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Abstract
We consider whether minimizers for total variation regularization of linear inverse
problems belong to L∞ even if the measured data does not. We present a simple proof
of boundedness of the minimizer for fixed regularization parameter, and derive the
existence of uniform bounds for sufficiently small noise under a source condition and
adequate a priori parameter choices. To show that such a result cannot be expected
for every fidelity term and dimension we compute an explicit radial unbounded mini-
mizer,which is accomplished by proving the equivalence ofweighted one-dimensional
denoising with a generalized taut string problem. Finally, we discuss the possibility
of extending such results to related higher-order regularization functionals, obtaining
a positive answer for the infimal convolution of first and second order total variation.
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1 Introduction

For� ⊂ R
d either a bounded Lipschitz domain or the wholeRd with d ≥ 2,� ⊂ R

m

an arbitrary domain with m � 1, and given a linear bounded operator

A : Ld/(d−1)(�) → Lq(�),

we are interested in solutions uα,w of the TV-regularized inverse problem Au = f
with noisy data f +w for w ∈ Lq(�), that is, solutions of the minimization problem

min
u∈Ld/(d−1)(�)

1

σ

(∫
�

|Au − ( f + w)|q
)σ/q

+ α TV(u), (1)

where 1 < q < ∞, σ = min(q, 2) and TV(u) denotes the total variation of u, see
(3) below for its definition. This convex minimization leads, at any minimizer uα,w,
to the optimality condition

vα,w := A∗ pα,w ∈ ∂Ld/(d−1) TV(uα,w) ⊂ Ld(�),

pα,w := 1

α
‖Auα,w − f − w‖σ−2

Lq (�) j( f + w − Auα,w),
(2)

where j(u) = |u|q−2u is the duality mapping of Lq(�) and ∂Ld/(d−1) TV(uα) denotes
the subgradient (see Definition 1 below). Our main goal is to present a proof of the
following uniform boundedness result:

Theorem 1 Assume that for A, f there is a unique solution u† for Au = f which
satisfies the source condition Ran(A∗) ∩ ∂ TV(u†) 
= ∅. There is some constant
C(q, σ, d,�) such that if αn, wn are sequences of regularization parameters and
perturbations for which

αn � C(q, σ, d,�)‖A∗‖‖wn‖σ−1
Lq (�) −−−→

n→∞ 0,

then the corresponding sequence uαn ,wn of minimizers is bounded in L∞(�), and
(possibly up to a subsequence)

uαn ,wn −−−→
n→∞ u† strongly in L p(�) for all p ∈ (1,∞).

This result is a combination of Proposition 1, Proposition 2 and Corollary 1 in Sect. 3,
which in turn depend on the preliminaries reviewed in Sect. 2.

In the case of denoising A = Id, it is well known that TV regularization satisfies
a maximum principle and ‖uα,w‖L∞ � ‖ f + w‖L∞ ; a proof can be found in [19,
Lem. 2.1] for L2(R2) and [37, Prop. 3.6] for the Ld/(d−1)(Rd) case that most closely
resembles the situation considered here. Another related result is the nonexpansiveness
in L p norm for denoising with rectilinear anisotropy found in [41]. In comparison,
our results work with unbounded measurements and linear operators, and although
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the analysis depends on the noise level and parameter choice, the bound on ‖uα,w‖L∞
can be made uniform in the regime of small noise and regularization parameter. Our
proof of Theorem 1 hinges on the Ld summability and stability in Ld norm of the
subgradients vα,w appearing in (2) and their relation with the perimeter of the level sets
of uα,w. To the best of our knowledge, the subgradient of TV was first characterized
in [3, 4] (see also [6] for further context) relying on the results of [7]. In Sect. 2 we
summarize the parts of these results that we will use in the sequel.

Moreover, we are also interested in finding cases outside the assumptions of the
result above in whichminimizers fail to be bounded. To this end, in Sect. 4 we consider
a one-dimensional denoising problem (21), with weights present in both the fidelity
term and the total variation which may vanish at the boundary of the interval. By
proving its equivalence to a generalized taut string problem, one obtains that the
minimizers can be constructed by gluing a few different types of behavior on finitely
many subintervals. This in turn allows us to produce explicit unboundedminimizers for
radial data in 3D and boundedness conditions for radial powers. Moreover, we believe
that results on weighted taut-string formulations can be of independent interest.

Indeed, the taut string approach to one-dimensional total variationminimization has
been studied in many works, either from a continuous [29] or discrete [25, 33] point
of view. Versions for more general variants have also been considered, like [46] for
higher-order total variation, [30] for ‘nonuniform tubes’ which can be seen as a weight
imposed directly on the taut string formulation, and [40]where the graph setting is con-
sidered. Likewise, there is a large number ofworks consideringweightedTVdenoising
seen as having spatially-dependent regularization parameters, and approaches to their
automatic selection. This literature is extensive and the choice of weights for particular
tasks is beyond the scope of this work, so we only explicitly mention the analytical
studies [34] for the one-dimensional case and [8] for higher dimensions and weights
that degenerate at the boundary. In contrast, we have not been able to find mate-
rial combining both weighted TV functionals and taut string characterizations, which
motivates our investigations below.

In Sect. 5 we explore the possibility of extending Theorem 1 or parts thereof to
the setting of higher-order regularizers related to the total variation. We obtain a
boundedness result for the case of infimal convolution of TV and TV2 regularizers,
for which the optimality conditions are closely related to subgradients of TV. Finally,
we also present counterexamples suggesting that L∞ bounds in the case of total
generalized variation (TGV) likely need methods different to those considered in this
work.

2 Preliminaries

In this section we collect definitions and preliminary results.

Definition 1 For a convex functional F : X → R ∪ {+∞}, where X is a Banach
space, the subgradient or subdifferential of F at some element u ∈ X is the set defined
as
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∂X F(u) = {
v ∈ X ′ ∣∣ F(ū) − F(u) � 〈v, ū − u〉(X ′,X) for all ū ∈ X

}
,

where X ′ is the dual Banach space of X and 〈·, ·〉(X ′,X) denotes the corresponding
duality product.

2.1 Subgradient of TV, Pairings, and Slicing

The total variation is defined as

TV(u; �) := sup

{∫
�

u(x) div z(x) dx
∣∣∣ z ∈ C1

c (�;Rd ) with |z(x)| � 1 for all x ∈ �

}
,

(3)

which in turn motivates defining the perimeter in � of a Lebesgue measurable subset
E ⊂ � as Per(E) := TV(1E ), where 1E is the indicatrix taking the value 1 on E and
0 on Rd \ E .

We notice that (3) is the Fenchel conjugate with respect to the dual pair
(Ld , Ld/(d−1)) of the convex set K := div{z ∈ C1

c (�;Rd), ‖z‖L∞(�) � 1}, so that

(TV)∗ = (
(χK )∗

)∗ = χK , (4)

where χK is the convex characteristic function with value 0 on K and +∞ elsewhere,
and K is the strong Ld closure of K . This closure in turn satisfies (as stated in [20,
Def. 2.2] and proved in [13, Prop. 7]) the identity

∂ TV(0) = K

=
{
div z

∣∣ z ∈ L∞(�;Rd), ‖z‖L∞(�) � 1, div z ∈ Ld (�), z · n∂� = 0 on ∂�
}

,

where the equality z · n∂� = 0 is understood in the sense of the normal trace in
W 1,d(div), that is,

∫
�

div z u = −
∫

�

z · ∇u for all u ∈ W 1,d/(d−1)(�).

Now, since TV is positively one-homogeneous, we have (see [38, Lem. A.1], for
example) that

v ∈ ∂ TV(u) whenever v ∈ ∂ TV(0) and
∫

�

vu = TV(u). (5)

It is natural to ask whether one can use that v = div z for some z to integrate by parts
in the last equality, which would formally lead to z · Du = |Du|, or z = Du/|Du|.
However, since z is only in L∞(�;Rd) and not guaranteed to be continuous, there is
no immediate meaning to the action of the measure Du on z, and Du/|Du| can only
be defined |Du|-a.e. as the polar decomposition of Du. This difficulty is mitigated by
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defining (as first done in [7]) the product between Du and z as a distribution (z, Du)

given by

〈
(z, Du), ϕ

〉 = −
∫

�

(z · ∇ϕ)u −
∫

�

uϕ div z for ϕ ∈ C∞
c (�). (6)

This definition makes sense whenever u ∈ BV(�) ∩ Ld/(d−1)(�) and

z ∈ Xd(�) =
{
z ∈ L∞(�;Rd)

∣∣ div z ∈ Ld(�)
}

⊃ ∂ TV(0).

Moreover if suppϕ ⊂ A for some open set A also [7, Thm. 1.5]

∣∣〈(z, Du), ϕ
〉∣∣ � ‖z‖L∞(�)‖ϕ‖L∞(�)|Du|(A),

so it can be extended to a measure, which in fact is absolutely continuous with
respect to |Du|, and whose corresponding Radon-Nikodým derivative we denote by
θ(z, Du, ·) ∈ L1(�, |Du|). Moreover, there exists a generalized normal trace of z
on ∂� denoted by [z, n∂�] ∈ L∞(∂�) for which the following Green’s formula [7,
Thm. 1.9] holds:

∫
∂�

[z, n∂�]ũ dHd−1 = (z, Dũ)(�) +
∫

�

div z ũ for all ũ ∈ BV(�) ∩ Ld/(d−1)(�).

(7)

With these definitions in mind (5) may be written [6, Prop. 1.10] as v ∈ ∂ TV(u) if
and only if

v = − div z for some z ∈ Xd(�) satisfying

‖z‖L∞(�) � 1, [z, n∂�] = 0, and (z, Du)(�) = TV(u).
(8)

Since we will make extensive use of level sets, we now fix the notation we use for
them:

Definition 2 Given a function u ∈ Ld/(d−1)(�) we denote by Es the upper level set
{u > s} if s > 0, and the lower level set {u < s} for s < 0, so that |Es | < +∞ for all
s ∈ R\{0}. These two cases can be summarized as

Es := {
x | sign(s) u(x) > |s|},

Finally, the following characterization of the subgradient of TV in terms of perimeter
of level sets is crucial for our results below:

Lemma 1 Let u and Es be as in Definition 2. The following assertions are equivalent:

• v ∈ ∂ TV(u) ⊂ Ld(�).
• v ∈ ∂ TV(0) and

∫
�

vu = TV(u).
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• v ∈ ∂ TV(0) and for a.e. s,

Per(Es) = sign(s)
∫
Es

v. (9)

• For a.e. s, the level sets Es satisfy

Es ∈ argminE⊂� Per(E) − sign(s)
∫
E

v.

Proof The equivalence between the first two items follows from TV being positively
one-homogeneous, and a proof can be found in [38, Lem.A.1], for example.Aproof for
the other statements in the L2(R2) setting, but which generalizes without modification
to the present case, can be found in [21, Prop. 3]. ��

2.2 Dual Solutions and Their Stability in One-Homogeneous Regularization

In [36, Prop. 3.3], the dual problem to (1) is computed to be

sup
p∈Lq′(�),

A∗ p∈∂ TV(0)⊂Ld (�)

〈p, f + w〉(Lq′,Lq ) − α
1

σ−1

σ ′ ‖p‖σ ′
Lq′(�), (Dα,w)

where q ′ = q/(q − 1) is the conjugate exponent of q, and analogously for σ ′, and
we notice that owing to the strict concavity of the objective, this problem has a unique
maximizer. Also, in [36, Prop. 3.6] it is proved that the solutions of (Dα,w) satisfy

‖pα,w − pα,0‖Lq′(�) � ρLq ,σ

(‖w‖Lq (�)

2α
1

σ−1

)
, (10)

where ρLq ,σ is defined as the inverse of the function R
+ → R

+ defined by

t �→
δ‖·‖σ ′

Lq′
/

σ ′(t)

t

where δ‖·‖σ ′
Lq′
/

σ ′ is in turn the largest modulus of uniform convexity of the functional

‖ · ‖σ ′
Lq′(�)

/
σ ′, that is, the largest function ψ satisfying for all u, v ∈ Lq′(�) and

λ ∈ (0, 1):

1

σ ′ ‖λu + (1 − λ)v‖σ ′
Lq′(�) � λ

σ ′ ‖u‖σ ′
Lq′(�)

+1 − λ

σ ′ ‖v‖σ ′
Lq′(�) − λ(1 − λ)ψ(‖u − v‖Lq′(�)).
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Now, since we have chosen σ = min(q, 2), we have [11, Thm. 5.4.6, Ex. 5.4.7] and
[51, Example 2.47]

δLq′(ε) � Cεmax(2,q/(q−1)) �⇒ δ‖·‖σ ′
Lq′
/

σ ′(t) � Ctσ
′

where δLq′ denotes themodulus of uniform convexity of Lq′(�) (which is independent
of �) defined using points in the unit ball, that is

δLq′(ε) = inf

{
1 −

∥∥∥∥ p1 + p2
2

∥∥∥∥
Lq′(�)

∣∣∣∣ ‖p1‖Lq′(�)

= ‖p2‖Lq′(�) = 1 and ‖p1 − p2‖Lq′(�) � ε

}
.

In this setting and defining vα,w := A∗ pα,w ∈ ∂ TV(uα,w) as in (2), we can deduce
from (10) that

‖vα,w − vα,0‖Ld (�) � C‖A∗‖
(‖w‖Lq (�)

2α
1

σ−1

) 1
σ ′−1 = Cq,σ ‖A∗‖

⎛
⎜⎝‖w‖

1
σ ′−1
Lq (�)

α
1

σ−1
1

σ ′−1

⎞
⎟⎠

= Cq,σ ‖A∗‖‖w‖σ−1
Lq (�)

α
, (11)

which tells us that the threshold to control the effect of the noise on the dual variables
is a direct generalization of the linear parameter choice that would arise in the case
σ = q = 2.

To know more about the asymptotic behavior of vα,w as both α and w vanish
one needs an additional assumption. Whenever u† denotes a solution of Au = f of
minimal TV among such solutions, we say that the source condition is satisfied if there
exists p ∈ Lq′(�) such that

A∗ p ∈ ∂ TV(u†). (12)

Now, since TV is not strictly convex, u† may not be unique, but arguing as in [38,
Rem. 3] we have that if û† is another such solution and we have (12), then A∗ p ∈
∂ TV(û†) as well, for the same source element p. For our purposes, the significance
of this source condition comes from the fact that it guarantees that the formal dual
problem (D0,0) obtained by setting α = 0 and w = 0 in (Dα,w) has at least one
maximizer, namely the source element p.

Under this source condition assumption and taking a sequence αn → 0 we have in
the case where noise is not present (w = 0) the convergence

vαn ,0 = A∗ pα,0 → A∗ p0,0 =: v0,0 strongly in Ld(�), (13)
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where p0,0 is the element of Lq′(�) of minimal norm among those satisfying (12),
which is unique. This convergence is proved (see [36, Prop. 3.4] for a detailed argu-
ment) by testing the optimality of pα,0 and p0,0 in (Dα,0) and (D0,0) with respect
to each other to obtain both pα,0⇀p0,0 weakly in Lq ′

(�) and ‖pα,0‖Lq′
(�)

�
‖p0,0‖Lq′

(�)
, which together imply strong convergence by using the Radon-Riesz

property of Lq ′
(�). Finally, combining this convergence with (11), we also have that

if wn ∈ Lq(�) are such that

‖wn‖σ−1
Lq (�)

αn
→ 0, then also vαn ,wn → A∗ p0,0 strongly in Ld(�).

3 Boundedness, Uniform Boundedness, and Strong Convergence

We start with a direct proof of boundedness of minimizers uα,w of (1) which, using the
results cited in the previous section, can be made uniform for small noise and strong
enough regularization. It relies on studying the level sets

Es
α,w := {

x | sign(s) uα,w(x) > |s|}.

Proposition 1 Let� = R
d . Thenminimizers uα,w of (1) belong to L∞(Rd). Moreover,

under the source condition A∗ p0 ∈ ∂ TV(u†) and a parameter choice satisfying the
condition

‖w‖σ−1
Lq (�) � ηα

Cq,σ ‖A∗‖ (14)

where Cq,σ is the constant in (11) and η < �d is the constant of the isoperimetric
inequality Per(E) � �d |E |(d−1)/d for E of finite perimeter, we have a bound for
‖uα,w‖L∞(Rd ) which is uniform in α and w.

Proof We first show the claim for fixed α,w. To do this, we make use of (Dα,w): the
problem has a solution pα,w, we have strong duality and the optimality condition

vα,w := A∗ pα,w ∈ ∂ TV(uα,w).

In what follows, we assume without loss of generality that s > 0 so that Es
α,w :=

{uα,w > s}. From (9) and the Hölder inequality we can derive for a.e. s > 0 the
estimate

Per(Es
α,w) =

∫
Es

α,w

vα,w � |Es
α,w|(d−1)/d

(∫
Es

α,w

|vα,w|d
)1/d

.
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Using the isoperimetric inequality Per(Es
α,w) � �d |Es

α,w|(d−1)/d , we obtain

Per(Es
α,w) � 1

�d
Per(Es

α,w)

(∫
Es

α,w

|vα,w|d
)1/d

. (15)

Now, vα,w ∈ Ld(Rd) so for any ε > 0, there exists a δ > 0 such that for sets E with
|E | � δ,

∫
E |vα,w|d � εd . In particular, if |Es

α,w| � δ, it implies

Per(Es
α,w) � ε

�d
Per(Es

α,w),

which is not possible for ε too small if |Es
α,w| > 0. Note that the bound on δ does not

depend on s, only on vα,w, which means that we have a uniform positive lower bound
on the mass of every level set Es

α,w. From the layer-cake formula for Ld/(d−1)(Rd)

functions [42, Thm. 1.13]

∫
Rd

(u+
α,w)d/(d−1) =

∫ ∞

0

d

d − 1
s1/(d−1)|Es

α,w| ds, where u+
α,w = max(uα,w, 0)

we conclude that there must exist s0 > 0 such that for s � s0, |Es
α,w| = 0, which

means that uα,w � s0 a.e. in R
d . We prove similarly that u−

α,w = max(0,−uα,w) is
bounded.

Finally, let us assume that (αn, wn) is a sequence of regularization parameters and
noises for which (14) holds. From vαn ,0 → v0,0 for any sequence αn → 0 (see (13)),
one infers that the family {vα,0}α>0 is equi-integrable in Ld(Rd). We want, as before,
to estimate

∫
Es

α,w
|vα,w|d . This can be done by writing

(∫
Es

α,w

|vα,w|d
)1/d

�
(∫

Es
α,w

|vα,0|d
)1/d

+
(∫

Es
α,w

|vα,w − vα,0|d
)1/d

�
(∫

Es
α,w

|vα,0|d
)1/d

+ ‖vα,w − vα,0‖Ld (Rd ).

Now, using the equi-integrability of vα,0, one can, for any ε, find δ so that as soon as
|Es

α,w| � δ, the first term of the right hand side is bounded by ε. On the other hand,
the second term is, independently from δ, bounded by η < �d , as a consequence of
(11) and (14). We conclude that as soon as |Es

α,w| � δ, we have

Per(Es
α,w) � ε + η

�d
Per(Es

α,w)

which is still not possible for ε too small (independent of s and α,w satisfying (14))
if |Es

α,w| > 0. ��
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Remark 1 By a similar argument on the Es
α,w (see [38, Lem. 5]), we can actually show

that uα,w has compact support, so that u+
α,w ∈ L1(Rd) and we could use the (simpler)

layer cake formula in L1:

∫
Rd

u+
α,w =

∫ ∞

0
|Es

α,w| ds

which would provide the same contradiction.

Remark 2 The parameter choice condition (14) does not necessarily imply conver-
gence of the dual variables. This is the case when

‖wn‖σ−1
Lq (�)

αn
→ 0 as n → ∞

so that, as remarked in Sect. 2.2, in fact (13) and (11) imply that

vαn ,wn → A∗ p0 strongly in Ld(�).

In particular, this implies that the family (vαn ,wn )n is equi-integrable in L
d(Rd), which

means that in the reasoning coming after (15), the δ can be chosen independent of n,
which would simplify the proof in this more restrictive case.

Remark 3 In the case of denoising in the plane with the Rudin-Osher-Fatemi model
[48], for which d = m = 2, q = 2 and A = Id : L2(R2) → L2(R2), we have that
vα,w = α−1( f + w − uα,w) and Proposition 1 applies as soon as f + w ∈ L2(R2).

Remark 4 The same proof shows that if the source condition (12) is satisfied, then
u† ∈ L∞(Rd).

We consider now the case when � is a bounded Lipschitz domain, which leads to
two cases for the functional in (1). First, we can consider the total variation TV(u;Rd)

of the extensionby zero ofu from� to thewholeRd ,whichwe refer to as homogeneous
Dirichlet boundary conditions. Second, we can consider the variation TV(u;�)which
we refer to as homogeneous Neumann boundary conditions, since the test functions
in (3) are compactly supported in �.

Proposition 2 Proposition 1 also holds for bounded Lipschitz domains � and either
homogeneous Dirichlet or Neumann boundary conditions on uα,w.

Proof n the Dirichlet case we work with the functional in (1) but consider TV(·;Rd)

among functions in Ld/(d−1)(Rd) constrained to vanish on R
d\�. This can be

translated to a formulation on Ld/(d−1)(�) by considering E : Ld/(d−1)(�) →
Ld/(d−1)(Rd) the extension by zero on R

d\� and TV(· ;Rd) ◦ E . By [2, Cor. 3.89]
and using that � is a Lipschitz domain we have that

TV(Eu;Rd) = TV(u;�) +
∫

∂�

|u| dHd−1,
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where we emphasize that the first total variation is computed inRd whereas the second
one in� as in (3). The values of u at the boundary are understood in the sense of traces.

In this situation, sinceE is linearwe can consider the compositionTV ◦ E as a convex
positively homogeneous functional in its own right, which gives us that indeed,

vα,w := A∗ pα,w ∈ ∂Ld/(d−1)(�)(TV ◦ E)(uα,w) ⊂ Ld(�),

where pα,w is defined in (2). By general properties of one-homogeneous functionals
we then have (as in the first two items of Lemma 1) that

TV(Euα,w;Rd) =
∫

�

vα,wuα,w.

Moreover, we can argue exactly as in [21, Prop. 3] (which uses more properties of the
subgradient than the equality above) to obtain that also in this case

Per(Es
α,w;Rd) = sign(s)

∫
Es

α,w

vα,w,

where the level sets Es
α,w are defined as in Proposition 1, and from which we can

follow the rest of the proof exactly, since Es
α,w ⊂ �.

In the Neumann case we consider TV as TV(u;�). This parallels what is done in
[36, Sec. 6] and with more details in the 2D case in [38, Sec. 4.3]. In this case, one
uses the estimate (see [38, Sec. 4.3] for a proof)

C� Per(F;�) � |F | d−1
d |� \ F | d−1

d

|�| d−1
d

, (16)

where C� is the constant of the Poincaré-Sobolev inequality

∥∥∥∥u − 1

|�|
∫

�

u

∥∥∥∥
Ld/(d−1)(�)

� C� TV(u ; �).

To see that (16) can play the role of the isoperimetric inequality, notice that we only
need to use this inequality for large values of |s| and sets of small measure. Therefore
we may assume

|Es
α,w| � |�|

2
, so that C� Per(Es

α,w;�) � 1

2
d−1
d

|Es
α,w| d−1

d .

��
Remark 5 Let us assume that A and A∗ preserve boundedness, that is, Au ∈ L∞(�)

for all u ∈ L∞(�) and A∗ p ∈ L∞(�) whenever p ∈ L∞(�). Then, if f , w ∈
L∞(�) and in the situation of Proposition 1, the optimality condition (2) implies that
vα,w ∈ L∞(�) as well. One can then use strong regularity results (see [44, Thm. 3.1]
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or [28, Thm. 3.6(b)], for example) to obtain that ∂{uα,w > s} ∈ C1,γ for all γ < 1/4,
provided that d � 7.Moreover, since our estimates are uniform under the assumptions
of Theorem 1, this regularity can also bemade uniform along a sequence [53, Secs. 1.9,
1.10] as well.

The assumption of both A and A∗ preserving boundedness is easily seen to be
satisfied for convolution operators with regular enough kernels, since in this case A∗
is of the same type. However, it also holds for other commonly used operators. As an
example, let us consider the case of the Radon transformR of functions on a bounded
domain � ⊂ R

d . In this case one can consider � = S
d−1 × (−R, R) with R > 0

large enough so that � ⊂ B(0, R) and

A : Ld/(d−1)(�) ⊂ L2d/(2d−1)(Rd)
R−→ L2(Sd−1 × R)

r
Sd−1×(−R,R)−−−−−−−→ L2(

S
d−1 × (−R, R)

)
,

the last map being restriction, since R is continuous between the middle two spaces
[45, Thm. 1]. Now, if u ∈ L∞(�) then clearly Au ∈ L∞(

S
d−1 × (−R, R)

)
as well,

since the integrals on planes in the definition of R are then on domains of uniformly
bounded Hausdorff measureHd−1, that is

|Au(θ, t)| =
∣∣∣∣
∫

θ⊥
u(tθ + y) dHd−1(y)

∣∣∣∣
� ‖u‖L∞(�) Hd−1(B(0, R) ∩ {x1 = 0}) for a.e. (θ, t).

Similarly, A∗ is then extension by zero composed with the backprojection integral
operator, so we have

|A∗ p(x)| =
∣∣∣∣
∫
Sd−1

p(θ, x · θ) dHd−1(θ)

∣∣∣∣ � ‖p‖L∞(Sd−1×(−R,R))Hd−1(Sd−1) for a.e. x .

Observe that for the case of� ⊂ R
2 and convolutions with L2 kernels boundedness

is immediate, since Young’s inequality for convolutions used in (2) directly implies
vα,w ∈ L∞(�) as soon as uα,w, f , w ∈ L2(�).

Corollary 1 Under the assumptions of Proposition 1, for a sequence of minimizers
{uαn ,wn }n with αn, wn satisfying (14) and αn → 0 and wn → 0 as n → ∞, we have
that, up to a subsequence,

uαn ,wn −−−→
n→∞ u† strongly in L p(�) for all p ∈ (1,∞), (17)

where u† is an exact solution of Au = f with minimal TV among such solutions. If
there is only one exact solution, then the whole sequence converges to it in the same
fashion.

Proof We first notice that the parameter choice (14) is less restrictive than the one

needed in [36, Prop. 3.1] which provides strong convergence to some u† in L p̂
loc(�)

for p̂ ∈ (1, d/(d − 1)) and up to a subsequence by a basic compactness argument.
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Moreover, if � = R
d , we can apply [36, Lem. 5.1] to obtain that all of the uαn ,wn and

u† are supported inside a common ball B(0, R) for some R > 0. If, in contrast, � is
bounded, then � ⊂ B(0, R) and we may extend to the latter by zero.

For this subsequence (which we do not relabel) and p̂ � p we have

∫
�

|uαn ,wn − u†|p � ‖uαn ,wn − u†‖ p̂
L p̂(B(0,R))

‖uαn ,wn − u†‖p− p̂
L∞(�), (18)

which using Proposition 1 immediately implies (17).
Finally, if the minimal TV solution of Au = f is unique, any subsequence has a

further subsequence converging to this unique solution, so the whole sequence must
in turn converge to it. ��
Remark 6 In the plane, under the same source condition (12), a parameter choice
equivalent to the one we use for d = 2, and additional assumptions for both A and
u†, linear convergence rates are proved in the L2 setting in [54, Thm. 4.12], that is
‖uαn ,wn − u†‖L2(�) = O(αn) (observe that the parameter choice forces ‖wn‖ =
O(αn)). Therefore, this result can be combined with ours to obtain also a convergence
rate of order 2/p in L p(�). To see this, we just notice that by Remark 4 we have
u† ∈ L∞(�) in addition to the uniform bound on ‖uαn ,wn‖L∞(�), so that as in (18)
we have

‖uαn ,wn − u†‖L p(�) � ‖uαn ,wn − u†‖2/p
L2(�)

‖uαn ,wn − u†‖(p−2)/p
L∞(�) = O(α

2/p
n ).

One might wonder if strong convergence in L∞(�) is possible. In fact, it is not:

Example 1 Consider (as in Remark 3) denoising in the plane R2 with parameter αn =
1/n of f + wn , where for arbitrarily small c > 0 we define

u0,0 = f = 1B(0,1) and wn = 1
B
(
0,
√

1+ c
n

) − 1B(0,1),

so that ‖wn‖L2(R2) =
√

πc

n
and

‖wn‖L2(R2)

αn
= √

πc.

Then since f + wn = 1
B
(
0,
√

1+ c
n

) we know [20, Sec. 2.2.3] that uαn ,wn is also

proportional to 1
B
(
0,
√

1+ c
n

), making L∞(R2) convergence impossible. Notice that

this situation does not change for a more aggressive parameter choice.

3.1 Results with Density Estimates

The combination of the source condition Ran(A∗)∩ ∂ TV(u†) 
= ∅ and the parameter
choice (14) leads to uniform weak regularity estimates for the level sets of uα,w, and
boundedness may also be deduced from those. More precisely, recalling that

Es
α,w = {

x | sign(s) uα,w(x) > |s|},
123
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it is proved in [36, Thm. 4.5] that

|B(x, r) ∩ Es
α,w| � C |B(x, r)| and |B(x, r) \ Es

α,w| � C |B(x, r)|, (19)

for x ∈ ∂Es
α,w

and r � r0, where r0 andC are independent of x , n and s, and where we
have taken a representative of Es

α,w for which the topological boundary equals the sup-
port of the derivative of its indicatrix [43, Prop. 12.19], that is ∂Es

α,w = supp D1Es
α,w

.
In turn, this support can be characterized [43, Prop. 12.19] by the property

supp D1Es
α,w

=
{
x ∈ R

d
∣∣∣∣ 0 <

|Es
α,w ∩ B(x, r)|
|B(x, r)| < 1 for all r > 0

}
,

where we note that it could be that these quotients tend to 0 or 1 as r → 0.
We refer to the inequalities in (19) as inner and outer density estimates respectively,

and the combination of both as Es
α,w satisfying uniform density estimates. Such esti-

mates are the central tool for the results of convergence of level set boundaries in
Hausdorff distance in [21, 36–38].

The proof of (19) is more involved than those in the previous section, but once it is
obtained, boundedness of minimizers follows promptly:

Proposition 3 Assume that the Es
α,w satisfy uniform density estimates at scales r � r0

with constant C, and that α is chosen in terms of ‖w‖Lq (�) so that uα,w is bounded
in Ld/(d−1)(�) for some p � 1. Then, in fact {uα,w} is uniformly bounded in L∞(�).
If additionally we have a sequence uαn ,wn → u† strongly in L p̂(�) for some p̂, then
also uαn ,wn → u† strongly in L p(�) for all p such that p̂ � p < ∞.

Proof If uα,w is not bounded in L∞(�), then for every M > 0 there are α := α(M)

andw := w(M) for which |EM
α,w| > 0. The inner density estimate at scale r0 for some

point x ∈ ∂EM
α,w then reads

|B(x, r0) ∩ EM
α,w| � C |B(x, r0)|,

which implies

∫
�

|uα,w|d/(d−1) �
∫
B(x,r0)∩EM

α,w

|uα,w|d/(d−1) � C |B(x, r0)|Md/(d−1),

which, since r0 is fixed, contradicts the fact that the family {uα,w} is bounded in
Ld/(d−1)(�). For the second statement, we can argue as in (18). ��
Remark 7 In the Dirichlet case of Proposition 2 we have assumed only that � is a
Lipschitz domain without further restrictions. In this context, unless � is convex, it is
not true that Es is a minimizer of

Per(E) −
∫
E
Evα,w among E ⊂ R

d ,
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since these may extend beyond �, while the functional u �→ (TV ◦ E)(u) − ∫
�

vα,wu
is only sensitive to variations supported in �. This kind of variational problem is used
in [36, 38] to obtain the density estimates (19), but for that one needs (see [38, Lem. 9])
to extend vα,w by a variational curvature of�minorized by a function in Ld(Rd). The
existence of such a curvature is an additional restriction on � and it is not satisfied for
domains with inner corners in R

2, for example.

One can also make the bound slightly more explicit in terms of the constant and
scale of the density estimates:

Remark 8 Let u have level sets Es := {sign(s)u > |s|} satisfying density estimates
with constant C at scale r0. Then, we have

‖u‖L∞ � 1

C1/p · |B(0, r0)|1/p ‖u‖L p .

This is a direct application of the Markov inequality. Indeed, since there is always
a boundary point x0, the level sets Es which are nonempty must satisfy |Es | �
C |B(x0, r0)| = C |B(0, r0)|, which implies

∫
�

|u|p � |s|p|Es | � |s|pC |B(0, r0)|.

In particular, this implies

1

C1/p|B(0, r0)|1/p ‖u‖L p � |s|

meaning that as soon as |s| exceeds 1
C1/p |B(0,r0)|1/p ‖u‖L p , Es must be empty.

Corollary 2 Under the assumptions of Proposition 3 above, let s with |s| > ‖u†‖L∞ .
Then, we have

lim sup
n→∞

∂Es
αn ,wn

= ∅,

where lim sup ∂Es
αn ,wn

consists [47, Definition 4.1] of all of limits of subsequences of
points in ∂Es

αn ,wn
.

Proof By the convergence uαn ,wn → u† in Lq̂(�), if |s| > ‖u†‖L∞ we have
|Es

αn ,wn
| → 0. If we had x ∈ lim supn ∂Es

αn ,wn
, we could produce a subsequence

{xn}n in � with xn ∈ ∂Es
αn ,wn

and xn → x for x ∈ �. Using the inner density
estimate for some r0 > 0, we would end up with

|Es
αn ,wn

| � |B(xαn , r0) ∩ Es
αn ,wn

| � C |B(0, r0)|,

which contradicts |Es
αn ,wn

| → 0. ��
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4 Taut String withWeights and Unbounded Radial Examples

In this section we consider denoising of one-dimensional data with a modified Rudin-
Osher-Fatemi (ROF) functional with weights in both terms, obtaining a taut string
characterization of the solutions which reduces the problem to finding finitely many
parameters. The main difficulty is that we allow weights which may degenerate at the
boundary, which forces the use of weighted function spaces in all the arguments.

4.1 One-DimensionalWeighted ROF Problem and Optimality Condition

We start with two weights φ, ρ on the interval (0, 1) for which

φ, ρ > 0 on (0, 1), ρ ∈ Lip(0, 1), φ ∈ C(0, 1) ∩ L∞(0, 1), and
1

φ
∈ L∞

loc(0, 1),

(20)

where we notice that it could be that φ(x) → 0 or ρ(x) → 0 as x → 0 or x → 1.
Using these weights we consider the weighted denoising minimization problem

inf
u∈L2

φ(0,1)

∫ 1

0

(
u(x) − f (x)

)2
φ(x) dx + α TVρ(u), (21)

where we define the weighted total variation with weight ρ in the usual way (see [1,
9], for example) as

TVρ(u) := sup

{∫ 1

0
u(x)z′(x) dx

∣∣∣∣ z ∈ C1
c (0, 1) with |z(x)| � ρ(x) for all x

}

(22)

and the problem is considered in the weighted Lebesgue space

L2
φ(0, 1) :=

{
u

∣∣∣∣ ‖u‖2
L2

φ

:=
∫ 1

0
u2φ < ∞

}
,

which is a Hilbert space when considered with the inner product

〈v, u〉L2
φ

=
∫ 1

0
φ vu.

The predual variables and optimality conditions for (21) will then naturally be formu-
lated on a weighted Sobolev space, namely

W 1,2
1,1/φ(0, 1) :=

{
U ∈ L2(0, 1)

∣∣∣U ′ ∈ L2
1/φ(0, 1)

}
.
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The first step is to see that under the assumptions (20), the denoising problem is
still well posed:

Proposition 4 Assume that f ∈ L2
φ(0, 1). Then, there is a unique minimizer uα of

(21).

Proof With the assumptions on φ, ρ, these weights stay away from zero on any com-
pact subset of (0, 1), which means that we have, for an open subset A ⊂ (0, 1), for
which in particular A ⊂⊂ (0, 1), a constant CA such that for every u ∈ L2

φ(0, 1)

∫
A

(
u(x) − f (x)

)2
φ(x) dx + α TVρ(u; A)

� CA

(∫
A

(
u(x) − f (x)

)2 dx + α TV(u; A)

)
.

This means that along a minimizing sequence {un}n for (21), we have

sup
n

∫
A

(
un(x) − f (x)

)2 dx + α TV(un; A) < +∞.

Applying Cauchy-Schwarz on the first term and since α > 0, we obtain

sup
n

∫
A

∣∣un| + α TV(un; A) < +∞

which allows applying [2, Thm. 3.23] to conclude that a not relabeled subsequence
of {un}n converges in L1

loc(0, 1) to some u∞ ∈ BVloc(0, 1). Now, arguing as in [17,
Prop. 1.3.1] we have that TVρ is lower semicontinuous with respect to strong L1

loc

convergence. To see this, let z ∈ C1
c (0, 1)with |z| � ρ, so that we have un

L1(supp(z))−−−−−−→
u∞ and

∫ 1

0
unz

′ →
∫ 1

0
u∞z′.

Since the left hand side is bounded by TVρ(un), this implies in particular that for any
such z,

lim inf
n

TVρ(un) �
∫ 1

0
u∞z′.

Taking the supremum over z as in (22), we obtain the semicontinuity

lim inf
n

TVρ(un) � TVρ(u∞). (23)
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Moreover, we may take a further subsequence of {un}n converging weakly in L2
φ(0, 1)

to a limit which clearly must be again u∞, and the first term of (21) is lower semi-
continuous with respect to this convergence since it involves only the squared norm
of L2

φ(0, 1). This and (23) show that u∞ is actually a minimizer of (21). ��
We have that u realizes the infimum in (21) if and only if

f − u

α
∈ ∂L2

φ
TVρ(u) (24)

where the subgradient means that v ∈ ∂L2
φ
TVρ(u) if and only if

TVρ(u) +
∫ 1

0
v(ũ − u)φ � TVρ(ũ) for all ũ ∈ BVρ(0, 1) ∩ L2

φ(0, 1).

This set is characterized (with assumptions on the weights covering ours) in [8,
Lem. 2.4], which in one dimension yields the following generalization of (8):

There exists ξ ∈ L∞(0, 1) with |ξ | � 1 and (ρξ)′ ∈ L2
1/φ(0, 1),

for which
∫ 1

0
vũφ = (ρξ, Dũ)(0, 1) for all ũ ∈ BVρ(0, 1) ∩ L2

φ(0, 1)

and also
∫ 1

0
vuφ = (ρξ, Du)(0, 1) = TVρ(u),

(25)

where it is to be noted that in comparison to (8), we always consider the product ρξ

together, and generally avoid differentiating ρ alone. Like for (6), the second line of
(25) generalizes integration bypartswhen ũ ∈ C∞

c (0, 1), sowehave that vφ = −(ρξ)′
in the sense of distributions, and ρξ ∈ W 1,2

1,1/φ(0, 1). In analogy to (7), it is tempting
to interpret this equality in terms of boundary values. However, as remarked in [8,
Below Lemma 2.4], to which extent this is possible depends on further properties of
φ. In our one-dimensional case and noting that because φ ∈ L∞(0, 1) ∩ C(0, 1) the
inverse 1/φ remains bounded away from zero on the closed interval, and we have

W 1,2
1,1/φ(0, 1) ⊂ W 1,2(0, 1) ⊂ C([0, 1]), (26)

and as we will prove in Theorem 2, in fact we have that ρ(0)ξ(0) = ρ(1)ξ(1) = 0, in
particular for v = ( f − u)/α in (24).

Since TVρ is positively one-homogeneous, we recognize in the above that the first
statement of (25) characterizes ∂L2

φ
TVρ(0), and by Fenchel duality in L2

φ(0, 1) (as in

[27, Thm. III.4.2] with � = Id), we have

min
u∈L2

φ(0,1)

∫ 1

0

(
u(x) − f (x)

)2
φ(x) dx + α TVρ(u)

= max
v∈∂

L2
φ
TVρ(0)

1

α
〈v, f 〉L2

φ
− 1

2
‖v‖2

L2
φ

= max
v∈∂

L2
φ
TVρ(0)

∫ 1

0

(
v f

α
− v2

2

)
φ,
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where the last maximization problem can be written as

max
v∈∂

L2
φ
TVρ(0)

∫ 1

0

1

α
v f φ − 1

2
‖v‖2

L2
φ

= −
⎡
⎣ min

v∈∂
L2
φ
TVρ(0)

1

2

∥∥∥ f

α
− v

∥∥∥2
L2

φ

− 1

2α2 ‖ f ‖2
L2

φ

⎤
⎦ ,

for which we notice that since the last term does not involve v, is the familiar formu-
lation as projection on a convex set.

For explicitly characterizing theminimizers, wewill need to give a pointwisemean-
ing to (24), which turns out to be

∫ x

0

(
f (s) − u(s)

)
φ(s) ds = −U (x) for all x ∈ (0, 1), where

U ∈ W 1,2
1,1/φ,0(0, 1) satisfies |U | � αρ and

U (x) = αρ(x)
Du

|Du| (x) for |Du|-a.e. x,
(27)

as we prove in Theorem 2 below. Here, avoiding density questions and owing to the
embedding (26) we have directly defined

W 1,2
1,1/φ,0(0, 1) =

{
U ∈ W 1,2

1,1/φ(0, 1) | U (0) = U (1) = 0
}

.

A first remark about this characterization is that the last equality in the second line
of (27) is made possible by the one-dimensional setting, since then functions in
W 1,2

1,1/φ,0(0, 1) are continuous. Whether such a characterization is possible in higher
dimensions, even without weights, is a much more delicate question, see [13, 22, 24].
A further remark is that (27) implies in particular

∫ x

0

(
f (s) − u(s)

)
φ(s) ds = −αρ(x)

Du

|Du| (x) for |Du|-a.e. x, (28)

which is formulated only in terms of the minimizer u and does not involve additional
derivatives. However, equation (28) only provides information on supp |Du|, so we
cannot immediately conclude that if u satisfies it, then it must be a minimizer of (21).

4.2 TheWeighted String

We can pose, for F ∈ W 1,2
1,1/φ(0, 1) with F(0) = 0, the minimization problem

min

{
1

2

∫ 1

0

1

φ(s)

(
Ũ ′(s)

)2 ds
∣∣∣∣ Ũ ∈ W 1,2

1,1/φ(0, 1), |Ũ − F | � αρ, Ũ (0) = 0, Ũ (1) = F(1)

}
,

(29)

123



51 Page 20 of 42 Applied Mathematics & Optimization (2023) 88 :51

which can be rewritten, with U = Ũ − F , as

min

{
1

2

∫ 1

0

1

φ(s)

(
U ′(s) + F ′(s)

)2 ds
∣∣∣∣U ∈ W 1,2

1,1/φ,0(0, 1), |U | � αρ

}
. (30)

Lemma 2 There is a unique minimizer Ũ0 of (29).

Proof Since we have assumed that φ ∈ L∞(0, 1) ∩ C(0, 1), we have the embedding
(26) and the boundary values and constraints arewell defined and closed.Moreover, the
functional is nonnegative, convex and strongly continuous in W 1,2

1,1/φ(0, 1), so weakly
lower semicontinuous as well. Finally, since U (0) = 0 and U (1) = F(1) are fixed,
the Poincaré inequality in W 1,2

0 (0, 1) provides us with a bound for ‖U‖L2(0,1), so it

is coercive in W 1,2
1,1/φ(0, 1) and we may apply the direct method of the calculus of

variations. ��
Theorem 2 The Fenchel dual of (30), for which strong duality holds, is equivalent to
the weighted ROF problem (21). Specifically, if U0 is the minimizer of (30) and V0
is optimal in the dual problem, then u0 = V0/φ = U ′

0/φ + f is the minimizer of
(21). Moreover, for the pair (u0,U0) we have that (27) is satisfied (replacing u,U by
u0,U0, respectively), and this condition characterizes optimality of this duality pair.

Proof Following for example [34, Sec. 3.1] and using the notation of [27, Thm. III.4.2],
we call

�U = U ′ G(�U ) = 1

2
‖�U + �F‖2

L2
1/φ

F = χL,

where � : W 1,2
1,1/φ,0(0, 1) → L2

1/φ(0, 1), χL denotes the indicator function of L and

L =
{
U ∈ W 1,2

1,1/φ,0(0, 1)
∣∣ |U | � αρ

}
, (31)

so that (30) can be written as

min
U∈W 1,2

1,1/φ,0(0,1)
F(U ) + G(�U ).

In this situation, the dual problem writes

min
V∈L2

1/φ(0,1)
F∗(−�∗V ) + G∗(V ),

where

G∗(V ) =
∫ 1

0

1

φ

(
V 2

2
− �FV

)
,
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and taking into account W 1,2
1,1/φ,0(0, 1) ⊂ L2(0, 1) ⊂ (

W 1,2
1,1/φ,0(0, 1)

)∗ we have

〈V ,�U 〉L2
1/φ

=
∫ 1

0

1

φ
VU ′ =

〈
−
(
V

φ

)′
, U

〉
((

W 1,2
1,1/φ,0

)∗
,W 1,2

1,1/φ,0

)

which in turn implies �∗V = −(V /φ)′ and

F∗(−�∗V ) = sup
U∈L

〈(
V

φ

)′
, U

〉
((

W 1,2
1,1/φ,0

)∗
,W 1,2

1,1/φ,0

)

= sup
U∈L

−
〈
V

φ
, U ′

〉
L2

= sup
U∈L

∫ 1

0

1

φ
U ′V � α TVρ(V /φ),

where for the last inequality we have used that
{
U ∈ C1

c (0, 1)
∣∣ |U | � αρ

} ⊂ L. We
would like to have equality in this last inequality, which holds in particular when

α TVρ(V /φ) �
∫ 1

0

1

φ
U ′V for every V ∈ L2

1/φ(0, 1) ∩ BVρ(0, 1) and all U ∈ L.

(32)

Next, we notice that since

(TVρ)∗ = χ
D(L∩C1

c (0,1))
L21/φ

,

where DU = U ′ for U ∈ W 1,2
1,1/φ,0, the statement (32) is in fact equivalent to density

of C1
c (0, 1) ∩ L in L in the strong W 1,2

1,1/φ topology. Such a density property can
not be obtained by directly mollifying elements of L, because ρ being nonconstant
implies that the mollified functions could violate the pointwise constraint; a modified
mollifying procedure has been considered in [35], but only for continuous ρ with a
positive lower bound, which does not cover our case. Instead, we can replace V /φ in
(32) by a sequence of smooth approximations for which TVρ converges (that is, in
strict convergence), and then pass to the limit. This type of approximation of TVρ has
been proved in [17, Thm. 4.1.6] for Lipschitz ρ but without the lower bound, allowing
ρ to vanish at the boundary and thus covering our situation.

Summarizing, the dual problem writes

min
V∈L2

1/φ(0,1)
α TVρ(V /φ) +

∫ 1

0

1

φ

(
V 2

2
− F ′V

)

that clearly has the same minimizers as

min
V∈L2

1/φ(0,1)
α TVρ(V /φ) +

∫ 1

0

1

φ

(V − F ′)2

2
,
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which in turn becomes (21) if we define u := V /φ and f := F ′/φ, both of which
belong to L2

φ(0, 1).
The optimality conditions for minimizersU0, V0 for this pair of problems are then

�U0 ∈ ∂L2
1/φ

G∗(V0) = {V0 − �F} = {φ(u0 − f )} for u0 = V0
φ

, and

U0 ∈ ∂W 1,2
1,1/φ,0

F∗(−�∗V0).
(33)

Note that we use the results from [27], which means that the subgradients of F∗ are
elements of the primal space W 1,2

1,1/φ,0(0, 1) and not of the bidual
(
W 1,2

1,1/φ,0(0, 1)
)∗∗.

In this case, we have (see [13, Prop. 7])

∂F∗(0) = LW 1,2
1,1/φ ,

where the closure is taken in the strong topology of W 1,2
1,1/φ,0(0, 1). Moreover, we can

also extend F (we denote by F̂ this extension) to C0([0, 1]), the space of continuous
functions on [0, 1] which vanish on the boundary. Then, F̂∗ is defined on Radon
measures and we have

∂F̂∗(0) = LC0
,

where the closure is now taken with respect to uniform convergence in [0, 1]. In fact,
these two closures satisfy

LW 1,2
1,1/φ ⊂ LC0 = {

U ∈ C0([0, 1])
∣∣ |U | � αρ

}
, (34)

as shown in Lemma 3 below. This allows us to relate ∂F∗(0) to subgradients of the
weighted total variation norm for measures, which (see for example [34, Lem. 3.1])
satisfy for each μ ∈ (C0([0, 1])

)∗ that

∂‖ · ‖Mαρ
(μ) ∩ C0([0, 1])

=
{
U ∈ C0([0, 1])

∣∣∣∣U (x) = αρ(x)
μ

|μ| (x) for μ-a.e. x, |U | � αρ

}
,

where

‖ · ‖Mαρ
(μ) = sup

{∫
ϕ dμ

∣∣∣∣ ϕ ∈ C0([0, 1]) with |ϕ(x)| � αρ(x) for all x ∈ [0, 1]
}

.
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With this, in the two lines of (33) we have that

�U0 = φ(u0 − f ) if and only if U0(x) =
∫ x

0
φ(s)(u0(s) − f (s)) ds for all x ∈ (0, 1), and

〈−�∗V0, U0
〉((

W 1,2
1,1/φ,0

)∗
,W 1,2

1,1/φ,0

) = TVρ(V0/φ) if and only if

U0(x) = αρ(x)
Du0

|Du0| (x) for |Du0|−a.e. x , and |U0(x)| � αρ(x) for all x ∈ (0, 1),

with which we arrive at (27). ��

Lemma 3 Let L be defined as in (31). Then, (34) holds.

Proof Since W 1,2
1,1/φ,0(0, 1) is continuously embedded in C0([0, 1]), we immediately

have

LW 1,2
1,1/φ ⊂ LC0

.

Moreover, the constraint |U | � αρ is closed in C0([0, 1]), which shows

LC0 ⊂ {
U ∈ C0([0, 1])

∣∣ |U | � αρ
}
.

For the opposite containment, we consider Pasch-Hausdorff regularizations with
respect to the metric induced by the weight φ of the positive and negative partsU± of
U = U+ −U−, defined by

U±
n (s) := inf

t∈(0,1)

{
n dφ(t, s) +U±(t)

}
,

where

dφ(t, s) :=
∣∣∣∣
∫ s

t
φ(ω) dω

∣∣∣∣ .

Defining Un(s) by U+
n (s) if U (s) > 0 and −U−

n (s) otherwise, so that again Un =
U+
n − U−

n , we obtain regularized functions which are Lipschitz in this metric (this
result dates back to [32], see also [31, Thm. 2.1] for a proof), hence belonging to
W 1,∞

1,1/φ,0(0, 1) ⊂ W 1,2
1,1/φ,0(0, 1) and which are by definition pointwise bounded by

U , so they remain in the constraint set. Moreover, the Un converge uniformly to U in
[0, 1], even if φ can vanish at the boundary. To see this, we notice that the functions
U±
n are pointwise increasing with respect to n and converging to U± respectively, to

use Dini’s theorem on both sequences. ��
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4.3 Switching Behavior

Defining the bijective transformation

� : [0, 1] →
[
0,
∫ 1

0
φ(ω) dω

]

s �→
∫ s

0
φ(ω) dω

and denoting Ǔ := U ◦ �−1 for U ∈ W 1,2
1,1/φ,0(0, 1), we have that Ǔ

′ ∈ L2(0,�(1))

and, using the Poincaré inequality in W 1,2
0 (0,�(1)), that Ǔ ∈ L2(0,�(1)) as well.

Likewise, from Ǔ ∈ W 1,2
0 (0,�(1)) we can conclude U ∈ W 1,2

1,1/φ,0(0, 1) using the
inequality

‖U‖L2 � ‖U‖L∞ � ‖U ′‖L2 � ‖U ′‖L2
1/φ

‖φ‖L∞ .

This implies that (30) is equivalent to

min

{
1

2

∫ �(1)

0

(
Ǔ ′(t) + F̌ ′(t)

)2 dt
∣∣∣∣ Ǔ ∈ W 1,2

0

(
0,�(1)

)
, |Ǔ | � α

(
ρ ◦ �−1

)}
,

(35)

where similarly F̌ = F ◦ �−1. In turn, arguing as in [50, Thm. 4.46] the unique
minimizer of (35) is the same for any strictly convex integrand, so in particular it can
be obtained from

min

{∫ �(1)

0

[(
Û ′(t)

)2 + 1
] 1
2 dt

∣∣∣∣ Û ∈ W 1,2
0

(
0,�(1)

)
,

F̌ − α
(
ρ ◦ �−1

)
� Û � F̌ + α

(
ρ ◦ �−1

)}
, (36)

by setting Ǔ = Û − F̌ . This is now a ‘generalized’ taut string formulation that fits
in those considered in [30, Lem. 5.4]. One can then argue as in [10, Lem. 9] (which
is directly based on the previously cited result) to conclude that for any δ > 0 the
interval (δ,�(1) − δ) can be partitioned into finitely many subintervals on which one
or neither of the constraints is active. The reasoning behind such a result is that in
the form (36), one is minimizing the Euclidean length of the graph of a continuous
function with constraints from above and below, so as long as these constraints are
at some positive distance ε apart, switching from one constraint to the other being
active must cost at least ε and enforce a subinterval in which neither is active. In our
case we need to restrict the interval to avoid the endpoints, because in our setting the
weights are potentially degenerate and ρ ◦ �−1 may vanish at 0 or �(1), and with it
the distance between the two constraints. For such degenerate weights, it is enough to
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assume that each of the two functions F̌ ± α
(
ρ ◦ �−1

)
is either convex or concave on

a neighborhood of 0 and 1 to ensure only finitely many changes of behavior.
With this property and taking into account Theorem 2 we can go back to (27) to

see that the minimizer of (21) alternates between the three behaviors

u(x) = f (x) − α
ρ′(x)
φ(x)

, u′(x) = 0, u(x) = f (x) + α
ρ′(x)
φ(x)

for a.e. x (37)

finitely many times on (δ, 1 − δ) for any δ > 0, and on (0, 1) for data f which is not
oscillating near 0 and 1, and a subinterval corresponding to either the first or the last
case is always followed by another on which u′ = 0.

4.4 Denoising of Unbounded Radial Data

We can apply the results above to find minimizers in the case of radially symmetric
data f ∈ L2(B(0, 1)) of

min
u∈L2(B(0,1))

∫
B(0,1)

|u − f |2 dx + α TV(u), (38)

which considered in Rd corresponds to (21) with ρ(r) = φ(r) = rd−1,

�(s) = 1

d
sd , (ρ ◦ �−1)(t) = (td)(d−1)/d , and

ρ′(r)
φ(r)

= d − 1

r
, (39)

where we remark that (37) for this particular case was claimed without proof in [39].
Indeed, it is easy to guess the form of this term by formally differentiating (27), but
since this is not possible, we prefer to rigorously justify the behavior of minimizers
by the arguments of the previous subsection. The earlier work [52] also contains some
results about nearly explicit minimizers for piecewise linear or piecewise constant
radial data.

In particular, let us compute explicitly the solution in the case d = 3 and

f = 1

| · | ∈ L2
loc(R

3).

In this case we have

F(s) =
∫ s

0
f (r)φ(r) dr = sd−1

d − 1
= s2

2
and

F̌(t) = (F ◦ �−1)(t) = (dt)(d−1)/d

d − 1
= (3t)2/3

2
,

and using (39) we conclude that F̌ + α
(
ρ ◦ �−1

)
is concave for all α > 0 while

F̌ − α
(
ρ ◦ �−1

)
is strictly concave for 0 < α < 1/(d − 1) = 1/2 and convex for
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Fig. 1 Logarithmic plot of the radial profile of the unbounded minimizer (40) of the denoising problem in
R
3 with data f (x) = 1/|x | ∈ L2

(
B(0, 1)

)
, and α = 1/4 resulting in c ≈ 0.34

α ≥ 1/(d − 1) = 1/2. Therefore, (37) tells us that either u(r) = (1 − 2α)/r or
u′(r) = 0 on each of finitely many subintervals. We consider the simplest case of
two such intervals and check that we can satisfy the optimality condition for it. First,
the Neumann boundary condition forces u′(1) = 0 since the radial weight equals one
there. Moreover, if f � 0, the minimizer u of (38) satisfies u � 0 as well, because
in this case, replacing u with u+ cannot increase either term of the energy. Taking
this into account, as well as the fact that u should be continuous [18], we consider for
c ∈ (0, 1) the family of candidates

uα,c(r) :=
{

1−2α
r for r ∈ (0, c)

1−2α
c for r ∈ (c, 1),

(40)

where α � 1/2 is required so that u � 0 is satisfied. Moreover, we have also excluded
segments with value (1 + 2α)/r , since in that case the fidelity cost is the same as for
(1 − 2α)/r , but with a higher variation. To certify optimality of (40), we attempt to
satisfy the pointwise characterization (27). The conditionU (1) = 0, forU defined by
the first line of (27) forces

∫ 1

0
(u(r) − f (r))r2 dr = −

∫ c

0

2α

r
r2 dr +

∫ 1

c
r2
(
1 − 2α

c

)
− r dr = 0,

which is equivalent to

αc2 + 1 − c2

2
+ 1 − c3

3

2α − 1

c
= 0,
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which simplifies to

c3 + 3c

2α − 1
+ 2 = 0, (41)

which if 0 < α < 1/2 can be solved to find a c ∈ (0, 1), as can be easily seen using
the intermediate value theorem. Now, since for the family uα,c, one has Du

|Du| = −1 on
(0, c] = supp(|Du|), one can check that for r on this interval, we have

U (r) = αρ(r)
Du

|Du| (r).

Now, it remains to check that the inequality |U | � αρ holds on (c, 1) (it holds on
(0, c) thanks to the previous argument). Since at c, both functions involved are equal,
it is enough to show

sign
(
U (r)

)
( f (r) − uα,c(r))φ(r) = d

dr
|U (r)| � αρ′(r) for r > c,

which, using the definition of uα,c, is satisfied in particular if

∣∣∣∣1r − 1 − 2α

c

∣∣∣∣ r2 � 2αr , or 1 � r

c
� 1 + 2α

1 − 2α

which, as long as 1
4 � α < 1

2 and taking into account (41), is satisfied as soon as
c � r � 1. Equation (41) can be solved directly, for example for α = 1

4 , and we
obtain a solution c 1

4
∈ (0, 1), which guarantees that (40) is indeed a minimizer of

(38). Thus, we have obtained an explicit example of an unbounded minimizer of (38),
whose graph is depicted in Fig. 1.

Remark 9 We note here (as kindly pointed out by an anonymous reviewer) that using
techniques of [5] it is also possible to find an explicit vector field z̃ satisfying the
characterization (8) to guarantee that (40) is a solution of the denoising problem with
data 1/r . Denoting er = x/|x | and

z̃(x) = z(r)er , so that div z(x) = z′(r) + 2

r
z(r) for d = 3,

one can define

z(r) =

⎧⎪⎪⎨
⎪⎪⎩

−1 for r ∈ (0, c)
1
2α

(
1
r2

− 1
)

+ 1−2α
3cα

(
r − 1

r2

)
for r ∈ [c, 1)

0 for r ∈ [1,+∞)
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for which continuity as well as L∞ boundedness by 1 holds for c solving (41). More-
over

z′(r) + 2

r
z(r) =

{
− 2

r for r ∈ (0, c)
1−2α
αc − 1

αr for r ∈ (c, 1),

so for such c we have

div z̃ ∈ ∂ TV(uα,c) and
uα,c − f

α
= div z̃,

in which case uα,c indeed solves (38). Furthermore, a construction along these lines
would also be possible for Lemma 4 below, for which our proof is based on the same
weighted taut string technique.

For other cases such an explicit computation may be impractical or impossible, but
we can still use the taut string characterization to derive some conditions for local
boundedness and unboundedness of radial minimizers:

Lemma 4 Let f : (0, 1) → R be such that f
∣∣
(δ,1) ∈ L2(δ, 1) for all δ ∈ (0, 1), and

such that for some δ0 ∈ (0, 1) we have

f (r) = 1

rβ
for all r ∈ (0, δ0), so that f ∈ L2

rd−1(0, 1) for 2β < d,

and consider the corresponding minimizer u of (21) with ρ(r) = φ(r) = rd−1. Then,
if u is unbounded on any neighborhood of 0, then necessarily β � 1, and if β > 1, then
u is unbounded on any neighborhood of 0. In particular, for d = 2 and with f of this
form belonging to L2

rd−1(0, 1), we have that u is always bounded on a neighborhood
of 0.

Proof First, as above we notice that f � 0 implies u � 0, since otherwise truncating
u to u+ = max(u, 0) would produce a lower energy in (21). Then, the switching
behavior (37) implies that there is δ ∈ (0, δ0) such that either

u(r) = f (r) − α
d − 1

r
, or u′(r) = 0 for all r ∈ (0, δ), (42)

and one of the two choices must hold for the whole interval (0, δ) by the results cited
in Sect. 4.3, since once again the behavior of u can change only finitely many times
away from 1. To see this, notice that in this case

F(s) =
∫ s

0
f (r)φ(r) dr = sd−β

d − β
for s < δ0, and

F̌(t) = (F ◦ �−1)(t) = (dt)(d−β)/d

d − β
for t < (dδ0)

1/d ,

123



Applied Mathematics & Optimization (2023) 88 :51 Page 29 of 42 51

so that F̌ + α
(
ρ ◦ �−1

)
is concave and F̌ − α

(
ρ ◦ �−1

)
is strictly concave around

zero for β > 1 but convex for β < 1.
Now, we notice that if β < 1 we must have the second case of (42) because u � 0

would be violated in the first case, which proves the first part of the statement. Let
us now assume that β > 1. Comparing in the energy (21) the first case of (42) holds
exactly when for all 0 < ν � δ we simultaneously have

∫ ν

0

[∣∣∣∣ f ′(r) + α
d − 1

r2

∣∣∣∣+ α2
(
d − 1

r

)2
]
rd−1 dr

<

∫ ν

0

(
f (ν) − α

d − 1

ν
− f (r)

)2

rd−1 dr , (43)

which encodes that switching to the second case u′ = 0 should not be advantageous at
any ν � δ, and where equality is not possible since it would contradict uniqueness of
minimizers of (21). Moreover, we also notice that the last term of the left hand integral
can only be finite if d � 3, proving boundedness in case d = 2. Using the specific
form of f (r) = r−β , inequality (43) becomes

∫ ν

0

[∣∣∣∣− β

rβ+1 + α
d − 1

r2

∣∣∣∣+ α2
(
d − 1

r

)2
]
rd−1 dr

<

∫ ν

0

(
1

νβ
− α

d − 1

ν
− 1

rβ

)2

rd−1 dr . (44)

Using the notation I (ν) < J (ν) in (44), since the inequality is either true or false for
every ν < δ simultaneously, it holds if we had that

� := lim
ν→0

I (ν)

J (ν)
< 1.

But for ν small enough we have that I (ν) is dominated (up to a constant factor) by
νd−β−1 and νd−2β is dominated (also up to a factor) by J (ν), which, since β > 1,
implies � = 0. ��
This lemma can be used to derive a boundedness criterion for more general radial
data, without requiring local convexity or concavity assumptions for the functions
appearing in the constraints of (36):

Proposition 5 Assume that the radial data f satisfies f � 0 and f ∈ L2
rd−1(0, 1).

Then, if

lim
r→0

rβ f (r) = +∞ for some β > 1, (45)

then the corresponding minimizer u of (21) with ρ(r) = φ(r) = rd−1 is unbounded
on any neighborhood of 0, but bounded on any compact interval excluding zero.
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Conversely, if

lim
r→0

rβ f (r) = 0 for some β < 1 (46)

then u is bounded.

Proof First, we notice that we must have

u ∈ L∞(δ, 1) for all δ > 0, (47)

because on the interval (δ, 1) we have ρ ≥ δd−1, which ensures that the restriction of
u to it belongs to BV(δ, 1), and in one dimension we have the embedding BV(δ, 1) ⊂
L∞(δ, 1).Given (47) andusing the equivalencewith (38),we can conclude by applying
the pointwise comparison principle for minimizers of TV denoising in B(0, 1) ⊂ R

d

(a proof of which can be found in for example [37, Prop. 3.6]) against inputs of the
form treated in Lemma 4 above. Assuming (45), we choose δ0 such that f (r) ≥ r−β

for r ∈ (0, δ0), while for the case (46) we take δ0 such that f (r) ≤ r−β for r ∈ (0, δ0),
and in both cases compare with f̃ defined by

f̃ (r) =
{

1
rβ if r ∈ (0, δ0)

f (r) if r ∈ [δ0, 1).

��
Wecan also see this criterion in light of the results of Sect. 3, in particular Propositions 1
and 2. There, the main requirement for boundedness of u is that there should be
v ∈ ∂Ld/(d−1) TV(u) ⊂ Ld(�). In the case of radial data on � = B(0, 1) ⊂ R

d , we
have worked with the ROF denoising problem for which

vα := − 1

α
(uα − f ) ∈ ∂L2 TV(uα),

and by (37) we know that uα − f switches between ±α(d − 1)/| · | and zero on
annuli. Moreover, the power growth 1/| · | is precisely the threshold for a function on
R
d to belong to Ld(B(0, 1)), assuming it is in L∞(B(0, 1) \ B(0, δ)

)
for all δ. That

is, for slower power growth as in (46) we have vα ∈ Ld(B(0, 1)) and the minimizer
is bounded, which we could have proved using the techniques of Sect. 3. In contrast,
for faster power growth as in (45) we have that vα /∈ Ld(B(0, 1)), so the methods of
Sect. 3 are not applicable, and by Proposition 5 in this case TV denoising produces an
unbounded minimizer.

5 Higher-Order Regularization Terms

Here we treat problems regularized with two popular approaches combining deriva-
tives of first and higher orders, with the goal of extending our boundedness results
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from Sect. 3 to these more involved settings. In this section, we limit ourselves to the
case of functions defined on a bounded Lipschitz domain � ⊂ R

d .
The first approach, for which we are able to prove an analog of Theorem 1 in dimen-

sion 2, is infimal convolution of first and second order total variation first introduced
in [23] (see also [14]), that is

min
u∈Ld/(d−1)(�)

1

σ

(∫
�

|Au − ( f + w)|q
)σ/q

+
[

inf
g∈BV2(�)

α1 TV(u − g) + α2 TV
2(g)

]
, (48)

where TV2(g) for g ∈ BV2(�) ⊂ W 1,1(�) is the norm of the distributional Hessian
as a matrix-valued Radon measure, that is

TV2(g) := sup

{∫
�

∇g(x) · divM(x) dx

∣∣∣∣M ∈ C1
c (�;Rd×d) with |M(x)|F � 1 for all x

}
,

with |M |F denoting the Frobenius norm, that is |M |2F = ∑
i j (Mi j )

2. Here and in
the rest of this section, A and the exponents σ, q are as in Sects. 1 and 3, i.e. A :
Ld/(d−1)(�) → Lq(�) is a bounded linear operator, and σ = min(q, 2).

The second approach, widely used in applications but harder to treat analytically,
is total generalized variation of second order, introduced in [15] and for which we use
the characterization of [16, Thm. 3.1] to write

min
u∈Ld/(d−1)(�)

1

σ

(∫
�

|Au − ( f + w)|q
)σ/q

+
[

inf
z∈BD(�)

α1|Du − z|(�) + α2 TD(z)

]
, (49)

for whichwe denote the second term as TGV(u), not making the regularization param-
eters α1, α2 explicit in the notation. Here, TD(z) denotes the ‘total deformation’ of
the vector field z defined in terms of its distributional symmetric gradient, that is

TD(z) := sup

{∫
�

z(x) · divM(x) dx
∣∣∣M ∈ C1

c (�;Rd×d
sym ) with |M(x)|F � 1 for all x

}
.

Since we are working on a bounded Lipschitz domain, the inner infima are attained
in both cases and the regularization functionals (48) and (49) have minimizers. For a
proof, see [14, Prop. 4.8, Prop. 4.10] for (48) and [16, Thm. 3.1, Thm. 4.2] [12] [14,
Thm. 5.9, Prop. 5.17] for the TGV case (49).
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Lemma 5 Assuming that u is a minimizer of (48) and the inner infimum is attained by
some gu, we have the necessary and sufficient optimality condition:

v ∈ α1∂ TV(u − gu) ∩ α2∂ TV
2(gu), for

v := ‖Au − f − w‖σ−2
Lq (�) A

∗ (| f + w − Au|q−2( f + w − Au)
)

.
(50)

If (49) is minimized by u and the inner infimum is attained for some zu, we also have
the necessary condition

v ∈ α1∂ Jzu (u), (51)

where the functional Jzu is defined by Jzu (ũ) = |Dũ − zu |(�), and v is as in (50).

Proof We assume for the sake of simplicity that α1 = α2 = 1, and first prove (51).
We notice that the first term in (49) is continuous with respect to u ∈ Ld/(d−1)(�), so
we have [27, Prop. I.5.6] for an optimal u that

v ∈ ∂

[
inf

z∈BD(�)
|D · −z|(�) + TD(z)

]
(u), (52)

and similarly for (48). Now, one would like to use the characterization of the subgra-
dient of exact infimal convolutions as intersections of subgradients at the minimizing
pair (see [55, Cor. 2.4.7], for example). Since the complete result cannot be applied
directly to (52), we make explicit the parts of its proof that are applicable. To this end,
let u∗ ∈ Ld(�) belong to the right hand side of (52). We have for all ũ ∈ Ld/(d−1)(�),
noticing that TGV(u) < +∞ implies u ∈ BV(�) since we may just consider z = 0
in the inner minimization, that

|D(u + ũ) − zu |(�) − |Du − zu |(�) − 〈
u∗, ũ

〉
Ld×Ld/(d−1)

= |D(u + ũ) − zu |(�) + TD(zu) − |Du − zu |(�) − TD(zu) − 〈
u∗, ũ

〉
Ld×Ld/(d−1)

= |D(u + ũ) − zu |(�) + TD(zu) −
[

inf
z∈BD(�)

|Du − z|(�) + TD(z)

]

− 〈
u∗, ũ

〉
Ld×Ld/(d−1)

�
[

inf
z∈BD(�)

|D(u + ũ) − z|(�) + TD(z)

]

−
[

inf
z∈BD(�)

|Du − z|(�) + TD(z)

]
−〈u∗, ũ

〉
Ld×Ld/(d−1)

� 0,

which combined with (52) implies (51). To prove that (50) is necessary for optimality,
assuming that u now minimizes (48) we have analogously

v ∈ ∂

[
inf

g∈L2(�)
TV(· − g) + TV2(g)

]
(u), (53)
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and the analogous computation leads to v ∈ ∂ TV(u − gu). To see that we also have
v ∈ ∂ TV2(gu), we consider u∗ ∈ Ld(�) in the right hand side of (53) so that for
ũ ∈ Ld/(d−1)(�),

TV2(gu + ũ) − TV2(gu) − 〈
u∗, ũ

〉
L2

= TV2(gu + ũ) + TV(u − gu) − TV2(gu) − TV(u − gu) − 〈
u∗, ũ

〉
Ld×Ld/(d−1)

= TV2(gu + ũ) + TV(u − gu) −
[

inf
g∈Ld/(d−1)(�)

TV(u − g) + TV2(g)

]

− 〈
u∗, ũ

〉
Ld×Ld/(d−1)

�
[

inf
g∈Ld/(d−1)(�)

TV(u + ũ − g) + TV2(g)

]

−
[

inf
g∈Ld/(d−1)(�)

TV(u − g) + TV2(g)

]
− 〈

u∗, ũ
〉
Ld×Ld/(d−1) � 0.

Notice that this last part is not a priori possible for (49) due to the lack of symmetry
in the variables involved. That (50) is also sufficient can be seen from [55, Cor. 2.4.7],
since in this case we do have an infimal convolution. ��
Proposition 6 Whenever d = 2, minimizers of (48) are in L∞(�). For d > 2 they
belong to Ld/(d−2)(�).

Proof Using (50) we notice as in Remark 4 that the proof of Proposition 1 implies that
u − gu ∈ L∞(�). Now since TV2(gu) < +∞, for d > 2 one gets gu ∈ Ld/(d−2)(�)

so that also u ∈ Ld/(d−2)(�), and in fact for d = 2 the critical embedding BV2(�) ⊂
L∞(�) holds, see [26, Thm. 3.2] for domains with C2 boundary and [49, Rem. 0.3]
for Lipschitz domains. Therefore, in that case u ∈ L∞(�). ��

More generally one can prove the following restricted analogue of Theorem 1:

Theorem 3 Let d = 2 and � be a bounded Lipschitz domain. Assume that for
A : L2(�) → Lq(�) linear bounded, f ∈ Lq(�) and a fixed γ > 0 there is
a unique solution u† for Au = f which satisfies the source condition Ran(A∗) ∩
∂(TV� γTV2)(u†) 
= ∅, where we denote

(TV� γTV2)(u) := inf
g∈BV2(�)

TV(u − g) + γ TV2(g).

In this case, there is some constant C(γ, q, σ,�) such that if αn, wn are sequences of
regularization parameters and perturbations for which

αn � C(γ, q, σ,�)‖A∗‖‖wn‖σ−1
Lq (�) −−−→

n→∞ 0

then the corresponding sequence un of solutions of

min
u∈L2(�)

1

σ

(∫
�

|Au − ( f + wn)|q
)σ/q

+ αn(TV� γTV2)(u) (54)
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is bounded in L∞(�), and (possibly up to a subsequence)

un −−−→
n→∞ u† strongly in L p(�) for all p ∈ (1,∞).

Proof Since the proof follows by using the methods of Sect. 3 essentially verbatim,
we provide just an outline highlighting the steps that pose significant differences.

The first ingredient is to repeat the results on convergence and stability of dual
variables summarized in Sect. 2.2, which in fact only depend on the regularization
term being positively one-homogeneous and lower semicontinuous. Once these are
obtained, from the characterization (50) andProposition1onegets uniform L∞ bounds
for un − gun . To finish, one notices that by comparing with u† in the minimization
problem (54) we get using Au† = f that

γ TV2(gun ) � 1

σ
‖wn‖σ

Lq (�) + αn

[
inf

g∈BV2(�)
TV(u† − g) + γ TV2(g)

]
,

in which the first term of the right hand side is bounded above in terms of αn by the
parameter choice and (TV� γTV2)(u†) < +∞ by the source condition, so the bound
on gun obtained by the embedding BV2(�) ⊂ L∞(�) is not just uniform in n but
in fact vanishes as n → ∞. Since we have assumed that � is bounded, the strong
convergence in L p̄(�) follows directly along the lines of the proof of Corollary 1. ��
In comparison with Theorem 1, the above result is weaker in two aspects. The first
is that we need to impose that the two regularization parameters maintain a constant
ratio between them, in order to formulate a source condition in terms of a subgradient
of a fixed functional. Moreover, the result is limited to d = 2 and bounded domains.
Without the latter assumption, in particular the upgrade to strong convergence in
L p̄(�) would require a common compact support for all un . However, even assuming
attainment of the inner infimum, using Lemma 5wewould only get a common support
for un −gun , and in the absence of coarea formula for TV2 it is not clear how to control
the one of gun .

For the case of TGV regularization it is unclear if one can also use the boundedness
results of Sect. 3, which are based on subgradients of TV. A first observation is that
we cannot use the TGV subgradients directly, except in trivial cases:

Proposition 7 If for u ∈ Ld/(d−1)(�) and v ∈ ∂ TGV(u) we have that also v ∈
α1∂ TV(u), then necessarily α1 TV(u) = TGV(u).

Proof Assuming without loss of generality that α1 = 1, we have by testing with z = 0
that

inf
z∈BD(�)

|Du − z|(�) + α2 TD(z) � |Du|(�) = TV(u) for all u ∈ Ld/(d−1)(�),

which since the Fenchel conjugate is order reversing means that

TV∗(v) � TGV∗(v) for all v ∈ Ld(�).
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Because both these functionals are convex positively one-homogeneous we have as in
(4) that

TV∗ = χ∂ TV(0) and TGV∗ = χ∂ TGV(0),

so that

χ∂ TV(0) � χ∂ TGV(0), or ∂ TGV(0) ⊂ ∂ TV(0).

Now, again since these functionals are positively one-homogeneous we have

v ∈ ∂ TGV(u) exactly when v ∈ ∂ TGV(0) and
∫

�

vu = TGV(u)

and similarly for TV, as stated in (5). But since we assumed that v ∈ ∂ TV(u) as well,
we must then have

TGV(u) =
∫

�

vu = TV(u).

��
In Appendix A we explore whether it is possible to use a more refined approach by
trying to find elements of ∂ TV(u) from those of ∂ Jzu (u) appearing in (51) for TGV
regularization, with a negative conclusion (at least without using further properties of
zu) in the form of an explicit counterexample.
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A A Subgradient of TGV Does Not Easily Induce One for TV

To attempt to infer that TGV-regularized minimizers are bounded, an alternative
approach to the arguments of Sect. 5 would be to try and use that the inner mini-
mization problem is attained. Proposition 6 above for the infimal convolution case
uses only that ∂ TV(u − gu) 
= ∅ and gu ∈ BV2(�), and not any information about
subdifferentials of TV2. It is natural to wonder whether it is possible to follow a similar
approach for TGV starting from (51). Unlike in the infimal convolution case, clearly
this cannot follow just from embeddings.

What (51) provides is an element in the subdifferential of the functional Jz =
|D · −z|(�) at u, and Du is only a measure but z ∈ BD(�) ⊂ Ld/(d−1)(�;Rd) is
much more regular. We could then ask ourselves if this means that ∂ TV(u) 
= ∅ or,
equivalently, if u being irregular enough to not have a subgradient of TV would imply
∂ Jz(u) = ∅ as well, making z just a ‘more regular perturbation’. Unfortunately this is
not the case, which prevents using (51) and knowledge of subgradients of TV to infer
whether minimizers of TGV regularization are bounded.

For our counterexample we will use the following characterization:

Lemma 6 For arbitrary u ∈ BV(�) and z ∈ M(�;Rd) (which could be z = 0 for the
TV case) we have that ∂ Jz(u) = ∅ if and only if there are vn with ‖vn‖Ld/(d−1)(�) = 1
and tn → 0+ such that

lim
n→∞

1

tn

(
|Du + tn Dvn − z|(�) − |Du − z|(�)

)
= −∞. (55)

Proof This is a general fact for proper convex functionals whose domain is a linear
subspace. Let F be such a functional on a separableBanach space X and let x ∈ dom F .
For any h ∈ X , the directional derivative

DhF(x) := lim
t↘0

F(x + th) − F(x)

t

in the direction h exists (it can be ±∞) since the difference quotient

t �→ F(x + th) − F(x)

t

is either constant+∞ or nondecreasingwith t > 0.Moreover, we notice that D(·)F(x)
is sublinear and positively homogeneous, in particular convex. And since the domain
of F is a linear subspace, it is its own relative interior, so D(·)F(x) is also proper [55,
Thm. 2.1.13].

Let us assume that there is v ∈ X∗ such that v ∈ ∂F(x). Then, we have
F(x+th)−F(x)

t � 〈v, h〉, which implies DhF(x) � 〈v, h〉 . If in particular, ‖h‖ = 1,
we have, for all t ,

F(x + th) − F(x)

t
� −‖v‖.
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In consequence, if ∂F(x) 
= ∅ the limit in (55) cannot be −∞.
For the opposite direction, let us now assume that ∂F(x) = ∅ for x ∈ dom F . We

want to show that in this case

(
D(·)F(x)

)∗ = +∞.

For that, let us assume the contrary, that is, at some v ∈ X∗,

(
D(·)F(x)

)∗
(v) = sup

h∈X
〈v, h〉 − DhF(x) = M < +∞.

Noticing that since D(·)F(x) is positively one-homogeneous,
(
D(·)F(x)

)∗ is a char-
acteristic function, so we must have that M = 0. This means that for all h, we have

DhF(x) � 〈v, h〉 ,

which implies that for all t > 0,

F(x + th) − F(x)

t
� 〈v, h〉

or again, using t = 1

F(x + h) − F(x) � 〈v, h〉

and v ∈ ∂F(x), which is a contradiction.
Conjugating again, we get

(
D(·)F(x)

)∗∗ = −∞. This implies that the lower semi-
continuous envelope of the convex function D(·)F(x) is not proper, since otherwise
[55, Thm. 2.3.4(i)] it would equal

(
D(·)F(x)

)∗∗, giving a contradiction. And since
D(·)F(x) is not everywhere +∞ (just consider D0F(x) = 0), there must be some
h ∈ X at which this lower semicontinuous envelope takes the value −∞. This means
that there is a sequence of directions hn → h for which Dhn F(x) → −∞, and by
removing some elements if necessary, we may also assume that Dhn F(x) < +∞ and
hn 
= 0 for all n (again since D0F(x) = 0).

Bydefinition of the directional derivative, there exists tn (we can choose tn+1 < tn/2
to enforce tn → 0) such that

∣∣∣∣ F(x + tnhn) − F(x)

tn
− Dhn F(x)

∣∣∣∣ � 1,

where the left hand is well defined since Dhn F(x) < +∞.
We obtain then

F(x + tnhn) − F(x)

tn
→ −∞.
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Finally, setting h̃n = hn‖hn‖ and t̃n = ‖hn‖tn , we have t̃n → 0 and

F(x + t̃n h̃n) − F(x)

t̃n
→ −∞,

which was to be shown. ��
Example 2 We start with some nonzero function S ∈ W 1,1(0, 1) with S(0) = S(1) =
0. For illustration purposes one can think for example of the hat function

S(x) = 1 − |2x − 1|.

We extend it by zero outside of (0, 1) and define the functions, for n � 0,

Sn(x) := S
[
2nx −

(
2n+1 − 2

)]

which have support in

[
2 − 2−n+1, 2 − 2−n

]
⊂ [0, 2].

Note that these supports have an intersection of measure zero. We then introduce
� = (0, 2) × (0, 1) and define un ∈ W 1,1(�) by

un(x1, x2) := Sn(x1).

Now, we have that

‖∇un‖L1 =
∫

�

|∇un(x1, x2)| dx =
∫

(0,2)
|S′

n(t)| dt

=
∫

(0,1)
|S′(t)| dt = ‖S′‖L1(0,1),

while

‖un‖2L2 =
∫

�

|un(x1, x2)|2 dx = 1

2n

∫
(0,1)

|S(t)|2 dt = 1

2n
‖S‖2L2(0,1).

We define then

u :=
∞∑
n=0

2−2nun ∈ W 1,1(�).

For it we can use Lemma 6 with z = 0,

vn := − un
‖un‖L2

, tn := 2−2n‖un‖L2 → 0, |Dvn|(�) = 2n/2 ‖S′‖L1(0,1)

‖S‖L2(0,1)
→ ∞.
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Fig. 2 Sketch of the graph of the function u in Example 2

Moreover by construction |Du + tn Dvn| = |Du| − tn|Dvn|, so we conclude that
|D · |((0, 2) × (0, 1)

)
is not subdifferentiable at u. In particular, for the particular

choice z = Du we have 0 ∈ ∂ Jz(u), but ∂ TV(u) = ∅. Notice that Du ∈ L1(�;R2),
indicating that lack of subdifferentiability of TV arises not only from the singular part
of the derivative of BV functions. We also observe that, extending the vn to R

2, we
have

|Dvn|
|Dvn|(�)

∗
⇀ H1 ({2} × (0, 1)

)
,

and in particular the Lebesgue measure of the support of Dvn vanishes in the limit.

Remark 10 From the example above we also get a counterexample of the statement
we wanted to prove in the first place. The idea is just to take u as above, and for z
consisting of the tail of the series starting from some N > 0 to remove the small
amplitude oscillations in Du − z, that is

z := Dw, for w =
∞∑

n=N

2−2nun .

Then ∂ TV(u) = ∅ as above, but ∂ Jz(u) 
= ∅ for Jz = |D · −z|(�). Say that N = 1
and in the construction of the example we choose

S = ρ1/8 ∗ 1[1/4,3/4],
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where ρ1/8 is a standardmollifier supported on (−1/8, 1/8). Then the function defined
by

g(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8t if t ∈ (0, 1/8)

+1 if t ∈ (1/8, 3/8)

−8t + 4 if t ∈ (3/8, 5/8)

−1 if t ∈ (5/8, 7/8)

8t − 8 if t ∈ (7/8, 1)

satisfies |g(t)| � 1, g(t) = sign(S′(t)) whenever S′(t) 
= 0, and g′ ∈ L∞(0, 1).
This implies that the negative divergence of the vector field g̃ defined by g̃(x1, x2) =
(g(x1), 0)T is in ∂ TV(u0) = ∂ TV(u−w) = ∂ Jz(u), since− div g̃(x1, x2) = −g′(x1)
and

∫
�

− div g̃(x) u(x) dx =
∫

�

g̃(x) · ∇u(x) dx

=
∫ 1

0
g(t) S′(t) dt =

∫ 1

0
|S′(t)| dt = TV(u).

Remark 11 The Du and z of the example above are not in BD. However, if one starts
with a smoother S ∈ W 2,1(0, 1), the construction works just the same. We would get

‖∇2un‖L1 = 2n‖S′′‖L1(0,1) but
∞∑
n=1

2−2n · 2n < +∞,

so u ∈ W 2,1(�) and z ∈ [W 1,1(�)
]d ⊂ BD(�).

To summarize, the subdifferential of the functional Jz = |D · −z|(�) being
nonempty at u does not automatically imply that ∂ TV(u) 
= ∅, which prevents us
from easily applying the techniques of Sect. 3, in particular Remark 4, to the TGV
case. In any case, we note that our counterexamples are built with vector fields z
which are not optimal for the inner minimization of (49) defining TGV(u), so it could
still be that ∂ TGV(u) 
= ∅ implies (beyond the trivial case in Proposition 7) that
∂ TV(u) 
= ∅.
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