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Abstract
We consider an expected utility maximization problem where the utility function is
not necessarily concave and the time horizon is uncertain. We establish a necessary
and sufficient condition for the optimality for general non-concave utility function
in a complete financial market. We show that the general concavification approach
of the utility function to deal with non-concavity, while being still applicable when
the time horizon is a stopping time with respect to the financial market filtration,
leads to sub-optimality when the time horizon is independent of the financial risk,
and hence can not be directly applied. For the latter case, we suggest a recursive
procedure which is based on the dynamic programming principle. We illustrate our
findings by carrying out a multi-period numerical analysis for optimal investment
problem under a convex option compensation scheme with random time horizon. We
observe that the distribution of the non-concave portfolio in both certain and uncertain
random time horizon is right-skewed with a long right tail, indicating that the investor
expects frequent small losses and a few large gains from the investment. While the
(certain) average time horizon portfolio at a premature stopping date is unimodal, the
random time horizon portfolio is multimodal distributed which provides the investor a
certain flexibility of switching between the local maximizers, depending on themarket
performance. The multimodal structure with multiple peaks of different heights can
be explained by the concavification procedure, whereas the distribution of the time
horizon has significant impact on the amplitude between the modes.
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1 Introduction

A classical problem in optimal control theory and mathematical finance is to maxi-
mize the expected reward or utility over all admissible terminal positions (portfolios)
starting with an initial investment in the time horizon [0, T ], where T > 0 is given
upfront and the objective (utility) function is a concave. Such a utility maximization
problem in a continuous-time setting dates back to Merton [21] with the underlying
stochastic processes representing a financial market. Merton’s pioneering work has
been extended in several directions e.g. by assuming more general structures of pref-
erences, by incorporating additional randomness to the underlying risk processes, or
by including a risk constraint to the optimization problem, see among many others
e.g. Biagini [5], Wong et al. [28], or Karatzas et al. [19] for a broad discussion.

In thiswork,we investigate an extension of theMerton problem to the casewhere the
utility function is not necessarily concave and the time horizon is random.Let us briefly
mention some of the most relevant literature. Most optimal control-type problems
have a fixed known time horizon. However, in reality such a natural fixed maturity
does not exist and instead exogenous or endogenous events determine the end of the
optimal control/optimal investment problem. An early paper by Yaari [29] looks at the
investment problem of an individual with an uncertain time of death in a simplified
case with purely deterministic investment opportunities. Yaari’s paper is extended to
discrete-time settings with multiple risky assets. Optimal life-cycle consumption and
investment is studied by Merton [21], where the time horizon uncertainty is reflected
by the first jump of an independent Poisson process with constant intensity. Richard
[25] solves in closed-form an optimal portfolio choice problem with an uncertain
time of death and the presence of life insurance. In these works, the time horizon
uncertainty can be treated as additional discount factor and closed-form solution can
be provided by using dynamic programming principle for concave utility functions.
A more complete setting for concave utility maximization with a continuous time
horizon distribution in a complete financial market has been studied in Blanchet et
al. [10]. Bouchard and Pham [11] investigate a concave utility maximization in an
incomplete market with general uncertain time horizon structure. All the mentioned
works leave the case where the objective utility is not necessarily concave e.g. [13] as
an open problem. To the best of our knowledge, the non-concave utility maximization
problem under random time horizon has not yet been investigated.

The literature of non-concave optimization with certain time horizon is vast, see
for instance Aumann and Perles [2], Basak and Makarov [3], Bensoussan et al. [4],
Bichuch and Sturm [8], Carassus and Pham [12], Carpenter [13], Chen et al. [14],
Larsen [20], Reichlin [24], Rieger [26] and Ross [27]. For non-concave optimization
with constraints see Nguyen and Stadje [22] or Dai et al. [15]. In these works in
the finance and the OR literature, the non-concavity arises typically from non-linear,
option-type managerial compensations. Such remuneration schemes have been seen
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in industry as one way to overcome potential principal-agent issues and are supposed
to align the incentives of managers with the ones of owners.

Another important application of non-concave investment relates to participating
insurance contracts which have been extensively used in European and non-European
life insurance markets. Typically, to buy a participating insurance policy, the poli-
cyholder pays a lump sum premium upfront and the capital saved is invested in a
self-financing way, subject to annual interest, where the insurance company offers
a (minimal) guarantee. An example is given by so called “flexibility rider contract”
which have gained popularity recently due to the current low interest rate develop-
ment where the decision variable is the riskiness of the investment pool, see [14] and
the references within. In positive economic developments, the policyholder receives a
surplus, while in case of bad economic developments, the insurance company carries
the loss. Hence, a participating insurance contract may be regarded as an option-type
financial instrument, leading to a non-concave utility function. In such a context our
work to the best of our knowledge is the first one to be able to include the randomness
of the lifetime into the investment problem (instead of simply assuming a fixed pre-
specified time-horizon). As we aim to obtain some explicit result in the illustration
section, we extensively consider the option compensation problem in [13] where the
utility function admits only one concavification interval but with a random time hori-
zon which has a discrete distribution on the universal time interval [0, T ]. We remark
that our results can be extended to settings with a continuous distribution time horizon.

Our contribution is fourth-fold. First, we show that when the time horizon is a
stopping time with respect to the financial market filtration, the general approach of
concavificiation techniques as described in [26] to deal with non-concavity can be
applied. This is an extension of the result in [13], complementing the result in [11]
(Proposition 3.3) to random time horizons in complete markets. Second, when τ is
independent of the financial risk and the market is therefore incomplete, we establish
necessary and sufficient conditions for the optimality for general utility functions.
Third, also for the case where τ is independent of the financial risk, we show that opti-
mizing the concavified version of the utility function will lead to sub-optimality with a
potentially significant expected utility loss and suggest a recursive procedure which is
based on the dynamic programming principle to solve the optimization problem in this
situation. Fourth, we illustrate our finding by carrying out a multiple period numerical
analysis for the non-concave option compensation problem with random time horizon
thoroughly exploring the effect of randomness on managerial compensation schemes
and participing insurance contracts. This is computationally challenging because the
optimal multiplier obtained by the concavified problem in one period is a random
variable that depends on the market realizations at the end of the previous period.

We numerically show that under an uncertain time horizon which imposes a new
randomness that cannot be fully hedged by only using the available financial instru-
ments, the concavified problem strategy is sub-optimal and leads to an expected utility
loss. In addition, due to concavification, the distribution of the wealth at exiting times
of the non-concave optimization problems is right-skewed with a long right tail, indi-
cating that the investor can expect frequent small losses and a few large gains from
the investment. Intuitively, a positively skewed distribution of investment returns is
generally desirable by the agent with option-liked compensation payoff because there
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is some probability to gain huge profits that can cover all the frequent small losses.
Under the premature exiting risk, the wealth at an exiting time exhibits a bimodal
distribution with peaks of different heights. The bimodal structure can be explained
by the concavification procedure whereas the distribution of the exiting time τ has
significant impact on the amplitude between the two modes. When the concavified
utility at an exiting time is affine in many open intervals, the corresponding wealth is
expected to be of multimodal distribution.

The remainder of the paper is organized as follows: First,wedescribe a specific com-
plete financial market setting and introduce the uncertain investment time in Sect. 2.
We present our necessary and sufficient condition for optimality for non-concave gen-
eral utility functions in Sect. 3. We show that the concavification technique is not
applicable in a non-concave setting with random time horizon which induces addi-
tional risk to the financial market, and derive a dynamic programming principle for
such a non-concave optimization with uncertain time horizon in Sect. 4. In Sect. 5, we
investigate the case of power utility and perform a numerical study for non-concave
optimizationwith time horizon uncertainty.We study the casewhen the time horizon is
a stopping time with respect to the financial market filtration in Sect. 6. Finally, Sect. 7
summarizes our main results. Some additional lemmas can be found in the Appendix.

2 Financial Market and the Optimal Investment Problem

Let [0, T ] with 0 < T < ∞ be the maximal time span of the economy and W is
an n-dimensional Brownian motion in a probability space (�,A,P).

2.1 The Financial Market

For the market setup, we assume that the prices of n risky assets S are modelled as a
geometric Brownian motion, i.e.,

dSit
Sit

= μi
t dt +

n∑

j=1

σ
i, j
t dW j

t , i = 1, . . . , n,

where the superscript i denotes the i-th entry of the corresponding vector or (i, j) the
entry in the i-th row and j-th column of a matrix and we use the subscript t to denote
the time index t . We use the notation μ = (μi )1≤i≤n and σ = (σ i, j )1≤i, j≤n for the
corresponding vector or matrix, respectively. Additionally to these risky assets, we
consider a risk-free asset (e.g. a bond) B, given by dBt = Btrtdt , where r denotes
the (deterministic) interest rate. The information in the market is captured by the
augmented filtration F = (Ft )t≥0 generated by the Brownian motion, satisfying the
usual conditions and F0 is trivial. We assume that the coefficients μ, r ≥ 0 are
bounded and deterministic and the volatility σ is bounded, deterministic, invertible
with bounded inverse σ−1.

In this arbitrage-free financial market, there exists a unique equivalent mar-
tingale measure Q with Radon-Nikodym density M as the solution of dMt =
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−Mtθt dWt with M0 = 1, where θt := σ−1
t (μt − rt1). Furthermore, we define

ξt := exp
(
− ∫ t0 rsds

)
Mt . By Itô’s formula, we have dξt = −ξt rt dt − ξtθt dWt ,

and

ξt = exp

(
−
∫ t

0
(rs + 1

2
θTs θs)ds −

∫ t

0
θsdWs

)
.

We consider the economy in the usual frictionless setting, where stocks and bonds
are infinitely divisible and there are no market frictions, no transaction costs etc.
Additional to the financial market setting, we consider a random time-horizon τ ,
where τ is a positive discrete random variable independent of F . In particular, τ is
not anF-stopping time. LetF τ = (F τ

t )0≤t≤T withF τ
t being the σ -algebra generated

by (1τ≤s)0≤s≤t . Define G = F ∨ F τ . The equivalent martingale measure Q can be
extended to GT by defining Q(A) := E[ dQdP 1A] for any A ∈ GT . We note that any
G-martingale is also an F-martingale, see e.g. [1].

2.2 Utility Function

In the sequel we consider a general not necessarily concave utility function U :
[0,∞) → R which is non-constant, increasing, continuous, has left- and right-hand
side derivatives and satisfies the growth condition

lim
x→∞

U (x)

x
= 0. (2.1)

We setU (x) = −∞ for x < 0 to avoid ambiguity and defineU (∞) := limx→∞ U (x).
We do not assume that U is concave or strictly increasing. In a concave setting,
Eq. (2.1) is equivalent to U ′(∞) = 0, which is part of the Inada condition. We note
that Eq. (2.1) and the assumptionU (∞) > 0 imply that there exists a concave function
Uc : R → R ∪ {−∞} that dominates U , i.e., Uc ≥ U . The following result explains
why we can consider F-predictable, instead of G-predictable investment strategies.
We call a G-predictable or a F-predictable process (πs) locally square integrable if∫ T
0 |πs |2 ds < ∞ a.s.

Lemma 1 Suppose that (πs) isG-predictable and locally square integrable. Then there
exists a strategy (π̃s) which is F-predictable, locally square integrable and

∫ τ∧T

0
πsσsdW

Q
s =

∫ τ∧T

0

∼
π sσsdW

Q
s .

Proof Denote by Ys = πsσs for 0 ≤ s ≤ T . Prop. 2.11 in [1] yields that the G-
predictable process Y can be expressed as Y = y1[0,τ ] + g(τ )1]τ,T ] where (ys)0≤s≤T

isF-predictable and gt (ω, u); t ≥ u is aP⊗B([0, T ]) random function withP being
the F-predictable σ -algebra. Set π̃s = ysσ−1

s . Then

πsσs = Ys = ys = π̃sσs on 0 ≤ s < τ ∧ T .
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This entails that
∫ τ∧T
0 πsσsdW

Q
s = ∫ τ∧T

0 π̃sσsdW
Q
s and the lemma follows. �

2.3 Admissible Strategy

We consider an investor putting the amount π i
s in the risky asset i at time 0 ≤ s ≤ T ,

i = 1, . . . , n. By considering a self-financing portfolio, the amount Ps −∑n
i=1 π i

s is
invested in the bond.We use the notation (Pt,π,x

s , t ≤ s ≤ T ) for the wealth process at
time s, developed from an initial capital Pπ

t := Pt,π,x
t = x ≥ 0 at time t under a self-

financing strategy π , where π i denotes the amount invested in asset i . At time t = 0
we assume that the initial capital is strictly positive. Then Pt,π,x

s evolves according to
the stochastic differential equation

dPt,π,x
s = Pt,π,x

s rsds + πs [(μs − 1rs)ds + σsdWs] . (2.2)

We call (πt , 0 ≤ t ≤ T ) admissible, if π is progressively measurable w.r.t.F , locally
square-integrable, i.e.,

∑n
i=1

∫ T
0 (π i

s )
2ds < ∞ a.s., and the associated wealth process

is non-negative. A wealth process corresponding to an admissible strategy is called
admissible wealth process. By Girsanov’s theorem as long as π is locally square-
integrable (ξs P

t,π,x
s )s is always a local martingale. For the set of admissible wealth

processes with initial capital x at time t , we use the notation

	(t, x) := {πs : t ≤ s ≤ T , π is admissible and Pt,π,x
s ≥ 0

}
. (2.3)

We define P̃t := Pt exp
(
− ∫ t0 rsds

)
as the discounted wealth process.

3 Non-concave Optimization Problemwith Random Time Horizon

SinceU is minus infinity for negative outcomes we may throughout this paper restrict
ourselves to analyse non-negativewealth processes. Specifically, assume that the agent
evaluates his/her investment performance at times 0 =: T0 < T1 < T2 < · · · <

Tn := T with respect to the weights pi := P(τ = Ti ), i = 1, · · · , n − 1, and
pn = P[τ ≥ Tn], with ∑n

i=1 pi = 1. Let 	̃ be the set of all portfolios π that
are progressively measurable with respect to G, locally square-integrable with non-
negative associatedwealth process. In our completefinancialmarket setup,we consider
the problem

Vτ (x,U ) = sup
π∈	̃(0,x)

E [U (PT∧τ )]

= sup
π∈	(0,x)

E [U (PT∧τ )] = sup
π∈	(0,x)

E

[
n∑

i=1

piU (PTi )

]
, (3.1)
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where the second equality holds by Lemma 1. Define

Cτ (x) :=
{
P = (P0, · · · , Pn) : P0 = x > 0, Pi ≥ 0 FTi -measurable with

P̃i =: e− ∫ Ti0 rs ds Pi = P̃i−1 +
∫ Ti

Ti−1

σsπi,sdW
Q
s and πi ∈ 	(Ti−1, Pi−1), i = {1, . . . , n}

}
.

(3.2)

Note that for P = (P0, · · · , Pn) ∈ Cτ (x), we have E
[∑n

i=1 piξTi Pi
] ≤ x . Further-

more, it is clear that the strategy

π
(n)
t (P) :=

n∑

i=1

πi,t1(Ti−1,Ti ](t) ∈ 	(0, x)

is locally square integrable. Denote by Px,π(n) := Px,π(n)(P) the corresponding admis-
sible wealth process (which is equal to Pi at time Ti for i = 0, . . . , n). Note that
ξ Px,π(n) = ξ Px,π(n)(P) is a non-negative local martingale (hence a supermartin-
gale). We say that the supermartingale ξ Px,π(n)(P) is generated by the n + 1-tuple
P = (P0, · · · , Pn) ∈ Cτ (x).

The optimization problem (3.1) can be restated in the following way

Vτ (x,U ) = sup
P∈Cτ (x)

E

[
n∑

i=1

piU (Pi )

]
. (3.3)

Define

I (a) := inf

{
y ≥ 0|U (y) − ya = sup

p≥0
{U (p) − pa}

}
. (3.4)

By condition (2.1), I is well defined. By continuity the supremum and infimum are
attained so that I (x) is the smallest argmax of the function y �→ U (y)−yx . Below,U ′
denotes the right-hand side derivative of U . The following result provides a sufficient
condition for optimality of the optimization problem (3.3).

Theorem 1 Let x > 0. Suppose that there is an adapted process ν ≥ 0 with
ν0 = U ′(x) such that the process ξ Px,π(n)(P∗) generated by the n + 1-tuple
P∗ := (x, I (νT1ξT1), · · · , I (νTn ξTn )) is a martingale and

∑n
i=1 piνTi is a constant.

Then, P∗ solves the optimization problem (3.3).

Proof Let
∑n

i=1 piνTi = y which is a constant by assumption. Then for any P =
(x, P1, . . . , Pn) ∈ Cτ (x) by construction, the process ξ Px,π(n)(P) is a non-negative
local martingale. To omit cumbersome notation denote Y = Px,π(n)(P). Let τm be the
corresponding localizing sequence. Then, for any m ≥ 1,
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E[
n∑

i=1

piνTi ξTi∧τmYTi∧τm ] =
n∑

i=1

E

[
piνTiE[ξT∧τmYT∧τm |FTi ]

]

=
n∑

i=1

E

[
piνTi ξT∧τmYT∧τm

]
= E

[
(

n∑

i=1

piνTi )ξT∧τmYT∧τm

]
= xy.

Passing to the limit as m → ∞ and using Fatou’s lemma yields

E[
n∑

i=1

piνTi ξTi YTi ] ≤ xy. (3.5)

The process Z := x−1ξ Px,π(n)(P∗) defines a density process of a probability mea-
sureQν << P as it is a martingale with initial value equal to 1. Due to the construction
of Px,π(n)(P∗) it can be observed that ZTi = x−1ξTi I (νTi ξTi ). Therefore, we obtain

E[
n∑

i=1

piνTi ξTi I (νTi ξTi )] = xEQν [
n∑

i=1

piνTi ] = xy.

For any admissible Y we have therefore

E

[
n∑

i=1

piU (I (νTi ξTi ))

]

= E

[
n∑

i=1

piU (I (νTi ξTi ))

]
− xEQν [

n∑

i=1

piνTi ] + xy

= E

[
n∑

i=1

piU (I (νTi ξTi ))

]
− E[

n∑

i=1

piνTi ξTi I (νTi ξTi )] + xy

= E

[
n∑

i=1

pi sup
X≥0

(
U (X) − νTi ξTi X

)]
+ xy

≥ E

[
n∑

i=1

pi

(
U (YTi ) − νTi ξTi YTi

)]
+ xy ≥ E

[
n∑

i=1

piU (YTi )

]
,

where we have used (3.5) in the last step. This implies the optimality of P∗. �
We now seek for a necessary condition for optimality. The following is the main

theorem of this section which generalizes the results by Blanchet et al. [10] to non-
concave settings. LetU ′ be the right-hand side derivative ofU . We need the following
assumption.

Assumption 1 We assume that P∗ = (x, P∗
T1

, · · · , P∗
Tn

) is an optimal solution to

Problem (3.3) such that E
[
maxi |U (P∗

Ti
)|
]

< ∞, and that ξ P∗ is a square integrable
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martingale (instead of only a local martingale). Furthermore,E

[
maxi

h
(
(1−δ)P∗

Ti

)

ξTi

]
<

∞ for some δ > 0 with h being a decreasing function with max(U ′−,U ′) =
max(U ′−,U ′+) ≤ h.

If U = Uc (concave hull) for all x > x0 for an x0 and if U ′ is bounded on [0, x0],
we can choose h(x) = a + U ′(x). Next, we will construct a set A ⊂ � such that
U ′−(P∗

Ti
) = U ′+(P∗

Ti
) a.s. on A for i = 1, . . . , n. Since by assumption the right- and

left-hand side derivatives of U exist at every point, by Theorem 17.9 in [18], the set
where U is not differentiable is countable. Hence, the set

M :=
{
y ≥ 0 | U is not differentiable in y and there exists a Ti for i ∈ {1, . . . , n}

with P[P∗
Ti = y] > 0

}
,

is countable as well, and therefore Borel-measurable.
Denote the set of all ω with P∗

Ti
(ω) ∈ M for at least one i by Ac, and let A be

its complement. In other words, the set A contains at most scenarios with portfolio
outcomes at a Ti where the utility function is differentiable modulo a zero set. Since
Ac =⋃n

i=1{P∗
Ti

∈ M}, A is measurable.

Theorem 2 Assume that (x, P∗
T1

, · · · , P∗
Tn

) is an optimal solution to Problem (3.3)

which satisfies Assumption 1. Define νTi := ξ−1
Ti

U ′(P∗
Ti

) for i = 1, · · · , n. Then, it
holds that the random variable

∑n
i=1 piνTi is constant (a.s.) on A.

Proof If A is a zero-set the theorem is obvious. So assume P(A) > 0. Consider an
admissible (non-negative wealth process) Y with terminal value of the form YT =
P∗
T 1Ac + ζ1A where ζ is non-negative and FT measurable, such that

a) ξY is a martingale,
b) there exists a constant C > 0 such that max(0, P∗

T − C
ξT

) ≤ YT ≤ P∗
T + C

ξT
. In

particular, ξT (P∗
T − YT ) is bounded.

Hence, we consider a portfolio Y , which at time T agrees with P∗
T on Ac. Furthermore,

since Y is an admissible wealth process and ξY is a martingale

E[ξT P∗
T 1Ac ] + E[ξT YT 1A] = E[ξT YT ] = E[ξ0Y0] = Y0 = x = P∗

0 = E[ξT P∗
T ].

In particular,

E[ξT YT 1A] = E[ξT ζ1A] = E[ξT P∗
T 1A]. (3.6)

We define for 0 ≤ ε ≤ 1 the functions � and χ by �(ε) := E [χ(ε)] and

χ(ε, ω) :=
( n∑

i=1

U
(
εP∗

Ti + (1 − ε)YTi
)
pi

)
.
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We denote the right-hand side derivative of a continuous function f by f ′+ and the left-
hand side derivative by f ′−. Of course, in points where the function is differentiable
both limits coincide and the “+” and “−” may be omitted, respectively. Note that
εP∗

T + (1 − ε)YT is the terminal condition of an admissible wealth process implying
that

−∞ < −|U (0)| ≤ −
n∑

n=1

E

[(
U (εP∗

Ti + (1 − ε)YTi )

)−]
pi

and
n∑

n=1

E[U (εP∗
Ti + (1 − ε)YTi )]pi ≤ E[U (P∗

T∧τ )] < ∞

byAssumption 1,where

(
U (εP∗

Ti
+(1−ε)YTi )

)−
is the negative part ofU (εP∗

Ti
+(1−

ε)YTi ). Hence, χ is integrable. For ε > 1−δ we have (1−δ)P∗
Ti

< εP∗
Ti

+ (1−ε)YTi .
Calculating

|χ ′−(ε, ω)| ≤
n∑

i=1

pi
∣∣h
(
(1 − δ)P∗

Ti

)∣∣ ∣∣P∗
Ti − YTi

∣∣ ≤ max
i

C
∣∣∣h
(
(1 − δ)P∗

Ti

)∣∣∣
ξTi

,

gives an integrable dominating random variable. Denote sign(x) := + if x ≥ 0 and
sign(x) := − else. Under Assumption 1 we obtain for ε close enough to 1

�′−(ε) = E

[ n∑

i=1

U ′
−sign(P∗

Ti
−YTi )

(
εP∗

Ti + (1 − ε)YTi
) (

P∗
Ti − YTi

)
pi

]
.

We know that the function � attains its maximum at ε = 1, since P∗ is the optimal
solution by assumption. Hence, 0 ≤ �′−(1). Thus,

0 ≤ E

[ n∑

i=1

U ′
−sign(P∗

Ti
−YTi )

(
P∗
Ti

)
ξ−1
Ti

pi
(
ξTi P

∗
Ti − ξTi YTi

) ]
.

Using that (ξt (P∗
t − Yt ))0≤t≤T is a bounded martingale yields

E

[
n∑

i=1

U ′
−sign(P∗

Ti
−YTi )

(
P∗
Ti

)
ξ−1
Ti

pi
(
ξTi P

∗
Ti − ξTi YTi

)
]

= E

[
(P∗

T − YT )ξT

n∑

i=1

U ′
−sign(P∗

Ti
−YTi )

(
P∗
Ti

)
ξ−1
Ti

pi

]

= E

[
(P∗

T − YT )ξT

n∑

i=1

U ′ (P∗
Ti

)
ξ−1
Ti

pi1A

]
,
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since by definition P∗
T = YT on Ac and U (P∗

Ti
) is differentiable a.s. for each i so that

U ′(P∗
Ti

) = U ′+(P∗
Ti

) = U ′−(P∗
Ti

) on A. Hence,

0 ≤ E

[
ξT
(
P∗
T − YT

)
(

n∑

i=1

U ′ (P∗
Ti

)
ξ−1
Ti

pi

)
1A

]
. (3.7)

We note that this equality holds for any admissible wealth process Y such that a) -

b) hold and YT is equal to P∗
T on Ac. Define Z := 1A

∑n
i=1U

′
(
P∗
Ti

)
ξ−1
Ti

pi . Thus,

0 ≤ E
[
ξT (P∗

T − YT )Z1A
]
, which is equivalent to

0 ≤ E
[
ξT (P∗

T − YT )Z |A] . (3.8)

The theorem would follow if we can show that Z is constant on A. By (3.6) we have
E
[
ξT (P∗

T − YT )|A] = E
[
ξT (P∗

T − ζ )|A] = 0. Hence, (3.8) implies

0 ≤ E

[
ξT (P∗

T − YT )Z̃ |A
]
, (3.9)

with Z̃ := (Z − E [Z |A])1A. By Lemma 2 below this entails that

0 ≤ E

[
X Z̃ |A

]
(3.10)

for any bounded X with E [X |A] = 0 satisfying X ≤ 0 on P∗
T = 0.

Now if Z̃ ≥ 0 or ≤ 0 on A we have that Z̃ = 0 on A and we are done (since
Z̃ = (Z − E[Z |A])1A and therefore, Z must then be constant on A). On the other

hand, if P
[
Z̃ < 0|A

]
> 0 then

P

[
P∗
T > 0, Z̃ < 0|A

]
= P

[
Z̃ < 0|A

]
> 0,

where the first equation holds as the wealth process P∗
T is non-negative and

P
[
P∗
T = 0|A] = 0 by the definition of A, sinceU (y) is not differentiable at y = 0. For

a, b > 0 we can define X =
{
−b1Z̃>0 + a1P∗

T >0,Z̃<0

}
1A. Then X ≤ 0 on P∗

T = 0.

Choose b, a > 0 such that E [X |A] = 0. Then by (3.10)

0 ≤ E

[
X Z̃ |A

]
= −bE

[
Z̃+|A

]
− aE

[
Z̃−1P∗

T >0|A
]
.

Hence, 1A Z̃+ = 0 and thus 1A Z̃ = 0, since E[Z̃ |A] = 0. By the definition of Z̃
above this entails that Z is constant. To obtain the representation of Z , we recall our
definition νt = ξ−1

t U ′(P∗
t ) (for t ∈ {T1, . . . , Tn}) from the very beginning of this

proof. �
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Lemma 2 0 ≤ E

[
X Z̃ |A

]
for any FT -measurable bounded X with E [X |A] = 0

satisfying X ≤ 0 on P∗
T = 0.

Proof Setting X̄ = (P∗
T − YT )1A, (3.9) implies that

E

[
ξT X̄ Z̃ |A

]
≥ 0. (3.11)

On the other hand, (3.9) implies that (3.11) holds for any FT -measurable X̄ ≤ P∗
T

such that E
[
ξT X̄ |A] = 0 and ξT X̄ is bounded. 1 In particular,

E

[
X̃ Z̃ |A

]
≥ 0, (3.12)

for any bounded X̃ being FT -measurable such that E
[
X̃ |A

]
= 0 and X̃ ≤ P∗

T ξT .

By definition the wealth process, P∗, is non-negative. Therefore, we actually have
that

E

[
X̃ Z̃ |A

]
≥ 0, (3.13)

for all bounded FT -measurable X̃ with E[X̃ |A] = 0, such that X̃ ≤ 0 on P∗
T ξT ≤ δ

for some δ > 0, and X̃ bounded by K else. This can be seen as follows. Suppose X̃ is
bounded and FT -measurable with E[X̃ |A] = 0, such that X̃ ≤ 0 on P∗

T ξT ≤ δ for a
δ > 0, and X̃ bounded by K else. Then on P∗

T ξT ≥ δ we have

δ

K
X̃ ≤ δ ≤ P∗

T ξT ,

while on P∗
T ξT ≤ δ we have

δ

K
X̃ ≤ 0 ≤ P∗

T ξT .

In particular, δ
K X̃ ≤ P∗

T ξT . Since obviouslyE[ δ
K X̃ |A] = 0, by (3.12)E

[(
δ
K X̃
)
Z̃ |A

]

≥ 0 implying (3.13). Since K was arbitrary, (3.13) holds actually for any bounded

FT -measurable X̃ with E
[
X̃ |A

]
= 0 and X̃ ≤ 0 on PT ξT ≤ δ for some δ > 0.

Now we take an FT -measurable bounded X satisfying X ≤ 0 if P∗
T = 0, and

E [X |A] = 0. If X = 0 on A then clearly E[X Z̃ |A] ≥ 0 and the lemma follows. If
X �= 0 on A then A ∩ {X > 0} is a non-zero set (since E [X |A] = 0) and therefore
by assumption A ∩ {X > 0} ∩ {P∗

T > 0} is a non-zero set as well (see the definition

1 Since by the martingale representation theorem for such a X̄ there exists a corresponding admissible Y
with ξT YT = 1AξT (P∗

T − X̄) + 1Ac ξT P∗
T such that ξY is a martingale and ξT (P∗

T − YT ) is bounded.
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of A noting that U is not differentiable at zero). Define

X δ =
(
X + δ̂(δ)

)
1ξT P∗

T >δ,X>0 + 1X≤0X

with 0 ≤ δ̂(δ) chosen such that E
[
X δ|A] = 0. The existence of δ̂(δ) ∈ [0,∞) if δ is

small enough such that P[ξT P∗
T > δ, X > 0|A] > 0 follows from the intermediate

value theorem as

f (0) := E

[
X1ξT P∗

T >δ,X>0 + 1X≤0X |A
]

≤ E [X |A] = 0

and

∞ = lim
δ̂→∞

f (δ̂) := lim
δ̂→∞

E

[(
X + δ̂

)
1ξT P∗

T >δ,X>0 + 1X≤0X

∣∣∣∣A
]

> E[X |A] = 0.

Now δ̂(δ) ↓ 0 as δ ↓ 0. Furthermore, X δ ≤ 0 on ξT P∗
T ≤ δ so that X δ satisfies (3.13).

Hence, 0 ≤ E

[
X δ Z̃ |A

]
δ↓0→ E

[
X Z̃ |A

]
. �

4 Dynamic Programming Approach with Random Time Horizon

Concavification has been widely applied to solve non-concave optimization problems,
see e.g. [8, 12–14, 20, 22, 24, 26, 27] in various settings where the time horizon is
fixed and the market is complete. The concavification argument is based on the fact
that the concavified hull Uc strictly dominates the initial function U only in a union
of finite number of open intervals andUc is affine in this union. The key idea is that in
order to gain more expected utility, it is possible for the agent to put all the expensive
states to the left points of these intervals in the concavification region, keeping the
budget constraint unchanged.

In this section, we show that the concavification techniquemay no longer be directly
applicable in settings with a random time horizon. Furthermore, we derive a dynamic
programming principle for such a non-concave optimization.

Wewill start with the following useful lemma, where with a slight abuse of notation
we write τ instead of τ ∧ T .

Lemma 3 Let τ̃ have the same distribution as τ conditioned on τ > t and be inde-
pendent of W . Then we have

E

[
U

(
x +

∫ τ

0
πsσsdW

Q
s

)∣∣∣∣Gt
]

= 1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
+ E

[
U

(
x +

∫ τ̃

0
πsσsdW

Q
s

)∣∣∣∣Ft

]
1τ>t .
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Proof Let Y be bounded and Gt -measurable. By Jeulin (2006), Lemma 4.4 Y (ω) =
1τ>t Xt (ω) + 1τ≤t gt (ω, τ) for some Ft -measurable random variable Xt and some
family of Ft ⊗B([0, T ])-measurable random variables gt (·, u); t ≥ u. Let τ̃ have the
same distribution as τ conditioned on τ > t and be independent of W . Then we have

E

[
U

(
x +

∫ τ

0
πsσsdW

Q
s

)
Y

]

= E

[
1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
Y

]
+ E

[
1τ>tU (x +

∫ τ

0
πsσsdW

Q
s )Y

]

= E

[
1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
Y

]
+ E

[
1τ>tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
Xt

]

= E

[
1τ≤tU (x +

∫ τ

0
πsσsdW

Q
s )Y

]
+ E

[
E

[
1τ>tU (x +

∫ τ

0
πsσsdW

Q
s )|Ft

]
Xt

]

= E

[
1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
Y

]
+ E

[1τ>tE

[
1τ>tU

(
x + ∫ τ

0 πsσsdW
Q
s

)∣∣∣∣Ft

]

P(τ > t)
Xt

]

= E

[
1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)
Y

]
+ E

[
1τ>tE[U

(
x +

∫ τ̃

0
πsσsdW

Q
s

)∣∣∣∣Ft ]Xt

]

= E

[
1τ≤tU (x +

∫ τ

0
πsσsdW

Q
s )Y

]
+ E

[
1τ>tE[U (x +

∫ τ̃

0
πsσsdW

Q
s )

∣∣∣∣Ft

]
Y

]

= E

[{
1τ≤tU

(
x +

∫ τ

0
πsσsdW

Q
s

)]
+ 1τ>tE

[
U

(
x +

∫ τ̃

0
πsσsdW

Q
s

)∣∣∣∣Ft

]}
Y

]
,

from which the lemma follows by the definition of a conditional expectation. �
Let τ̃ have the same distribution as τ ∧T conditioned on τ ∧T > t and be independent
of W . Let us define

V (t, x) := ess sup
(πs )t≤s≤T∧τ

E

[
U (Pt,π,x

τ∧T )1τ>t |Gt

]

= ess sup
(πs )t≤s≤T

E

[
U (Pt,π,x

τ∧T )1τ>t |Gt

]
= ess sup

(πs )t≤s≤T

E

[
U

(
x +

∫ ∼
τ

t
πsσsdW

Q
s

)∣∣∣∣Ft

]
1τ>t

and Ṽ (t, x) := ess sup
(πs )t≤s≤T

E[U (Pτ∧t,π,x
τ∧T )|Gt ] = U (x)1τ≤t + V (t, x)1τ>t . Note that V

and Ṽ depend on ω which is suppresed in the notation for the ease of exposition.
We want to find Ṽ (0, x). Below we show that Ṽ (t, x) follows the usual dynamic
programming principle.

Proposition 1 (Dynamic Programming) For any 0 ≤ t ≤ t ′ ≤ T , we have

Ṽ (t, x) = ess sup
(πs )t≤s≤t ′

E

[
Ṽ (t ′, Pτ∧t,π,x

t ′∧τ
)|Gt
]
.
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Proof Denote by π̃s the fraction of wealth invested in to each asset, i.e., π̃ = π
Pπ

where we set π̃t = 0 if Pπ = 0. Writing with a slide abuse of notation Pt,π̃ ,x
s for the

corresponding wealth process we have

dPt,π̃ ,x
s = Pt,π̃ ,x

s

(
rsds + π̃s [(μs − 1rs)ds + σsdWs]

)
. (4.1)

Note that (4.1) entails that Pt,π̃ ,x
s is an exponential Doléans-Dade exponential and

in particular is non-negative. Below, for a (fixed) admissible strategies (π̃s) and 0 <

t ′ < T , we define the concatenation of (π̃s) with (π̂s)t ′≤s≤T∧T at t ′ by (π̃ � π̂)s ={
π̃s, 0 ≤ s < t ′
π̂s, t ′ ≤ s ≤ T ∧ τ

. Assuming without loss of generality that r = 0 we have

Ṽ (t, x) = ess sup
(π̃s )t≤s<t ′

ess sup
(π̂s )t ′≤s≤T∧τ

E

[
U (x)1τ≤t +U

(
x +

∫ T∧τ

t
Pt,π̃�π̂ ,x
s (π̃ � π̂)sσsdW

Q
s

)
1τ>t |Gt

]

= ess sup
(π̃s )t≤s<t ′

E

[
U (x)1τ≤t +U

(
x +

∫ T∧τ

t
Pt,π̃ ,x
s π̃sσsdW

Q
s

)
1t<τ≤t ′ (4.2)

+ ess sup
(π̂s )t ′≤s≤T∧τ

E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂ ,x
s π̂sσsdW

Q
s

)
|Gt ′
]∣∣∣∣Gt

]

= ess sup
(π̃s )t≤s<t ′

E

[{
U (Pτ∧t,π̃ ,x

τ∧T )1τ≤t ′

+ ess sup
(π̂s )t ′≤s≤τ∧T

1τ>t ′E

[
U

(
Pτ∧t,π̃ ,x
t ′ +

∫ T∧τ

t ′
Pτ∧t,π̃�π̂ ,x
s π̂sσsdW

Q
s

)
|Gt ′
]}∣∣∣∣Gt

]

= ess sup
(π̃s )t≤s<t ′

E

[
U (Pτ∧t,π̃ ,x

t ′∧τ
)1τ≤t ′ + V (t ′, Pτ∧t,π̃ ,x

t ′ )1τ>t ′

∣∣∣∣Gt

]
= ess sup

(π̃s )t≤s<t ′
E

[
Ṽ (t ′, Pτ∧t,π̃ ,x

t ′∧τ
)

∣∣∣∣Gt

]
,

where Pt,π̃�π̂ ,x
s denotes the wealth process corresponding to the strategy π̃ until

time t ′ and to π̂ from t ′ on. The first equality holds as ess supx,y f (x, y) =
ess supxess supy f (x, y). To see the second equality note that clearly “≤” holds. To
show “≥” we will show that actually for each fixed (π̃s)t≤s<t ′ , it holds that

ess sup
(π̂s )t ′≤s≤T∧τ

E

[
U (x)1τ≤t +U

(
x +

∫ T∧τ

t
Pt,π̃�π̂ ,x
s (π̃ � π̂)sσsdW

Q
s

)
1τ>t |Gt

]

≥ E

[
U (x)1τ≤t +U

(
x +

∫ T∧τ

t
Pt,π̃ ,x
s π̃sσsdW

Q
s

)
1t<τ≤t ′

+ ess sup
(π̂s )t ′≤s≤T∧τ

E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂ ,x
s π̂sσsdW

Q
s

)
|Gt ′
]∣∣∣∣Gt

]
.

To see this inequalitywewill show that there exists an admissible sequence of strategies
starting at time t ′ for which the conditional inner expectations converge to the essential
supremum. For this we will first argue that the set over which the essential supremum
is taken is directed upward, see Appendix A.5 in [17] for a definition.
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Identifying each strategy with the corresponding terminal wealth, we can equiva-
lently write the essential supremum as being taken over a set � of random variables
defined as

� =
{
E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂ ,x
s π̂sσsdW

Q
s

)∣∣∣∣Gt ′
]
,

(π̂s)t ′≤s≤T∧τ

}
.

Next let us show that the set � is indeed directed upward. For (π̂1
s )t ′≤s≤T∧τ and

(π̂2
s )t ′≤s≤T∧τ , we define π̄s := 1Bt ′ π̂

1
s 1[t ′,T ](s)+1Bc

t ′ π̂
2
s 1[t ′,T ](s) for t ′ ≤ s ≤ T ∧ τ ,

with

Bt ′ =
{
ω ∈ �

∣∣∣∣E
[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂1,x
s π̂1

s σsdW
Q
s

)
|Gt ′
]
(ω)

> E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂2,x
s π̂2

s σsdW
Q
s

)
|Gt ′
]
(ω)

}
,

where both conditional expectations are identified with particular a.s. versions. Then
by definition we have for the concatenated strategy π̃ � π̄ that

E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̄ ,x
s π̄sσsdW

Q
s

)∣∣∣∣Gt ′
]

= E

[
1τ>t ′1Bt ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂1,x
s π̂1

s σsdW
Q
s

)∣∣∣∣Gt ′
]

+ E

[
1τ>t ′1Bc

t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂2,x
s π̂2

s σsdW
Q
s

)∣∣∣∣Gt ′
]

= 1Bt ′E
[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂1,x
s π̂1

s σsdW
Q
s

)∣∣∣∣Gt ′
]

+ 1Bc
t ′
E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂2,x
s π̂2

s σsdW
Q
s

)∣∣∣∣Gt ′
]

= E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂1,x
s π̂1

s σsdW
Q
s

)∣∣∣∣Gt ′
]

∨ E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂2,x
s π̂2

s σsdW
Q
s

)∣∣∣∣Gt ′
]

a.s,

since Bt ′ and Bc
t ′ are Gt ′ measurable. The last equality holds by the definition of Bt ′

as max(a, b) = a1a>b + b1a≤b. Hence, the set � is directed upward.
By Theorem A.37(b) in [17] there exists then a sequence π̂n such that the cor-

responding inner conditional expectations are increasing in n and converging to the
inner essential supremum. Therefore, by the monotone convergence theorem
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E

[
U (x)1τ≤t +U

(
x +

∫ τ

t
Pt,π̃ ,x
s π̃sσsdW

Q
s

)
1t<τ≤t ′

+ ess sup
(π̂s )t ′≤s≤T∧τ

E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂ ,x
s π̂sσsdW

Q
s

)∣∣∣∣Gt ′
]∣∣∣∣Gt

]

= lim
n→∞E

[
U (x)1τ≤t +U

(
x +

∫ τ

t
Pt,π̃ ,x
s π̃sσsdW

Q
s

)
1t<τ≤t ′

+ E

[
1τ>t ′U

(
x +

∫ t ′

t
Pt,π̃ ,x
s π̃sσsdW

Q
s +

∫ T∧τ

t ′
Pt,π̃�π̂n ,x
s π̂n

s σsdW
Q
s

)∣∣∣∣Gt ′
]∣∣∣∣Gt

]

≤ ess sup
(π̂s )t ′≤s≤T∧τ

E

[
U (x)1τ≤t +U

(
x +

∫ T∧τ

t
Pt,π̃�π̂ ,x
s (π̃ � π̂)sσsdW

Q
s

)
1τ>t

∣∣∣∣Gt

]
.

�
We are now in a position to show that contrary to the case with a certain time horizon,
concavifying the utility function is not applicable when the investment horizon is
random. In other words, replacingU withUc in the optimization (3.1) leads to a sub-
optimal strategy. To this end, we need to investigate smoothness and concavity of the
value function of the certain time horizon optimization problem

V̄ (t, x) := sup
π∈	(t,x)

E[U (PT )|Pt = x]. (4.3)

Smoothness and concavity of the value function has been also studied in [6] byworking
on the dual control problem and the dual HJB equation under the following assumption
which we in the sequel will make as well2:
Assumption (H):U (0) = Uc(0) = 0,Uc(∞) = ∞ andUc is strictly increasing and
Uc(x) ≤ C(1 + x p) for some constant C > 0 and 0 < p < 1.

Proposition 2 Under Assumption (H), the value function V̄ (t, x) of Problem (4.3) is
strictly concave and strictly increasing and C1,2 in [0, T ) × [0,∞). Furthermore,
V̄ (T , x) = Uc(x), V̄ (t, 0) = 0 and V̄ (t, x) ≤ C̃(1 + x p) for some positive constant
C̃ and V̄ (t, x) satisfies the Inada’s condition at zero and infinity.

Proof By Theorem 4.1 in [24] the concavification argument can be applied andU can
be replaced by its concave hullUc. By assumption,Uc is increasing and concave and
it follows that V̄ is strictly increasing, in C1,2 and satisfies the growth condition by
applying Theorem 3.8 in [6]. An inspection of the proof of Theorem 3.8 together with
Lemma 3.6 [6] also confirms that V̄ satisfies the Inada condition at 0 and infinity. �
Proposition 3 Assume that Assumption (H) holds and the concavification region {U <

Uc} contains an interval (0, η) for some η > 03. Suppose that τ is not identical
zero and the original problem (3.1) has a solution π∗. Define sup

π
E[Uc(Pπ,x

τ∧T )] =
A0 and sup

π
E[U (Pπ,x

τ∧T )] = E[U (Pπ∗,x
τ∧T )] = B0. Then A0 > B0.

2 In [7], the authors obtain similar results under a Hölder-continuity condition (Theorem 4.2) by using the
comparison principle of PDEs for the dual control problem.
3 This assumption is satisfied in the option compensation problem with power utility, see Sect. 5.2
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Proof Denote by π̃s the fraction of wealth invested in to each asset, i.e., π̃ = π
Pπ where

we set π̃t = 0 if Pπ = 0. By Lemma 1 we may restrict ourselves to F- predictable
strategies. Writing again with a slide abuse of notation Pt,π̃ ,x

s for the corresponding
wealth process we have

dPt,π̃ ,x
s = Pt,π̃ ,x

s

(
rsds + π̃s [(μs − 1rs)ds + σsdWs]

)
.

In the sequel of the proof let us assume without loss of generality that {τ > Tn−1} is
a non-zero set. (Otherwise redefine Tn .) Assume then by contradiction that A0 = B0.
Arguing as in (4.2), one can show that (π̃∗)Tn−2∧τ≤s≤Tn∧τ is actually also a maximizer
for ess sup(π̃s )Tn−2∧τ≤s≤Tn∧τ

E[U (P π̃
τ∧T )|GTn−2∧τ ], i.e.,

E[U (P π̃∗
τ∧T )|GTn−2∧τ ] = ess sup(π̃s )Tn−2∧τ≤s≤Tn∧τ

E[U (P π̃
τ∧T )|GTn−2∧τ ],

where all strategies π̃ are assumed to agreewith π̃∗ until time Tn−2∧τ . By the dynamic
programming principle it is sufficient to show that on a non-zero set

A
(π̃∗

s )0≤s<Tn−2∧τ

Tn−2
:= ess sup

(π̃s )Tn−2∧τ≤s<Tn∧τ

E[Uc(P π̃
τ∧T )|GTn−2∧τ ]

> ess sup
(π̃s )Tn−2∧τ≤s≤Tn∧τ

E[U (P π̃
τ∧T )|GTn−2∧τ ] =: B(π̃∗

s )0≤s≤Tn−2∧τ

Tn−2
,

since then it follows that

A0 ≥ E[A(π̃∗
s )0≤s<Tn−2∧τ

Tn−2
] > E[B(π̃∗

s )0≤s<Tn−2∧τ

Tn−2
] = E

[
E[U (P π̃∗

τ∧T )|GTn−2∧τ ]
]

= B0,

deriving a contradiction.
Let us remark that in our complete market setting, the market price density ξ is

atomless and U is continuous by assumption. In particular, by Proposition 2 and the
concavification techniques in the certain maturity case (see Sect. 5 of [24]), the last
period value function on τn > Tn−1 is given by

VTn−1(x) = ess sup
(π̃s )Tn−1∧τ≤s≤Tn∧τ

E[Uc(P π̃
τ∧T )|GTn−1∧τ , P

π̃
Tn−1∧τ = x]

= ess sup
(π̃s )Tn−1∧τ≤s≤Tn∧τ

E[Uc(P π̃
τ∧T )|σ(τ ≤ Tn−1), P

π̃
Tn−1∧τ = x]

= ess sup
(π̃s )Tn−1∧τ≤s≤Tn∧τ

E[Uc(P π̃
τ∧T )|τ > Tn−1, P π̃

Tn−1∧τ = x]

= ess sup
(π̃s )Tn−1∧τ≤s≤Tn∧τ

E[U (P π̃
τ∧T )|τ > Tn−1, P π̃

Tn−1∧τ = x],
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which is strictly increasing and strictly concave and VTn−1(0) = U (0) = 0. Therefore,

pn−1U + pnVTn−1 ≤ (pn−1U + pnVTn−1)
c ≤ pn−1U

c + pnVTn−1 .

On τn > Tn−1 by the Inada condition of VTn−1 and Lemma 8.3 there exists ε̃ > 0 such
that (pn−1U + pnVTn−1)

c is strictly concave on [0, ε̃] and

(0, ε̃) ⊂ {pn−1U + pnVTn−1 <
(
pn−1U + pnVTn−1

)c} ⊂ {pn−1U + pnVTn−1 < pn−1U
c + pnVTn−1 } = {U < Uc}.

It then follows

ATn−2 =
∑

i≤n−2

1τ=Ti U
c(P π̃∗

Ti
)

+ 1τ>Tn−2 ess sup
(π̃s )Tn−2∧τ≤s<Tn−1∧τ

E[pn−1U
c(P π̃

Tn−1
) + pnVTn−1 (P

π̃
Tn−1

)|GTn−2∧τ ]/(pn−1 + pn)

≥
∑

i≤n−2

1τ=Ti U
c(P π̃∗

Ti
)

+ 1τ>Tn−2E[pn−1U
c(P π̃∗

Tn−1
) + pnVTn−1 (P

π̃∗
Tn−1

)|GTn−2∧τ ]/(pn−1 + pn)

>
∑

i≤n−2

1τ=Ti U (P π̃∗
Ti

) + 1τ>Tn−2

E[(pn−1U (P π̃∗
Tn−1

) + pnVTn−1 (P
π̃∗
Tn−1

)
)c|GTn−2∧τ ]/(pn−1 + pn)

=
∑

i≤n−2

1τ=Ti U (P π̃∗
Ti

)

+ 1τ>Tn−2 ess sup
(π̃s )Tn−2∧τ≤s<Tn−1∧τ

E[pn−1U (P π̃
Tn−1

) + pnVTn−1 (P
π̃
Tn−1

)|GTn−2∧τ ]/(pn−1 + pn)

= BTn−2

with π̃∗ = argsup
(π̃s )Tn−2∧τ≤s<Tn−1∧τ

E[pn−1U (P π̃
Tn−1

) + pnVTn−1 (P
π̃
Tn−1

)|GTn−2∧τ ]. The strict inequality

above holds because on a non-zero set
(
pn−1U+ pnVTn−1

)c is not affine on the set {U < Uc} and is strictly
concave on an interval (0, ε̃) ⊂ {U < Uc} due to Inada’s condition at zero of VTn−1 (see Lemma 8.3).

Hence, by a Merton-Lagrange-type analysis, P π̃∗
Tn−1

takes values with positive probability in a non-zero set

where
(
pn−1U + pnVTn−1

)c
< pn−1U

c + pnVTn−1 . �

It follows from Proposition 3 that concavification techniques (as for instance in [24])
cannot be directly applied to U when the time horizon is random. The non-concave
optimization in this case can however still be solved by a recursive procedure which
is established by Proposition 1. This will be explicitly illustrated in the next section.

5 Example for Power Utility Function

In this section, we illustrate our main results established in the previous sections. In
particular, we consider for 0 ≤ τ ≤ T a discrete random variable, i.e., there are times
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T0 := 0 < T1 < T2 < · · · < Tn = T and probabilities 0 < pi < 1 for 1 ≤ i ≤ n with∑n
i=1 pi = 1 such that P (τ = Ti ) = pi , for 1 ≤ i ≤ n. For simplicity, we assume

that θ and r are constant and we choose a power (CRRA) utility, i.e.,

U (x) := x1−γ

1 − γ
, for 0 < γ < 1. (5.1)

5.1 Concave Optimization with Power Utility

Note first that since U is strictly concave we have that I = (U ′)−1. By
Theorem 1, we need to find an adapted process ν ≥ 0 with ν0 = U ′(x)
such that the process ξ Px,π(n)(x,I (νT1 ξT1 ),··· ,I (νTn ξTn )) generated by the n + 1-tuple
(x, I (νT1ξT1), · · · , I (νTn ξTn )) is a martingale and

∑n
i=1 piνTi is a constant. As shown

below, for such a CRRA utility function we can find a ν which is deterministic, in
particular,

∑n
i=1 piνTi is a constant. We will not provide a proof.

Proposition 4 For power utility U defined in (5.1), the optimal solution P∗ generated
by the n + 1-tuple (x, I (νT1ξT1), · · · , I (νTn ξTn )), where

νTj =
⎛

⎝ x

f
(

γ−1
γ

, 0, Tj

)

⎞

⎠
−γ

, 1 ≤ j ≤ n.

and f (q, t, T ) := exp
(
−q
∫ T
t (rs + 1

2θ
2
s )ds + q2

∫ T
t

θ2s
2 ds

)
, with θ being the market

price of risk from Sect.2.1. Furthermore, the optimal investment strategy is theMerton
strategy, i.e., the optimal fraction of wealth invested in the risky asset at time t is given
by μt−rt

γ σ 2
t

, which is independent of the distribution of the stopping time.

Hence, in the concave optimization problem the optimal portfolio selection is not
affected by the presence of an uncertain time horizon, even though the value function
is not identical to the one corresponding to the standard fixed-horizon case. This result
can be considered as a confirmation of Merton [21] and Richard [25] and is aligned
with the findings in [10, 11].

5.2 Non-concave Optimization: Recursive Solution

Throughout the rest of this section we focus on the case where the random maturity
has a binary distribution. We consider the special choice of a non-concave objective
function U : R → R ∪ {−∞} as in (5.2), i.e., for given K > 0 and B > 0:

U (x) =
{
u(K + α(x − B)+) for x ≥ 0,

−∞ else.
(5.2)

where u(x) = x1−γ /(1− γ ), with 0 < γ < 1. We remark that although in almost all
optimal control problems considered in the literature a fixed known time horizon is
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assumed, in reality a fixed maturity is typically not naturally given and the target date
itself instead is often of random-type. Hence, the problem considered in this chapter
fits to all option type managerial compensation problems, for which in the case of a
non-random time horizon there is already a rich literature in the finance&OR literature
going back to [13, 27].

Note that not only considered in the managerial option compensation, the option-
like payoffs of the form (5.2) also arise naturally for instance in flexibility rider
insurance products which at the end of the life time of the policy holder, pay out
a guarantee plus a participation rate the latter depending on the returns in the stock
market. In these products, the policyholder is allowed to influence the investment
decision of the life insurance product. An example for such products are in France
for instance the life insurance products AXA Twin Star, in Germany the Swiss Life
Champion and in the US, for example, Allianz Index Advanta, see [14] and the refer-
ences within. In these cases, α, K , B are the participation rate, the guarantee and the
threshold for the participation, respectively.

By Proposition 3, a concavification procedure cannot be directly applied and we
will solve the optimization by a recursive procedure. For comparison purpose, we
introduce the concave envelope Uc : R → R ∪ {−∞} given by

Uc(x) :=

⎧
⎪⎨

⎪⎩

−∞ for x < 0,

U (0) +U ′(x̂(B))x for 0 ≤ x ≤ x̂(B),

U (x) for x > x̂(B),

(5.3)

where x̂(B) := min{x > 0 : U (x) = Uc(x)}. As in [13, 22], x̂(B) is defined by the
following concavification equation:

U (x̂(B)) −U (0) = U ′(x̂(B))x̂(B). (5.4)

Note that Uc dominates U with equality for x = 0 and x ≥ x̂(B). Consistently
with (3.4), we are able to define the function I : (0,∞) → [0,∞) by

I (y) :=
[
1

α

(
i
( y
α

)
− K

)
+ B

]
1{y<U ′(x̂(B))}, (5.5)

where i(x) = x−1/γ is the inverse of u′. We note that I is the generalized inverse
function of (∂Uc) in the sense that y ∈ (∂Uc)(I (y)) for all y > 0.

In our last period we already know τ so that the problem can be treated as a static
non-concave EU maximization problem.

Given PT1 = x > 0, the wealth level at time T1, the optimal terminal wealth of the
conditional static problem, sup

P−admissible,PT1=x
E[U (PT )|PT1 = x], is given by

P∗
T = I (λT ξT ) =

[
1

α

(
i

(
λT ξT

α

)
− K

)
+ B

]
1{λT ξT <U ′(x̂(B))}, (5.6)
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where λT isFT1 -measurable and defined by the budget constraintE[ξT ξ−1
T1

P∗
T |FT1 ] =

x , see e.g. [13, 22, 27] for more detail discussions. The optimal wealth process is given
by the following lemma:

Lemma 4 Given a realized wealth level at time T1, the optimal wealth process on
(T1, T ] is given by P∗

t = P∗
t,T (λT ξt ), where

P∗
t,T (y) := f (1, t, T )

(
B − K

α

)
�[d(1, t, T , y)]

+
(
1

α

)1− 1
γ

(y)−1/γ f

(
1 − 1

γ
, t, T

)
�[d(1 − 1/γ, t, T , y)], (5.7)

where λT satisfies the budget constraint at time T1, � denotes the cumulative distri-
bution function of the standard normal distribution and

d(q, t, T , ξ) = log
(
U ′(x̂(B))/ξ

)+ (r + 1
2θ

2
)
(T − t)

θ
√
T − t

− qθ
√
T − t . (5.8)

Proof The lemma follows directly from (5.6) and Lemma 8.2, in the Appendix. �
Note that the wealth process P∗

t,T (λT ξt ), expressed as a functional of the product
λT ξt , depends on PT1 , the wealth level at time T1, as the multiplier λT = λT (PT1) is
characterized by the budget equation at time T1.

Lemma 5 The indirect value function VT1(x) := E[U (P∗
T )|PT1 = x] is given by

VT1(x) = 1

1 − γ
f (q, T1, T )

(
1

α

)1− 1
γ

∗ (λT (x)ξT1)
1−1/γ f

(
1 − 1

γ
, T1, T

)
�[d(1 − 1/γ, T1, T , ξT1λT (x))

+ 1

1 − γ
K 1−γ (1 − �[d(0, T1, T , ξT1λT (x))]). (5.9)

Proof From (5.6) we have

VT1(x) = E[U (P∗
T )|P∗

T1
= x] = E

[
1

1 − γ

(
λT (x)ξT

α

)(−1/γ )×(1−γ )

1{λT ξT <U ′(x̂(B))}
]

+K 1−γ

1 − γ
E
[
1{λT ξT ≥U ′(x̂(B))}

]

and the explicit formula follows directly from Lemma 8.2 in the Appendix. �
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Proposition 5 VT1(x) is a globally strictly concave function and its first two derivatives
are given by

V ′
T1

(x) = λT (x)ξT1 and V
′′
T1

(x) = λ′
T (x)ξT1 . (5.10)

The inverse of marginal indirect value function (VT1)
′ is given by

IT1(X) = f (1, T1, T )

(
B − K

α

)
�[d(1, T1, T , X)]

+
(
1

α

)1− 1
γ

(X)−1/γ f

(
1 − 1

γ
, T1, T

)
�[d(1 − 1/γ, T1, T , X)].

(5.11)

Proof By differentiating the budget constraint

x =
(
1

α

)1− 1
γ

(λT ξT1)
−1/γ f

(
1 − 1

γ
, T1, T

)
�[d(1 − 1/γ, T1, T , λT ξT1)]

+ f (1, T1, T )

(
B − K

α

)
�[d(1, T1, T , λT ξT1)],

we obtain dx
dλT

= A1 + A2 + A3, where

A1 = −1

γ

(
1

α

)1− 1
γ

ξT1(λT ξT1 )
−1/γ−1 f

(
1 − 1

γ
, T1, T

)
�[d(1 − 1/γ, T1, T , λT ξT1)],

A2 =
(
1

α

)1− 1
γ

(λT ξT1)
−1/γ f

(
1 − 1

γ
, T1, T

)
ϕ[d(1 − 1/γ, T1, T , λT ξT1 )]

−1

λT θ
√
T − T1

,

A3 = f (1, T1, T )

(
B − K

α

)
ϕ[d(1, T1, T , λT ξT1 )]

−1

λT θ
√
T − T1

.

Similarly, by differentiating (5.9) we obtain that

dx

dλT
V ′
T1

(x) = λT ξT1 A1 + 1

1 − γ
λT ξT1 A2 − 1

1 − γ
K 1−γ ϕ[d(0, T1, T , ξT1λT )] −1

λT θ
√
T − T1

.
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Note that from (5.8) we have for any q ∈ R,

f (q, T1, T )ϕ[d(q, T1, T , λT ξT1)]
= f (q, T1, T )ϕ[d(0, T1, T , λT ξT1) − qθ

√
T − T1]

= f (q, T1, T )ϕ[d(0, T1, T , λT ξT1)]e− 1
2 q

2θ2(T−T1)eqd(0,T1,T ,λT ξT1 )θ
√
T−T1

= f (q, T1, T )ϕ[d(0, T1, T , λT ξT1)]
e
q log

(
U ′(x̂B )

λT ξT1

)

f (q, T1, T )

=
(
U ′(x̂B)

λT ξT1

)q
ϕ[d(0, T1, T , λT ξT1)]. (5.12)

By direct calculation, we can represent V ′
T1

(x) as

V ′
T1

(x) = dλT

dx

(
λT ξT1 A1 + 1

1 − γ
λT ξT1 A2 − 1

1 − γ
K 1−γ ϕ[d(0, T1, T , ξT1λT )] −1

λT θ
√
T − T1

)

= dλT

dx
λT ξT1 (A1 + A2 + A3)

+ dλT

dx

(
(

1

1 − γ
− 1)λT ξT1 A2 − 1

1 − γ
K 1−γ ϕ[d(0, T1, T , ξT1λT )] −1

λT θ
√
T − T1

− λT ξT1 A3

)

= λT ξT1 + dλT

dx

(
γ

1 − γ
λT ξT1 A2 − K 1−γ

1 − γ
ϕ[d(0, T1, T , ξT1λT )] −1

λT θ
√
T − T1

− λT ξT1 A3

)
.

(5.13)

By applying (5.12) with q = 1 and q = 1 − 1
γ
we obtain

f (1, T1, T )ϕ[d(1, T1, T , λT ξT1 )] =
(
U ′(x̂B)

λT ξT1

)
ϕ[d(0, T1, T , λT ξT1 )],

f (1 − 1

γ
, T1, T )ϕ[d(1 − 1

γ
, T1, T , λT ξT1 )] =

(
U ′(x̂B)

λT ξT1

)1− 1
γ

ϕ[d(0, T1, T , λT ξT1 )].

It follows that

(λT ξT1 )A2 = (λT ξT1 )

(
1

α

)1− 1
γ

(λT ξT1 )
−1/γ

(
U ′(x̂B)

λT ξT1

)1− 1
γ

ϕ[d(0, T1, T , λT ξT1 )]
−1

λT θ
√
T − T1

=
(
U ′(x̂B)

α

)1− 1
γ

ϕ[d(0, T1, T , λT ξT1 )]
−1

λT θ
√
T − T1

(5.14)
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and

(λT ξT1)A3 = (λT ξT1)

(
B − K

α

)(
U ′(x̂B)

λT ξT1

)
ϕ[d(0, T1, T , λT ξT1)]

−1

λT θ
√
T − T1

=
(
B − K

α

)
U ′(x̂B)ϕ[d(0, T1, T , λT ξT1)]

−1

λT θ
√
T − T1

. (5.15)

The bracket in (5.13) can be expressed as

(
γ

1 − γ

(
1

α

)1− 1
γ

(U ′(x̂B))1−1/γ − 1

1 − γ
K 1−γ − (B − K

α
)U ′(x̂B))

︸ ︷︷ ︸
A4

)−ϕ[d(0, T1, T , λT ξT1 )]
λT θ

√
T − T1

.

From (5.2) we have

U (0) = 1

1 − γ
K 1−γ ,

γ

1 − γ
(
1

α
)
1− 1

γ (U ′(x̂B))1−1/γ = γU (x̂B),

and

(1 − γ )U (x̂B) − x̂BU
′(x̂B)

= (1 − γ )
(α x̂B − αB + K )1−γ

1 − γ
− x̂Bα(α x̂B − αB + K )−γ

= (B − K

α
)U ′(x̂B).

This implies that A4 = U (x̂B) − U (0) − x̂BU ′(x̂B) = 0 due to the concavification
equation (5.4). Hence, V ′

T1
(x) = λT ξT1 . The above derivation also shows that (5.11)

defines the inverse of VT1 . �

For a power utility function, it is straightforward to compute the optimal investment
strategy in the period [T1, T ) given thewealth level at time T1, see e.g. [13, 22]. Having
determined the indirect utility function at time T1, we now represent the optimization
problem as

sup
(πt )t∈[0,T1]

E

[
pU (PT1) + (1 − p)VT1(PT1)

]
, (5.16)
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where P(τ = T1) = p and P(τ = T ) = 1 − p. Note that (5.16) is expressed as a
non-concave optimization problem in a complete market. To solve it we look at its
static version

sup
P≥0, FT1−measurable

E

[
pU (P) + (1 − p)VT1(P)

]

= sup
P≥0, FT1−measurable

E

[
U1(P)1P≤B +U2(P)1P>B

]
, (5.17)

subject to the usual budget constraint E[ξT1 P] ≤ x , where Ui , i = 1, 2 are concave
functions defined by

U1(x) := pU (0) + (1 − p)VT1(x), U2(x) := pU (x) + (1 − p)VT1(x). (5.18)

Since in the first period [0, T1], the problem becomes static, the solution of the
non-concave optimization (5.17) is given by maximizing the concavified target func-
tion. Let Ii , i = 1, 2 be the corresponding inverse marginal utilities of U1 and U2
respectively. The optimal wealth at T1 is given by the following expression.

Proposition 6 The optimal portfolio of Problem (5.17) is given by

P∗
T1

= I2(λξT1)1ξT1
<ξ̂ + I1(λξT1)1ξT1

≥ξ̂ ,

where ξ̂ is defined by

U2(I2(λ̂ξ)) −U1(I1(λ̂ξ)) = λ̂ξ

(
I2(λ̂ξ) − I1(λ̂ξ)

)
, (5.19)

and λ is determined such that the budget constraint E[ξT1 P∗
T1

] = x is satisfied.

Before presenting the proof let us remark that (5.19) defines the linear line that is
jointly tangent to the curves of U1 and U2.

Proof For λ̂ > 0 and ξ > 0, consider the following Lagrangian

�(x) := U1(x)1x<B +U2(x)1x≥B − λξ x .

Note first that � is continuous and Ui attains maximum at Ii (λξ), i = 1, 2. Fur-
thermore, it follows from (5.18) that I2(λξ) > I1(λξ) for all λ > 0 and ξ > 0. Let

ξB,1 := U ′
1(B)

λ
. If ξ ≤ ξB,1, then I1(λξ) > B. Hence� is increasing in [0, I2(λξ)) and

decreasing in [I2(λξ),∞). So I2(λξ) is the maximizer when ξ < ξB,1. Similarly, for

ξ ≥ ξB,2 := U ′
2(B)

λ
> ξB,1 we observe that � is increasing in [0, I1(λξ)) and decreas-

ing in [I1(λξ),∞). So I1(λξ) is the maximizer for ξ ≥ ξB,2. It remains to consider
the case ξB,1 ≤ ξ ≤ ξB,2. The global optimality of � results from the comparison of
�(I2(λξ)) and �(I1(λξ)). To this end, consider the continuous function

f (ξ) := �(I2(λξ)) − �(I1(λξ)) = U2(I2(λξ)) −U1(I1(λξ)) − λξ(I2(λξ) − I1(λξ)).
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Fig. 1 Weighted utility at time T1 with p = 1/2

Obviously f ′(ξ) = −λ(I2(λξ) − I1(λξ)) < 0, which implies that f is decreasing in
ξ ∈ (0,∞). Furthermore, noting that U1(B) = U2(B) we obtain

f (ξB,1) = U2(I2(λξB,1)) −U2(B) −U ′
2(I2(λξB,1))(I2(λξB,1) − B) > 0,

and

f (ξB,2) = U1(B) −U1(I1(λξB,2)) −U ′
1(I1(λξB,2))(B − I1(λξB,1) < 0,

because U1 and U2 are strictly concave. Therefore, there exists ξ̂ ∈ [ξB,1, ξB,2] such
that f (̂ξ ) = 0 which gives the concavification equation (5.19). Note that f is strictly
positive in [ξB,1, ξ̂ ) and strictly negative in (̂ξ , ξB,2]. The global maximizer of � is
then given by I2(λξ) if ξ < ξ̂ or by I1(λξ) if ξ ≥ ξ̂ . The existence of λ is not difficult
to see. �

5.3 Numerical Illustration

We consider a classical Black-Scholes market with a risky asset S and a bond B and
the 0 < T1 = 5 < T = 10 such that P (τ = T1) = P (τ = T ) = 1/2. We assume that
μ = 0.08 r = 0.03, σ = 0.2, x0 = 100, K = 10, B = 50, γ = 0.3, α = 0.5. We
carry out a recursive procedure to determine the optimal solution for the non-concave
problem with random time horizon T ∧ τ .

Our numerical illustration relies on a Monte-Carlo simulation with 50000 paths of
the market price density ξT1 to determine the optimal multiplier λ in the first period.
This recursive procedure is computationally rather challenging. First, although the
indirect value function of the last period can be computed in closed form in (5.9),
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Fig. 2 Optimal wealth at T1 = T /2

it implicitly depends on the price density ξT1 . Second, computation of the marginal
utility functions I1, I2 of the corresponding concavified utilities is computationally
intensive as concavification requires a root search step for each value of the market
price density ξT1 . This is done usingBrent’smethodwith a careful choice of the starting
values.We remark that ξt (ω) are the Arrow-Debreux prices of the economywith ξt (ω)

corresponding to the value of $1 per probability unit in the state of ω paid out at time
t . Since this value is high during a depression and low in prosperous times, ξT1(ω)

may be interpreted as reflecting the overall state of the economy or the stock market.
In particular, it is higher in bad market scenarious but lower in good market states than
the corresponding wealth of the certain time horizon problem T (resp. T /2). Below,
we numerically test and confirm the theoretical result established in Sect. 5.2
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In order to test the concavity of the weighted utility at time T1, we plot in Fig. 1 the
indirect valued function at time T1 defined in (5.9). The graph numerically confirms
the result in Proposition 5 that VT1 is strictly concave and dominates the initial utility
U . In addition, the weighted utility defined by (5.16) is indeed non-concave and its
concave hull is dominated by the indirect value function VT1 . This implies that having
a premature stopping time before T leads to lower expected utility than the solution
with certain time horizon T . In other words, this numerical example also confirms the
result in Proposition 3 that optimizing the concavified version of the utility function
will lead to sub-optimality.

The optimal wealth at time t is plotted in Fig. 2a which exhibits an intermediate
investment behavior between the non-concave problems with certain time horizon
T = max{T ∧ τ(ω)} and T /2 = min{T ∧ τ(ω)}. In addition, there are ranges of
intermediate market states in which the uncertain time wealth can be higher and lower
than that of the non-concave problem with (certain) average time horizon E[τ ∧ T ] =
pT1+(1−p)T = 7.5.As confirmed in Fig. 2b, the larger (resp. smaller) the probability
of exiting at the smallest time horizon value T /2, the riskier (resp. less risky) the
investment behavior at time T /2. Furthermore, the random horizon problem converges
to the extreme cases with certain horizon T and T /2 when p approaches to 0 and 1
respectively.

To further understand this effect, we plot in Fig. 3 the estimated density of the
optimal wealth at time T1 from 5000 simulations of the market price density ξT1 .
It is interesting to observe that the distribution of the wealth at time T1 of the non-
concave optimization problems is right-skewed with a long right tail, indicating that
the investor expects frequent small losses and a few large gains from the investment.
A positively skewed distribution of investment returns is generally desirable by the
agent with option-liked compensation payoff. In addition, the premature (before time
T ) exiting risk forces the investor to follow a portfolio that is of right-skewed and
bimodal distribution with peaks of different heights. The bimodal structure can be
explained by the concavification procedure at T1, whereas the binomial distribution of
the exiting time τ has significant impact on the amplitude between the twomodes. The
higher the probability p, the larger the amplitude. While the (certain) average time
horizon portfolio is right-skewed and unimodal, the random time horizon portfolio,
due to the option-liked compensation payoff at time T1, is bimodal distributed which
provides the investor flexibility of switching between the two local maximizers I1
and I2, depending on the market performance. If the concavified utility at time T1 is
affine in many open intervals, the corresponding wealth is intuitively expected to be of
multimodal distribution. Again, when p approaches to 0 or 1, the wealth distribution
of the random horizon problem converges to the extreme cases with certain horizon
T and T /2.

Figure4 presents the estimated density of the optimal stopped wealth P∗
T∧τ

=
P∗
T1
1τ=T1 + P∗

T 1τ=T simulated from 10000 scenarios of the price density and the
binary random variable τ . Aligned with what is observed in Fig. 3, the random time
horizon payoff exhibits a right-skewed and multimodal distribution, confirming again
that the optimizing investor under the premature (before time T) exiting risk is forced
to accept frequent small losses and a few large gains from the investment. Compared to
the non-concave problemwith (certain) average horizonE [τ ∧ T ] = pT1+(1− p)T ,
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Fig. 3 Estimated density of the optimal wealth at time T1 = T /2 = 5
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Fig. 4 Estimated density of XT∧τ , the optimal wealth stopped at τ

while less protected in states with large losses (i.e., when the wealth is smaller than
100), the random horizon payoff has a higher potential in intermediate and extreme
gain scenarios. However, the early exiting risk makes the random horizon payoff not
only less attractive in extreme gain scenarios but also riskier in large loss states than
the optimal payoff with certain horizon T . Due to the budget constraint, the agent with
the random time horizon on the other hand enjoys higher potentials in intermediate
scenarios.

We now turn our attention to the impact of the time horizon uncertainty on the total
expected utility.We first remark that in certain time horizon settings, it can numerically
be shown that the value function of the concave and the non-concave problems is a
convex function in the time horizon variable. Figure5 reports the impact of exiting
probability p = P(τ = T /2) on the expected utility of the random time horizon τ ∧T
and the certain time horizon E[τ ∧ T ]. As shown in the right panel, the expected
utility of the random horizon concave problem is always higher than that of the certain
horizon problem, which is due to the convexity in time horizon of the value function
and the fact that investment strategies for both cases with certain and uncertain horizon
time horizon are identical and given by the Merton fraction (see Proposition 4).

The left panel of Fig. 5 reports the expected utility of the non-concave optimization
setting. We observe a similar expected utility dominance of the uncertain time horizon
problem over the certain time horizon problem when p is close to 0 and 1. However,
this effect is hard to see for intermediate values of p for the given parameters. Unlike
concave problems, the optimal investment strategy of the non-concave optimization
problem significantly depends on the time horizon.

Lastly, let νTi := ξ−1
Ti

U ′(P∗
Ti

), i = 1, 2 where U ′ is the right-hand derivative of U .
Wenowwant to numerically verify that as shown inTheorem2, theweightedmultiplier
p1νT1 + p2νT2 is constant (a.s.) on the set A = {ω : P∗

Ti
(ω) > 0} = {ω : P∗

T (ω) > 0}.
We remark that {P∗

T = 0} is a non-zero set and U is not differentiable at 0. For the
given parameters and for 50000 paths on the market price of risk, we obtain that
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Fig. 5 Impact of p = P(τ = T1 = T /2) on the expected utility

pνT1 + (1 − p)νT2 = 0.165183 is constant on the set A = {P∗
T > 0}, confirming the

result established in Theorem 2. Note that this weighted multiplier coincides with the
multiplier of the first period. The result is consistent when different values of p are
considered, see Table 1.
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Table 1 Weighted multiplier on
the set A = {P∗

T > 0} p λ pνT1 + (1 − p)νT2

0.1 0.17661847317422547 0.1766184731742255

0.2 0.17365388191218573 0.1736538819121857

0.3 0.170919 0.170919

0.4 0.16871475448916323 0.16871475448916323

0.5 0.165183 0.165183

0.6 0.1627175838160374 0.1627175838160374

0.7 0.1598441738970805 0.1598441738970805

0.8 0.15719801306953618 0.15719801306953618

0.9 0.15428390949982979 0.15428390949982979

6 Optimal Investment with anF -Stopping Time

In this section we study the case where τ̄ is an F- stopping time taking values at
0 < T1 < · · · < Tn = T or being greater than T . In particular the independence
assumption on the randommaturity is dropped. For simplicity,we consider again in this
section the non-concave utility function U defined in (5.2). We remark that the result
obtained in this section can be extended to more general utilities. The optimization
problem (3.1) becomes

Vτ̄ (x,U ) = sup
π∈	(0,x)

E [U (PT∧τ̄ )]

= sup
π∈	(0,x)

E

[( n−1∑

i=1

U (PTi )1τ̄=Ti

)
+U (PT )1τ̄≥T

]
. (6.1)

Recall the generalized inverse marginal utility I defined by (3.4). The function Uc is
not differentiable everywhere but the superdifferential ∂Uc may be identified with the
set-valued function

∂Uc(x) :=

⎧
⎪⎨

⎪⎩

[U ′(x̂(B)),∞) for x = 0,

{U ′(x̂(B))} for 0 < x ≤ x̂(B),

{U ′(x)} for x > x̂(B).

(6.2)

We denote byX (x) the set all admissible wealth processes (P0,x,π
t )t∈[0,T ] which solve

the SDE (2.2) for some π ∈ 	(0, x). Note that for any Y ∈ X (x) and stopping time
τ̄ , the stopped supermartingale property implies that E[ξτ̄∧T Yτ̄∧T ] ≤ x .

Proposition 7 Assume that τ̄ is an F-stopping time taking values at 0 < T1 < · · · <

Tn = T or being larger than T . Suppose furthermore that there is an adapted process
ν ≥ 0 with ν0 = U ′(x) > 0 such that (ξτ̄∧t I (ντ̄∧tξτ̄∧t ))0≤t≤T is a martingale and

ντ̄∧T =
(∑n−1

i=1 νTi 1τ̄=Ti

)
+ νT 1τ̄≥T is a constant. Then, P∗

t := I (ντ̄∧tξτ̄∧t ) solves
the optimization problem (6.1).
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Proof Let

(∑n−1
i=1 νTi 1τ̄=Ti

)
+ νT 1τ̄≥T = y which is a constant by assumption. We

first observe that (ξτ̄∧t I (ντ̄∧tξτ̄∧t ))0≤t≤T is a martingale starting with initial value
P∗
0 = I (ν0) = x . Using the martingale representation theorem and Itô’s formula, we

can derive that P∗ satisfies the SDE (2.2) for some admissible strategy π and hence,
P∗ ∈ X (x). Furthermore, clearly P ∗̄

τ∧t = P∗
t . Now, for any admissible Y ∈ X (x) we

have

E[ντ̄∧T ξτ̄∧T Yτ̄∧T ] = E

[( n−1∑

i=1

νTi ξTi YTi1τ̄=Ti

)
+ νT ξT YT1τ̄≥T

]
≤ xy. (6.3)

Note that the process Zt := x−1ξτ̄∧t I (ντ̄∧tξτ̄∧t ), 0 ≤ t ≤ T defines a density
process of a probability measureQν << P as it is a martingale with initial value equal
to 1. Therefore, by Bayes formula and the assumption ντ̄∧T = y we obtain

E[ντ̄∧T ξτ̄∧T P
∗̄
τ∧T ] = E

[( n−1∑

i=1

1τ̄=Ti νTi ξTi I (νTi ξTi )

)
+ 1τ̄≥T νT ξT I (νT ξT )

]

= xEQν

[( n−1∑

i=1

1τ̄=Ti νTi

)
+ 1τ̄≥T νT

]
= xy. (6.4)

Now, for any admissible Y we have by (6.4) that

E

[( n−1∑

i=1

1τ̄=Ti U (I (νTi ξTi ))

)
+ 1τ̄≥TU (I (νT ξT ))

]

= E

[( n−1∑

i=1

1τ̄=Ti U (I (νTi ξTi ))

)
+ 1τ̄≥TU (I (νT ξT ))

]
− xEQν [(

n−1∑

i=1

1τ̄=Ti νTi
)+ 1τ̄≥T νT ] + xy

= E

[{ n−1∑

i=1

1τ̄=Ti

(
U (I (νTi ξTi )) − νTi ξTi I (νTi ξTi )

)}
+ 1τ̄≥T (U (I (νT ξT ))−νT ξT I (νT ξT ))

]
+ xy

= E

[( n−1∑

i=1

1τ̄=Ti sup
X≥0

(
U (X) − νTi ξTi X

))
+ 1τ̄≥T sup

X≥0

(
U (X) − νT ξT X

)]
+ xy

≥ E

[( n−1∑

i=1

1τ̄=Ti

(
U (YTi ) − νTi ξTi YTi

))
+ 1τ̄≥T

(
U (YT ) − νT ξT YT

)]
+ xy

≥ E

[( n−1∑

i=1

1τ̄=Ti U (YTi )

)
+ 1τ̄≥TU (YT )

]
,

where we have used (6.3) in the last step. This implies the optimality of the process
P∗. �
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We now aim to solve the non-concave optimization problem when τ̄ is an F-
stopping time, namely

sup
π∈	(0,x)

E [U (PT∧τ̄ )] = sup
π∈	(0,x)

E

[( n−1∑

i=1

U (PTi )1τ̄=Ti

)
+U (PT )1τ̄≥T

]
, (6.5)

whereU is the non-concave utility function defined by (5.2). In particular, by applying
Proposition 7weprove below that Problem (6.5) can be solved by concavification argu-
ments and the optimal wealth process can be characterized by the process I (ντ̄∧tξτ̄∧t ),
where I is the generalized inverse marginal utility function defined by (5.5) and ν is
an adapted process. We need the following integrability condition.
Condition (C): For any y > 0, E [ξτ̄∧T I (yξτ̄∧T )] < ∞.

Below we show that under condition (C) and the assumption that the stopping
time is adapted to the financial market filtration, it is possible to construct an adapted
process ν such that the process process (ξτ̄∧t I (ντ̄∧tξτ̄∧t ))0≤t≤T is a martingale and

ντ̄∧T =
(∑n−1

i=1 1τ̄=Ti νTi

)
+ 1τ̄≥T νT is a constant. The result is summarized in the

following proposition.

Proposition 8 (Non-concave problem with a stopping time horizon) Assume that τ̄ is
an F-stopping time taking values at 0 < T1 < · · · < Tn = T or being larger than
T , and Condition (C) holds. Then, there exists an F-adapted process ν such that the
optimal wealth of Problem (6.5) is given by P∗

t := I (ντ̄∧tξτ̄∧t ), 0 ≤ t ≤ T and(∑n−1
i=1 vT 1τ̄=Ti

)
+ vT 1τ̄≥T = y∗ is a constant satisfying E

[
ξτ̄∧T I (y∗ξτ̄∧T )

] = x .

Proof Consider the mapping y �−→ E [ξτ̄∧T I (yξτ̄∧T )] = f (y) defined for y ∈
(0,∞) by Condition (C). Since the market price density ξ is atomless, f is continuous
on (0,∞).Moreover, byFatou’s lemma, (5.5) and Inada’s condition of the power utility
function U we obtain limy→0 f (y) = ∞ and limy→∞ f (y) = 0. Therefore, there
exists y∗ ∈ (0,∞) such thatE

[
ξτ̄∧T I (y∗ξτ̄∧T )

] = f (y∗) = x . Define for 0 ≤ t ≤ T ,
ζt := I (y∗ξt ) and

νt ∈ 1

ξt
∂Uc

(
E

[
ξ−1
τ̄∧tξτ̄∧T ζτ̄∧T |Fτ̄∧t

])
,

where the superdifferential is defined by (6.2). Note that since the conditional

expectation process E

[
ξ−1
τ̄∧tξτ̄∧T ζτ̄∧T |Fτ̄∧t

]
= E

[
ξ−1
τ̄∧tξτ̄∧T ζτ̄∧T |ξτ̄∧t

]
> 0 is a

non-negative martingale with initial value x > 0, almost surely ∂Uc above corre-
sponds to U ′ and is invertible. Thus, by construction the process ξτ̄∧t I (ντ̄∧tξτ̄∧t ) =
E [ξτ̄∧T I (ντ̄∧T ξτ̄∧T )|Fτ̄∧t ] is a martingale with ν0 = ∂cU (x) = U ′(x) > 0 (see

(6.2)) and y∗ = ντ̄∧T =
(∑n−1

i=1 vTi 1τ̄=Ti

)
+ vT 1τ̄≥T is a constant. Hence, by

Proposition 7, P∗
t = I (ντ̄∧tξτ̄∧t ) is an optimal solution to (6.5). �

The following is aligned with Proposition 3.3 in [11] when τ̄ is anF-stopping time
for strictly concave utility function U .
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Corollary 1 (Concave problem with a stopping time horizon) Assume that U is a
strictly concave utility function for which Condition (C) holds and τ̄ is an F-stopping
time taking values at 0 < T1 < · · · < Tn = T or being larger than T . For any
x > 0, there exists y∗ > 0 such that E

[
ξτ̄∧T I (y∗ξτ̄∧T )

] = x. Moreover, there
exists an adapted process ν such that the optimal wealth of Problem (6.5) is given by

P∗
t := I (ντ̄∧tξτ̄∧t ), 0 ≤ t ≤ T , and ντ̄∧T =

(∑n−1
i=1 νTi 1τ̄=Ti

)
+ νT 1τ̄≥T = y∗ is

a constant.

7 Conclusion

We studied a non-concave optimal investment with a random time horizon in a com-
plete financial market setting. We established a necessary and sufficient condition for
the optimality in this case for general utility functions with a random time horizon.
When τ is independent of the financial risk, we showed that a direct concavification
approach cannot be applied and suggest a recursive procedure based on the dynamic
programming principle. We illustrated our finding by carrying out a multiple period
numerical analysis for the non-concave option compensation problem with random
time horizon. We numerically show that due to concavification, the distribution of the
wealth at exiting times of the non-concave optimization problems is right-skewedwith
a long right tail, indicating that the investor can expect frequent small losses and a few
large gains from the investment. Under the premature exiting risk, the wealth at an
exiting time exhibits a bimodal distribution with peaks of different heights due to the
concavification procedure and whereas the exiting time τ distribution has significant
impact on the amplitude between the two modes.

Our work leaves several interesting directions for future work. For instance, it
would be interesting to look at the case when the time horizon is correlated with the
financial market information, or to investigate the problem in a general incomplete
financial market as in [11]. Furthermore, our non-concave framework with random
horizon might serve as an attempt to extend the results for contract design problems
of term-life insurance or insurance contracts with surplus participation [14, 22] to an
uncertain time horizon setting. We leave this for future work.

Acknowledgements Thai Nguyen acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada (RGPIN-2021-02594).

Funding Open Access funding enabled and organized by Projekt DEAL. The authors have not disclosed
any funding. Thai Nguyen acknowledges the support of the Natural Sciences and Engineering Research
Council of Canada (RGPIN-2021-02594).

Declarations

Conflict of interest The authors have not disclosed any competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123



Applied Mathematics & Optimization (2023) 88 :65 Page 37 of 39 65

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

The following result can be shown directly using the lognormal distribution of ξ :

Lemma 8.1 Let q ∈ R. With f defined in Proposition 4 it holds for 0 ≤ t ≤ T that

E
[
ξ
q
T |Ft

] = E

[(
ξT

ξt

)q ∣∣∣∣Ft

]
ξ
q
t = f (q, t, T ) ξ

q
t . (8.1)

The next result provides a generalization of Lemma 8.1 when the market parameters
are constant.

Lemma 8.2 Let q ∈ R, 0 ≤ t < T and let λ be a positive constant. With � the cdf of
the standard normal distribution and d defined in (5.8) it holds that

E
[
ξ
q
T 1λξT ≤U ′(x̂(B))|Ft

] = ξ
q
t f (q, t, T )� (d(q, t, T , λξt )) . (8.2)

Lemma 8.3 Let U, V be continuous, increasing functions in [0,∞). Let (a, b) ⊂
{U < Uc} be an open interval in the concavification region of U. Assume that there
exists x0 ∈ [a, b) at which U + V coincides with the affine line

g(x) := U (a) + V (a) + (U (b) + V (b)) − (U (a) + V (a))

b − a
(x − a)

and the right derivative of the sum U + V exists and

U ′(x+
0 ) + V ′(x+

0 ) >
(U (b) + V (b)) − (U (a) + V (b))

b − a
. (8.3)

Then, the interval (a, b) cannot be a concavification set of the sum U + V , i.e. there
exists an open interval (a′, b′) ⊂ (a, b) such that U (x) + V (x) = (U + V )c(x) for
all x ∈ (a′, b′).

Proof We have U (x0) + V (x0) = g(x0). By continuity and (8.3) it can be seen that
U + V > g(x) in a right-hand neighbourhood of x0, which implies that the affine line
g is not the concave hull of U + V on the whole interval (a, b). �
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