖2H1(0,T ;H)∩L∞(0,T ;V )

≤ C‖h‖4L2(QT )
+ C‖k‖4L2(QT )

,

which is exactly (4.16) with s = 4 > 2 and so we are done. ��

4.3 Adjoint System and First-Order Necessary Conditions

In order to write down the necessary conditions of optimality and make them useful
for applications, we now need to introduce the adjoint system to the optimal control
problem (CP). Indeed, we fix an optimal state (ϕ, μ, σ ) = S(u, v), then, by using
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the formal Lagrangian method with adjoint variables (p, q, r), one can find that the
adjoint system, which is formally solved by these variables, has the following form:

− ∂t (p + τq) + AF ′′(ϕ)q + Baq − B J ∗ q + χ�r

+ χ P(ϕ)(p − r) − P ′(ϕ)(σ + χ(1 − ϕ) − μ)(p − r)

+ ph′(ϕ)u = αQ(ϕ − ϕQ) in QT , (4.29)

− q − �p + P(ϕ)(p − r) = 0 in QT , (4.30)

− ∂t r − �r − χq − P(ϕ)(p − r) = βQ(σ − σQ) in QT , (4.31)

together with the following boundary and final conditions:

∂n p = ∂nr = 0 on ∂� × (0, T ), (4.32)

(p+τq)(T )=α�(ϕ(T )−ϕ�), r(T )=β�(σ(T )−σ�) in �. (4.33)

First, we prove the well-posedness of this adjoint system in the following theorem.

Theorem 4.6 Assume hypotheses A1–A4, B1–B5 and C1–C4 and let (ϕ, μ, σ ) ∈ X

be the strong solution to (3.1)–(3.5), corresponding to (u, v) ∈ Uad × Vad. Then the
adjoint system (4.29)–(4.33) admits a unique strong solution such that

p + τq ∈ H1(0, T ; H) ∩ L∞(0, T ; H),

τq ∈ L2(0, T ; H),

p ∈ L2(0, T ; W ),

r ∈ H1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; W ),

which fulfils (4.29)–(4.33) almost everywhere in the respective sets.

Proof We observe that (4.29)–(4.33) is a backward linear system, so once we prove
well-posedness through an energy estimate, the uniqueness of the solution will follow
easily. Also in this case the proof can be made rigorous through a Galerkin approxi-
mation scheme, the details of which will be left to the reader. We will limit ourselves
to derive formal energy estimates, which can then be used to pass to the limit in the
approximation.

We start by testing (4.29) in H by p + τq, so that, by also adding and subtracting
τq on every occurrence of p in the source terms, we get:

−1

2

d

dt
‖p + τq‖2H = −(AF ′′(ϕ)q, p + τq)H − (Baq, p + τq)H + (B J ∗ q, p + τq)H

− χ(�r , p + τq)H − χ(P(ϕ)(p + τq − τq − r), p + τq)H

+ (P ′(ϕ)(σ + χ(1 − ϕ) − μ)(p + τq − τq − r), p + τq)H

− ((p + τq − τq)h′(ϕ)u, p + τq)H + (αQ(ϕ − ϕQ), p + τq)H .
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Then, by using the separation property for ϕ, the regularity properties of the functions
F, P,h, Cauchy-Schwarz inequality and Young’s inequality with ε > 0 to be chosen
later, we infer that

− 1

2

d

dt
‖p + τq‖2H ≤ τε‖q‖2H + 1

8
‖�r‖2H + Cε‖r‖2H

+ Cε(1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖u‖2∞)‖p + τq‖2H + C‖αQ(ϕ − ϕQ)‖2H ,

(4.34)

where the constantsCε > 0 depend only on the parameters and on ε. Next, wemultiply
(4.30) by M > 0, to be chosen later, andwe test it in H by p. By adding and subtracting
τq where necessary, we get:

M(−q, p + τq − τq)H + M‖∇ p‖2H + M (P(ϕ)p, p)︸ ︷︷ ︸
≥0

−M(P(ϕ)r , p + τq − τq) = 0.

Then, by using Cauchy-Schwarz and Young’s inequalities with the same ε > 0 as
before, without loss of generality, we deduce that

Mτ‖q‖2H + M‖∇ p‖2H ≤ τε‖q‖2H + Cε,M‖p + τq‖2H + Cε,M‖r‖2H . (4.35)

Now we test (4.31) in H by r , so that

−1

2

d

dt
‖r‖2H + ‖∇r‖2H = χ(q, r)H + (P(ϕ)(p + τq − τq − r), r)H

−(βQ(σ − σQ), r)H .

Then, again by Cauchy-Schwarz and Young, we obtain:

− 1

2

d

dt
‖r‖2H + ‖∇r‖2H ≤ τε‖q‖2H + δ‖q‖2H

+Cε‖p + τq‖2H + Cδ‖r‖2H + C‖βQ(σ − σQ)‖2H ,

(4.36)

with δ > 0 again to be chosen later. Finally, we need to compensate the term 1
8‖�r‖2H

in (4.34). This is where we will need the stronger hypothesis σ� ∈ V in C2, after
time-integration. Indeed, now we test (4.31) in H by −�r , which is possible within
the discretization. By adding and subtracting again τq where necessary, we get:

−1

2

d

dt
‖∇r‖2H + ‖�r‖2H = χ(q,�r) + (P(ϕ)(p + τq − τq − r),�r)H

+(βQ(σ − σQ),�r)H .

We now estimate each term on the right-hand side by using Cauchy-Schwarz’s and
Young’s inequality, indeed:
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−1

2

d

dt
‖∇r‖2H + ‖�r‖2H ≤ 3

4
‖�r‖2H + χ2‖q‖2H + τ P2∞‖q‖2H

+ C‖p + τq‖2H + C‖r‖2H + C‖βQ(σ − σQ)‖2H .

(4.37)

Now, we sum all inequalities (4.34), (4.35), (4.36), (4.37) and we obtain the following:

− 1

2

d

dt

(
‖p + τq‖2H + ‖r‖2H + ‖∇r‖2H

)
+ M‖∇ p‖2H + ‖∇r‖2H

+
(
τ M − χ2 − τ P2∞ − τε − δ

)
‖q‖2H + 1

8
‖�r‖2H

≤ Cε(1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖u‖2∞)‖p + τq‖2H + Cδ‖r‖2H
+ C‖βQ(σ − σQ)‖2H + C‖αQ(ϕ − ϕQ)‖2H .

At this point, we can respectively choose M = M(τ ) > 0 big enough and then
ε = ε(τ ) > 0 and δ = δ(τ ) > 0 small enough such that

(
τ M − χ2 − τ P2∞ − τε − δ

)
:= γ (τ) > 0.

Therefore, by integrating on (t, T ), for any t ∈ (0, T ), and using the prescribed final
data, we eventually arrive at the inequality:

1

2
‖(p + τq)(t)‖2H + 1

2
‖r(t)‖2H + 1

2
‖∇r(t)‖2H + M(τ )

∫ T

t
‖∇ p‖2H ds +

∫ T

t
‖∇r‖2H ds

+ γ (τ)

∫ T

t
‖q‖2H ds + 1

8

∫ T

t
‖�r‖2H ds

≤ C‖α�(ϕ(T ) − ϕ�)‖2H + C‖β�(σ(T ) − σ�)‖2V + Cτ

∫ T

t
‖r‖2H ds

+ Cτ

∫ T

t
(1 + ‖σ + χ(1 − ϕ) − μ‖2∞ + ‖u‖2∞)‖p + τq‖2H ds

+ C
∫ T

t
‖βQ(σ − σQ)‖2H ds + C

∫ T

t
‖αQ(ϕ − ϕQ)‖2H ds.

Hence, by the regularities given by Theorem 3.5 and C2, it is possible to apply Gron-
wall’s lemma to obtain the following uniform estimates:

‖p + τq‖2L∞(0,T ;H) + τ‖q‖2L2(0,T ;H)
+ ‖p‖2L2(0,T ;V )

+ ‖r‖2L∞(0,T ;V )∩L2(0,T ;W )

≤ Cτ

(
‖α�(ϕ(T ) − ϕ�)‖2H + ‖β�(σ(T ) − σ�)‖2V
+ ‖βQ(σ − σQ)‖2L2(0,T ;H)

+ ‖αQ(ϕ − ϕQ)‖2L2(0,T ;H)

)
,

(4.38)

where Cτ > 0 is a constant depending only on the parameters of the system. Now, by
comparison in (4.30), since P ∈ L∞ and p, q, r ∈ L2(0, T ; H) we can deduce that
also �p is uniformly bounded in L2(0, T ; H). In an analogous way, by comparison
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in (4.31), we can see that rt is also uniformly bounded in L2(0, T ; H). Therefore we
have that

‖p‖2L2(0,T ;W )
+ ‖r‖2H1(0,T ;H)

≤ Cτ

(
‖α�(ϕ(T ) − ϕ�)‖2H + ‖β�(σ(T ) − σ�)‖2V

+ ‖βQ(σ − σQ)‖2L2(0,T ;H)
+ ‖αQ(ϕ − ϕQ)‖2L2(0,T ;H)

)
.

Finally, we observe that by Hölder’s inequality and Sobolev embeddings:

∫ T

0
‖P(ϕ)(σ + χ(1 − ϕ) − μ)(p − r)‖2H dt

≤ P2∞
∫ T

0
‖σ + χ(1 − ϕ) − μ‖24‖p − r‖24 dt

≤ P2∞‖σ + χ(1 − ϕ) − μ‖2L∞(0,T ;V )

∫ T

0
‖p − r‖2V dt,

which is uniformly bounded by Theorem 3.5 and (4.38). Then, by comparison in
(4.29), we deduce that also

‖p + τq‖2H1(0,T ;H)
≤ Cτ

(
‖α�(ϕ(T ) − ϕ�)‖2H + ‖β�(σ(T ) − σ�)‖2V

+ ‖βQ(σ − σQ)‖2L2(0,T ;H)
+ ‖αQ(ϕ − ϕQ)‖2L2(0,T ;H)

)
.

With all these uniform estimates, one can easily pass to the limit in a discretisation
framework an prove the existence of a solution. Then, by linearity of the system,
estimate (4.38) provides also uniqueness. ��
Remark 4.7 Notice that in this case, even if τ is bounded from above as in Remark 3.9,
the constant Cτ in (4.38) cannot be made independent of τ . This could be possible if
χ = 0, indeed the definition of the coefficient γ would become:

(τ M − τ P2∞ − τε) = τ(M − P2∞ − ε) = τγ,

with γ independent of τ . However, if for instance one intends to try sending τ → 0,
then, in general, different estimates would be required. Regarding this problem, we
refer the reader to [43].

Finally,with the adjoint variables,we can determine and then simplify the first-order
necessary conditions. Indeed, we have the following result:

Theorem 4.8 Assume hypotheses A1–A4, B1–B5 and C1–C4. Let (u, v) ∈ Uad ×Vad

be an optimal control for (CP) and let (ϕ, μ, σ ) = S(u, v) be the corresponding
optimal state, i.e. the solution of (3.1)–(3.5) with these (u, v). Let also (p, q, r) be
the adjoint variables to (ϕ, σ , μ), i.e. the solutions to the adjoint system (4.29)–
(4.33). Then, they satisfy the following variational inequality, which holds for any
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(u, v) ∈ Uad × Vad:

∫ T

0

∫
�

(−h(ϕ)p + αuu)(u − u) dx dt +
∫ T

0

∫
�

(r + βvv)(v − v) dx dt ≥ 0.

(4.39)

Proof Before starting, observe that, by the regularities guaranteed by Theorems 3.5,
4.3 and 4.6, all the integrals that we are going to write make sense in L1(QT ).

First observe that the cost functional J is convex and Fréchet-differentiable in the
space C0([0, T ]; H) × C0([0, T ]; H) × L2(QT ) × L2(QT ). Next, in Theorem 4.4
we showed that the solution operator S is Fréchet-differentiable from UR × VR ⊆
(L∞(QT ) ∩ H1(0, T ; H)) × L∞(QT ) to W. Moreover, since by standard results
L∞(0, T ; V ) ∩ H1(0, T ; H) is embedded with continuity in C0([0, T ]; )H , we also
have that the operator (S1,S3) that selects the first and third components of S is
Fréchet-differentiable from UR ×VR to (C0([0, T ]; H))2. Therefore, we can consider
the reduced cost functional f : (L∞(QT )∩ H1(0, T ; )H)× L∞(QT ) → R, defined
as

f (u, v) := J (S1(u, v),S3(u, v), u, v),

which, by the chain rule, is Fréchet-differentiable in UR × VR .
At this point, we can rewrite our optimal control problem (CP) through the reduced

cost functional as the minimisation problem

argmin
(u,v)∈Uad×Vad

f (u, v).

Then, if (u, v) is optimal, since Uad × Vad is convex and f is Fréchet-differentiable,
it has to satisfy the necessary optimality condition

f ′(u, v)[(u − u, v − v)] ≥ 0 ∀(u, v) ∈ Uad × Vad.

When computing explicitly the derivative of f , we get that for any (u, v) ∈ Uad ×Vad

∫
�

α�(ϕ(T ) − ϕ�)ξ(T ) dx dt +
∫ T

0

∫
�

αQ(ϕ − ϕQ)ξ dx

+
∫

�

β�(σ(T ) − σ�)ρ(T ) dx dt +
∫ T

0

∫
�

βQ(σ − σQ)ρ dx

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0,

where ξ = DS1(u, v)[u − u, v − v] and ρ = DS3(u, v)[u − u, v − v] are the
components of the solution (ξ, η, ρ) to the linearised system (4.5)–(4.9) in (ϕ, μ, σ )

corresponding to (h, k) = (u − u, v − v).
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Now observe that the right-hand sides and the final conditions of the adjoint system
appear in this inequality, therefore by substituting equations (4.29), (4.31) and (4.33)
in the previous expression, we find that for any (u, v) ∈ Uad × Vad

∫
�

(p + τq)(T )ξ(T ) dx +
∫ T

0

∫
�

( − ∂t (p + τq) + AF ′′(ϕ)q + Baq − B J ∗ q + χ�r

+ χ P(ϕ)(p − r) − P ′(ϕ)(σ + χ(1 − ϕ) − μ)(p − r) + ph′(ϕ)u
)
ξ dx dt

+
∫

�

r(T )ρ(T ) dx +
∫ T

0

∫
�

( − ∂t r − �r − χq − P(ϕ)(p − r)
)
ρ dx dt

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0.

Now we integrate by parts in time, by using also the initial conditions (4.9) on the
linearised system, and in space, by using the boundary conditions (4.32) and (4.8),
and, after cancellations, we find that equivalently for any (u, v) ∈ Uad × Vad∫ T

0

∫
�

(
pξt + τqξt + AF ′′(ϕ)ξq + Baξq − B(J ∗ ξ)q + χ�ξ r

+ χ P(ϕ)(p − r)ξ − P ′(ϕ)(σ + χ(1 − ϕ) − μ)(p − r)ξ + ph′(ϕ)u ξ
)
dx dt

+
∫ T

0

∫
�

(
ρt r − �ρr − χρq − P(ϕ)(p − r)ρ

)
dx dt

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0,

where we also used the symmetry of the kernel J . By factoring out p, q and r respec-
tively, we can rewrite the previous inequality as

∫ T

0

∫
�

p
(
ξt − P(ϕ)(ρ − χξ) − P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ + h′(ϕ)u ξ

)
dx dt

+
∫ T

0

∫
�

q
(
τξt + AF ′′(ϕ)ξ + Baξ − B J ∗ ξ − χρ

)
dx dt

+
∫ T

0

∫
�

r
(
ρt − �ρ + χ�ξ + P(ϕ)(ρ − χξ) + P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ

)
dx dt

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0.

Finally, we use equation (4.30) and again integration by parts to also get that

0 =
∫ T

0

∫
�

(−q − �p + P(ϕ)(p − r)) η dx dt

=
∫ T

0

∫
�

−ηq − �η p + P(ϕ)(p − r)η dx dt .

Then, by adding this to the previous inequality, we at last infer that for any (u, v) ∈
Uad × Vad
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∫ T

0

∫
�

p
(
ξt − �η − P(ϕ)(ρ − χξ − η) − P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ + h′(ϕ)u ξ

)
dx dt

+
∫ T

0

∫
�

q
(−η + τξt + AF ′′(ϕ)ξ + Baξ − B J ∗ ξ − χρ

)
dx dt

+
∫ T

0

∫
�

r
(
ρt − �ρ + χ�ξ + P(ϕ)(ρ − χξ − η) + P ′(ϕ)(σ + χ(1 − ϕ) − μ)ξ

)
dx dt

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0.

To conclude, we notice that the expressions enclosed in the parentheses are exactly the
equations (4.5), (4.6), (4.7) of the linearised system, up to their source terms. Hence,
by substituting those into our inequality, we find that for any (u, v) ∈ Uad × Vad

∫ T

0

∫
�

−p h(ϕ)(u − u) dx dt +
∫ T

0

∫
�

r(v − v) dx dt

+
∫ T

0

∫
�

αuu(u − u) dx dt +
∫ T

0

∫
�

βvv(v − v) dx dt ≥ 0,

which is exactly (4.39). This concludes the proof of Theorem 4.8. ��
Remark 4.9 Observe that, since Uad × Vad is closed and convex, (4.39) means that, if
αu > 0 and βv > 0, the optimal control (u, v) is exactly the L2(QT )2-orthogonal
projection of (α−1

u h(ϕ) p,−β−1
v r) onto Uad × Vad. In particular, if u ≡ 0, i.e. we are

only looking for a chemotherapy v through the nutrient, it can be shown that, due to
the structure of Vad, the L2(QT )-projection of −β−1

v r has the explicit form:

v(x, t) = min
{
vmax(x, t),max

{
−β−1

v r(x, t), vmin(x, t)
}}

for a.e. (x, t) ∈ QT .

If we also want to optimise for a radiotherapy u, the actual description of the projection
onto the space Uad is more difficult and has to be tackled numerically, due to the
presence of the additional constraint ‖u‖H1(0,T ;H) ≤ M . However, this cannot be
avoided, since the extra regularity on u is needed to prove the global boundedness
of the variable ϕ, which is crucial for the whole analysis. Note that this kind of
restriction is not unprecedented for controls acting as source terms in Cahn-Hilliard
type equations, see for instance [9].
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