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Abstract
We consider a system of nonlinear diffusion equations modelling (isothermal) phase
segregation of an ideal mixture of N ≥ 2 components occupying a bounded region
� ⊂ R

d , d ≤ 3. Our system is subject to a constant mobility matrix of coefficients,
a free energy functional given in terms of singular entropy generated potentials and
localized capillarity effects. We prove well-posedness and regularity results which
generalize the ones obtained by Elliott and Luckhaus (IMA Preprint Ser 887, 1991).
In particular, if d ≤ 2, we derive the uniform strict separation of solutions from
the singular points of the (entropy) nonlinearity. Then, even if d = 3, we prove the
existence of a global (regular) attractor as well as we establish the convergence of
solutions to single equilibria. If d = 3, this convergence requires the validity of the
asymptotic strict separation property. Thiswork constitutes the first part of an extended
three-part study involving the phase behavior of multi-component systems, with a
second part addressing the presence of nonlocal capillarity effects, and a final part
concerning the numerical study of such systems along with some relevant application.
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1 Introduction

The Cahn–Hilliard equation has been originally proposed to model phase separation
phenomena in binary alloys (see [7, 8], see also [19, 38] and references therein).
Since then, it has been observed that phase separation characterizes many impor-
tant processes like, for instance, behavior of polymer mixtures, solid tumor growth,
inpainting (see, for instance, [37] and its references). More recently, phase separa-
tion has become a paradigm in cell biology (see, e.g., [13, 14, 39] and references
therein). Correspondingly, the theoretical and numerical literature on Cahn–Hilliard
type equations has been growing a lot in this last decade. However, most of the theo-
retical contributions are devoted to binary mixtures (see [37] and references therein).
Nonetheless, multi-component systems are ubiquitous in nature and possess important
scientific and industrial applications. Thinking just of cell biology, we refer the reader
to [40, 46] and their references. In spite of that, the thermodynamic and kinetic prop-
erties, and solution behavior of N -component mixtures with N > 3 have remained
relatively unexplored, even though considerable progress has beenmade for binary and
ternary systems in the last few decades (see [5, 44] and references therein). Rigorous
analysis of the coupling of the two-phase Cahn–Hilliard theory with incompressible
fluid flows on the basis of Korteweg stress tensor dynamics have been investigated
by many authors (see, e.g., [2, 3, 20–23, 26–28, 30–33] and the references therein,
just to give some examples of the most important developments), resulting in a fairly
reasonable theoretical picture about the corresponding binary fluid behavior in most
cases. Coupling of hydrodynamic models for fluid behavior with a N -component
family of Cahn–Hilliard models has also been considered recently1 (see, e.g., [5, 15,
35]). As such, existence of weak solutions to a class of N -component Cahn–Hilliard
systems, subject to amechanism of cross-diffusion between different chemical species
and singular bulk potentials, has recently been studied in [17].

Furthermore, well-posedness for a hierarchy of N multi-species Cahn–Hilliard
systems which are consistent with the standard Cahn–Hilliard equation for binary
components was provided in [5], in the case when the capillarity effects are reflected
through the presence of penalizing gradients, while the entropy of the system is related
to a properly-constructed regular (i.e., polynomial like) bulk potential. We also recall
that the case of regular bulk potential for a N -component Cahn–Hilliard system has
been studied, for instance, in [9] and in [12]. In the former, the existence of a smooth
global attractor was obtained, while in the latter the authors studied well-posedness
and the existence of global and exponential attractors in the case of dynamic boundary
conditions.

In the context of non-equilibrium thermodynamics, here we consider the model
derived in [16] (cf. also [5, 18]). Let � be a bounded domain in R

d , d ≤ 3, with a

1 Although, these theories are constrained to some degree due to the inability of meeting all conditions of
physical and mathematical consistency [5].
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smooth boundary ∂�. We then focus on the following nonlinear diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu = div (α∇μ) , in � × (0, T ),

μi = −γi�ui + �,ui (u), ∀ i = 1, . . . , N , in � × (0, T ),

(α∇μ) · n = 0, on ∂� × (0, T ),

∇ui · n = 0, ∀ i = 1, . . . , N , on ∂� × (0, T ),

u(0) = u0, in �,

(1.1)

where γi > 0, i ∈ {1, ..., N } and u = (u1, ..., uN ) ∈ [0, 1]N , N ≥ 2, is the vector of
mass fractions. The (constant) mobility matrix α is a symmetric, positive semidefinite
N×N matrix such that its kernel is given by span{ζ } (where ζi = 1, for i = 1, . . . , N ).
As in [16], we are also interested in a particular free energy related to the Boltzmann–
Gibbs mixing entropy potential

�(u) := θ

N∑

i=1

ui ln(ui )− 1

2
u ·Au =

N∑

i=1

ψ(ui )− 1

2
u ·Au = �1(u)− 1

2
u ·Au, (1.2)

where θ > 0 is the absolute temperature for the mixture. Here, A is a constant sym-
metric N × N matrix with the largest eigenvalue λA > 0. In what follows, our goal
is in fact to extend the framework of [16] to include many other (physically relevant)
entropy functions �1 : [0, 1] → R+ (cf. [25]). An advantage of our approach is that
both the physical andmathematical consistency of themodel (1.1), as motivated by the
work [5], is met for the general class of (singular) potentials considered subsequently.
The total energy of the system is defined as follows

E (u) := 1

2

N∑

i=1

∫

�

γi |∇ui |2dx +
∫

�

� (u) dx . (1.3)

In particular, for the multi-component system (1.1), in addition to satisfying the hierar-
chy conditions of [5], the following consistency conditions are also strongly desirable:

(1) total mass conservation and energy dissipation hold for every energy solution. (i.e.,
the energy (1.3) is non-increasing for all time t ≥ 0, as well as,−c∗ ≤ E (u (t)) ≤
C∗, for any t ≥ t0 (u0) , for some computable c∗,C∗ > 0 independent of time
and the initial conditions);

(2) physical separation of each chemical component ui , i ∈ {1, ..., N } from the end-
point values {0, 1} of the bulk potential �1;

(3) in the absence of any external sources, for a given fixed initial condition u0, one has
the convergence of the associated (unique) energy solution to a single equilibrium.

The main novelty of our work lies in that we establish properties (1) and (3) for the
N -component system (1.1) and also property (2) in dimension two. More precisely,
concerning (1), we extend and refine the well posedness result proven in [16]. In
particular, in dimension two, we establish the so-called strict separation property (see
[25] and references therein), that is, property (2). In order to demonstrate property
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(3) (see [1, 11] for the binary case), we need to obtain suitable regularization results
which also allow us to show the existence of a global attractor (see, e.g., [36, 43] and
references therein). Finally, in subsequent contributions we will address the presence
of nonlocal capillarity effects in the energy functional, as well as provide the numerical
analysis of such systems along with some relevant applications to the applied sciences.

The structure of the paper is as follows. InSect. 2,we state the requiredmathematical
framework, specifying, in particular, the nature of the entropy functionswe can handle.
In Sect. 3.1 we recall the corresponding notion of weak (energy) solutions which can
be constructed by variational techniques. Furthermore, we give a main summary of the
main results, involving the long term behavior of energy solutions (see Sect. 3.3), along
with the existence of a dissipative (asymptotically compact) semigroup in Sect. 3.2.
The remainingSects. 4, 5, 6 and 7 contain detailed proofs of the aforementioned results.
The final section is an appendix which contains a number of technical results, assisting
in the proofs of the main results.

2 TheMathematical Framework

The Sobolev spaces are denoted as usual by Wk,p(�), where k ∈ N and 1 ≤ p ≤ ∞,
with norm ‖ · ‖Wk,p(�). The Hilbert space W

k,2(�) is denoted by Hk(�) with norm
‖ · ‖Hk (�). Moreover, given a (real) vector space X , we denote by X the space of
N -component vectors each one belonging to X . In this case |v| is the Euclidean norm
of v ∈ X. We then denote by (·, ·) the inner product in L2(�) and by ‖ · ‖ the induced
norm. We indicate by (·, ·)H and ‖ · ‖H the canonical inner product and its induced
norm in the (real) Hilbert space H , respectively. We also define the spatial average of
a measurable function f : � → R as

f := |�|−1
d

∫

�

f (x)dx,

where |�|d stands for the d-dimensional Lebesgue measure of �. We then recall the
following Sobolev–Gagliardo–Nirenberg’s inequality for two-dimensional bounded
domains:

‖ f ‖L p(�) ≤ C
√
p‖ f ‖H1(�), 2 ≤ p < ∞,

where C > 0 is a constant independent of p. Further, we introduce the affine hyper-
plane

� :=
{

c′ ∈ R
N :

N∑

i=1

c′
i = 1

}

, (2.1)

and since only the nonnegative values for the ui are physically relevant, we also define
the Gibbs simplex

G :=
{

c′ ∈ R
N :

N∑

i=1

c′
i = 1, c′

i ≥ 0, i = 1, . . . , N

}

, (2.2)
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and the tangent space to the affine hyperplane �

T� :=
{

d′ ∈ R
N :

N∑

i=1

d ′
i = 0

}

. (2.3)

We introduce the following useful notation:

H0 :=
{

f ∈ L2(�) :
∫

�

f dx = 0 and f(x) ∈ T� for a.a. x ∈ �

}

,

H̃0 :=
{
f ∈ L2(�) : f(x) ∈ T� for a.a. x ∈ �

}
,

V0 :=
{

f ∈ H1(�) :
∫

�

f dx = 0 and f(x) ∈ T� for a.a. x ∈ �

}

,

Ṽ0 :=
{
f ∈ H1(�) : f(x) ∈ T� for a.a. x ∈ �

}
.

Notice that the two spaces above are still Hilbert spaces with the same inner prod-
ucts defined in L2(�) and in H1(�), respectively. Furthermore, we have the Hilbert
triplets V0 ↪→↪→ H0 ↪→ V′

0 and Ṽ0 ↪→↪→ H̃0 ↪→ Ṽ
′
0. These spaces are the right

functional setting for the homogeneous Neumann Laplace problem where the forcing
term belongs to T�, see Appendix 1. Indeed, the condition f(x) ∈ T� entails that the
components of f are linearly dependent, and this forces the (weak) Laplace operator
to be defined on V0. The spaces with the tilde symbol are useful when one does not
need that the integral mean of the function is zero. We then introduce the Euclidean
projection P of RN onto T�, by setting, for l = 1, . . . , N ,

(Pv)l =
(

v −
(

1
N

N∑

i=1

vi

)

ζ

)

l

= 1
N

N∑

m=1

(vl − vm).

Notice that the projector P is also an orthogonal L2(�)-projector on H̃0, being sym-
metric with respect to the L2(�)-scalar product and idempotent.

Given a (closed) subspace V of a (real) Hilbert space H we denote by V⊥H its
orthogonal complement with respect to the H -topology. We then denote by the simple
symbol V⊥ the annihilator of V , i.e.

V⊥ := {x ∈ H ′ : 〈x, y〉H ′,H = 0 ∀ y ∈ V }.

We define B(X ,Y ) (B(X) when X = Y ) the set of linear bounded operators from
the (real) Banach space X to the (real) Banach space Y , and K(X ,Y ) (K(X) when
X = Y ) for the compact operators from X to Y . Moreover, given an operator T from
X to Y , we define by T ′ : Y ′ → X ′ the adjoint of T , whereas, in case of Hilbert
spaces, we denote the Hilbert adjoint of T by T ∗ : Y → X . We now observe that the
assumptions on α imply that α is positive definite over T�. This will constitute the
main assumption on the mobility matrix in this contribution.
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(M0) In particular, we assume that there exists l0 > 0 such that

αη · η ≥ l0η · η, ∀ η ∈ T�. (2.4)

Next, we define the set

K :=
{

η ∈ H1(�) :
N∑

i=1

ηi = 1, ηi ≥ 0, ∀ i = 1, . . . , N

}

. (2.5)

For the sake of simplicity we will adopt the compact notation v ≥ k, with v ∈ R
N and

k ∈ R to indicate the relation vi ≥ k for any i = 1, . . . , N , as well a we will write
z = v + k to indicate that zi = vi + k, i = 1, . . . , N .

Concerning the entropy function, we recall that, according to (1.2), ψ is the
Boltzmann-Gibbs entropy potential

(φ(u))i = φ(ui ) := ψ ′(ui ) = θ(lnui + 1), i = 1, . . . , N .

More generally, ψ ′ = φ can be associated with a generalized (statistical) class of
entropy potentials that are physically relevant (see [25, Section 2] and references
therein). In particular, our analysis also includes the Tsallis’ entropy formulation con-
taining the usual Boltzmann-Gibbs (i.e. logarithmic) form (1.2) as a particular case.
Namely, for given q ∈ R+, we define the q-logarithm of a real number r > 0, as

ln{q} r :=
{
ln r , if q = 1,
r1−q−1
1−q , if q > 0, q �= 1.

The Tsallis’ entropy S = Sq is then given by

S (ui ) :=
∫

�

ψ (ui (x)))dx, ψ (r) := −r ln{q} (1/r) .

Aclass of relevant statistically generated entropy functional.2 for themulti-component
problem then becomes

∫

�

�(u (x))dx := θ

N∑

i=1

S (ui ) − 1

2

∫

�

u · Au dx . (2.6)

To simplify the exposition, we shall set θ = 1 and γi ≡ γ in what follows.3 Also, we
will denote by �,u(r) the gradient of �(r) in RN . We refer the reader to [25, Section
6.3] for some other important classes of (singular at 0) mixing potentials. Among
examples of (entropy) densities we have functions of the following form:

2 See once again [25, Section 6.2].
3 All the results in this article clearly hold for any θ > 0.
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• ψ (x) = (
x1+κ − x1−κ

)
/2κ, for some κ ∈ (0, 1);

• ψ (x) = xβ ln (x) , for some β ∈ (0, 1);
• ψ (x) = −x ln1/ν

( 1
x

)
, for some ν > 0.

In order to include a large admissible class of entropy functionals in (2.6), we
assume that

ψ ∈ C ([0, 1]) ∩ C2 ((0, 1])
is such that

(E0) ψ ′′(s) ≥ ζ > 0, for all s ∈ (0, 1];
(E1) lims→0+ ψ ′ (s) = −∞;
(E2) there exist C > 0 and β ∈ [1, 2) such that

φ′ (s) = ψ ′′(s) ≤ CeC|ψ ′(s)|β , for all s ∈ (0, 1].

We also extendψ(s) = +∞, for any s ∈ (−∞, 0), and extendψ for all s ∈ [1,∞)

so that ψ is still a C2 function on (0,+∞) and property (E0) holds for any s > 0. To
this aim we define

ψ(s) := As3 + Bs2 + Ds, for all s ≥ 1, (2.7)

with
⎧
⎪⎨

⎪⎩

A = ψ(1) − ψ ′(1) + 1
2ψ

′′(1),
B = −3ψ(1) + 3ψ ′(1) − ψ ′′(1),
D = 3ψ(1) − 2ψ ′(1) + 1

2ψ
′′(1).

Note that ψ ′′(s) ≥ ψ ′′(1) ≥ ζ for any s ≥ 1, as desired.
Following the general scheme developed in [24, Section 3.1], on account of (E0)-

(E1), we can define an approximation of the potentialψ by means of a family {ψε}ε>0
of everywhere defined functions. Indeed, let

ψε(s) = ε

2
|Tεs|2 + ψ(Jε(s)), s ∈ R, ε > 0, (2.8)

where Jε = (I +εT)−1 : R → (0,+∞) is the resolvent operator andTε = 1
ε
(I − Jε)

is the Yosida approximation of T (s) := ψ ′ (s) , for all s ∈ D (T) = (0,+∞) (see
also [24, Lemmas 3.7,3.8]). According to the general theory of maximal monotone
operators (see, for instance, [4, 6, 42]), the following properties hold (see properties
(i)-(iii) [24, Sec.3.1]):

(i) ψε is convex and ψε(s) ↗ ψ(s), for all s ∈ R, as ε goes to 0;
(ii) ψ ′

ε(s) = Tε(s) and ψ ′
ε =: φε is Lipschitz on R with constant 1

ε
;

(iii) |ψ ′
ε(s)| ↗ |ψ ′(s)| for all s ∈ (0,+∞) and |ψ ′

ε(s)| ↗ ∞, for all s ∈ (−∞, 0], as
ε ↘ 0.

Moreover
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(iv) for any ε ∈ (0, 1], there holds

ψ ′′
ε (s) ≥ ζ

1 + ζ
, ∀ s ∈ R.

This follows as in [24, Lemma 3.10]. Indeed, Tε is clearly differentiable in R and
from the differentiation formula for inverse functions (used for Jε) we infer, for
any s ∈ R,

ψ ′′
ε (s) = 1

ε

(

1 − 1

1 + εψ ′′(Jε(s))

)

≥ ζ

1 + εζ
≥ ζ

1 + ζ
,

having exploited assumption (E0) which we assumed by construction to be valid
for any s > 0.

(v) For any compact subset M ⊂ (0, 1], ψ ′
ε converges uniformly to ψ ′ on M . This

comes directly from property (iii) and the fact that ψ ′
ε, ψ

′ are continuous in M for
any ε > 0.

(vi) For any ε0 > 0 there exists K̃ = K̃ (ε0) > 0 such that

N∑

i=1

ψε(ri ) ≥ 1

4ε0
|r|2 − K̃ , ∀ r ∈ R

N , ∀ 0 < ε < ε0.

This directly follows from a straightforward adaptation of [24, Lemma 3.11].
Indeed by de l’Hôpital’s Theorem we have

lim
s→+∞

ψε(s)

s2
= lim

s→+∞
ψ ′

ε(s)

2s
= lim

s→+∞
1

2ε

s − Jε(s)

s
= 1

2ε
,

since, recalling (2.7), Jε is of order 1
2 with respect to s for s sufficiently large,

and thus lims→+∞
Jε(s)

s
= 0. Moreover, by assumption (E1) it is clear that Jε is

bounded on (−∞, 0), and thus again

lim
s→−∞

ψε(s)

s2
= lim

s→−∞
1

2ε

s − Jε(s)

s
= 1

2ε
.

Therefore, for any ε0 > 0, there exists Mε0 > 0 depending on ε0 such that, by
property (i), ψε(s) ≥ ψε0(s) ≥ 1

4ε0
s2, for any |s| ≥ Mε0 and any 0 < ε < ε0.

Moreover, for the same ε0 it also holds

ψε(s) ≥ ψε0(s) ≥ 1

4ε0
s2 − M2

ε0

4ε0
− max

r∈[−Mε0 ,Mε0 ] |ψε0(r)|,

for all |s| ≤ Mε0 and for all 0 < ε < ε0. Thus, in the end, we get

ψε(s) ≥ 1

4ε0
s2 − Kε0 , ∀ s ∈ R, ∀ 0 < ε < ε0,

123



Applied Mathematics & Optimization (2023) 88 :73 Page 9 of 46 73

with Kε0 := −M2
ε0

4ε0
−maxr∈[−Mε0 ,Mε0 ] |ψε0(r)|, fromwhich property (vi) follows.

Remark 2.1 Introducing

�ε(r) :=
N∑

i=1

ψε(ri ) − 1

2
rTAr = �1

ε (r) − 1

2
rTAr,

we have that, for any ε0 > 0 sufficiently small, there exist K = K (ε0) > 0 and
C = C(ε0) > 0, such that

�ε(r) ≥ C(ε0)|r|2 − K , ∀ r ∈ R
N , ∀ ε ∈ (0, ε0).

In particular, this comes from property (vi) and the fact that − 1
2r

TAr ≥ −λA
2 |r|2.

Notice that ε0 has to be small enough so that C(ε0) := 1
4ε0

− λA
2 ≥ 1

8ε0
> 0.

3 Main Results

This section is divided into several subsections according to the nature of the results.

3.1 Well-Posedness and Regularity

First we introduce the following vector of generalized chemical potential differences:

w := Pμ,

and observe that, being αζζζ = 0,

div (α∇μ) = div

(
N∑

l=1

αkl∇μl

)

=
N∑

l=1

αkl�
1

N

N∑

m=1

(μl − μm) = α�w.

Therefore, system (1.1) can be rewritten as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu = α�w, in � × (0, T ),

wi = −γ�ui + (P
(
�,u(u))

)

i , in � × (0, T ),∀ i = 1, . . . , N ,

(α∇w) · n = 0, on ∂� × (0, T ),

∇ui · n = 0, on ∂� × (0, T ), ∀ i = 1, . . . , N ,

u(0) = u0, in �,

(3.1)

where u0 ∈ K. Indeed, observe that
∑N

i=1 ui ≡ 1 (just test the first equation of (3.1)
with ζζζ ), so that �u ∈ T� and thus P�u = �u.

In ourwell-posedness theoremweextend the result of [16, Theorem1]. In particular,
we show the instantaneous strict separation property in dimension two. This means
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that, for any τ > 0, there exists 0 < δ = δ(τ, T ) < 1
N such that δ < u everywhere

in � × [τ, T ]. Notice that this condition, together with the constraint
∑N

i=1 ui = 1,
implies the existence of δ1 := (N − 1)δ > 0 such that u < 1 − δ1 everywhere in
� × [τ, T ], i.e., the solution is strictly separated from the pure phases 0 and 1. More
precisely, we have

Theorem 3.1 Assume (M0) and (E0)-(E1), and let u0 ∈ K and T > 0 be given.
Suppose that

δ0 < u0, (3.2)

for some 0 < δ0 < 1
N . Then there exists a unique pair (u,w), called weak or energy

solution to (3.1), with the following properties

u ∈ C([0, T ]; H1(�)) ∩ L∞(0, T ;H1(�)) ∩ L4(0, T ,H2(�)),√
tu ∈ L∞(0, T ;W2,r (�)),

∂tu ∈ L2(0, T ;H1(�)′),
√
t∂tu ∈ L2(0, T ;H1(�)),

w ∈ L2(0, T ;H1(�)),
√
tw ∈ L∞(0, T ;H1(�)),

φ(ui ) ∈ L2(0, T ; L2(�)),√
tφ(ui ) ∈ L∞(0, T ; Lr (�)), i = 1, . . . , N ,

where r ∈ [2,∞) if d = 2 and r ∈ [2, 6] if d = 3, which satisfies

u(·, 0) = u0, (3.3)

u(·, t) ∈ K, for a.a. t ∈ (0, T ), u(t) ≡ u0, (3.4)

0 < u(x, t) < 1 for a.a. (x, t) ∈ � × (0, T ), (3.5)

and, for all ξ ∈ C([0, T ]) and η ∈ H1(�),

∫ T

0
ξ(t)

{
d

dt
< u, η > +(α∇w,∇η)

}

dt = 0, (3.6)

∫ T

0
ξ(t) {(w + P(−Au + φ(u)), η) − γ (∇u,∇η)} dt = 0. (3.7)

Moreover, the following energy identity holds

d

dt
E(t) + (ααα∇w(t),∇w(t)) = 0, for almost any t ∈ [0, T ]. (3.8)

Finally, if d = 2 and assumption (E2) holds, then, for any τ > 0, there exists 0 < δ =
δ(τ, T ) < 1

N such that

δ < u(x, t), ∀ (x, t) ∈ � × [τ, T ].
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Remark 3.2 Notice that (3.2) implies that there existsρ > 0 such thatρ < u0,i < 1−ρ

for any i = 1, . . . , N . Indeed, we have for any i = 1, . . . , N ,

δ0 < min
j=1,...,N

u0, j ≤ u0,i = 1−
∑

j �=i

u0, j ≤ 1−(N−1) min
j=1,...,N

u0, j < 1−(N−1)δ0,

and thus we can choose, e.g., ρ = δ0, being N ≥ 2.

Remark 3.3 Notice that, arguing as in [16, Proposition 2.1], we easily obtain that∑N
i=1 ui = 1 and

∑N
i=1 wi = 0. Moreover, by choosing ηηη ≡ ηηηi , with ηηηi the i-th

unit vector of the standard basis, we get that the total mass of each component ui is
preserved, i.e.,

u(t) ≡ u0, ∀ t ≥ 0.

Remark 3.4 As it will be clear from the proof (see Sect. 4 below), the quantity δ > 0
only depends on the parameters of the problem, on ψ and on the H1(�)-norm of the
initial datum. Therefore, if we consider a set of initial data contained in a ball ofH1(�)

of radius R > 0, δ will depend on the initial datum only through R.

Remark 3.5 Notice that a continuous dependence estimate from which uniqueness
directly follows has already been shown in [16, Section 3]. By this uniqueness result
one can easily see that the weak solution is actually globally defined on (0,∞) and
the properties in the above theorem hold for any T > 0.

The energy identity (3.8) allows us to extend the weak solution to all times t ≥ 0.
Also, on account of the dissipative nature of the system, we have the following uniform
control of the energy E .
Theorem 3.6 Let the assumptions of Theorem 3.1 hold. Then the energy satisfies the
following inequality

E(t) ≤ C1e
−ωtE(0) + C2, ∀ t ≥ 0, (3.9)

where C1,C2 > 0 are positive constants and ω > 0 is a universal constant.

The weak solution given by Theorem 3.1 instantaneously regularizes. Indeed, we
have

Theorem 3.7 Let the assumptions of Theorem 3.1 hold. Then the energy solution
(u,w), defined for all t ≥ 0, is such that, for any τ > 0,

u ∈ C([0,∞);H1(�)) ∩ L∞(τ,∞;W2,p(�)),

∂tu ∈ L2(t, t + 1;H1(�)), ∀ t ≥ τ,

w ∈ L∞(τ,∞;H1(�)), ∀ t ≥ τ,

φ(ui ) ∈ L∞(τ,∞; L p(�)), i = 1, . . . , N , (3.10)

where p ∈ [2,∞) if d = 2 and p ∈ [2, 6] if d = 3. Moreover, if d = 2 and assumption
(E2) holds, then there exists 0 < δ = δ(τ ) < 1

N such that

δ < u(x, t), ∀ (x, t) ∈ � × [τ,∞).
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3.2 Existence of the Regular Global Attractor

Wenow define a completemetric spacewhichwill be the phase space of the dissipative
dynamical system associated with (3.1). For a given M ∈ �, such that Mi ∈ (0, 1),
for any i = 1, . . . , N , we set

VM :=
{

u ∈ H1(�) : 0 ≤ u(x) ≤ 1, for a.a. x ∈ �, u = M,

N∑

i=1

ui = 1

}

,

endowed with the H1-topology. In particular we consider the one induced by the
equivalent norm ‖u‖VM = ‖∇u‖ + |u|. This is a complete metric space. Thus we can
define a dynamical system (VM, S(t)) where

S(t) : VM → VM, S(t)u0 = u(t), ∀ t ≥ 0.

Observe that S(t) satisfies the following properties:

• S(0) = I dVM ;• S(t + τ) = S(t)S(τ ), for every u0 ∈ VM;
• t �→ S(t)u0 ∈ C([0,∞);VM), for every u0 ∈ VM;
• u0 �→ S(t)u0 ∈ C(VM;VM), for any t ∈ [0,∞).

In particular, the last property can be proved as follows. From [16, Section 3]
(see also Remark 3.5) we deduce that, for any sequence {u0,n}n∈N ⊂ VM such that
u0,n → u0 ∈ VM as n → ∞,

‖S(t)u0,n − S(t)u0‖H1(�)′ = ‖S(t)u0,n − S(t)u0‖V′
0

→ 0,

as n → ∞, for any t ≥ 0 fixed. From this result, together with the H2-regularity (for
any t > 0) and the interpolation estimate

‖ · ‖H1(�) ≤ C‖ · ‖
2
3
H2(�)

‖ · ‖
1
3
H1(�)′

we deduce that u0 �→ S(t)u0 ∈ C(VM;VM), for any t ∈ (0,∞). The case t = 0 is
trivial.

Furthermore, we recall that the global attractor is the unique compact setA ⊂ VM
such that

• A is fully invariant, i.e., S(t)A = A for every t ≥ 0;
• A is attracting for the semigroup, i.e.,

lim
t→∞[distVM(S(t)B,A)] = 0

for every bounded set B ⊂ VM.

The dissipative inequality (3.9) and the instantaneous regularization of the energy
solution allow us to prove
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Theorem 3.8 The dynamical system (VM, S(t)) admits a (unique) connected global
attractor A ⊂ VM which is bounded in W2,r (�), for any r ≥ 2 if d = 2, r = 6 if
d = 3.

Remark 3.9 The proof of this result is based on showing that the dynamical system
(VM, S(t)) admits a compact absorbing set B0 (see Sect. 6 below).

Remark 3.10 Notice that in dimension two, thanks to the validity of the strict separation
property given by the extra assumption (E2) (which is not needed elsewhere), we can
in principle prove the existence of an exponential attractor (and thus deduce that
the global attractor is of finite fractal dimension). To obtain this result, one should
demonstrate the existence of strong solutions when the initial data are sufficiently
regular. This can be done through an approximating scheme similar to [31]. Having
the existence (and uniqueness) of the strong solution, which is strictly separated from
the initial time t = 0, one can prove the Lipschitz continuity of the semigroup S(t)
with respect to the initial datum, provided that the initial data belong to a sufficiently
regular positively invariant bounded absorbing set, say B. Then, one can also prove a
smoothing property of S(t) on B and, following [36, Section 3], get the existence of
an exponential global attractor first on B and then on VM, being B a suitable bounded
absorbing set. We refer to [34, Section 3.3], in which this procedure is applied to the
multi-component Allen-Cahn equation.

3.3 Convergence to Equilibrium

In this section we exploit and adapt the arguments of [1, Section 6]. We detail the main
steps, postponing the proofs of the main results to Sects. 7 and 1.

We consider again the dynamical system (VM, S(t)) and the ω-limit set ω(u0) of a
given u0 ∈ VM

ω(u0) = {z ∈ H2r (�) ∩ VM : ∃ tn ↗ ∞ s.t. u(tn) → z in H2r (�)},

where r ∈ [ 12 , 1). In particular, for later purposes, we fix r ∈ ( d4 , 1). Thanks to
Theorem 3.7, we have that u ∈ L∞(τ,∞;H2(�)) for any τ > 0. Hence the sets⋃

t≥τ S(t)u0 are relatively compact in H2r (�). Since for a fixed t0 > 0 we have

ω(u0) =
⋂

s≥0

⋃

t≥s

S(t)u0
H2r (�)

=
⋂

s≥t0

⋃

t≥s

S(t)u0
H2r (�)

,

by standard results related to the intersection of non-empty, compact (in H2r (�)),
connected and nested sets, we infer that ω(u0) is non-empty, compact and connected
in H2r (�). Moreover, it is easy to show that

lim
t→∞ distH2r (�)(S(t)u0, ω(u0)) = 0. (3.11)

Let us set
Z = {u ∈ H1(�) : E(uuu) < +∞},
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where E is defined in (1.3), and introduce the notion of stationary point. Given

fff 1 ∈ G := {v ∈ L∞(�) : v(x) ∈ T� for almost any x ∈ �},

we say that z ∈ H2(�)∩ Z is a stationary point if it solves the boundary value problem

⎧
⎪⎨

⎪⎩

−�z + P�1
,z(z) = fff 1 + PAz, a.e. in �,

∂nz = 0, a.e. on ∂�,
∑N

i=1 zi = 1, in �.

(3.12)

Let thenW be the set of all the stationary points. As we shall see below, Theorem 8.1
guarantees that z is strictly separated from the pure phases, i.e., there exists 0 < δ =
δ( fff ) < 1

N such that
δ < z(x) (3.13)

for any x ∈ �. Thus all the stationary points inW are strictly separated, but possibly
not uniformly. However, it can be proven that ω(u0) ⊂ W and that ω(u0) is actually
uniformly strictly separated from the pure phases. Indeed, we have (see Sect. 7.1 below
for the proof).

Lemma 3.11 For any u0 ∈ VM it holds ω(u0) ⊂ W , namely, each element u∞ ∈
ω(u0) is a solution to the steady-state equation (3.12), with f1 = P�,u(u∞).Moreover,
it holds u∞ = u0, so that ω(u0) ⊂ VM, and there exists δ > 0 so that

δ < u∞, ∀u∞ ∈ ω(u0)

for any x ∈ �, i.e., the ω-limit set of u0 is uniformly strictly separated from the pure
phases.

Remark 3.12 As already noticed, thanks to the costraints on u∞ ∈ ω(u0), the strict
separation property also implies that

u∞(x) < 1 − (N − 1)δ

for any x ∈ �.

Thanks to the choice of r ∈ ( d4 , 1),ω(u0) is compact inL∞(�) and thus it is totally
bounded inL∞(�). This means that we can choose ε > 0 such that, e.g., ε < δ

2 , where
δ is given by Lemma 3.11, and there exists a finite number, say M0, of L∞-open balls
Bε,n of radius ε such that

ω(u0) ⊂
M0⋃

n=1

Bε,n =: Uε ⊂ L∞(�),

and ω(u0) ∩ Bε,n �= ∅ for any n = 1, . . . , M0. Note that Uε is open in L∞(�).
Therefore, thanks to Lemma 3.11, we infer that, for any v ∈ Uε, for any j = 1, . . . , N
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and for some u ∈ ω(u0) (depending on v),

v j (x) ≤ u j (x) + |v j (x) − u j (x)|
≤ 1 − (N − 1)δ + ‖v − u‖L∞(�)

≤ 1 − ((N − 1)δ − ε)

and also

v j (x) ≥ u j (x) − |v j (x) − u j (x)| ≥ δ − ‖v − u‖L∞(�) ≥ δ − ε.

Thus, for almost any x ∈ �, we have that

0 < δ − ε ≤ v(x) ≤ 1 − ((N − 1)δ − ε) < 1, ∀ v ∈ Uε.

Furthermore, by (3.11) and the embedding H2r (�) ↪→ L∞(�) we deduce that there
exists t∗ ≥ 0 such that u(t) = S(t)u0 ⊂ Uε for any t ≥ t∗. This means that, also for
the three-dimensional case, a strict separation property holds asymptotically, namely,

Theorem 3.13 Let the assumptions of Theorems 3.1 and 3.7 hold. Then, for anyM ∈
(0, 1),M ∈ �, and for any initial datum u0 ∈ VM, there exists δ > 0 and t∗ = t∗(u0)
such that the corresponding (unique) solution u satisfies:

δ < u(x, t), for any (x, t) ∈ � × [t∗,+∞). (3.14)

Remark 3.14 Note that, differently from the two-dimensional case with assumption
(E2), the strict separation is not uniform with respect to the initial datum, Moreover,
in the case d = 3, we only have u ∈ C([t∗,+∞);H3/2(�)) which is not embedded
intoC(�×[t∗,+∞)). Nevertheless the separation holds everywhere in�×[t∗,+∞),
since surely u(t) ∈ C(�) for any t ≥ t∗.

In order to show that ω(u0) is actually a singleton we need to require a further
assumption on ψ , that is,

(E3) ψ is (real) analytic in (0, 1).

Due to (3.14), the singularities of ψ and its derivatives no longer play any role in our
analysis as we are only interested in the behavior of the solution u(t), as t → ∞. Thus
we can alter the functionψ outside the interval Iε = [δ−ε, 1−((N−1)δ−ε)] in such a
way that the extension ψ̃ is of classC3(RN ) and additionally |ψ̃( j)(s)|, j = 1, 2, 3, are
uniformly bounded on R. Correspondingly we define �̃(s) := ∑N

i=1 ψ̃(si ) − 1
2As · s.

Observe that ψ̃|Iε = ψ and ψ is analytic in Iε by assumption (E3). We then introduce
the “reduced" energy Ẽ : V0 → R by setting

Ẽ(z) := 1

2

∫

�

|∇z|2dx +
∫

�

�̃(z + M)dx .

Observe that Ẽ(u0 − M) = E(u0) for all u0 ∈ VM ∩ Uε, thanks to (3.14) and to the
definition of the extension ψ̃ . We then recall the following fundamental lemma whose
proof is based on [10] (see Sect. 7 below).
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Lemma 3.15 (Łojasiewicz–Simon Inequality) Let u be the global solution of (3.1) in
the sense of Theorems 3.1 and 3.7 with u0 ∈ VM, and suppose u∞ ∈ ω(u0). Then
there exist θ ∈ (0, 1

2 ], C, σ > 0 such that

∣
∣Ẽ(v) − Ẽ(u∞ − M)

∣
∣1−θ ≤ C‖Ẽ ′(v)‖V′

0
,

whenever ‖v − u∞ + M‖V0 ≤ σ .

Exploiting this tool, we are then able to prove that ω(u0) is a singleton. More
precisely, we have (for the proof see Sect. 7.3 below).

Theorem 3.16 Let the assumptions of Theorems 3.1 and 3.7 hold. Then, for any u0 ∈
VM, it holds ω(u0) = {u∞}, where u∞ ∈ W ∩ VM, i.e., u∞ is a solution to

⎧
⎪⎨

⎪⎩

−�u∞ + P�1
,u(u∞) = fff , a.e. in �,

∂nu∞ = 0, a.e. on ∂�,
∑N

i=1 u∞,i = 1, in �.

with fff = PAu∞ + P�,u(u∞). Moreover, u∞ = M, there exists δ > 0 so that

δ < u∞(x), ∀ x ∈ �,

and the (unique) weak solution u(t) is such that

u(t) = S(t)u0 −→
t→∞ u∞ in H2r (�), (3.15)

for any r ∈ (0, 1).

4 Proofs of Subsection 3.1

Here we collect the proofs of Theorems 3.1, 3.6 and 3.7.

4.1 Proof of Theorem 3.1

CtH1
x regularity and the energy identity. First we want to show that u ∈

C([0, T ];H1(�)). This is not a trivial consequence of the other regularities. Indeedwe

can only get u ∈ C([0, T ]; H 1
2 (�)) from u ∈ L4(0, T ;H2(�))∩ H1(0, T ,H1(�)′).

The idea is to apply [41, Lemma 4.1]. Let us setM := u0 and introduce the functional

J (v) := 1

2
‖∇v‖2 +

∫

�

�1(v + M)dx,

whose effective domain in H0 is

D(J ) =
{
v ∈ V0 : �1(v + M) ∈ L1(�)

}
.
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ClearlyJ is proper and convex, but also lower semicontinuous (w.r.t.L2(�) topology)
in H0, thanks to the property that all functions in H0 have zero integral mean (see,
e.g., [1, Proof of Lemma 4.1]). Moreover, we can immediately see that, for almost any
fixed t ≥ 0, the solution u(t) is such that z(t) := u(t) − M ∈ D(J ) and

q(t) := w(t) + PAu(t) − w(t) − PAu(t) ∈ ∂J (z(t)).

Indeed, by convexity of J and integration by parts, recalling that w(t) + PAu(t) =
−�u(t) + P�1

,u(u(t)), we have that, for any v ∈ D(J ),

(q(t), v − z(t)) = (w(t) + PAu(t) − w(t) − PAu(t), v − z(t))

= (−�u(t) + P�1
,u(u(t)), v − z(t))

= (−�z(t) + P�1
,u(z(t) + M), v − z(t))

= (−�z(t) + �1
,u(z(t) + M), v − z(t))

= lim
λ→0

J (z(t) + λ(v − z(t))) − J (z(t))
λ

≤ J (v) − J (z(t)),

where we crucially exploited the identities v − z(t) = 0 and v − z(t) = P(v − z(t)).
Notice that it is essential that q(t) = 0, since by definition of subdifferential and
recalling the identification H′

0 ≡ H0, we need q(t) ∈ H0. Summing up, thanks to the
regularity (3.10) and using the Hilbert triplet V0 ↪→↪→ H0 ≡ H′

0 ↪→ V′
0, we have:

• J : H0 → (−∞,+∞] is a proper, convex, lower semicontinous functional;
• z = u − M ∈ H1(0, T ;V′

0) ∩ L2(0, T ;V0);
• q(t) ∈ ∂J (z(t)) for almost any t ∈ (0, T ) and q ∈ L2(0, T ;V0);
• by Poincaré’s inequality and since �1 is bounded below, there exist k1, k2 > 0
such that

J (r) ≥ k1‖r‖2 − k2, ∀ r ∈ H0.

Therefore, we can apply [41, Lemma 4.1], with H = H0 and V = V0 and conclude
that the function J : t �→ J (z(t)) ∈ AC([0, T ]) and

∫ t

s
〈∂tz(r),q(r)〉V′

0,V0
dr = J (z(t)) − J (z(s)).

Let us introduce now the functional

J̃ (v) := J (v − M) = 1

2
‖∇v‖2 +

∫

�

�1(v)dx

and observe that J (z(t)) = J̃ (u(t)). Moreover, being ∂tu(t) ∈ H1(�)′ for almost
any t ∈ (0, T ), we can consider its restriction in V′

0 so that

〈∂tu(t), v〉V′
0,V0

= 〈∂tu(t), v〉H1(�)′,H1(�).
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Since ∂tz(t) ≡ ∂tu(t), we immediately deduce that

〈∂tz(t), v〉V′
0,V0

= 〈∂tu(t), v〉V′
0,V0

= 〈∂tu(t), v〉H1(�)′,H1(�).

Therefore, we obtain that J̃ (u(t)) ∈ AC([0, T ]) and
∫ t

s
〈∂tu(r),w(r) + PAu(r)〉H1(�)′,H1(�)dr = J̃ (u(t)) − J̃ (u(s)), (4.1)

recalling the definition of q and the property that 〈∂tu(t), c〉H1(�)′,H1(�) ≡ 0, for any

c ∈ R
N . On account of the fact that �1 is bounded and u ∈ C([0, T ];H 1

2 (�)),
the Lebesgue Dominated Convergence theorem implies that t �→ ∫

�
�1(u(t))) is

continuous. This guarantees, together with J̃ (u(t)) ∈ AC([0, T ]), that t �→ ‖∇u‖2
is continuous, entailing

u ∈ C([0, T ];H1(�)).

Moreover, thanks to (4.1), we have

d

dt
J̃ (u(t)) = 〈∂tu(t),w(t)(r) + Pu(t)〉H1(�)′,H1(�),

from which it is easy to show that the energy identity (3.8) holds, by testing (3.6) with
w(t).

Existence of a solution. We consider the approximation (2.8). In particular, we
define, for each ε > 0 sufficiently small,

φε(y) = �1
ε,y(y) = {ψ ′

ε(yi )}i=1,...,N , ∀ y ∈ R
N .

We then fix 0 < ε < ε0 and look for a couple (uε,wε), such that, for each T > 0,

uε ∈ L∞(0, T ;H1(�)),

∂tuε ∈ L2(0, T ; (H1(�))′),
wε ∈ L2(0, T ;H1(�)),

and, for all η ∈ H1(�), satisfies, almost everywhere in (0, T ),

< ∂tuε, η > +(α∇wε,∇η) = 0, (4.2)

(wε, η) = γ (∇uε,∇η) + (P(−Auε + φε(uε)), η). (4.3)

We recall some results obtained in [16, Propositions 2.1-−2.3]:

• Conservation of mass:
uε = u0.
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• Conservation of total mass

N∑

i=1

uε,i = 1, ∀ x ∈ �, t > 0. (4.4)

• Conservation of total chemical potential differences

N∑

i=1

wε,i = 0, ∀ x ∈ �, t > 0. (4.5)

• There exists C > 0 depending only on the initial data and independent of ε, such
that, for any t > 0,

∫

�

�ε(uε(t))dx + ‖∇uε(t)‖2 +
∫ t

0
‖∇wε(τ )‖2dτ ≤ C, (4.6)

and, by the conservation of mass and Poincaré’s inequality, it holds

‖uε(t)‖H1(�) ≤ C, for a.a. t ∈ (0, T ). (4.7)

Clearly, by (4.6), it is straightforward to infer

‖∂tuε‖L2(0,T ;H1(�)′) ≤ C .

• There exists a constant C > 0 depending on the initial data and T , but not on ε,
such that

t‖∇wε(t)‖2 +
∫ T

0
s‖∇∂tuε(s)‖2ds ≤ C, (4.8)

for almost any t ∈ (0, T ).

Notice that actually the proof in [16] is carried out for a different approximationψε

of ψ , but the same proof by means of a Galerkin scheme can be adapted to the case of
the approximation (2.8), thanks to properties (i)–(vi). In particular, (vi) is essential to
guarantee that the approximated energy (i.e., (1.3) with �ε in place of �) is bounded
below by a constant (see also Remark 2.1). At this point, differently from what was
done in [16], we follow some ideas coming from [29], in order to recover the control
over wε(t), which then gives the control of wε(t) in H1(�). In particular, as in the
proof of [29, Lemma 3.3], we define

wε,0 := wε − λε,

with, on account of the boundary conditions,

λε := wε = P(−Auε + φε(uε)).
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Taking advantage of (4.3), we have, for all η ∈ H1(�) and for almost all t ∈ (0, T ),

(wε,0 + λε, η) = γ (∇uε,∇η) + (P(−Auε + φε(uε)), η). (4.9)

Then we exploit the convexity of �1
ε : for any k ∈ G, G being the Gibbs simplex,

because k − uε ∈ T� almost everywhere, we find

C ≥
∫

�

�1
ε (k) ≥

∫

�

�1
ε (uε) +

∫

�

�1
ε,u(uε) · (k − uε)

=
∫

�

�1
ε (uε) +

∫

�

Pφε(uε) · (k − uε), (4.10)

where we used (see property (i) of ψε)

∫

�

�1
ε (k) ≤

∫

�

�1(k) ≤ |�| max
s∈[0,1] |�

1(s)| = C .

Here and in the sequel C > 0 stands for a generic constant independent of ε. Any
further dependency will be explicitly pointed out if needed.

Note that �1
ε,u(uε) = {ψ ′

ε(uε,i )}i=1,...,N . Moreover, we can choose η = k − uε in
(4.9) to deduce, on account of (4.10), that

C ≥
∫

�

�1
ε (k)

≥
∫

�

�1
ε (uε) + (P(Auε),k − uε)

+ γ ‖∇uε‖2 + (wε,0,k − uε) + (λε,k − uε),

for almost all t ∈ (0, T ). Observe that

∫

�

N∑

i=1

k2i ≤
∫

�

(
N∑

i=1

ki

)2

= |�|d .

Then by Cauchy–Schwarz’s, Young’s and Poincaré’s inequalities (all applied towε,0),
recalling property (vi) of ψε, we obtain

(λε,k − uε) + γ ‖∇uε‖2 − K̃

≤ (λε,k − uε) + γ ‖∇uε‖2 +
∫

�

�1
ε (uε)

≤ −(P(Auε),k − uε) − (wε,0,k − uε)

≤ C
(
1 + ‖uε‖ + ‖uε‖2 + ‖∇wε‖(1 + ‖uε‖)

)
≤ C(1 + ‖∇wε‖), (4.11)
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where in the last estimate we have exploited (4.7). By the conservation of mass and
Remark 3.2, we also deduce that, for all i = 1, . . . , N and all t ∈ [0, T ],

0 < δ0 < uε,i < 1 − (N − 1)δ0 < 1 − δ0.

Therefore we choose, for fixed k, l = 1, . . . , N ,

k = uε + δ0sign(λλλε,k − λλλε,l)(ηηηk − ηηηl) ∈ G

in (4.11), where ηηη j is the j-th element of the standard orthonormal Euclidean basis of
R

N , i.e. ηηη j = (0, . . . , 0, 1︸︷︷︸
j-th position

, . . . , 0). Thus, from (4.11) we get that

|(λλλε,k − λλλε,l)(t)| ≤ C

δ0|�|d (1 + ‖∇wε‖) (4.12)

Integrating then |(λε,k − λε,l)(t)|2 from 0 to T and using the identity

λε = 1

N

(
N∑

l=1

(λλλε,k − λλλε,l)

)

k=1,...,N

,

we find ∫ T

0
|λε(t)|2dt ≤ C .

This, together with (4.6) and Poincaré’s inequality, gives

‖wε‖L2(0,T ;H1(�)) ≤ C . (4.13)

Coming back to (4.12), we also deduce that

|λε(t)|2 ≤ C(1 + ‖∇wε(t)‖2),

for almost any t ∈ (0, T ). Therefore, by (4.8), we infer, again by Poincar é’s inequality,
that

‖√twε‖L∞(0,T ;H1(�)) ≤ C . (4.14)

We are now left with some estimates concerning the potential φε. We follow some
ideas in [29, Lemma 5.1]. Being φ′

ε bounded for 0 < ε < ε0 fixed, we have that

∇φε(uε,i ) = φ′
ε(uε,i )∇uε,i ∈ L2(�),
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for almost any t ∈ (0, T ). Thus we can test (4.3) with η = φε(uε(t)) to get

N∑

i=1

(wε,i , φε(uε,i )) =
N∑

i=1

(
γ (∇uε,i , φ

′
ε(uε,i )∇uε,i )

)

+ (P(−Auε + φε(uε)),φε(uε)). (4.15)

Observe that

(P(φε(uε)),φε(uε)) =
N∑

k=1

∫

�

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

φε(uε,k)dx,

and

N∑

k=1

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

φε(uε,k)

= 1

N

N∑

k,l=1

(
φε(uε,k) − φε(uε,l)

)
φε(uε,k)

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
φε(uε,k)

N∑

k>l

(
φε(uε,k) − φε(uε,l)

)
φε(uε,k)

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
(φε(uε,k) − φε(uε,l))

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)2
.

Thanks to (4.4), we have

uε,m := min
i=1,...,N

uε,i ≤ 1

N
≤ max

i=1,...,N
uε,i =: uε,M , (4.16)
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so that, being φε monotone, we infer

1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)2 ≥ 1

N

(
φε(uε,m) − φε(uε,M )

)2

≥ 1

N
max

i=1,...,N

(

φε(uε,i ) − φε

(
1

N

))2

≥ 1

N
max

i=1,...,N

(
1

2
φε(uε,i )

2 − φε

(
1

N

)2
)

≥ 1

2N
max

i=1,...,N
φε(uε,i )

2 − C,

owing to the basic inequality (a − b)2 ≥ 1
2a

2 − b2. Notice that C is independent of
ε provided that we choose ε sufficiently small. Indeed, since we have the pointwise
convergence φε(

1
N ) → φ( 1

N ) as ε → 0, then there exists C > 0, independent of
ε, such that |φε(

1
N )| ≤ C for any ε ∈ (0, ε0). Then, by (4.7) and the embedding

H1(�) ↪→ L2(�), we get

N∑

i=1

(wε,i , φε(uε,i )) ≤
N∑

i=1

‖wε,i‖‖φε(uε,i )‖ ≤ C‖wε‖2 + 1

8N

∫

�

max
i=1,...,N

φε(uε,i )
2dx,

and

|(P(−Auε,φε(uε))| ≤ C‖uε‖2 + 1

8N

∫

�

max
i=1,...,N

φε(uε,i )
2dx

≤ C + 1

8N

∫

�

max
i=1,...,N

φε(uε,i )
2dx .

Therefore, on account of the above inequalities and recalling that φ′
ε ≥ 0, we deduce

from (4.15) that

1

4N

∫

�

max
i=1,...,N

φε(uε,i )
2dx ≤ C

(
1 + ‖wε‖2

)
, (4.17)

which yields (see (4.13))

‖φε(uε)‖L2(0,T ;L2(�)) ≤ C(T ). (4.18)

From this result, together with (4.7) and (4.13), by elliptic regularity, we infer from
(4.3) that

‖uε‖L2(0,T ;H2(�)) ≤ C(T ). (4.19)
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Concerning uε we can actually obtain more. Indeed, due to (4.19), we see that (4.3)
also holds in a strong sense, that is,

wε = −γ�uε + P(−Auε + φφφε(uε)), a.e. in � × (0, T ).

We can then multiply this equation by −�uε ∈ T�. Then, recalling the properties of
the projector P, after an integration by parts, we get

γ ‖�uε‖2 = −(wε,�uε) + (−Auε + φφφε(uε),�uε)

= (∇wε,∇uε) + (−Auε + φφφε(uε),�uε).

Observe now that, integrating by parts, we have

−(φφφε(uε),�uε) = (∇φφφε(uε),∇uε) =
N∑

i=1

(∇uε,i , φ
′
ε(uε,i )∇uε,i

) ≥ 0.

Thus, by standard inequalities and integration by parts, we obtain

γ ‖�uε‖2 ≤ (∇φφφε(uε),∇uε) + γ ‖�uε‖2
≤ ‖∇wε‖‖∇uε‖ + ‖∇Auε‖‖∇uε‖
≤ C(1 + ‖∇wε‖).

Therefore, given that ‖∇wε‖L2(0,T ;L2(�)) ≤ C and using the conservation of mass,
we find

‖uε‖L4(0,T ;H2(�)) ≤ C .

Let us now set
φr

ε (s) = φε(s)|φε(s)|r−2, ∀ s ∈ R,

for a given r ≥ 2. Notice that, being φ′
ε bounded, and φε sublinear, by (4.19) and the

embedding H2(�) ↪→ L∞(�), uε,i ∈ L∞(�), i = 1, . . . , N , we have

∇φr
ε (uε,i ) = (r − 1)φ′

ε(uε,i )|φε(uε,i )|r−2∇uε,i ∈ L2(�)

for almost any t ∈ (0, T ). We then test (4.3) with η = {φr
ε (uε,i (t))}i=1,...,N . This

gives

N∑

i=1

(wε,i , φ
r
ε (uε,i )) =

N∑

i=1

(
γ (∇uε,i , (r − 1)φ′

ε(uε,i )|φε(uε,i )|r−2∇uε,i )
)

+ (P(−Auε + φε(uε)), {φr
ε (uε,i )}i=1,...,N ). (4.20)

Observe that

(P(φε(uε)), {φr
ε (uε,i )}i=1,...,N ) =

N∑

k=1

∫

�

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

φr
ε (uε,k)dx,
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and

N∑

k=1

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

φr
ε (uε,k)

= 1

N

N∑

k,l=1

(
φε(uε,k) − φε(uε,l)

)
φr

ε (uε,k)

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
φr

ε (uε,k)

N∑

k>l

(
φε(uε,k) − φε(uε,l)

)
φr

ε (uε,k)

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
(φr

ε (uε,k) − φr
ε (uε,l)) ≥ 0, (4.21)

since φε and φr
ε are monotone non-decreasing. This result together with (4.16) gives

1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
(φr

ε (uε,k) − φr
ε (uε,l))

≥ 1

N

(
φε(uε,m) − φε(uε,M )

)
(φr

ε (uε,m) − φr
ε (uε,M ))

= 1

N

∣
∣φε(uε,m) − φε(uε,M )

∣
∣
∣
∣φr

ε (uε,m) − φr
ε (uε,M )

∣
∣

≥ 1

N
max

k=1,...,N

∣
∣
∣
∣φε(uε,k) − φε

(
1

N

)∣
∣
∣
∣

∣
∣
∣
∣φ

r
ε (uε,k) − φr

ε

(
1

N

)∣
∣
∣
∣

≥ 1

N
max

k=1,...,N

∣
∣
∣
∣|φε(uε,k)|r − φr

ε

(
1

N

)

φε(uε,k) − φε

(
1

N

)

φr
ε (uε,k) +

∣
∣
∣
∣φε

(
1

N

)∣
∣
∣
∣

r ∣∣
∣
∣

≥ 1

N
max

k=1,...,N

(

|φε(uε,k)|r −
∣
∣
∣
∣φε

(
1

N

)∣
∣
∣
∣

r−1 ∣
∣φε(uε,k)

∣
∣

−
∣
∣
∣
∣φε

(
1

N

)∣
∣
∣
∣

∣
∣φε(uε,k)

∣
∣r−1 +

∣
∣
∣
∣φε

(
1

N

)∣
∣
∣
∣

r)

≥ 1

2N
max

k=1,...,N
|φε(uε,k)|r − C,

where, in the last step, Young’s inequality has been used several times. We note once
more that C is independent of ε if we choose ε sufficiently small. We then have, by
Hölder’s and Young’s inequalities,

N∑

i=1

(wε,i , φ
r
ε (uε,i ))

≤
N∑

i=1

‖wε,i‖Lr (�)‖φε(uε,i )‖r−1
Lr (�)

≤ C‖wε‖rLr (�) + 1

8N

∫

�

max
k=1,...,N

|φε(uε,k)|r dx,
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and also, by (4.7) and Sobolev embeddings,

|(P(−Auε, {φr
ε (uε,i )}i=1,...,N )|

≤ C‖uε‖rLr (�) + 1

8N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx

≤ C + 1

8N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx .

Combining the above inequalities and recalling that φ′
ε(uε,i ) ≥ 0, we obtain from

(4.20) that
1

4N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx ≤ C
(
1 + ‖wε‖rLr (�)

)
. (4.22)

We now treat the cases d = 2 and d = 3 separately. In the case d = 3, by the Sobolev
embedding H1(�) ↪→ Lq(�), q ∈ [2, 6], we have

1

4N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx ≤ C
(
1 + ‖wε‖rLr (�)

)
≤ C(r)

(
1 + ‖wε‖rH1(�)

)
,

and multiplying the above inequality by t
r
2 , since t ∈ (0, T ), we get

t
r
2

4N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx ≤ C(T , r)
(
1 + ‖√twε‖rH1(�)

)
.

Therefore, recalling (4.14), we infer

‖√tφε(uε)‖L∞(0,T ;Lr (�)) ≤ C(T , r),

for any r ∈ [2, 6]. In the case d = 2, applying the two-dimensional Gagliardo–
Nirenberg’s inequality, we obtain from (4.22) that

1

4N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx ≤ C
(
1 + r

r
2 ‖wε‖rH1(�)

)
, ∀ r ≥ 2, (4.23)

where C does not depend on r . Multiplying the above inequality by t
r
2 , we exploit

(4.14) to infer
‖√tφε(uε)‖L∞(0,T ;Lr (�)) ≤ C, ∀ r ≥ 2, (4.24)

where C does not depend on r if d = 2 and for r ∈ [2, 6] if d = 3.
Summing up, we have obtained all the estimates which allow us to pass to the limit

as ε → 0. Being this step standard (see, e.g., [29]), we only present a sketch of the
argument. By compactness we immediately deduce that, up to subsequences,

uε⇀u weakly* in L∞(0, T ;H1(�)),

uε⇀u weakly in L4(0, T ;H2(�)),

∂tuε⇀∂tu weakly in L2(0, T ;H1(�)′),
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√
t∂tuε⇀

√
t∂tu weakly in L2(0, T ;H1(�)),

uε → u strongly in L2(0, T ; L2(�)),

uε → u a.e. in � × (0, T ),

wε⇀w weakly in L2(0, T ;H1(�)),√
twε⇀

√
tw weakly* in L∞(0, T ;H1(�)). (4.25)

Arguing then as in [29, Section 6], we also infer, exploiting (4.18), that, for any
k = 1, . . . , N ,

φε(uε,k) → φ(uk) a.e. in � × (0, T ), (4.26)

φε(uε,k)⇀φ(uk) weakly in L2(0, T ; L2(�)). (4.27)

Thus the pair (u,w) satisfies (3.3)–(3.7).
Observe now that, thanks to (4.24), up to subsequences, we have, for any r ∈ [2,∞)

if d = 2, r ∈ [2, 6] if d = 3,

√
tφε(uε,k)⇀ξ weakly* in L∞(0, T ; Lr (�)),

by (4.27) we can identify ξ = √
tφ(uk) and deduce, by weak lower semicontinuity,

that
‖√tφ(uk)‖L∞(0,T ;Lr (�)) ≤ C, (4.28)

for any k = 1, . . . , N . In conclusion, by elliptic regularity and Sobolev embeddings,
we can deduce from (3.7), thanks to (4.14) and (4.28), that

‖√tu‖L∞(0,T ;W2,r (�)) ≤ C, (4.29)

for any r ∈ [2,∞) if d = 2, for r ∈ [2, 6] if d = 3.
We are left to prove the (strict) separation property for the case d = 2. Thanks to

(4.23), we can pass to the limit by Fatou’s Lemma, to obtain that

√
t

(∫

�

max
i=1,...,N

|φ(ui )|r dx
) 1

r ≤ C
√
r ,

for almost any t ∈ (0, T ). Therefore, for any i = 1, . . . , N , any τ > 0 and any
r ∈ [2,∞), we have

ess sup
τ≤t≤T

‖φ(ui )‖Lr (�) ≤ C
√
r , (4.30)

with C independent of r but dependent on τ . From this we can directly exploit
assumption (E2) (corresponding to assumption [25, (E2)]) and repeat the proof in
[25, Theorem 3.1] (indeed, (4.30) corresponds to [25, (3.4)] and we can argue exactly
in the same way from [25, (3.4)] on). This leads, for any i = 1, . . . , N and any fixed
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r ≥ 2, to the following bound

ess sup
τ≤t≤T

‖φ′(ui )‖Lr (�) ≤ C(τ, r).

Let τ > 0 be given. Applying the chain rule to φ(uk) (which is possible, for instance,
by using again a truncation argument), we get

∇φ(uk) = φ′(uk)∇uk, a.e. in [τ, T ].

Then, for almost any t ∈ [τ, T ], we have that

‖∇φ(uk)‖L p(�) ≤ ‖φ′(uk)‖L2p(�)‖∇uk‖L2p(�) ≤ C(T , τ, p),

exploiting (4.29), (4.30) and the Sobolev embeddingW 2,r (�) ↪→ W 1,p(�) for every
p ∈ [2,∞) and r ≥ 2. Therefore, for any k = 1, . . . , N , it holds

‖φ(uk)‖W 1,p(�) ≤ C(T , τ, p),

for every p ∈ [2,∞). Fix now, e.g., p = 3. This implies that, for any k = 1, . . . , N ,

‖φ (uk)‖L∞(�) ≤ C(T , τ ), a.e. in [τ, T ],

owing to the embedding W 1,3(�) ↪→ L∞(�). Note that, being

uk ∈ L∞(τ, T ;W 2,r (�)) ∩ H1(τ, T ; H1(�)),

for any r ≥ 2, we have that uk ∈ C([τ, T ]; H3/2(�)), implying uk ∈
C([τ, T ];C(�)). Therefore we can find δk = δk(T , τ ) > 0 such that, for k =
1, . . . , N ,

uk > δk, in � × [τ, T ],
and recalling the constraint

∑N
k=1 uk = 1, this condition implies that, for any k =

1, . . . , N ,
1 −

∑

i �=k

ui = uk > δk, in � × [τ, T ],

entailing that, necessarily,
∑N

k=1 δk < 1. Moreover, we also deduce that, for any
k = 1, . . . , N ,

uk = 1 −
∑

i �=k

ui < 1 −
∑

i �=k

δi , in � × [τ, T ].

We can then find a common δ := mink=1,...,N δk = δ(τ, T ) ∈ (0, 1
N ) such that

δ < u < (1 − (N − 1)δ), in � × [τ, T ].

This concludes the proof.
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4.2 Proof of Theorem 3.6

Let us take η = u(t) − u(t) in equation (3.7). This gives

(Pφφφ(u),u − u) + ‖∇u‖2 = (w,u − u) + (Au,u − u). (4.31)

Moreover, by convexity of �1, since u − u ∈ T�, we have

(Pφφφ(u),u − u) = (φφφ(u),u − u) ≥
∫

�

�1(u)dx −
∫

�

�1(u)dx,

but, being u ≡ u0,
|�1(u)| ≤ C,

where C > 0 depends on u0, applying standard inequalities, we find from (4.31)

∫

�

�1(u)dx + ‖∇u‖2 ≤ C + C‖∇u‖‖∇w‖ + (Au,u) − (u,Au)

and using (2.4) we get

∫

�

�1(u)dx − 1

2
(Au,u) + 1

4
‖∇u‖2

≤ C(ααα∇w,∇w) + 1

2
(Au,u) − (u,Au)

≤ C(1 + (ααα∇w,∇w)) + C‖u‖2

≤ C(1 + (ααα∇w,∇w)) + 1

2

∫

�

�(u)dx,

where in the last step we applied (vi) (recall that these estimates must be obtained in
an approximated scheme, so for ε sufficiently small). Therefore, we get

1

4
‖∇u‖2 + 1

2

∫

�

�(u)dx ≤ C(1 + (ααα∇w,∇w)). (4.32)

Combining (3.8) with (4.32) (multiplied by ε > 0 sufficiently small), we end up with

d

dt
E(t) + ε

2
E(t) ≤ d

dt
E(t) + ε

2
E(t) + (1 − εC)(ααα∇w,∇w) ≤ C,

and the result follows from Gronwall’s lemma.

5 Proof of Theorem 3.7

Again the rigorous proof has to be carried out using the same approximation scheme
as in the proof of Theorem 3.1, i.e., by approximating the potential with ψε and

123



73 Page 30 of 46 Applied Mathematics & Optimization (2023) 88 :73

considering a Galerkin setting (see also [16]). For the sake of brevity, here we simply
show the formal estimates. First, we observe that (3.8) entails

‖u‖L∞(0,∞;H1(�)) + ‖∇w‖L2(t,t+1;L2(�)) ≤ C, ∀ t ≥ 0. (5.1)

Then, arguing as in [16, (2.11)], we obtain

1

2

d

dt
‖∇w‖2 + ‖∇∂tu‖2 ≤ (A∂tu, ∂tu),

but, testing (3.6) with η = A∂tu(t) and applying Poincaré’s inequality (recall that
∂tu ≡ 0), we get

(A∂tu, ∂tu) = (ααα∇w,A∂tu) ≤ C‖∇∂tu‖‖∇w‖ ≤ 1

2
‖∇∂tu‖2 + C‖∇w‖2,

so that in the end we come up with

1

2

d

dt
‖∇w‖2 + 1

2
‖∇∂tu‖2 ≤ C‖∇w‖2.

Due to (5.1), we can apply the uniformGronwall’s lemma (see, e.g., [43], by choosing,
e.g., r = τ

2 ) to deduce, for any given τ > 0,

‖∇w‖L∞(τ,∞;L2(�)) + ‖∇∂tu‖L2(t,t+1;L2(�)) ≤ C ∀ t ≥ τ.

From now on we can repeat verbatim the arguments in the proof of Theorem 3.1, to
get the regularity (3.10). The proof is finished.

6 Proof of Theorem 3.8

By Remark 3.9, we only need to show the existence of a compact absorbing set. From
Theorem 3.6, we deduce that, for any u0 ∈ VM, being� bounded, there exist constants
C3,C4 > 0 such that

‖S(t)u0‖2VM
≤ C3e

−ωt‖u0‖2VM
+ C4 ∀ t ≥ 0.

This means that the set

B̃0 :=
{

u ∈ VM : ‖u‖VM ≤
√
C3

2
+ C4 := R0

}

is an absorbing set, i.e., for any bounded set B ⊂ VM there exists te > 0 depending
on B such that S(t)B ⊂ B̃0 ∀ t ≥ te. Checking the proof of Theorem 3.7, it is not
difficult to realize that all the constants appearing in the regularization estimates only
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depend on the VM-norm of u0, being � bounded. This means in particular that there
exists a bounded set

B0 := {
u ∈ B̃0 : ‖u‖W2,r (�) ≤ C0

}
,

for some C0 > 0 and any r ≥ 2 if d = 2, r = 6 if d = 3, and a time tR0 , depending
only on R0, such that S(t)B̃0 ⊂ B0 for any t ≥ tR0 . This clearly implies that B0 is a
compact absorbing set and ends the proof.

7 Proofs of Subsection 3.3

This section is devoted to show the convergence of any weak solution to a single
stationary state. We first prove two fundamental lemmas stated in Subsect. 3.3. Then
we demonstrate Theorem 3.16.

7.1 Proof of Lemma 3.11

Let us consider u∞ ∈ ω(u0). By definition of ω-limit set there exists a sequence
tn → ∞ such that u(tn) = S(t)u0 → u∞ in H2r (�) as n → ∞. We then define
the sequence of trajectories un(t) := u(t + tn) and wn(t) := w(t + tn). Observe
that un solves (3.1) with initial datum u(tn) ∈ VM. By Theorem 3.7 applied to u, we
immediately infer that un is uniformly (in n) bounded in L∞(0,∞;H2(�)), wn is
uniformly bounded in L∞(0,∞;H1(�))∩H1(0,∞;H1(�)) andφφφ(un) is uniformly
bounded in L∞(0,∞;L2(�)). From these bounds, by passing to the limit, up to
subsequences, in the equations solved by un , we infer the existence of u∗ which is a
strong solution to (3.1) (i.e., a weak solution with the regularity given in Theorem 3.7
with τ = 0). In particular, concerning the initial datum, u∗(0) = limn→∞ un(0) =
limn→∞ u(tn) = u∞, where the limit is intended in the sense of H2r (�). We thus
have limn→∞ E(un(t)) = E(u∗(t)) for all t ≥ 0. Thanks to the energy identity, we
see that the energy E(u(t)) is nonincreasing in time, thus there exists E∞ such that
limt→∞ E(u(t)) = E∞. Therefore, the convergence also holds for the energy along
the subsequence {t + tn}n so that

E(u∗(t)) = lim
n→∞ E(un(t)) = E∞, ∀ t ≥ 0, (7.1)

entailing that E(u∗(t))) is constant in time. Passing then to the limit as n → ∞, we
infer

E∞ +
∫ t

s
(ααα∇w∗(τ ),∇w∗(τ ))dτ ≤ E∞, ∀ t ≥ s,

where w∗ is the chemical potential corresponding to u∗, implying that ∇w∗ = 0
almost everywhere in�× (0,∞), and thus, by comparison in (3.1)1, ∂tu∗ = 0 almost
everywhere in � × (0,∞). As a consequence, we infer that u∗ is constant in time,
namely u∗(t) ≡ u∗(0) = u∞ for all t ≥ 0, and w∗ is constant is space and time. This
means that u∞ satisfies (3.12) for f1 = P�,u(u∞) ∈ G and thus satisfies (8.4) with
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f = f1 + PAu∞. Then u∞ ∈ W . This shows that ω(u0) ⊂ W . Concerning the mean
value, it is easy to see that u∗(t) = limn→∞ un(t) ≡ u0 for any t ≥ 0, thus u∞ = u0.
Moreover, it is useful to notice that

E(u∞) = E∞ = lim
s→∞ E(u(s)) = inf

s≥0
E(u(s)) ≤ E(u(t)), ∀ t ≥ 0.

By uniqueness of the solution to the steady-state equation (8.4) with f = f1 + PAu∞
(see Theorem 8.1 below), we preliminarily know that for any u∞ ∈ ω(u0) ⊂ W there
exists δ0(u∞) > 0 depending on u∞, such that δ0 < u∞ for any x ∈ �. Since ω(u0)
is compact in H2r (�) and we have fixed r ∈ ( d4 , 1), by the continuous embedding
H2r (�) ↪→ L∞(�) we can deduce that ω(u0) is compact in C(�). Assume then by
contradiction that we cannot find a quantity δ > 0 such that the separation property
holds uniformly on ω(u0). This means that for any m ∈ N there exist um ∈ ω(u0),
xm ∈ � and jm = 1, . . . , N such that

0 < um, jm (xm) ≤ 1

m
.

Since jm ranges in a finite set, we can find a (nonrelabeled) subsequence and a fixed
index J such that

0 < um,J (xm) ≤ 1

m
, ∀m ∈ N. (7.2)

Being {um}m ⊂ ω(u0) a bounded sequence in L∞(�) (indeed it is contained in
the L∞-ball of radius

√
N , since 0 < um,i < 1, i = 1, . . . , N ) by compactness

there exists a (nonrelabeled) subsequence such that um → u∞ ∈ ω(u0) in C(�) as
m → ∞. But this implies also that um,J → u∞,J uniformly asm → ∞. On the other
hand, by the Bolzano-Weierstrass Theorem, we can extract a further (nonrelabeled)
subsequence such that

xm → x∞ ∈ �, as m → ∞.

We can now pass to the limit, since it holds

|um,J (xm) − u∞,J (x∞)| ≤ |um,J (xm) − u∞,J (xm)| + |u∞,J (xm) − u∞,J (x∞)|
≤ max

x∈�

|um,J (x) − u∞,J (x)| + |u∞,J (xm) − u∞,J (x∞)| → 0, as m → ∞.

Indeed, the first term converges to zero by the uniform convergence described above,
whereas the second one converges since u∞,J ∈ C(�). Passing then to the limit in
(7.2), we infer

u∞,J (x∞) = 0.

Since u∞ ∈ ω(u0) ⊂ W , there exists δ∞ > 0 such that minx∈� u∞,J (x) ≥ δ∞ > 0,
a contradiction. We thus conclude that all the elements of ω(u0) are uniformly strictly
separated. The proof is finished.
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7.2 Proof of Lemma 3.15

The first Fréchet derivative of Ẽ reads as follows (recall that �̃ is smooth):

〈Ẽ ′(u),h〉V′
0,V0

=
∫

�

∇u · ∇h dx +
∫

�

�̃,u(u + M) · h dx

where �̃,u(u) := (ψ̃ ′(ui ) − (Au)i )i=1,...,N . Notice that u∞ − M ∈ ω(u0) − M is a
critical point for Ẽ . Indeed, foru0 ∈ VM, thanks to the fact that, for anyu∞ ∈ ω(u0), by
Lemma 3.11, there exists a set Ũ ⊂ Iε (Iε is defined in Sect. 3.3) such that u∞(x) ∈ Ũ
for any x ∈ � and due to the definition of ψ̃ , we have Ẽ |ω(u0)−M = E |ω(u0). Therefore,

〈Ẽ ′(u∞ − M),h〉V′
0,V0

=
∫

�

∇u∞ · ∇h dx +
∫

�

�̃,u(u∞) · h dx

=
∫

�

∇u∞ · ∇h dx +
∫

�

�,u(u∞) · h dx

=
∫

�

(−�u∞ + P�,u(u∞)
) · h dx

=
∫

�

(−�u∞ + P0(P�,u(u∞))
) · h dx = 0, ∀h ∈ V0,

where P0 is the L2−projector onto the subspace with zero spatial average. Recall that
u∞ satisfies (8.4) with f = PAu∞ + P�,u(u∞) (see Lemma 3.11).

Concerning the second Fréchet derivative, it is easy to show that

〈Ẽ ′′(u)h1,h2〉V′
0,V0

=
∫

�

∇h1 · ∇h2 dx +
∫

�

(
N∑

i=1

ψ̃ ′′(ui + Mi )h1,ih2,i − Ah1 · h2
)

dx, (7.3)

for all u,h1,h2 ∈ V0.
Let us set L := Ẽ ′′ ∈ B(V0,V′

0) (omitting the dependence on u, which will be
pointed out if necessary) and consider the operatorA as defined inAppendix 1. First we
observe that, for all z ∈ Ker(L) ⊂ V0, settingv := (ψ̃ ′′(ui+Mi )zi−(Az)i )i=1,...,N ∈
L2(�), we have

〈Az,h〉V′
0,V0

= −(v,h) = −(P0Pv,h), ∀h ∈ V0.

This means, recalling the identification V0 ↪→↪→ H0 ≡ H′
0 ↪→ V′

0,

Az = −P0Pv ∈ H0,

implying that z ∈ D(Ã) (see Appendix 1 for the definition of Ã). This entails
Ker(L) ⊂ D(Ã). We now introduce the operator Q ∈ B(V′

0) such that, for any
z ∈ V′

0,
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〈Qz,w〉V′
0,V0

=
〈
z, P0P

(
ψ̃ ′′(ui + Mi )wi − (Aw)i

)

i=1,...,N

〉

V′
0,V0

, ∀w ∈ V0,

which is well defined being ψ̃ of class C3(R) and u ∈ V0. Note that, for any z ∈
D(L) = D(A) = V0, we have

Lz = Az + Qz,

since, for z ∈ H0, being A symmetric,

〈Qz,w〉V′
0,V0

=
(
z, P0P

(
ψ̃ ′′(ui + Mi )wi − (Aw)i

)

i=1,...,N

)

=
(
P0P

(
ψ̃ ′′(ui + Mi )zi − (Az)i

)

i=1,...,N ,w
)

, ∀w ∈ V0, (7.4)

so that
Qz = P0P

(
ψ̃ ′′(ui + Mi )zi − (Az)i

)

i=1,...,N ∈ H0

as in the definition ofL. Note that, thanks to the regularity of u ∈ V0 and ψ̃ ′′, if z ∈ V0
we also have Qz ∈ V0. As observed in the Appendix, both Ã

−1 : V′
0 → D(A) =

V0 ↪→ V′
0 (A considered as unbounded onV′

0) and Ã
−1 : H0 → D(Ã) are compact in

V′
0 andH0, respectively. In particular, we have that bothA−1

Q andQA
−1 are compact

operators on V′
0. Thus we can apply Theorem 8.2 to A = L : D(A) ↪→ V′

0 → V′
0,

with T = A
−1 ∈ B(V′

0) to deduce that L is a Fredholm operator, implying that
Ker(L) ⊂ V′

0 is finite dimensional and Range(L) is closed in V′
0. Moreover, it is

easy to see that the operatorA is selfadjoint with respect to the Hilbert adjoint. Indeed,
setting LV0 = A

−1 : V′
0 → V0 the Riesz isomorphism from V′

0 to V0, we have that
the operator A is symmetric, since, for any w, z ∈ D(A) = V0,

(Aw, z)V′
0

= (LV0Aw, LV0z)V0

= (w, LV0z)V0 = 〈z,w〉V′
0,V0

= (w, z)H0 = 〈w, z〉V′
0,V0

= (w,Az)V′
0
.

Being Range(A) = V′
0, a well known result implies that A is selfadjoint. Therefore,

we can write the Hilbert adjoint of L as L∗ = A + Q
∗. Now, by the Closed Range

Theorem, recalling that L′ = A
−1L∗

A (L′ being the adjoint of L, since V0 ≡ V′′
0 via

the canonical map), observe that

Range(L) = {y∗ ∈ V′
0 : 〈y∗, x〉V′

0,V0
= 0, ∀ x ∈ Ker(L′)}

= {y∗ ∈ V′
0 : 〈y∗,A−1z〉V′

0,V0
= 0, ∀ z ∈ Ker(L∗)}

= {y∗ ∈ V′
0 : 〈y∗,q〉V′

0,V0
= 0, ∀q ∈ Ker(L)} = (Ker(L))⊥, (7.5)

where ⊥ is intended to be the annihilator of the set. The last isomorphism is due to
the fact that, on account of Q(A−1w) ∈ V0 for w ∈ V′

0, it holds

Q
∗w = A(Q(A−1w)).
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Thus

L∗z = Az + Q
∗z = 0 ⇐⇒ z + QA

−1z = 0 ⇐⇒ Aw + Qw = 0, w = A
−1z,

that is,
Ker(L∗) = AKer(L).

Let us denote by Q̃ ∈ B(H0) the restriction to H0 of Q, so that from (7.4) we get

Q̃z = Qz = P0P
(
ψ̃ ′′(ui + Mi )zi − (Az)i

)

i=1,...,N ∈ H0

for any z ∈ H0. Again note that, for any z ∈ D(Ã) ↪→ H0, it holds

L|D(Ã)z = Ãz + Q̃z,

and both Ã
−1

Q̃ and Q̃Ã
−1 are compact operators on H0 being compositions of a

compact and a bounded operator on H0. Therefore we can apply Theorem 8.2 with
T = Ã

−1 ∈ B(H0) and deduce that alsoL|D(Ã) is a Fredholm operator. Namely, since
clearly in this case L|D(Ã) is selfadjoint (without distinction with the Hilbert adjoint,
since H0 ≡ H′

0), we immediately deduce that

Range(L|D(Ã)) = Ker(L|D(Ã))
⊥H0 = Ker(L)⊥H0 , (7.6)

where the last identity is due to the fact that Ker(L) ⊂ D(Ã). We now have all the
ingredients to apply [10, Corollary 3.11]. To this aim, let us fix u∞ ∈ ω(u0) and
set u0∞ = u∞ − M ∈ D(Ã). Adopting the notation of [10, Corollary 3.11], we set
V0 := Ker(L(u0∞)) and define the projection P ∈ B(V0) as to be the orthogonal

V0-projection on V0. Set also V1 = Ker(P) = V
⊥V0
0 , so that we have the direct

(orthogonal in V0) sum V0 = V0 ⊕ V1. In this way, [10, Hypothesis3.2] is verified.
Let us verify [10, Hypothesis 3.4]. Firstly we set W := V′

0, U = V0 and notice that
the adjoint of P , P ′ : V′

0 → V′
0, is such that

Range(P ′) = V⊥
1 = V ′

0, Ker(P ′) = V⊥
0 = V ′

1, V′
0 = V ′

0 ⊕ V ′
1.

We then have

(I) W = V′
0 ↪→ V′

0 by construction;
(II) P ′W = P ′V′

0 = V ′
0 ⊂ V′

0 = W ;
(III) Ẽ ′ ∈ C1(U ,V′

0) since �̃ ∈ C3(R);
(IV) by (7.5), Range(L(u0∞)) = V⊥

0 = V ′
1 ∩ V′

0 = V ′
1 ∩ W .

We are left to verify the assumptions of [10, Corollary 3.11]. Set X := D(Ã) and
Y := H0.

(1) Clearly, since V0 = Ker(L(u0∞)) ⊂ D(Ã), PX ⊂ D(Ã) = X . Moreover,
P ′Y = P ′H0 ⊂ H0. Indeed, h ∈ H0 ↪→ V′

0 can be written as the sum of

h1 = PH0h ∈ Ker(L(u0∞)),
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where PH0 ∈ B(H0) is the H0-orthogonal projection onto V0 = Ker(L(u0∞)),
and

h2 = (I − PH0)h ∈ Range(L(u0∞)|D(Ã))

by (7.6), so that (h1,h2)H0 = 0 (notice that (7.6) is essential to reach this conclu-
sion, since P is defined as a projection with respect to the inner product in V0 and
not in H0). Then we have

〈P ′h, v〉V′
0,V0

= 〈h, Pv〉V′
0,V0

= (h, Pv)H0

= (h1 + h2, Pv)H0 = (h1, Pv)H0 = 〈P ′h1, v〉V′
0,V0

= (h1, v)H0 = 〈h1, v〉V′
0,V0

,

since h2 is orthogonal to Ker(L) with respect to the inner product in H0 and due
to the fact that h1 ∈ Ker(L) ⊂ V⊥

1 = Range(P ′) and thus P ′h1 = h1. This
is possible for V1 ⊂ Ker(L)⊥H0 . Therefore, P ′h = h1 ∈ H0, i.e., P ′Y ⊂ Y .
Summing up, X and Y are invariant under the action of P and P ′, respectively.

(2) Note that for any u∞ ∈ ω(u0), by Lemma 3.11, there exists a set Ũ ⊂ Iε ( Iε
defined in Sect. 3.3) such that u∞(x) ∈ Ũ for any x ∈ � and ψ is analytic in Ũ
(recall that ψ̃|Jε = ψ ). It thus holds that for each u0∞ ∈ ω(u0)−u0 the function Ẽ ′
is real analytic in a neighborhood ofu0∞ in X (see, e.g., [10, Proof ofCorollary 4.6])
with values in Y = H0. Notice that this is possible since Ẽ(u0∞) = E(u∞). The
essential properties exploited are the fact that D(Ã) ⊂ L∞(�) and Y ⊂ L∞(�).
Indeed, notice that the first summand in Ẽ ′, after an integration by parts, is the
linear operator u ∈ U ∩ X �→ −�u ∈ H0, which is analytic.

(3) As already seen, Ker(L(u0∞)) ⊂ D(Ã) = X is finite-dimensional.
(4) Recall that Ker P ′ = V ′

1 = V⊥
0 , and assume w ∈ V⊥

0 ∩ H0. Then, for any
z ∈ V0 = Ker((L(u0∞)), it holds, being w ∈ H0,

0 = 〈w, z〉V′
0,V0

= (w, z),

i.e., w ∈ V
⊥H0
0 . On the other hand, by the same argument, V

⊥H0
0 ⊂ V⊥

0 ∩ H0.

Thus we deduce V
⊥H0
0 = V⊥

0 ∩ H0. Then, from (7.6), we immediately infer

Range(L(u0∞)|D(Ã)) = V
⊥H0
0 = V⊥

0 ∩ H0 = Ker P ′ ∩ Y ,

as desired.

Therefore, all the assumptions of [10, Corollary 3.11] are satisfied and the proof is
finished.

7.3 Proof of Theorem 3.16

First of all, as already noticed, for u0 ∈ VM, thanks to the fact that for any u∞ ∈ ω(u0),
by Lemma 3.11, there exists a set Ũ ⊂ Iε such that u∞(x) ∈ Ũ for any x ∈ � and
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due to the definition of ψ̃ , we have that Ẽ |ω(u0)−M = E |ω(u0). Arguing as in (7.1),
E(u∞) = E∞ = lims→∞ E(S(s)u0) for any u∞ ∈ ω(u0), so that E |ω(u0), and
thus Ẽ |ω(u0)−M is constant, equal to E∞. By Lemma 3.15, the Lojasiewicz-Simon
inequality is valid for any u∞ ∈ ω(u0). This means, recalling what we just noticed
about Ẽ |ω(u0)−M, that there exist constants θ ∈ (0, 1

2 ], C > 0, σ > 0 such that

∣
∣Ẽ(v) − E∞

∣
∣1−θ ≤ C‖Ẽ ′(v)‖V′

0
,

for any v ∈ V0 such that ‖v + M − u∞‖V0 ≤ σ . Clearly, this can be restated as

∣
∣Ẽ(ξξξ − M) − E∞

∣
∣1−θ ≤ C‖Ẽ ′(w − M)‖V′

0
, (7.7)

for any ξξξ ∈ V0 +M such that ‖ξξξ − u∞‖V0 ≤ σ . Since H2r (�) ↪→↪→ H1(�), ω(c0)
is compact in H1(�), thus we can find a finite number M1 of H1(�)-open balls Bm ,
m = 1, . . . , M1 of radius σ , centered at um ∈ ω(u0), such that

ω(u0) ⊂ Ũ :=
M1⋃

m=1

Bm .

Note that θ and C in (7.7) depend on the choice of u∞ ∈ ω(u0), but being um in finite
number, we can easily deduce that (7.7) holds uniformly for any ξξξ ∈ V0 + M ∩ Ũ .
From (3.11) and the embedding H2r (�) ↪→↪→ H1(�), we deduce that there exists
t̃ > 0 such that u(t) = S(t)u0 ∈ Ũ for any t ≥ t̃ . Recalling the definition ofUε given
in Sect. 3.3, we have

u(t) = S(t)u0 ∈ Uε, ∀ t ≥ t∗,

therefore we can choose t := max{̃t, t∗} and U = Ũ ∩Uε such that u(t) ∈ U for any
t ≥ t , implying (note that u(t) − u∞ ∈ V0 for any t ≥ 0):

‖u(t) − u∞(t)‖V0 ≤ ‖u(t) − u∞(t)‖H1(�) ≤ σ, ∀ t ≥ t .

Since then u(t) ∈ V0 + M ∩ Ũ , it holds

|E(u(t)) − E∞|1−θ ≤ C‖Ẽ ′(u(t) − M)‖V′
0
, ∀ t ≥ t,

recalling that, since u(t) ∈ Uε for any t ≥ t , Ẽ(u(t)−M) = E(u(t)), thanks to (3.14)
and the definition of ψ̃ . Observe now that, for any t ≥ t ,

〈Ẽ ′(u(t) − M),h〉V′
0,V0

=
∫

�

∇u(t) · ∇h dx +
∫

�

�̃,u(u(t)) · h dx

=
∫

�

∇u(t) · ∇h dx +
∫

�

�,u(u(t)) · h dx
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=
∫

�

(−�u(t) + P�,u(u(t))
) · h dx

=
∫

�

(−�u(t) + P0(P�u(u(t)))) · h dx = (w(t) − w(t),h)

≤ ‖∇w‖‖h‖ ≤ C
√

(ααα∇w(t),∇w(t))‖h‖V0 , ∀h ∈ V0,

where w(t) is defined in (3.7). Note that we exploited Poincaré’s inequality and (2.4).
This means that

‖Ẽ ′(u(t) − M)‖V′
0

≤ C
√

(ααα∇w(t),∇w(t)), ∀ t ≥ t . (7.8)

Recalling the energy identity, setting H(t) := |E(u(t)) − E∞|θ , by (7.8), we have
that

− d

dt
H(t) = −θ

dE(u(t))

dt
|E(u(t)) − E∞|θ−1

≥ θ
(ααα∇w(t),∇w(t))

C‖Ẽ ′(u(t) − M)‖V′
0

≥ C
√

(ααα∇w(t),∇w(t)), ∀ t ≥ t .

Being H a non nonincreasing nonnegative function such that H(t) → 0 as t → ∞,
we can integrate from t to +∞ and deduce that (see (2.4)),

∫ ∞

t
‖∇w(t)‖dt ≤ C

∫ ∞

t

√
(ααα∇w(t),∇w(t))dt ≤ CH(t) < +∞,

i.e.,∇w ∈ L1((t,+∞);L2(�)), entailingbycomparison ∂tu ∈ L1((t,+∞);H1(�)′).
Hence, there exists u∞ ∈ ω(u0) such that

u(t) = u(t) +
∫ t

t
∂tu(τ )dτ−→u∞ in H1(�)′, as t → ∞,

and, by uniqueness of the limit, we conclude that ω(u0) = {u∞}. We also have
limt→∞ u(t) = u∞ in H2r (�) for a fixed r ∈ ( d4 , 1) (the one used in the definition
of the ω-limit set). On the other hand, thanks to the embedding H2r (�) ↪→ H1(�)′,
which is valid for all r ∈ (0, 1), we deduce that the convergence to the equilibrium
actually holds for any r ∈ (0, 1). Recalling Lemma 3.11, the proof is finished.
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Appendix

The Homogeneous Neumann Laplace Operator on T6

First we need to consider the following elliptic problem: given f ∈ V′
0 find u ∈ V0

such that

(∇v,∇w) = 〈f,w〉V′
0,V0

∀w ∈ V0. (8.1)

Using Hilbert triplet V0 ↪→↪→ H0 ≡ H′
0 ↪→ V′

0, thanks to Poincaré’s inequality,
we see that the bilinear form a : V0 × V0, a(u, v) = (∇u,∇v) is coercive and
continuous, so that we can apply Lax-Milgram Lemma and deduce that the bounded
operator A : V0 → V′

0, such that 〈Av,w〉V′
0,V0

= (∇v,∇w), is invertible with

bounded inverse A−1 : V′
0 → V0. Since by Poincaré’s inequality, (∇·,∇·) is an inner

product on V0, we see that A is the Riesz isomorphism from V0 to V′
0. Notice that

we can also define (without relabeling) the unbounded operator A : V′
0 → V′

0, so
thatD(A) = V0 which acts exactly as A previously defined. In this case, beingD(A)

compactly embedded in V′
0, the inverse operator A−1 : V′

0 → D(A) is compact in
V′
0.
Problem (8.1) is the well-posed weak formulation of the following boundary value

problem

{
−�v = f, a.e. in �,

∂nv = 0, a.e. on ∂�,
(8.2)

where f ∈ H0. We can then define the selfadjoint unbounded operator Ã : H0 → H0,
such that

D(Ã) := {u ∈ V0 : Au ∈ H0}, Ãu = Au = −�u, ∀u ∈ D(Ã).

Notice that, by elliptic regularity, we have

D(Ã) := {u ∈ V0 ∩ H2(�) : ∂nu = 0, a.e. on ∂�}.
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In conclusion, note that we can easily exploit the properties of the Hilbert triplet to
infer, beingV0 ↪→↪→ H0, that Ã−1 ∈ B(H0) is compact. We now study the following
problem: for λ > 0 fixed,

{
−�v + λv = f, a.e. in �,

∂nv = 0, a.e. on ∂�,
(8.3)

with f ∈ H̃0. We can repeat exactly the same argument as before, but in this case we
introduce the operator Aλ : Ṽ0 → Ṽ′

0, such that

〈Aλv,w〉Ṽ′
0,Ṽ0

= (∇v,∇w) + λ(v,w),

is invertible with bounded inverse A
−1
λ : Ṽ′

0 → Ṽ0. The corresponding unbounded
operator Ãλ : H̃0 → H̃0 is such that

D(Ãλ) := {u ∈ Ṽ0 : Au ∈ H̃0},
Ãλu = Aλu = −�u + λu ∀u ∈ D(Ãλ).

Again, elliptic regularity yields

D(Ãλ) := {u ∈ Ṽ0 ∩ H2(�) : ∂nu = 0, a.e. on ∂�},

so that the unbounded operator Ãλ is invertible with (bounded) compact inverse.

A Neumann Problemwith Singular Nonlinearity

Consider the following stationary problem: given

fff ∈ {v ∈ L∞(�) : v(x) ∈ T�, for a.a. x ∈ �},

find u ∈ H2(�) ∩ Z such that

⎧
⎪⎨

⎪⎩

−�u + P�1
,u(u) = fff , a.e. in �,

∂nu = 0, a.e. on ∂�,
∑N

i=1 ui = 1, in �.

(8.4)

Then the following result holds.

Theorem 8.1 Problem (8.4) has a unique solution u which is also strictly separated
from the pure phases, i.e., there exists 0 < δ = δ( fff ) < 1

N such that

δ < u(x) (8.5)

for any x ∈ �.
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Proof Uniqueness is straightforward. Consider two solutions u1, u2 corresponding to
the same value of fff , it is enough to test (8.4)1 (written for u := u1 −u2) with u ∈ Ṽ0
to get, by convexity of �1 (notice that ψ ′′ ≥ C > 0) and being P selfadjoint,

‖∇u‖2 + C‖u‖2 ≤ ‖∇u‖2 + (�1
,u(u1) − �1

,u(u2),u) = 0,

so that u = 0.
Concerning existence, we consider the following approximated problem, where�1

ε

is the same approximation exploited in the proof of Theorem 3.1: for any ε > 0, find
uε ∈ H2(�) ∩ Z solution to the problem

⎧
⎪⎨

⎪⎩

−�uε + Pφφφε(uε) = fff , a.e. in �,

∂nuε = 0, a.e. on ∂�,
∑N

i=1 uε,i = 1, in �.

(8.6)

The rest of the proof is divided into three steps.
Existence of the approximating solution uε. It follows from an application of the

Leray-Schauder fixed point Theorem. First we consider the following problem: for
any given v ∈ Ṽ0, find uε ∈ D(Ã1) ⊂ Ṽ0 such that

{
−�uε + uε = fff − Pφφφε

(
v + 1

N

) + v, a.e. in �,

∂nuε = 0, a.e. on ∂�.

The problem above is clearly equivalent to finding uε ∈ D(Ã1) ⊂ Ṽ0 such that

Ã1uε = fff − Pφφφε

(
v + 1

N

) + v ∈ H̃0,

where Ã1 is Ãλ with λ = 1. Being the operator A1 invertible, we obtain that the map

T : Ṽ0 → Ṽ0, v �→ T (v) = uε

is well defined. Moreover, we also have that the (linear) operator T is compact, since
by elliptic regularity uε ∈ H2(�) ∩ Ṽ0 ↪→↪→ Ṽ0. Continuity of the operator T is
immediate: assume that {vn}n∈N ⊂ Ṽ0 is such that vn → v ∈ Ṽ0 as n → ∞ and
define un = T (vn) and u = T (v). Then we get

‖∇(un − u)‖2 + ‖un − u‖2
= (

φφφε

(
v + 1

N

) − φφφε

(
vn + 1

N

)
,un − u

) + (un − u, vn − v)

≤ 1

2
‖un − u‖2 + C(ε)‖vn − v‖2,

where we have used the fact that ψ ′
ε is Lipschitz continuous with constant ε−1 (see

Sect. 2). From this we clearly deduce that T (vn) → T (v). Consider now the family of
operators {sT }s∈(0,1). We show that if there exist fixed points u ∈ Ṽ0 for the family,
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i.e., such that sT (u) = u (for some s ∈ (0, 1)), these points are uniformly bounded.
First notice that 1

s u = T (u) ∈ D(A1) satisfies

{
−�u + u + sPφφφε

(
u + 1

N

) = s fff + su, a.e. in �,

∂nu = 0, a.e. on ∂�.

On account of the (strict) convexity of ψε, we have

(
Pφφφε

(
u + 1

N

)
,u

) = (
φφφε

(
u + 1

N

)
,u

)

=
N∑

i=1

(
ψ ′

ε

(
ui + 1

N

) − ψ ′
ε(

1
N ), ui

) +
N∑

i=1

(
ψ ′

ε

( 1
N

)
, ui

)

≥ C‖u‖2 +
N∑

i=1

(
ψ ′

ε

( 1
N

)
, ui

)
,

for some C > 0. Then, by standard estimates, we deduce

‖∇u‖2 + (C + 1)‖u‖2 ≤ ‖∇u‖2 + ‖u‖2 + s
(
Pφφφε

(
u + 1

N

)
,u

) − s
N∑

i=1

(
ψ ′

ε

( 1
N

)
, ui

)

= s(f + u,u) − s
N∑

i=1

(
ψ ′

ε

( 1
N

)
, ui

) ≤ (‖f‖ + C)‖u‖ + ‖u‖2,

where we exploited the fact that |ψ ′
ε(

1
N )| < +∞, being ψ ′

ε continuous. This clearly
implies

‖u‖Ṽ0
≤ C,

as desired. Therefore, the Leray–Schauder fixed point Theorem entails the existence
of ũε ∈ Ṽ0 such that ũε = T (ũε) ∈ D(A1), i.e.,

{
−�ũε = fff − Pφφφε

(
ũε + 1

N

)
, a.e. in �,

∂nũε = 0, a.e. on ∂�.

At this point is enough to set uε = ũε + 1
N to obtain the existence of a solution to (8.6)

with the desired properties, since −�ũε = −�uε and ∂nuε = ∂nũε. Uniqueness of
the solution uε can be proven exactly as in the case of problem (8.4) above.

Uniform-in-ε estimates. Let us test (8.6) with uε, integrate over � and then inte-
grate by parts. This gives

‖∇uε‖2 + (Pφφφε(uε),uε) = (f,uε) ≤ ‖f‖‖uε‖. (8.7)
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Observe that

(Pφε(uε),uε) =
N∑

k=1

∫

�

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

uε,k dx,

and

N∑

k=1

(

φε(uε,k) − 1

N

N∑

l=1

φε(uε,l)

)

uε,k

= 1

N

N∑

k,l=1

(
φε(uε,k) − φε(uε,l)

)
uε,k

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
uε,k

N∑

k>l

(
φε(uε,k) − φε(uε,l)

)
uε,k

= 1

N

N∑

k<l

(
φε(uε,k) − φε(uε,l)

)
(uε,k − uε,l)

= 1

N

N∑

k<l

∫ 1

0
ψ ′′

ε (suε,k + (1 − s)uε,l)(uε,k − uε,l)
2ds

≥ C

N

N∑

k<l

|uε,k − uε,l |2,

where C > 0 is independent of ε. Note now that, for any k = 1, . . . , N ,

(

uε − 1

N

)

k
= (Puε)k = 1

N

N∑

l=1

(uε,k − uε,l),

entailing that there exists another C > 0 independent of ε such that

∣
∣
∣
∣uε − 1

N

∣
∣
∣
∣

2

≤ C
N∑

k<l

|uε,k − uε,l |2.

Thus, from the previous result, we get

(Pφε(uε),uε) ≥ C
∫

�

∣
∣uε − 1

N

∣
∣2 dx,

and this allows us to conclude from (8.7) that

‖∇uε‖2 + C�

∥
∥
∥
∥uε − 1

N

∥
∥
∥
∥

2

= (f,uε) ≤ C(1 + ‖f‖2) + C�

2

∥
∥
∥
∥uε − 1

N

∥
∥
∥
∥

2

,
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for some C� > 0 independent of ε. Being 1
N a constant, this clearly implies that

‖uε‖H1(�) ≤ C, (8.8)

for some C > 0 independent of ε. Thanks to this bound we can repeat word by word
the argument used to get (4.17) (with f in place of wε and the matrix A = 0). This
gives

1

4N

∫

�

max
i=1,...,N

φε(uε,i )
2dx ≤ C

(
1 + ‖f‖2

)
≤ C, (8.9)

uniformly with respect to ε. Then, by comparison in (8.6), together with elliptic reg-
ularity, we find

‖uε‖H2(�) ≤ C, (8.10)

uniformly with respect to ε. We can also redo the argument leading to (4.22), to get,
for any r ≥ 2,

1

4N

∫

�

max
i=1,...,N

|φε(uε,i )|r dx ≤ C‖f‖rLr (�) ≤ C |�|d‖f‖rL∞(�), (8.11)

where C > 0 does not depend neither on ε nor on r . From this we infer

‖φφφε(uε)‖Lr (�) ≤ (4C |�|d) 1
r ‖f‖L∞(�).

Letting ε go to 0. By standard compactness arguments we can then pass to the
limit as ε → 0, along a suitable subsequence, and deduce the existence of a (unique)
solution u ∈ H2(�) ∩ Z to (8.4). In particular, we have that

‖φφφ(u)‖Lr (�) ≤ (4C |�|d) 1
r ‖f‖L∞(�),

for any r ≥ 2. Letting then r → ∞, we deduce

‖φφφ(u)‖L∞(�) ≤ ‖f‖L∞(�). (8.12)

The embedding H2(�) ↪→ C(�) and (8.12) imply (8.5), since |ψ ′(s)| → ∞ when
s → 0 and

∑N
i=1 ui = 1. ��

Unbounded Fredholm Operators

Here we report a characterization of unbounded Fredholm operators (see [45]). First,
we say that a densely defined closed operator A on a Banach space X , A : D(A) ↪→
X → X is said to be an (unbounded) Fredholm operator if it satisfies the conditions:

• Range(A) is closed in X ;
• dimKer(A) < +∞;
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• codimRange(A) < +∞.

The following characterization holds (see [45, Theorem VII, (ii)])

Theorem 8.2 Let A be a closed densely defined operator on X. A is Fredholm if and
only if it is invertible modulo a compact operator in K(X), i.e., if there exists an
operator T ∈ B(X) and two compact operators K1, K2 ∈ K(X) such that

AT = IX + K1 on X, and T A = IX + K2 on D(A),

where IX is the identity on X.
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