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Abstract
We consider the Laplace operator on a triangle, subject to attractive Robin boundary
conditions. We prove that the equilateral triangle is a local maximiser of the lowest
eigenvalue among all triangles of a given area provided that the negative boundary
parameter is sufficiently small in absolute value, with the smallness depending on
the area only. Moreover, using various trial functions, we obtain sufficient conditions
for the global optimality of the equilateral triangle under fixed area constraint in the
regimes of small and large couplings.We also discuss the constraint of fixed perimeter.

Keywords Robin Laplacian · Lowest eigenvalue · Spectral optimisation · Triangles

1 Introduction

Given a bounded open connected set � ⊂ R
d of dimension d ≥ 2 and with Lipschitz

boundary ∂�, consider the Robin eigenvalue problem

⎧
⎨

⎩

−�u = λu in �,

∂u

∂n
+ α u = 0 on ∂� ,

(1.1)
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where α is a real parameter and n is the outward unit normal of �. Let us arrange the
corresponding eigenvalues in a non-decreasing sequence by {λα

k (�)}∞k=1, where each
eigenvalue is repeated according to its multiplicity. For the lowest eigenvalue, one has
the variational characterisation

λα
1 (�) = inf

u∈H1(�)
u �=0

∫

�

|∇u|2 + α

∫

∂�

|u|2
∫

�

|u|2
, (1.2)

where the boundary integral is understood in the sense of traces. By convention, we
also include the Dirichlet case α = +∞, where the space of test functions is H1

0 (�)

and the boundary integral is not present.
The present paper is primordially motivated by the following broad question about

the validity of spectral isoperimetric inequalities for the Robin Laplacian.

Question 1 For every α ∈ (−∞,+∞], does one have
λα
1 (�)

λα
1 (�∗)

≥ 1 , (1.3)

where �∗ is the ball of the same volume as �?

Since λ01(�) = 0 for any domain�, the Neumann case α = 0 should be understood
through the limit α → 0. It is easy to verify the asymptotics λα

1 (�) = α|∂�|/|�| +
O(α2) as α → 0, where |�| and |∂�| denote the volume of � and the (d − 1)-
dimensional Hausdorff measure of ∂�, respectively. Then the inequality (1.3) for
α = 0 can be interpreted as the classical (purely geometric) isoperimetric inequality
|∂�| ≥ |∂�∗| whose validity is well known. Indeed, the ball has the smallest surface
area among all domains of the same volume.

The Dirichlet case α = +∞ is also well known and customarily referred to as
the Faber–Krahn inequality. It was conjectured by Lord Rayleigh in his celebrated
monograph [28] and rigorously proved fifty years later in [8] and [18]. In dimension
d = 2, the usual interpretation is that among all membranes of equal area and fixed
edges, the circular membrane emits the lowest fundamental tone.

For other values of α, the history of Question 1 is much more recent. The repulsive
case α > 0 is known as the Bossel–Daners inequality [4, 7] (see also [6] for an
alternative proof). Here the classical interpretation in dimension d = 2 is that among
all membranes of equal area and with elastically supported edges (think about the
membrane attached by springs), the circular membrane emits the lowest fundamental
tone. In all dimensions, we may rely on a quantum-mechanical interpretation that
among all resonators of equal volume and with a strongly localised positive potential
along the boundary, the spherical resonator has the smallest ground-state energy.

In summary, the spectral isoperimetric inequality λα
1 (�) ≥ λα

1 (�∗) holds for all
positive α (including the Dirichlet case). What happens for negative α? Since λα

1 (�) is
negative if (and only if) α < 0, property (1.3) means the reverse inequality λα

1 (�) ≤
λα
1 (�∗) for negative α. In other words, the ball plays the role of the maximiser in
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the attractive case, and so one usually speaks about the reverse spectral isoperimetric
inequality in this regime.

While springswith a negative force constant are perhaps less intuitive, the quantum-
mechanical interpretation ismeaningful for the attractive caseα < 0 aswell. (There are
also alternative interpretations in acoustics [26] and superconductivity [12].) Consider
quantum resonators of equal volume and with a strongly localised negative potential
along the boundary. Is it true that the spherical resonator has the largest ground-state
energy? It turns out that the question of validity of (1.3) forα < 0 constitutes a hot open
problem in spectral geometry known as the Bareket conjecture [2] and it still remains
open. In fact, this conjecture does not hold for multiply connected domains [11] and
without convexity assumption in space dimensions d ≥ 3 [9]. So the open question
is precisely whether it holds within the class of simply connected domains in two
dimensions [1, Conj. 2] and the class of convex domains in higher space dimensions
[1, Conj. 3].

The fixed volume is not the only geometric constraint of interest. The counterpart
of (1.3) in the attractive case α < 0 under fixed area of the boundary constraint is
settled for d = 2 in [1] and for d ≥ 3 in the class of convex domains in [5] (see also
[30]). In this setting, it is conjectured that convexity of the domain for d ≥ 3 can be
dropped [1, Conj. 4].

Surprisingly, the analogous questions of spectral optimisation in the exterior of
bounded sets are simpler and have been resolved recently [20, 21].

Our goal in the present paper is to consider a “discrete” version of Question 1 in
the sense that we restrict ourselves to a special class of planar domains. Namely, we
address the following conjecture, which also appears in the list of open problems [19,
Conj. 1.3].

Conjecture 1 Let � ⊂ R
2 be any triangle. For every α ∈ (−∞, 0) ∪ (0,+∞), one

has

λα
1 (�)

λα
1 (�∗)

≥ 1 , (1.4)

where �∗ is the equilateral triangle of the same area as �.

TheDirichlet case α = +∞ is excluded here because it can be settled by the Steiner
symmetrisation, see [27, Sect. 7.4] or [13, Thm. 3.3.3]. (An analogous conjecture for
quadrilaterals also holds in the Dirichlet case, but polygons with more sides still
constitute an interesting open problem in spectral geometry, see [3] for the latest
developments.) Similarly, the Neumann case α = 0, when the left-hand side of (1.4)
is interpreted as the limit of the quotient as α → 0, reduces to the well-known purely
geometric statement that the equilateral triangle has the smallest perimeter among all
triangles of the same area. (A relevant spectral-geometric question for the Neumann
boundary condition is to optimise the first non-zero eigenvalue: it is maximised by
the equilateral triangle both for the area or perimeter constraints [22].) Apart from the
special situation of Dirichlet and Neumann boundary conditions, both cases α < 0
and α > 0 (finite) of Conjecture 1 remain open. In this paper we provide a partial
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answer for α negative, when (1.4) means the reverse spectral isoperimetric inequality
λα
1 (�) ≤ λα

1 (�∗), i.e. the equilateral triangle is a maximiser.
As the main result, we prove that the equilateral triangle is a local maximiser

provided that α is negative and sufficiently small in absolute value. That is, (1.4) holds
asymptotically in the attractive case, whenever the triangle� is close to the equilateral
triangle�∗ in the sense of Hausdorff distance (after possible congruences). (Note that
the Hausdorff distance of triangles � and �∗ tends to zero if, and only if, the area
|� \ �∗| tends to zero.)
Theorem 1.1 Let �∗ be an equilateral triangle and let � denote any triangle of the
same area. There exists a negative number α0 depending solely on the fixed area such
that, for all α ∈ [α0, 0),

λα
1 (�)

λα
1 (�∗)

≥ 1 ,

provided that |� \ �∗| is sufficiently small (with the smallness depending also on the
area |�| = |�∗| fixed).

Moreover, we provide an explicit estimate for α0. We also prove that the same
local optimality result holds under the fixed perimeter constraint. We leave as an open
problem whether the restriction on the smallness of |α| is necessary for the validity of
the local maximisation result.

In order to prove the local optimality of the equilateral triangle, we show that
the first-order and also the second-order mixed derivatives of the lowest eigenvalue
with respect to geometric parameters characterising the triangle vanish and we obtain
upper bounds on the second-order partial derivatives. The rest of the analysis reduces to
identifying conditions on the boundary parameter under which these upper bounds are
negative. In this argument, we take the advantage of rewriting the quadratic form of the
Robin Laplacian on a general triangle into the quadratic form on an equilateral triangle
with the geometry transferred into coefficients in the differential expression and into
boundary parameters. Upon such a transform all the quadratic forms are defined in
the same Hilbert space and depend analytically on the geometric parameters. In the
computation of the derivatives of the lowest eigenvalue we exploit the theory of self-
adjoint holomorphic families of type (B) (see [15, Chap. VII]). Another ingredient
of the argument is that the Robin eigenvalue problem on an equilateral triangle is
explicitly solvable [10, 24].

Our next series of results is about the global validity of Conjecture 1, still in the
attractive case. In particular, we establish the conjecture for negative α which is either
small or large in absolute value.

Theorem 1.2 Let �∗ be an equilateral triangle and let � denote any triangle of the
same area. There exist negative numbers α1 ≤ α2 such that, for all α ∈ (−∞, α1] ∪
[α2, 0),

λα
1 (�) ≤ λα

1 (�∗) .

123



Applied Mathematics & Optimization (2023) 88 :63 Page 5 of 33 63

Here the constants α1 and α2 a priori depend on the geometry of �. In fact, as stated
in the present form, this result follows rather straightforwardly by known eigenvalue
asymptotics for α → 0 and α → −∞ (see [14, Chap. 4, Eq. (4.12)] and [25, Thm
2.3], respectively). However, more uniform and explicit results can be found in the
theorems below. A suitable value for the constant α1 can be deduced from the geo-
metric condition (5.2) in Theorem 5.3. In particular, the constant α1 can be chosen
arbitrarily close to zero provided that the smallest angle of the triangle� is sufficiently
small. For the constant α2 we have no explicit condition, but we are able to show in
Theorem 4.2 that one can choose a universal value for the constant α2 suitable for a
class of triangles, which is, roughly speaking, characterised by the maximal possible
degree of the deviation from the equilateral triangle. The full proof of Conjecture 1 in
the attractive case would require to show that α1 = α2, which constitutes an interesting
open problem.

Theorem 1.2 and its variants are established via a combination of the variational
characterisation of the lowest eigenvalue and various trial functions. In particular,
for small |α|, it is sufficient to transplant the eigenfunction of the equilateral triangle
onto the general triangle via a geometric transformation. For large |α|, a suitable trial
function is obtained by constant functions or by a truncation of the eigenfunction of the
Robin Laplacian on a sector. The regions where these trial functions work for the proof
of Conjecture 1 as well as their limitations are analysed numerically. In particular, we
check numerically the validity of the inequality in Conjecture 1 for all α < 0 for a
class of triangles with high deviation from the equilateral triangle.

The paper is organised as follows. In Sect. 2 we rigorously define the Robin Lapla-
cian on a general triangle, construct the transform which reduces the spectral problem
into an equivalent one on an equilateral triangle, and provide a characterisation of the
lowest eigenvalue and the respective eigenfunction of the equilateral triangle. In Sect. 3
we compute the derivatives of the lowest eigenvalue on a general triangle with respect
to the geometric parameters distinguishing the triangle from the equilateral triangle; in
particular, we establish Theorem 1.1. In Sects. 4 and 5 we obtain sufficient conditions
for the validity of the isoperimetric inequality for small and large |α|, respectively; in
particular, we establish Theorem 1.2.

2 Preliminaries

2.1 The Robin Laplacian on a Triangle

We understand the Robin eigenvalue problem (1.1) on a general Lipschitz domain
� ⊂ R

d with d ≥ 2 as the spectral problem in the Hilbert space L2(�) for the
self-adjoint operator

Hαu := −�u ,

D(Hα) :=
{

u ∈ H1(�) : �u ∈ L2(�) &
∂u

∂n
+ α u = 0 on ∂�

}

. (2.1)
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Here the normal derivative should be viewed as a distribution in the Sobolev space
H−1/2(∂�). The operator Hα is associated with a closed, densely defined, symmetric
and semi-bounded quadratic form in L2(�) given by

hα[u] :=
∫

�

|∇u|2 + α

∫

∂�

|u|2 , D(hα) := H1(�) . (2.2)

Here the value of u in the boundary integral is regarded as the trace of the function
u ∈ H1(�).

2.2 Geometric Setting

In this subsection we reduce the spectral problem for the Robin Laplacian on a general
triangle to the spectral problem for a certain second-order differential expression with
constant coefficients on an equilateral triangle, inwhich the geometric parameters enter
into the coefficients of the differential expression and into the boundary parameters
on the edges of the triangle. In order to perform this transformation we construct a
suitable unitary transform.

We parameterise general triangles which have the fixed area S > 0 by parameters
a ∈ R and c > 0. Let �a,c be the triangle with the vertices (−c, 0), (c, 0) and (a, b)

with b := S
c . The special choice a0 := 0 and c0 :=

√
S√
3
leads to the equilateral

triangle �0 := �a0,c0 . The area and the perimeter of the triangles �a,c and �0 are
given by

|�a,c| = bc = S = |�0| (independent of a, c) ,

|∂�a,c| =
⎛

⎝2c +
√

S2

c2
+ (a − c)2 +

√

S2

c2
+ (a + c)2

⎞

⎠ , |∂�0| = 6

√
S√
3

.

(2.3)

The boundary of �a,c consists of three sides

∂�a,c = �(0)
a,c ∪ �(1)

a,c ∪ �(2)
a,c ,

where (a �= ±c)

�(0)
a,c :=

{

(x, 0) : |x | ≤
√

S√
3

}

,

�(1)
a,c :=

{(

x,
S

c(a + c)
x + S

a + c

)

: x ∈ [min{−c, a},max{−c, a}]
}

,

�(2)
a,c :=

{(

x,
S

c(a − c)
x + S

c − a

)

: x ∈ [min{c, a},max{c, a}]
}

.
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The cases a = ±c correspond to right-angled triangles and require a separate consid-
eration; we will comment more on them in Remark 2.1 below. Consequently, given
any function u ∈ H1(�a,c), one has (a �= ±c)

‖u‖2
L2(�

(0)
a,c)

=
∫ c

−c
|u(x, 0)|2 dx ,

‖u‖2
L2(�

(1)
a,c)

=
√

S2

c2
+ (a + c)2

a + c

∫ a

−c

∣
∣
∣
∣u

(

x,
S

c(a + c)
x + S

a + c

)∣
∣
∣
∣

2

dx ,

‖u‖2
L2(�

(2)
a,c)

=
√

S2

c2
+ (a − c)2

c − a

∫ c

a

∣
∣
∣
∣u

(

x,
S

c(a − c)
x + S

c − a

)∣
∣
∣
∣

2

dx .

Using Fubini’s theorem, these parameterisations can also be used to compute
‖u‖L2(�a,c)

. Alternatively,

‖u‖2L2(�a,c)
=
∫ S

c

0

∫ c(a−c)
S y+c

c(a+c)
S y−c

|u(x, y)|2 dx dy .

An identification of the triangles �a,c and �0 is obtained by the diffeomorphism

La,c : �0 → �a,c :
⎧
⎨

⎩
(x, y) �→

⎛

⎝
c

√
S√
3

x + a
√√

3S
y,

√
S√
3

c
y

⎞

⎠

⎫
⎬

⎭
.

The corresponding metric reads

Ga,c := ∇La,c · (∇La,c)
T =

⎛

⎝

c2
S√
3

ac
S

ac
S

a2√
3S

+ S√
3c2

⎞

⎠ , |Ga,c| := det(Ga,c) = 1 ,

where the dot · stands for the matrix multiplication. The inverse metric reads

G−1
a,c =

(
a2c2+S2√

3c2S
− ac

S

− ac
S

√
3c2
S

)

.

The diffeomorphism La,c induces the unitary map

Ua,c : L2(�a,c) → L2(�0) : {u �→ u ◦ La,c
}

.
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We set Ĥα,a,c := Ua,cHαU−1
a,c , where Hα is the operator (2.1) for � = �a,c. Taking

u ∈ H1(�a,c) and denoting ψ := u ◦ La,c ∈ H1(�0), one has

‖u‖2L2(�a,c)
= ‖ψ‖2L2(�0)

,

‖∇u‖2L2(�a,c)
= S√

3c2
‖∂1ψ‖2L2(�0)

+
∥
∥
∥
∥c
√√

3
S ∂2ψ − a√√

3S
∂1ψ

∥
∥
∥
∥

2

L2(�0)

,

‖u‖2
L2(�

(0)
a,c)

=
∫ c

−c
|u(x, 0)|2 dx

= c
√

S√
3

‖ψ‖2
L2(�

(0)
0 )

,

‖u‖2
L2(�

(1)
a,c)

=
√

S2

c2
+ (a + c)2

a + c

∫ a

−c

∣
∣
∣
∣u

(

x,
S

c(a + c)
x + S

a + c

)∣
∣
∣
∣

2

dx

=
√√

3

S

√
c2(a + c)2 + S2

2c
‖ψ‖2

L2(�
(1)
0 )

,

‖u‖2
L2(�

(2)
a,c)

=
√

S2

c2
+ (a − c)2

c − a

∫ c

a

∣
∣
∣
∣u

(

x,
S

c(a − c)
x + S

c − a

)∣
∣
∣
∣

2

dx

=
√√

3

S

√
c2(a − c)2 + S2

2c
‖ψ‖2

L2(�
(2)
0 )

,

where we used the abbreviation �
(k)
0 := �

(k)
a0,c0 . Consequently, Ĥα,a,c is the operator

in the (a, c)-independent Hilbert space L2(�0) associated with the quadratic form
ĥα,a,c[ψ] := hα[U−1

a,cψ] with domain D(ĥα,a,c) := Ua,c(D(hα)). One has

ĥα,a,c[ψ] = S√
3c2

‖∂1ψ‖2L2(�0)
+ ∥
∥c
√√

3
S ∂2ψ − a√√

3S
∂1ψ

∥
∥2
L2(�0)

+α c√
S√
3

‖ψ‖2
L2(�

(0)
0 )

+ α

√√
3
S

√
c2(a + c)2 + S2

2c
‖ψ‖2

L2(�
(1)
0 )

+α

√√
3
S

√
c2(a − c)2 + S2

2c
‖ψ‖2

L2(�
(2)
0 )

,

D(ĥα,a,c) = H1(�0) . (2.4)

Notice that, in particular, ĥα,a0,c0 coincides with the quadratic form hα in (2.2) for
� = �0.

Remark 2.1 The formula (2.4) remains unchanged in the situations a = ±c, which
correspond to the right-angled triangle, even though in this case �

(2)
a,c for a = c

(respectively, �(1)
a,c for a = −c) must be parameterised differently.
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The reduction in this subsection is valid for all α ∈ R. However, in the following
we consider the attractive case α < 0 only.

2.3 The Equilateral Triangle

In this subsection we provide a preliminary analysis for the Robin Laplacian on an
equilateral triangle for α < 0. The lowest eigenvalue and the respective eigenfunction
in this setting can be computed explicitly. In particular, the ground state is expressed
in terms of hyperbolic cosines and the respective eigenvalue is expressed in terms of
solutions of a system of two transcendental equations involving the area of the triangle
and the boundary parameter. The details on this analysis can be found in [24], see also
[10]. We provide also additional computations that will be essential in the proof of the
main result.

The operator Ĥα,a0,c0 is just the Robin Laplacian on the equilateral triangle �0 =
�a0,c0 . The eigenfunction corresponding to its lowest eigenvalue λα

1 (�0) reads

u0(x, y) :=cosh

(

L−2
(L − M)y
√√

3S

)

+2 cosh

(

(M − L)

(

1− y
√√

3S

)

+L

)

cosh

(
(M − L)

√
3x

√√
3S

)

. (2.5)

Here the numbers L, M are to be determined by the equations

2 (L − M) tanh L = −α

√√
3S ,

(M − L) tanh M = −α

√√
3S .

(2.6)

We remark that the eigenfunction u0 is, in general, not normalised. The eigenvalue
λ0(α) := λα

1 (�0) satisfies

λ0(α) = −4(M − L)2√
3S

. (2.7)

Dividing the two equations of (2.6), we arrive at the identity

tanh M + 2 tanh L = 0 . (2.8)

Expressing L = − arctanh
( 1
2 tanh M

)
, we convert (2.6) into a unique implicit equa-

tion

[

M + arctanh

(
1

2
tanh M

)]

tanh M = −α

√√
3S . (2.9)
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We introduce the notation

K := M − L > 0.

Hence, (2.7) reads

λ0(α) = −4K 2

√
3S

, (2.10)

where K , α satisfy the following implicit equation

F(K , α) := K + arctanh

(√√
3S

α

K

)

+ arctanh

(√√
3S

α

2K

)

= 0. (2.11)

Let us further introduce the parameter

t := −α
√√

3S

K
.

From the second equation in (2.6) it is clear that t ∈ (0, 1). By implicit derivative
formula applied to (2.11), we find

α

K
K ′

α =
t

1−t2
+ t

2
(
1− t2

4

)

K + t
1−t2

+ t

2
(
1− t2

4

)
.

Here we use the notation f ′
x for a partial derivative of a function f with respect to x .

Introducing the auxiliary functions

A(t) := t

1 − t2
+ t

2
(
1 − t2

4

) > 0 and k(α) := α

K
K ′

α,

we find several identities which will be useful in what follows:

k = A

K + A
,

K = arctanh t + arctanh
t

2
,

α = − 1
√√

3S
t

(

arctanh t + arctanh
t

2

)

.

(2.12)

Finally, we analyse the dependence of λ0(α) on the area of the triangle.

Proposition 2.2 The lowest Robin eigenvalue of the equilateral triangle λ0(α) is a
(strictly) increasing function of the area S.
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Proof First, we find from (2.9) and the expression for L (above that equation) that

K = −α
√√

3S

tanh M
.

Hence, it follows from (2.10) that the lowest eigenvalue can be expressed as

λ0(α) = − 4α2

tanh2 M
.

In order to prove that λ0(α) is an increasing function of S it suffices to show that M
is an increasing function of S. To this aimwe analyse the transcendental equation (2.9)
in detail. The right-hand side of that equation is positive and increasing in S. Hence,
it suffices to check that the left-hand side is an increasing function of M > 0. The
desired property immediately follows from the fact that tanh(x) and thus its inverse
arctanh(x) are increasing functions of x > 0. ��

3 Local Optimality of the Equilateral Triangle

The aim of this section is to show that under fixed area constraint the equilateral
triangle is a local maximiser of the lowest Robin eigenvalue of a triangle for the
negative boundary parameter lying in a neighbourhood of 0 determined solely by
the area of the triangle. We make use of the reduction of the spectral problem for
the Robin Laplacian on a general triangle to an equivalent problem on an equilateral
triangle constructed in Sect. 2.2. This reduction allows us to view the obtained family
of respective quadratic forms as a self-adjoint holomorphic family and to compute the
derivatives of the lowest eigenvalue in terms of geometric parameters.We establish that
the first-order and the second-order mixed derivatives vanish and obtain upper bounds
on the second-order partial derivatives in terms of certain quadratic forms evaluated
on the ground state for the equilateral triangle. In the course of the computations we
encounter cumbersome intermediate expressions that we provide for convenience of
the reader. The rest of the analysis boils down to showing that these upper bounds are
negative under certain assumptions on the boundary parameter.

Since the operators Hα and Ĥα,a,c are isospectral, λα
1 (�a,c) =: λa,c is the lowest

eigenvalue of Ĥα,a,c as well. It is easy to check that the operators Ĥα,a,c form a
self-adjoint holomorphic family (of type (B) in the sense of Kato [15, Sect. VII.4])
with respect to the parameters a and c (separately). Moreover, the eigenvalue λa,c is
simple. Hence, a �→ λa,c is a real-analytic function on R and c �→ λa,c is a real-
analytic function on (0,∞) . Let ψa,c denote the positive eigenfunction of Ĥα,a,c

corresponding to λa,c such that ‖ψa,c‖L2(�0)
= 1. Then we also have that a �→ ψa,c

is a real-analytic function on R and c �→ ψa,c is a real-analytic function on (0,∞).
For the equilateral triangle, we abbreviate λ0 := λa0,c0 and ψ0 := ψa0,c0 .

123



63 Page 12 of 33 Applied Mathematics & Optimization (2023) 88 :63

The eigenvalue problem Ĥα,a,cψa,c = λa,cψa,c is equivalent to the weak formula-
tion

∀φ ∈ H1(�0) , ĥα,a,c(φ,ψa,c) = λa,c (φ,ψa,c) , (3.1)

where we abbreviate (·, ·) := (·, ·)L2(�0)
. We shall also write (·, ·)k := (·, ·)

L2(�
(k)
0 )

and similarly for the corresponding norm. Note that the test function φ can be assumed
to be real-valued without loss of generality.

3.1 The First Derivative with Respect to a

Differentiating the identity (3.1) with respect to a (the corresponding derivative being
denoted by the dot), we get

S√
3c2

(∂1φ, ∂1ψ̇a,c) +
⎛

⎝c

√√
3

S
∂2φ− a

√√
3S

∂1φ, c

√√
3

S
∂2ψ̇a,c− a

√√
3S

∂1ψ̇a,c

⎞

⎠

− 1
√√

3S

⎛

⎝∂1φ, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠

− 1
√√

3S

⎛

⎝∂1ψa,c, c

√√
3

S
∂2φ − a

√√
3S

∂1φ

⎞

⎠

+α c

√√
3

S
(φ, ψ̇a,c)0 + α

√√
3

S

√
c2(a + c)2 + S2

2c
(φ, ψ̇a,c)1

+α

√√
3

S

√
c2(a − c)2 + S2

2c
(φ, ψ̇a,c)2

+α

√√
3

S

c(a + c)

2
√
c2(a + c)2 + S2

(φ,ψa,c)1

+α

√√
3

S

c(a − c)

2
√
c2(a − c)2 + S2

(φ,ψa,c)2

= λa,c(φ, ψ̇a,c) + λ̇a,c(φ,ψa,c) , (3.2)

where we implicitly used that ψ̇a,c ∈ H1(�0); cf. [20, Prop. 2.3]. Choosing φ = ψa,c

in (3.2) and combining the obtained identity with (3.1) where we choose φ = ψ̇a,c,
we obtain

λ̇a,c = − 2
√√

3S

⎛

⎝∂1ψa,c, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠
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+α

√√
3

S

c(a + c)

2
√
c2(a + c)2 + S2

‖ψa,c‖21

+α

√√
3

S

c(a − c)

2
√
c2(a − c)2 + S2

‖ψa,c‖22 . (3.3)

By the symmetries of the equilateral triangle �0, it is easily seen that ‖ψ0‖0 =
‖ψ0‖1 = ‖ψ0‖2.Moreover,ψ0 is an even functionwith respect to variable x (cf. (2.5)).
Therefore,

(∂1ψ0, ∂2ψ0) = 0 . (3.4)

Consequently,

λ̇0 = 0 , (3.5)

so the equilateral triangle is a critical geometry with respect to variation of the geo-
metric parameter a.

3.2 The Second Derivative with Respect to a

Differentiating (3.3) with respect to a, we get

λ̈a,c = − 2
√√

3S

⎛

⎝∂1ψ̇a,c, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠

− 2
√√

3S

⎛

⎝∂1ψa,c, c

√√
3

S
∂2ψ̇a,c − a

√√
3S

∂1ψ̇a,c − 1
√√

3S
∂1ψa,c

⎞

⎠

+α

√√
3

S

c(a + c)
√
S2 + c2(a + c)2

(ψa,c, ψ̇a,c)1

+α

√√
3

S

c(a − c)
√
S2 + c2(a − c)2

(ψa,c, ψ̇a,c)2

+cα

2

√√
3

S

S2

[c2(a + c)2 + S2] 32
‖ψa,c‖21

+cα

2

√√
3

S

S2

[c2(a − c)2 + S2] 32
‖ψa,c‖22 . (3.6)
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Putting a = a0 = 0, c = c0 =
√

S√
3
and using the symmetry ‖ψ0‖21 = ‖ψ0‖22 =

1
3‖ψ0‖2L2(∂�0)

, we deduce

λ̈0 = − 2
√√

3S
(∂1ψ̇0, ∂2ψ0) − 2

√√
3S

(∂1ψ0, ∂2ψ̇0)

+α

2

√√
3

S
(ψ0, ψ̇0)1 − α

2

√√
3

S
(ψ0, ψ̇0)2

+α

√
3

8S
‖ψ0‖2L2(∂�0)

+ 2√
3S

‖∂1ψ0‖2 . (3.7)

Choosing φ = ψ̇a,c in (3.2) and putting a = a0 = 0, c = c0 =
√

S√
3
, we have

‖∇ψ̇0‖2 − 1
√√

3S
(∂1ψ̇0, ∂2ψ0) − 1

√√
3S

(∂2ψ̇0, ∂1ψ0) + α ‖ψ̇0‖2L2(∂�0)

+α

4

√√
3

S
(ψ̇0, ψ0)1

−α

4

√√
3

S
(ψ̇0, ψ0)2 = λ0‖ψ̇0‖2 . (3.8)

Using the variational characterisation of λ0, we obtain

− 1
√√

3S
(∂1ψ̇0, ∂2ψ0) − 1

√√
3S

(∂2ψ̇0, ∂1ψ0) + α

4

√√
3

S
(ψ̇0, ψ0)1

−α

4

√√
3

S
(ψ̇0, ψ0)2 ≤ 0 . (3.9)

Substituting this estimate into (3.7), we conclude with

λ̈0 ≤ 2√
3S

‖∂1ψ0‖2 + α

√
3

8S
‖ψ0‖2L2(∂�0)

= 1√
3S

(

‖∇ψ0‖2 + α
3

8
‖ψ0‖2L2(∂�0)

)

, (3.10)

where the equality is obtained by dint of the symmetry result ‖∂1ψ0‖ = ‖∂2ψ0‖.

3.3 TheMixed Second Derivative

We next calculate the mixed derivative of λa,c with respect to a, c at the point a =
a0 = 0 and c = c0 =

√
S√
3
.We denote by the apostrophe the corresponding derivative
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with respect to c. Putting a = 0 in (3.3), we obtain

λ̇0,c=− 2
√√

3S

⎛

⎝∂1ψ0,c, c

√√
3

S
∂2ψ0,c

⎞

⎠ + α

√√
3

S

c2

2
√
c4 + S2

‖ψ0,c‖21

+α

√√
3

S

−c2

2
√
c4 + S2

‖ψ0,c‖22 . (3.11)

The symmetry of the domain �0,c easily implies that ψ0,c(x, y) = ψ0,c(−x, y) for
all (x, y) ∈ �0,c, that (∂1ψ0,c, ∂2ψ0,c) = 0, ‖ψ0,c‖1 = ‖ψ0,c‖2 and then, λ̇0,c = 0
for all c > 0. Moreover, as a, c are independent, we get that

λ̇′
0 = 0.

3.4 The First Derivative with Respect to c

Differentiating (3.1) with respect to c, we have

− 2S√
3c3

(∂1ψa,c, ∂1φ) + S√
3c2

(∂1φ, ∂1ψ
′
a,c)

+
⎛

⎝

√√
3

S
∂2φ, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠

+
⎛

⎝c

√√
3

S
∂2φ − a

√√
3S

∂1φ, c

√√
3

S
∂2ψ

′
a,c − a

√√
3S

∂1ψ
′
a,c +

√√
3

S
∂2ψa,c

⎞

⎠

+α c

√√
3

S
(φ,ψ ′

a,c)0 + α

√√
3

S

√
c2(a + c)2 + S2

2c
(φ,ψ ′

a,c)1

+α

√√
3

S

√
c2(a − c)2 + S2

2c
(φ,ψ ′

a,c)2

+α

√√
3

S
(φ,ψa,c)0 + α

2

√√
3

S

c3(a + c) − S2

c2
√
c2(a + c)2 + S2

(φ,ψa,c)1

+α

2

√√
3

S

c3(−a + c) − S2

c2
√
c2(−a + c)2 + S2

(φ,ψa,c)2

= λa,c(φ,ψ ′
a,c) + λ′

a,c(φ,ψa,c) . (3.12)
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Choosing φ = ψa,c in (3.12) and combining with (3.1) where we choose φ = ψ ′
a,c,

we get

λ′
a,c = − 2S√

3c3
‖∂1ψa,c‖2 + 2

⎛

⎝

√√
3

S
∂2ψa,c, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠

+α

√√
3

S
‖ψa,c‖20

+α

√√
3

S

c3(a + c) − S2

2c2
√
c2(a + c)2 + S2

‖ψa,c‖21

+α

√√
3

S

c3(−a + c) − S2

2c2
√
c2(a − c)2 + S2

‖ψa,c‖22 . (3.13)

Plugging a = a0 = 0 and c = c0 =
√

S√
3
into the above formula we find that

λ′
0 = 0.

Hence, the equilateral triangle is also critical with respect to variation of the
parameter c.

3.5 The Second Derivative with Respect to c

Differentiating the identity (3.13) with respect to variable c, we have

λ′′
a,c = − 4S√

3c3
(∂1ψa,c, ∂1ψ

′
a,c) + 6S√

3c4
‖∂1ψa,c‖2

+2

⎛

⎝

√√
3

S
∂2ψ

′
a,c, c

√√
3

S
∂2ψa,c − a

√√
3S

∂1ψa,c

⎞

⎠

+2

⎛

⎝

√√
3

S
∂2ψa,c, c

√√
3

S
∂2ψ

′
a,c − a

√√
3S

∂1ψ
′
a,c +

√√
3

S
∂2ψa,c

⎞

⎠

+2α

√√
3

S
(ψa,c, ψ

′
a,c)0 + α

√√
3

S

c3(a + c) − S2

c2
√
c2(a + c)2 + S2

(ψa,c, ψ
′
a,c)1

+α

√√
3

S

c3(−a + c) − S2

c2
√
c2(−a + c)2 + S2

(ψa,c, ψ
′
a,c)2

+α

2

√√
3

S

(
c3(a + c) − S2

c2
√
c2(a + c)2 + S2

)′
‖ψa,c‖21
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+α

2

√√
3

S

(
c3(−a + c) − S2

c2
√
c2(−a + c)2 + S2

)′
‖ψa,c‖22 . (3.14)

Using the equation (3.12) with φ = ψ ′
a,c, a = a0 = 0, and c = c0 =

√
S√
3
, we obtain

‖∇ψ ′
0‖2 − 2

√√
3

S
(∂1ψ

′
0, ∂1ψ0) + 2

√√
3

S
(∂2ψ

′
0, ∂2ψ0) + α ‖ψ ′

0‖2L2(∂�0)

+α

√√
3

S
(ψ ′

0, ψ0)1

−α

2

√√
3

S
(ψ ′

0, ψ0)1 − α

2

√√
3

S
(ψ ′

0, ψ0)2 = λ0‖ψ ′
0‖2 . (3.15)

Combining (3.14) in which we put a = a0 = 0, c = c0 =
√

S√
3
with (3.15), we

deduce

λ′′
0 = 2

(
λ0‖ψ ′

0‖2 − α ‖ψ ′
0‖2L2(∂�0)

− ‖∇ψ ′
0‖2

) + 4

√
3

S
‖∇ψ0‖2

+α
3
√
3

2S
‖ψ0‖2L2(∂�0)

. (3.16)

By using the variational characterisation of λ0, we estimate

λ′′
0 ≤ 4

√
3

S

(

‖∇ψ0‖2 + α
3

8
‖ψ0‖2L2(∂�0)

)

. (3.17)

3.6 Conclusions from the Hessian Estimates

Now we are in position to formulate and prove the main result of this section on local
optimality of equilateral triangles for moderate boundary parameters. The proof relies
on showing that for certain values of the boundary parameter α the upper bounds on
the second-order partial derivatives of the eigenvalue given in (3.10) and (3.17) are
negative. For α sufficiently large by absolute value these bounds cease to be negative
and in order to prove local optimality of the equilateral triangle finer estimates are
necessary, which we leave as an open problem in this paper.

Let us reformulate Theorem 1.1 from the introduction as follows.

Theorem 3.1 There exists α0 = α0(S) < 0 such that the equilateral triangle is a strict
local maximiser of the lowest Robin eigenvalue in the family of triangles of area S for
the boundary parameters α ∈ [α0, 0). Moreover, for a fixed area S and any α ∈ [α0, 0)
there exist a sufficiently small ε > 0 and a constant C > 0 such that

λa,c ≤ λ0 − C
(
a2 + (c − c0)

2
)

, (3.18)
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provided that |a| + |c − c0| < ε.

Proof In order to show that the equilateral triangle is a strict local maximiser and that
the bound in (3.18) holds we rely on the fact that λ̇0 = λ′

0 = λ̇′
0 = 0 and on the

estimates (3.10) and (3.17). The problem reduces to finding the values of α for which

f (α) := 1

3
‖∇ψ0‖2 + α

1

8
‖ψ0‖2L2(∂�0)

< 0.

Thanks to the condition ‖ψ0‖ = 1 it follows from [14, Chap. 4, Eq. (4.12)] that
(λ0)

′
α = ‖ψ0‖2L2(∂�0)

> 0, where (λ0)
′
α denotes the derivative of λ0 with respect to

the boundary parameter α.
From the variational characterisation of λ0, we have

λ0 = ‖∇ψ0‖2 + α‖ψ0‖2L2(∂�0)
.

Hence, we obtain that

1

3
‖∇ψ0‖2 + α

1

8
‖ψ0‖2L2(∂�0)

= 1

3
λ0 − 5

24
α ‖ψ0‖2L2(∂�0)

= λ0

3
− 5α

24
(λ0)

′
α.

Therefore, the following equivalence takes place

f (α) < 0 ⇐⇒ (λ0)
′
α

λ0
>

8

5α
.

In addition, we deduce from (2.10) that (λ0)
′
α = − 8K√

3S
K ′

α . Recalling in addi-
tion (2.12), we get the following chain of equivalences

f (α) < 0 ⇐⇒ k(α) <
4

5
⇐⇒ A

K + A
<

4

5
⇐⇒ A − 4K < 0.

Eventually we obtain that

f (α) < 0

⇐⇒ g(t) := t

1 − t2
+ t

2
(
1 − t2

4

) − 4 arctanh t − 4 arctanh
t

2
< 0,

(3.19)

where t ∈ (0, 1). It is easily seen that g(t) is negative for small t , while g(t) → +∞
as t → 1 (see Fig. 1). To get a quantitative estimate on the necessary smallness of t ,
we use the elementary estimate arctanh t > t valid for all t ∈ (0, 1). Then we deduce
that f (α) < 0 provided that

t ≤ t0 :=
√
9 − √

33

2
.
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Fig. 1 The graph of the function g defined in (3.19)

Using that t = t(α) is a decreasing function of α < 0 and recalling (2.12), we get

t ≤ t0 ⇐⇒ α ≥ − 1
√√

3S
t0

(

arctanh t0 + arctanh
t0
2

)

⇐� α ≥ −3

2

t20√√
3S

.

(3.20)

Hence, we also find using the exact value of t0 that

α ≥ −0.92√
S

�⇒ t ≤ t0.

This concludes the proof of the theorem. ��

Remark 3.2 The present proof yields α0(S) ≤ − 0.92√
S
, so the bound is very quantitative,

moreover it provides an explicit dependence on the fixed area S. In particular,α0(S) →
−∞ as S → 0. Let us also remark that a numerical analysis of the function g defined
in (3.19) yields that g(t) < 0 if, and only if, t < t̃0 ≈ 0.943. Plugging this value to the
expression on the right-hand side of the first line of (3.20), we would get an improved
bound α0(S) ≤ − 1.63√

S
.

To see that Theorem 1.1 follows as a consequence of Theorem 3.1, it is enough

to notice that |�a,c \ �0| → 0 implies that a → a0 = 0 and c → c0 =
√

S√
3
. In

particular, the Hausdorff distance of �a,c to �0 diminishes in the limit.
In the next corollary we provide a counterpart of Theorem 3.1 under the fixed

perimeter instead of the area constraint.

Corollary 3.3 Let α0 = α0(S) be the negative constant from Theorem 3.1. The equi-
lateral triangle is a strict local maximiser of the lowest Robin eigenvalue in the family

of triangles of fixed perimeter 2
√
3
√
3S for the boundary parameters α ∈ (α0, 0).
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Proof Let the triangle�a,c be defined as before with the perimeter |∂�a,c|.We assume
that �a,c is not equilateral. Let us introduce the parameter

γa,c := |∂�0|
|∂�a,c| .

By the isoperimetric inequality for triangles we infer that γa,c ∈ (0, 1). Clearly,
the mapping R × R+ � (a, c) �→ γa,c�a,c parameterises generic triangles of the
same perimeter as �0. In particular, we have |γa,c�a,c| ≤ |�0| = S. Hence, for all
α ∈ (α0, 0) we have by Theorem 3.1 that there exists an open neighbourhood U ⊂ R

2

of the point (0,
√

S√
3
) such that for any (a, c) ∈ U holds

λα
1 (γa,c�a,c) ≤ λα

1 (γa,c�0). (3.21)

On the other hand by Proposition 2.2

λα
1 (γa,c�0) < λα

1 (�0). (3.22)

Combining the inequalities (3.21) and (3.22) we get the claim. ��

Remark 3.4 The local optimality result of Theorem 3.1 is worth complementing by the
consequence of the large coupling asymptotics for the Robin Laplacian on a triangle.
It follows from [25, Thm. 2.3] that

λa,c ∼
α→−∞ − α2

sin2 θ

2

,

where θ ∈ (0, π
3 ] is the magnitude of the smallest angle of the triangle �a,c. Hence,

for any couple of parameters (a, c) ∈ R× (0,∞) there exists α = α(a, c) < 0 such
that λa,c ≤ λ0 for all α ≤ α.

4 Small Couplings

In this section we show the validity of Conjecture 1 for negative α having small
absolute value and under certain restriction on the parameters a, c characterising the
general triangle. We work with the equivalent quadratic form on the equilateral tri-
angle constructed in Sect. 2.2 and use the ground state for the Robin Laplacian on
an equilateral triangle as the trial function in the variational definition of the lowest
eigenvalue. This section is complemented by a numerical computation of a region of
limitation of the usage of this trial function for the proof of Conjecture 1 with α < 0.
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4.1 The Ground State of the Equilateral Triangle as a Trial Function

Using the unitary transform Ua,c from Sect. 2.2, we know that

λa,c(α) := λα
1 (�a,c) = inf

ψ∈H1(�0)
ψ �=0

ĥα,a,c[ψ]
‖ψ‖2L2(�0)

, (4.1)

where the form ĥα,a,c is given in (2.4). Employing the ground state of the equilateral
triangle ψ0 as a trial function in (4.1), we obtain the upper bound

λa,c(α) ≤ λ0(α) + ĥα,a,c[ψ0] − ĥα[ψ0]
‖ψ0‖2L2(�0)

,

where ĥα is the abbreviation for the quadratic form ĥα,a0,c0 . Using (3.4) we get

ĥα,a,c[ψ0] − ĥα[ψ0] =
(
c2

√
3

S
+ S√

3c2
+ a2√

3S
− 2

)

‖∂1ψ0‖2L2(�0)

+ α

⎛

⎝

√√
3

S
c +

√√
3

S

√
S2 + c2(a + c)2

2c

+
√√

3

S

√
S2 + c2(−a + c)2

2c
− 3

⎞

⎠

×
‖ψ0‖2L2(∂�0)

3
.

Hence, for given α < 0, a ∈ R and c > 0, the isoperimetric inequality in Conjecture 1
holds if the difference ĥα,a,c[ψ0] − ĥα[ψ0] is non-positive.

In the proof of the main result of this section we use the following well-known
geometric fact, which we recall for the convenience of the reader.

Proposition 4.1 ([29, Sect. 4] or [16, § 2.2])

(i) Among triangles having the same area, the equilateral is the unique minimiser of
the perimeter.

(ii) Among triangles having the same area and the same base, the isosceles is the
unique minimiser of the perimeter.

Denote the perimeter of the triangle �a,c by l(a) := |∂�a,c| and recall the explicit
formula (2.3). As a consequence of Proposition 4.1 (ii), we obtain

min
a∈R l(a) = l(0) = 2c + 2

√

c2 + S2

c2
. (4.2)
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Now we are in position to formulate and prove the main result of this section.

Theorem 4.2 Let A, B and M be positive numbers such that B > A. There exists a
constant αc = αc(M, A, B, S) < 0 such that

λa,c < λ0

for all α ∈ [αc, 0), |a| ≤ M and c ∈ [A, B] such that (a, c) �=
(
0,
√

S√
3

)
.

Proof Throughout this proof the ground stateψ0 for the equilateral triangle is assumed
to be normalised to 1 in L2(�0). Let us introduce three auxiliary functions

z(a, c) := f1(a) − 3
c2

√
3

S + S√
3c2

+ a2√
3S

− 2
, f1(a) :=

√√
3

S

l(a)

2

and g1(α) :=
3‖∇ψ0‖2L2(�0)

−2α ‖ψ0‖2L2(∂�0)

,

where l(a) is the notation for the perimeter of�a,c introduced above (4.2) and explicitly
given in (2.3). Note that the denominator of z is positive by the Cauchy inequality. It
is easy to show the limiting properties

inf
(a,c)∈R×(0,∞)

z(a, c) = lim
a→±∞ z(a, c) = lim

c→∞ z(a, c) = 0.

Using the symmetry of the equilateral triangle, we have the following equivalences

ĥα,a,c[ψ0] − ĥα[ψ0] ≤ 0 ⇐⇒
3‖∂1ψ0‖2L2(�0)

−α‖ψ0‖2L2(∂�0)

≤ z(a, c)

⇐⇒ g1(α) ≤ z(a, c).

Let us now look at the limiting properties of g1 as α → 0. By the normalisation
of ψ0, we have λ0 = ‖∇ψ0‖2L2(�0)

+ α‖ψ0‖2L2(∂�0)
. Note that λ0 = λ0(α) converges

in the limit α → 0 to the first eigenvalue of the Neumann Laplacian on �0, which is
equal to zero. Moreover, one has (see, e.g., [14, Chap. 4, Eq. (4.12)])

dλ0
dα

= ‖ψ0(α)‖2L2(∂�0)
> 0, (4.3)

for every α, where bywritingψ0(α)we indicate the dependence ofψ0 on the boundary
parameter α. It implies that

dλ0
dα

∣
∣
∣
∣
α=0

= lim
α→0

‖ψ0(α)‖2L2(∂�0)
= |∂�0|

|�0| . (4.4)
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In addition, by the definition of the derivative of λ0 with respect to α at the point
α = 0, we get

|∂�0|
|�0| = lim

α→0

λ0(α) − λ0(0)

α
= lim

α→0

‖∇ψ0(α)‖2
L2(�0)

+ α‖ψ0(α)‖2
L2(∂�0)

α
.

(4.5)

Combining (4.5) and (4.4), we obtain

lim
α→0

g1(α) = 0.

By Proposition 4.1 (i), we have the strict inequality min
a∈R f1(a) > 3 unless a = a0 =

0 and c = c0 =
√

S√
3
(in which case we have equality). It follows that z(a, c) > 0

unless a = a0 and c = c0. Moreover, (a, c) �→ z(a, c) is a continuous function.
Let ε > 0 be arbitrary and we denote by Bε the open disk of radius ε with the
centre (0, c0). Hence, for any M > 0 and B > A > 0 there exists a constant
α̂c = α̂c(M, A, B, ε) < 0 such that for all α ∈ [α̂c, 0) one has

0 < g1(α) < min
([−M,M]×[A,B])\Bε

z(a, c),

which implies that

λa,c < λ0, ∀(a, c) ∈ ([−M, M] × [A, B]) \ Bε.

By Theorem 3.1, for a sufficiently small ε > 0 and for α ∈ [α0, 0), we have

λa,c < λ0, ∀(a, c) ∈ Bε \ {(0, c0)}.

Choosing αc := max{α̂c, α0} we get for all α ∈ [αc, 0) that

λa,c < λ0, ∀(a, c) ∈ ([−M, M] × [A, B]) \ {(0, c0)}.

This concludes the proof of the theorem. ��

4.2 Limitations of the Trial Function

In the rest of this section we restrict to the special case c = S = 1√
3
and perform an

analysis of the region in the (α, a)-plane for which the present choice of the ground
state of the equilateral triangle as a trial function fails to prove Conjecture 1 with
α < 0. In this special case, the ground state u0 of the equilateral triangle (2.5) and its
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partial derivative with respect to the first variable are given by

u0 = cosh(L − 2Ky) + 2 cosh(M + Ky) cosh(
√
3Kx),

∂1u0 = 2
√
3K cosh(Ky + M) sinh(K

√
3x).

Hence, we can express the squared norm of ∂1u0 as follows:

‖∂1u0‖2 = 12K 2
∫ 1

0

∫ − y√
3
+ 1√

3

y√
3
− 1√

3

cosh2(Ky + M) sinh2(K
√
3x)dxdy

=
√
3

8

( − 4 − 8K 2 + 4 cosh(2K ) + cosh(2K − 2M) + 4 cosh(2M)

− 5 cosh(2K + 2M) + 8K sinh(2M) + 4K sinh(2K + 2M)
)
.

Similarly, the square of the norm of the trace of u0 on ∂�0 can be computed as follows:

‖u0‖2L2(∂�0)
= 3‖u0‖20 = 3

∫ 1√
3

− 1√
3

[cosh(L) + 2 cosh(M) cosh(
√
3Kx)]2dx

=
√
3

K

(
3K + K cosh(2L)

+ 2K cosh(2M) + 8 cosh(L) cosh(M) sinh(K ) + 2 cosh2(M) sinh(2K )
)
.

Using the above expressions for ‖∂1u0‖2 and ‖u0‖2L2(∂�0)
we plot for c = S = 1√

3

in Fig. 2 the region where δ(α, a) := ĥα,a, 1√
3
[u0] − ĥα[u0] is non-positive. This plot

demonstrates that Conjecture 1 for negative α holds for every a by choosing |α| suffi-
ciently small (for larger a, smaller |α| needed). However, it also shows the limitations
of the present choice of the trial function (for any negative α, there exists a sufficiently
large positive a such that the difference δ(α, a) is positive). In summary, for eccentric
triangles (i.e. a large), a different choice of trial function is necessary.

5 Large Couplings

In this section we show the validity of Conjecture 1 for negative α with larger values
of |α|. To this aim one needs to use different trial functions, which better reflect the
behaviour of the eigenfunction in a general triangle in this large coupling limit.As in the
preceding section, analytical results are supplemented by numerical computations of
the region of limitations of these trial functions to establish the validity of Conjecture 1
with negative α.

5.1 The Neumann Ground State as a Trial Function

We start with the constant function as a trial function.
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Fig. 2 The blue colour indicates the region of validity of Conjecture 1: the equilateral triangle eigenfunction
as a trial function (Color figure online)

Theorem 5.1 For any α < 0, there exist positive constants a1 = a1(α), c1 = c1(α)

and c2 = c2(α) such that

λa,c < λ0

holds under any of the following restrictions:

(i) |a| > a1 and c > 0;
(ii) a ∈ R and c > c1;
(iii) a ∈ R and c < c2.

Proof It follows from the variational characterisation (4.1) with the trial function being
the characteristic function 1 of the triangle �0 that

λa,c ≤ ĥα,a,c[1]
‖1‖2 = α f2(a, c) with f2(a, c) := |∂�a,c|

S
.

Recall the explicit formula (2.3) for the perimeter of�a,c and that we are dealing with
the area constraint, so that S = |�0|. Obviously, the desired inequality λa,c < λ0 is
satisfied if

f2(a, c) >
λ0

α
. (5.1)
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By Proposition 4.1 (ii),

f2(a, c) ≥ min
a∈R f2(a, c) = f2(0, c) = 2

S

(

c +
√
c4 + S2

c

)

.

Since

lim
c→0+ min

a∈R f2(a, c) = +∞ ,

there exists c2 = c2(α) such that λa,c < λ0 for all (a, c) ∈ R×(0, c1); this establishes
condition (iii). At the same time, since

lim|a|→∞min
c>0

f2(a, c) = lim
c→∞min

a∈R f2(a, c) = +∞

for any fixed α < 0, there exist a1 = a1(α) > 0, c1 = c1(α) > 0 such that f2(a, c) >
λ0
α
for all (|a|, c) ∈ (a1,∞) × (0,∞) or for all (a, c) ∈ R× (c1,∞); this establishes

conditions (i) and (ii). ��
Remark 5.2 The constants a1 and c1 (respectively, the constant c2) obtained in our
proof above tend to+∞ (respectively, tends to 0) as α → −∞. Indeed, it is enough to
recall (5.1) and notice that λ0

α
→ +∞ as α → −∞ (cf. Remark 3.4), while f2(a, c)

is independent of α.

The analysis based on the constant test function can be supplemented by
a numerical evidence. Figure 3 plots the region for c = S = 1√

3
where

hα[1]/‖1‖2
L2
(
�
a, 1√

3

) − λ0(α) is non-positive. Now, given any negative α, we are

able to cover all sufficiently eccentric triangles.

5.2 The Ground State of a Sector as a Trial Function

The ground state of the Robin Laplacian on a convex sector with a negative boundary
parameter is explicitly known (see [23, Ex. 2.5, Lem. 2.6] and also [17, Thm. 2.3 (b)]).
In the next theorem we use a truncation of this ground state as a trial function and find
a sufficient condition in terms of the boundary parameter, the area of the triangle, the
smallest angle and the length of the smaller side of the triangle adjacent to this angle for
the isoperimetric inequality to hold. This theorem provides also a quantitative version
of the observation made in Remark 3.4.

Theorem 5.3 Let the parameters a ∈ R and c > 0 be such that the triangle �a,c is
not equilateral. Let θ ∈ (0, π/3) be the smallest angle of �a,c. Let L ′ > 0 be the
length of the smaller side of �a,c adjacent to that angle. Assume that α < 0 is such
that

− 4α2 + 24α
√√

3S
− 36√

3S
≥ − α2

sin2(θ/2)

(
1 − 2 exp(2αL ′ cot(θ/2))

)
. (5.2)
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Fig. 3 The blue colour indicates the region of validity of Conjecture 1: the constant function as a trial
function (Color figure online)

Then the inequality

λa,c < λ0

holds. In particular, for a fixed triangle �a,c the condition (5.2) holds for all |α| large
enough and for a fixed α < 0 this condition holds for all θ small enough.

Proof We choose the vertex of the triangle corresponding to the angle θ as the origin
and introduce the orthogonal coordinate system (x ′, y′) so that the x ′-axis coincides
with the bisector line of the triangle �a,c emerging from its smallest angle. In this
coordinate system we introduce the function

u(x
′, y′) := exp

(
αx ′

sin(θ/2)

)

. (5.3)

Obviously,u ∈ H1(�a,c), so it is an admissible trial function.By a direct computation
we get the estimates

‖u‖2L2(�a,c)
≤
∫ θ

2

− θ
2

∫ ∞

0
exp

(
2αr cos θ

sin(θ/2)

)

rdrdθ = sin2(θ/2)

4α2

∫ θ
2

− θ
2

1

cos2 θ
dθ

= sin2(θ/2) tan(θ/2)

2α2 ,
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‖u‖2L2(∂�a,c)
≥ 2

∫ L ′

0
exp (2αr cot(θ/2)) dr

= − tan(θ/2)

α

(
1 − exp

(
2αL ′ cot(θ/2)

) )
. (5.4)

Moreover, we easily find that

‖∇u‖2L2(�a,c)
= α2

sin2(θ/2)
‖u‖2L2(�a,c)

. (5.5)

Combining (5.4) and (5.5), we get from variational characterisation (4.1) with the
trial function u that

λa,c ≤
‖∇u‖2L2(�a,c)

+ α‖u‖2L2(∂�a,c)

‖u‖2L2(�a,c)

≤ α2

sin2(θ/2)
− 2α2

sin2(θ/2)

(
1 − exp(2αL ′ cot(θ/2))

)

= − α2

sin2(θ/2)

(
1 − 2 exp(2αL ′ cot(θ/2))

)
.

(5.6)

Relying on the analysis in Sect. 2.3, for the equilateral trianglewe haveλ0 = − 4K 2√
3S
.

Here the parameter K can be estimated as follows

K = arctanh

(√√
3S

−α

K

)

+ arctanh

(√√
3S

−α

2K

)

= 1

2
ln

(
(1 + t)(1 + t

2 )

(1 − t)(1 − t
2 )

)

= 1

2
ln

(

1 + 6t

t2 − 3t + 2

)

<
1

2

6t

t2 − 3t + 2
<

6

t − 2
+ 3

1 − t
<

3

1 − t
,

wherewe have used that t = −
√√

3S α
K ∈ (0, 1). Hence,we get that K < 3−α

√√
3S

and thus

λ0 > −4(3 − α
√√

3S)2√
3S

= −4α2 + 24α
√√

3S
− 36√

3S
.

The desired claim follows upon combination of the above estimate with (5.6).
The first additional observation, that for a fixed triangle �a,c the condition (5.2)

holds for all |α| large enough, follows from the fact that both the left- and the right-hand
sides in (5.2) tend to−∞ as α → −∞ and their ratio tends to 4 sin2(θ/2) ∈ (0, 1). In
order to verify the other additional observation, it suffices to notice that by the triangle

inequality and Proposition 4.1 (i) we have L ′ ≥ l(a)/4 > 3
2

√
S√
3
and hence for any
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fixed α < 0 the right-hand side in (5.2) tends to −∞ as θ → 0, while the left-hand
side is independent of θ. ��

Theorem 1.2 from the introduction is a special version of a combination of Theo-
rems 4.2 and 5.3 .

5.3 Numerical Support

We complement Theorem 5.3 by numerical computations in the special case c =
S = 1√

3
. In order to perform these computations we require some extra analysis. For

a ∈ [0, 2√
3
] the smallest angle of the triangle �a, 1√

3
is at the vertex (− 1√

3
, 0) while

for a > 2√
3
the smallest angle of this triangle is at the vertex (a, 1). We will analyse

these two cases separately.
Let a ∈ [0, 2√

3
]. Using elementary geometric arguments we find that

sin θ = 1
√

1 +
(
a + 1√

3

)2
.

Hence, we derive with the aid of trigonometric identities that

sin2
(

θ

2

)
=

√

1 +
(
a + 1√

3

)2 −
(
a + 1√

3

)

2
√
1 + (a + 1√

3
)2

and

cot
(

θ

2

)
=
√

1 +
(
a + 1√

3

)2 + a + 1√
3
. (5.7)

Moreover, the length of the shorter side of the triangle �a, 1√
3
adjacent to its smallest

angle is L ′ = 2√
3
.

Let a ∈ ( 2√
3
,∞). Again using elementary geometric arguments we find that

sin θ = 2
√

3a4 + 4a2 + 16
3

and derive

sin2
(

θ

2

)
=

1 −
√

9a4+12a2+4
9a4+12a2+16

2
and cot

(
θ

2

)
=
√
√
√
√

2

1 −
√

9a4+12a2+4
9a4+12a2+16

− 1 .
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Fig. 4 The blue colour indicates the region where the sufficient condition (5.2) for validity of Conjecture 1
is satisfied (Color figure online)

Moreover, the length of the shorter side of the triangle �a, 1√
3
adjacent to its smallest

angle is

L ′ =
√

1 +
(
a − 1√

3

)2
.

Using the above analysis of the two cases a ∈ [0, 2√
3
] and a > 2√

3
we plot in Fig. 4

the region where the condition (5.2) is satisfied.
Furthermore, we find numerically the region where the trial function u defined

in (5.3) yields the inequality in Conjecture 1. In this analysis we make a simplification

and construct the function u always based on the angle at the vertex
(
− 1√

3
, 0
)
even

though this angle is not the smallest angle of the triangle �a, 1√
3
for a > 2√

3
. As we

will see from the numerical plot even after such a simplification we still obtain a large
region of validity for Conjecture 1.

In order to perform this numerical test it is convenient to express the function u as
a function of initial coordinates (x, y). Clearly, the distance between the points (x, y)
and (− 1√

3
, 0) is given by

r =
√
(

x + 1√
3

)2

+ y2.
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Fig. 5 The blue colour indicates the region of validity of Conjecture 1: the function u in (5.8) as a trial
function (Color figure online)

Let θ ′ be the magnitude of the angle formed by the vertices (x, y), (− 1√
3
, 0), and

( 1√
3
, 0). We immediately find that

sin θ ′ = y

r
, cos θ ′ =

x + 1√
3

r
.

Hence, we obtain using the expression for cot
(

θ

2

)
in (5.7) that

x ′

sin
(

θ

2

) =
r cos

(
θ

2 − θ ′
)

sin
(

θ

2

) =
(
x + 1√

3

)
cot

(
θ

2

)

+ y

=
(
x + 1√

3

)
(√

1 +
(
a + 1√

3

)2 + a + 1√
3

)

+ y.

Finally, we conclude that

u(x, y) = exp

(

α

[
(
x + 1√

3

)
(√

1 +
(
a + 1√

3

)2 + a + 1√
3

)

+ y

])

. (5.8)
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Figure 5 plots the region where the difference hα[u]/‖u‖2L2(�
a, 1√

3
)
− λ0(α) is

non-positive. From this plot we see that the trial function u suffices to show that the
inequality in Conjecture 1 holds for any α < 0 and all a > 0 not too small and for
any a > 0 and α < 0 with sufficiently large |α|. Moreover, according to this plot, one
can show using the trial function u that there exists a > 0 such that the inequality
in Conjecture 1 holds for any α < 0 and all a > a.
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provided by Grantová Agentura České Republiky Grant nos. (21-07129S, 20-17749X).

Declarations

Competing interests The authors have not disclosed any competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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