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Abstract
Multidomain variational optimal control of evolution mixed subpotential inclusions,
are formulated and analyzed, on the basis of a perturbation conjugate duality convex
analysis theory developed by the author. For Lagrangian optimality mixed conditions,
fixed point existence results are demonstrated with an strongly monotone qualify-
ing condition. Governing multidomain state systems correspond to primal evolution
macro-hybrid mixed subpotential problems, whose solvability is similarly achieved.
Innovative multidomain optimization existence results of primal, dual, Lagrangian
mixed, as well as coupled pair state-control problems are established. Applications
to underground macro-hybrid mixed control transport flow processes, illustrate the
theory.

Keywords Multidomain variational evolution optimal control · Perturbation
conjugate duality method · Set-valued variational analysis · Evolution macro-hybrid
mixed subpotential system · Transmission dual Lagrange multiplier · Underground
control transport flow processes

Mathematics Subject Classification 35K90 · 49J40 · 58E30

1 Introduction

Multidomain optimal control of primal evolutionmixed variational subpotential inclu-
sions, in amacro-hybrid mixed evolution real functional framework of primal and dual
product reflexive Banach spaces, VMH ≡ ∏E

e=1 V (Ωe) and Y∗
MH ≡ ∏E

e=1 Y
∗(Ωe),

whith topological duals V∗
MH ≡ ∏E

e=1 V
∗(Ωe) and YMH ≡ ∏E

e=1 Y (Ωe), are for-
mulated and analyzed. All of this in relation with a spatial bounded domain Ω ⊂ �d ,
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d ∈ {1, 2, 3}, decomposed in terms of disjoint and connected subdomains {Ωe},
Ω = ⋃E

e=1 Ωe, with Lipschitz external boundaries �e = ∂Ωe ∩ ∂Ω and inter-
nal boundaries Γe = ∂Ωe ∩ Ω , e = 1, 2, . . . , E , with interfaces Γek = Γe ∩ Γk ,
1 ≤ e < k ≤ E ; and further with a corresponding reflexive Banach internal boundary
trace space BΓ ≡∏E

e=1 B(Γe) with topological dual B∗
Γ ≡∏E

e=1 B
∗(Γe).

As a macro-hybrid mixed state system, in accordance with such a multido-
main mixed functional frameworks, with respective primal and dual solution spaces,
WMH = {v ∈ VMH : dv/dt ∈ V∗

MH } and Y∗
MH × B∗

Γ , we shall consider a primal
evolution inclusion problem,

(
MHκ

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f ∗ ∈ R
(−�T ) ⊂ V∗

MH , (g, h) ∈ R(�) × R
(
πΓ

)

⊂ YMH × BΓ , and v0κ ∈ HMH ,

find vκ ∈ WMH , ( y∗
κ ,λ∗

κ) ∈ Y∗
MH × B∗

Γ :
−�T y∗

κ − πT
Γ λ∗

κ ∈ dvκ

dt
+ ∂ ˜Fvκ + B∗κ − f̃ ∗ , in V∗

MH ,

vκ(0) = v0κ ,(
�,πΓ

)
(vκ , vκ) ∈ (∂G∗, ∂ IQ∗

)
( y∗

κ ,λ∗
κ

)+ (g, h), in YMH × BΓ ,

governing the optimal control minimization problem of the theory, stated as follows:

(
OMH

)

⎧
⎪⎨

⎪⎩

Find κ ∈ CMHad ⊂ CMH :
JMH
(
vκ , ( y∗

κ ,λ∗
κ), κ
)

≤ JMH
(
vκ , ( y∗

κ ,λ∗
κ), η
)
, ∀η ∈ CMH ,

related to CMH = L2
(
0, T ;UMH

)
, an evolution macro-hybrid Hilbert space ofUMH

≡ ∏E
e=1U (Ωe)-controls, and constrained in the sense of a given nonempty closed

convex subset of admissible controls CMHad .
Then for corresponding κ-optimal macro-hybrid mixed states

(
vκ , ( y∗

κ ,λ∗
κ)
) ∈

WMH ×(Y∗
MH × B∗

Γ

)
, the cost or objective functional JMH : WMH × (Y∗

MH ×
B∗

MH

)× CMH → � ∪ {+∞}, will be of a macro-hybrid mixed general form,

JMH
(
wκ ,
(
x∗

κ ,χ∗
κ

)
, η
) =
∫ T

0
g1(wκ)dt +

∫ T

0
(g2, g3) (x∗

κ ,χ∗
κ)dt +

∫ T

0
j(η)dt,

(1)

assumed to be a lower semicontinuous convex functional, whose integrand real
functional components g1 : WMH → �, (g2, g3) : (Y∗

MH × B∗
Γ

) → �
and j : CMH → �, are dictated by proposed technological design-profiles, with
appropriate multidomain variational properties.

Optimal control minimization problem (OMH ) governed by primal evolution
mixed multisystem (MHκ), will be formulated and analyzed, on the basis of a
perturbation conjugate duality convex analysis theory developed by the author [1],
– in the spirit of Azé-Bolintinéanu’s study on constrained convex parabolic control
problems [2].
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The governing state system
(
MHκ

)
will correspond to a macro-hybrid primal

evolution mixed subpotential problem, whose existence result will be demonstrated as
a resolvent primal fixed point characterization consequence, for regular primal initial
conditions, with a primal operator strong monotonicity qualifying property [3]. On the
other hand, a Lagrangian optimality mixed condition will be established, analyzing its
macro-hybrid mixed solvability via a resolvent fixed point characterization too, with
an objective subdifferential strong monotonicity ∂ JMH -qualifying condition.

As an innovative perturbation conjugate duality accomplishment of the present
study, optimizationmultidomainmacro-hybridmixed existence results of primal, dual,
Lagrangian mixed, as well as coupled pair state-control problems are established.

For some own applications of the original theory [1], to primal and dual variational
evolution mechanical systems, we refer to [4–8]. Specifically, in paper [4] optimal
control of nonlinear transport-flow mixed variational problems are studied; work [5]
has to dowith optimal control problems governed by primal and dual evolutionmacro-
hybridmixed variational state inclusions, in reflexive Banach spaces, with applications
to nonlinear constrained mechanical problems; optimal control of quasistatic elasto-
viscoplastic macro-hybrid mixed set-valued variational problems, are studied in [6],
applying macro-hybrid variational formulations, as an strategy for multi-physics as
well as parallel computing; paper [7] is concerned about optimality conditions of
stationary macro-hybrid mixed variational inclusions, governing constrained optimal
control problems, with applications to dual mechanical nonlinear distributed control
steady diffusion processes, as well as to primal boundary static deformation systems.
Lastly, macro-hybrid optimal control of dual evolution mixed variational transport
flow processes, through elastoviscoplastic porous media, are studied in [8].

On the other hand, in contrast to our subpotential perturbation conjugate duality,
operator variational approach, some optimal control studies based on diverse kinds of
variational inequalities to bementioned are the following [9–14]. In paper [9] existence
and optimality conditions of optimal pairs are established for semilinear evolutionary
variational inequality problems, with bilateral constraints; evolution implicit quasi-
variational inequalities of optimal control problems are analyzed in work [10], for
quasi-static processes of elastic contact problems with friction between a body and a
rigid foundation; paper [11] is concerned with the optimal control of systems modeled
by differential inclusions, with anti-periodic conditions in Banach spaces, analyz-
ing evolutionary hemi-variational inequalities for trajectory-control pair solutions; a
class of subdifferential evolution inclusions are considered in study [12], with history-
dependent operators, establishing the existence of an optimal control for a dynamic
frictional contact mechanical problem. Lastly, in paper [13] a result of optimal control
to a minimization problem, applicable to problems of evolution differential inclusions
is established, on the basis of quasi mixed equilibrium problems with a compact con-
straint set, bounded and unbounded; and in work [14] an optimal control problem for
a differential quasivariational inequality is analyzed, applying the abstract results to a
free boundary problem, for a viscoelastic body in a frictionless unilateral contact with
a rigid foundation.

The present paper is organized as follows: In Sect. 2, the multidomain evolution
mixed real functional framework, WMH × Y∗

MH × B∗
Γ , is introduced for the vari-

ational analysis; the primal evolution macro-hybrid mixed state system
(
MHκ

)
,
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governing optimal control problem
(
OMH

)
, is presented in Sect. 3, demonstrating

its fixed point solvability result with a ∂ ˜F-strong monotonicity qualifying condition;
Sect. 4 has to dowith the variational implementation of themultidomain transport flow
mechanical underground processes, with intrinsic control constraints, that illustrate the
theory of evolution macro-hybrid mixed state systems. Next Sect. 5 elaborates on the
perturbation conjugate duality, multidomain evolution mixed optimal control theory,
establishing the corresponding variational optimality mixed Lagrangian system, as a
new optimization result; then in Sects. 5.1 and 5.2, the multidomain optimal control
of the mechanical transport and flow state systems (of Sect. 4) are presented; in Sect. 6
the solvability analysis of the variational optimality macro-hybrid mixed Lagrangian
system is proved, via a fixed point resolvent primal characterization; followed by
some corresponding macro-hybrid mixed proximal penalty-duality algorithms. Then
last Sect. 7 proceeds with the complementary innovating multidomain optimization
analysis, to determine the primal, dual and Lagrangian mixed results, which pro-
vide the basis for concluding the central optimization result of the study: the solution
existence of the own optimal control system

(
OMH

)
, as well as the corresponding

variational solvability of the coupled macro-hybrid mixed pair state-control system(
MHκ

)
-
(
OMH

)
. Section 8 states the conclusions of the paper at the end.

2 Multidomain Variational Evolution Functional Frameworks

For the multidomain evolution mixed functional setting of the analysis, we introduce a
stationary mixed state real functional framework of primal and dual reflexive Banach
spaces, V (Ω) and Y ∗(Ω), with topological duals V ∗(Ω) and Y (Ω), related to a
spatial bounded domain Ω ⊂ �d , d ∈ {1, 2, 3}, with a Lipschitz boundary ∂Ω .
As corresponding Hilbert pivot spaces we shall have H(Ω) and Z∗(Ω), such that
V (Ω) ⊂ H(Ω) ⊂ V ∗(Ω) and Y ∗(Ω) ⊂ Z∗(Ω) ⊂ Y (Ω), with continuous and
dense embeddings. On the other hand, associated boundary primal and dual reflexive
Banach trace spaces will be B(∂Ω) and its topological dual B∗(∂Ω).

For a corresponding multidomain macro-hybrid mixed functional framework, we
shall consider that the spatial domain Ω is decomposed in terms of disjoint and
connected subdomains {Ωe}, Ω = ⋃E

e=1 Ωe, with Lipschitz external and internal
boundaries �e = ∂Ωe ∩ ∂Ω and Γe = ∂Ωe ∩ Ω , e = 1, 2, . . . , E , and interfaces
Γek = Γe ∩ Γk , 1 ≤ e < k ≤ E .

Following our studies [15–17], we define primal and dual macro-hybrid local func-
tional product spaces VMH = ∏E

e=1 V (Ωe) and Y∗
MH = ∏E

e=1 Y
∗(Ωe), with duals

V ∗
MH =∏E

e=1 V
∗(Ωe) and YMH =∏E

e=1 Y (Ωe), as well as internal boundary func-
tional product spaces BΓ ≡ ∏E

e=1 B(Γe) and its dual B∗
Γ ≡ ∏E

e=1 B
∗(Γe). Also, as

proper trace operators, we consider the internal boundary primal and dual operators
πΓ and δ∗

Γ , continuous and linear, assumed to satisfy the compatibility conditions
[18]

(
CπΓ

)
πΓ ∈ L(VMH , BΓ ) is surjective,(

Cδ∗
Γ

)
δ∗
Γ ∈ L(Y∗

MH , B∗
Γ ) is surjective,
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which are fundamental for macro-hybrid compositional duality results.
Then, for the multidomain transmission constraints, to which decomposed

multi-systems are subjected in the context of mechanical applications, the primal
Ω-stationary space V (Ω) is supposed to be decomposable in the sense

V (Ω) =
{

w ∈ VMH ≡
E∏

e=1

V (Ωe) : πΓ w ∈ Q

}

, (2)

where Q ⊂ BΓ stands as the primal admissibility subspace of internal boundary weak
interface continuity. On the other hand, the dual space is decomposable in the natural
sense – without internal boundary constraints – Y ∗(Ω) = Y∗

MH ≡ ∏E
e=1 Y

∗(Ωe),
as well as the Hilbert pivot spaces such that, H(Ω) = HMH ≡ ∏E

e=1 H(Ωe) and
Z∗(Ω) = Z∗

MH ≡ ∏E
e=1 Z

∗(Ωe).
Toward a macro-hybridization of the systems—a global local hybrid nonoverlap-

ping decomposition, the following multidomain variational compositional dualization
result is achieved via a convex dualization and its own compositional dualization [15].

Lemma 1 Under the primal compatibility condition
(
CπΓ

)
, for w ∈ VMH and χ∗ ∈

B∗
Γ , macro-hybrid compositional dualization

πΓ w ∈ ∂ IQ∗χ∗ ⇐⇒ πT
Γ χ∗ ∈ ∂(IQ ◦ πΓ )w (3)

holds true, where IQ∗ stands as the conjugate of indicator functional IQ.

Proof Indeed, by convex dualization πΓ w ∈ ∂ IQ∗χ∗ ⇔ χ∗ ∈ ∂ IQ(πΓ w), then the
variational inequalities of primal inclusions χ∗ ∈ ∂ IQ(πΓ w) and πT

Γ χ∗ ∈ ∂
(
IQ ◦

πΓ

)
w, turn out to be equivalent due to primal compatibility condition (CπΓ ). ��

Next, concerning the corresponding multidomain evolution macro-hybrid mixed
variational functional framework of the theory, along a given fixed time inter-
val ]0, T [, well-known [19], primal and dual evolution reflexive Banach spaces
are given by VMH = L p

(]0, T [; VMH
)
and Y∗

MH = Lq∗(]0, T [;Y∗
MH

)
, for

2 ≤ p < ∞ and q∗ = p/(p − 1), with duals V∗
MH = Lq∗(]0, T [; V ∗

MH

)
and

YMH = L p
(]0, T [;YMH

)
, respectively.

Lastly, the primal solution space, for the primal evolution macro-hybrid mixed
governing state system,

(
MHκ

)
, to be considered in the next section, is defined by

WMH = {w : w ∈ VMH , dw/dt ∈ V∗
MH

}
, (4)

endowed with the norm ‖w‖WMH = ‖w‖VMH + ‖dw/dt‖V∗
MH

, which turns out to be

continuous and densely embedded in the space C
(]0, T [; HMH

)
of HMH -continuos

functions, with initial values set
{
w(0) : w ∈ WMH

} = HMH [19]. Also, corre-
sponding primal and dual evolution boundary trace spaces are defined by the reflexive
Banach spaces BMH = L p

(]0, T [; BMH
)
and its dual B∗

MH = Lq∗(]0, T [; B∗
MH

)
.
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3 Primal EvolutionMacro-hybrid Mixed State System

In this section, we present the multidomain variational primal evolution mixed gov-
erning κ-state multisystem, related to the macro-hybrid optimization problem

(
OMH

)

of the Introduction.
In a general abstract sense [20], and in accordance with the evolution functional

framework of previous Sect. 2, such a state multisystem has the variational form

(
MHκ

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f ∗ ∈ R
(−�T ) ⊂ V∗

MH , (g, h) ∈ R(�) × R
(
πΓ

)

⊂ YMH × BΓ , and v0 ∈ HMH ,

find v ∈ WMH , ( y∗,λ∗) ∈ Y∗
MH × B∗

Γ :
−�T y∗ − πT

Γ λ∗ ∈ dv

dt
+ ∂ F̃v + B∗κ − f̃ ∗ , in V∗

MH ,

v(0) = v0 ,(
�,πΓ

)
(v, v) ∈ (∂G∗, ∂ IQ∗

)
( y∗,λ∗)+ (g, h), in YMH × BΓ ,

where B∗ ∈ L
(
CMH ,V∗

MH

)
is the primal macro-hybrid coupling optimal control

operator, linear and continuous, andλ∗ ∈ Q∗ ⊂ B∗
Γ is the dualmacro-hybrid synchro-

nizing internal boundary field implemented variationally by the conjugate indicator
functional IQ∗ .

Here variational operator � ∈ L
(
VMH ,YMH

)
corresponds to the primal linear

continuous coupling operator with transpose �T ∈ L
(
Y∗

MH ,V∗
MH

)
. AlsoR

(−�T )

and R
(
�
)
, as well as R

(
πΓ

)
, denote range subspaces of the respective function-

als. Further, the macro-hybrid primal subdifferential and right hand side term of the
problem are defined by

∂ F̃ = ∂F + ∂
(
Iv̂ ◦ πD

)+ ∂ϕ : VMH → 2V
∗
MH ,

− f̃ ∗ = πT
D ŷ∗ − f ∗ ∈ V∗

MH ,
(5)

where the subdifferential ∂ϕ that models the primal intrinsic controlling distributed
constraint, imposed to the system, will be assumed to satisfy the qualifying condition

(
C∂ϕ

)
∂ϕ : VMH → 2V

∗
MH , is a strongly monotone subpotential operator.

On the other hand, for such a macro-hybrid mixed state system, in particular v̂ and
ŷ∗ stand as the primal Dirichlet (D-essential) and dual Neumman (N-natural) trace
fields, prescribed on disjoint and complementary parts of the Ω-domain boundary,
∂Ω = ∂ΩD ∪ ∂ΩN , of the system under control. Further, regarding the dual sub-
differentials

(
∂G∗, ∂ IQ∗

) : Y∗
MH × B∗

Γ → 2YMH×BΓ , they model variationally
the dualized distributed primal constraint of the system, as well as the synchro-
nization internal boundary transmission constraints due to the multidomain spatial
decomposition. Recall that in this study all the subdifferential operators are assumed
to be subpotential [21]; i.e, maximal monotone subdifferentials of proper convex
semicontinuous functionals.

123



Applied Mathematics & Optimization (2023) 88 :35 Page 7 of 30 35

In order to determine the subpotential of primal subdifferential ∂ F̃, we incorporate
the interior domain subpotential conditions, (cf. [21], Theorem 2.10),

(
C

F,
(
Îv◦πD

)
,ϕ

)
⎧
⎨

⎩

int D(F) ∩ D
(
Iv̂ ◦ πD

) �= ∅ ,

and
int D

(
F + (Iv̂ ◦ πD)

) ∩ D
(
ϕ
) �= ∅ ,

which guarantee the corresponding subdifferential subpotential sum relation

∂ F̃ = ∂
(
F + Iv̂ ◦ πD + ϕ

)
. (6)

Therefore, the desired primal subpotential characterization is concluded as follows.

Lemma 2 Under functional compatibility condition
(
C

F,
(
Îv◦πD

)
,ϕ

)
, the subpotential

of primal subdifferential ∂ F̃ : V → 2V
∗
, (5)1, is defined by

F̃ = F + Iv̂ ◦ πD + ϕ : VMH → � ∪ {+∞}, (7)

and moreover, due to the intrinsic control condition
(
C∂ϕ

)
state primal subdifferential

∂ F̃ turns out to be a strongly monotone maximal monotone operator.

Example 1 A primal intrinsic controlling distributed constraint may be modeled by a
subpotential strongly monotone sum subdifferential

∂ϕ = ∂ϕ̃ + ∂A : VMH → 2V
∗
MH ,

with component ∂ϕ̃ of an obstacle type, subpotential subdiffferential [22]; and a linear
potential strongly monotone component ∂A.

Specifically, we may consider the following classical elliptic variational model
problem related to a Hilbert space V , with topological dual and corresponding pivot
spaces, V ∗ and H ; i.e. V ⊂ H ⊂ V ∗ with embeddings being continuous and dense.

(
P
)
{

Given f ∗ ∈ V ∗, Find v ∈ V :
∂Av + ∂Gv = f ∗, in V ∗ ,

where G : V → � ∪ {+∞} is a proper lower semicontinuous convex functional with
effective domain the nonempty closed convex subset K ⊂ V .

Then, as it is well known, a sufficient condition for variational existence and unique-
ness solvability to problem

(
P
)
is precisely the qualifying monotonicity operator

property

C∂A ∂A : V → 2V
∗
, is K − strongly monotone,

result that naturally (cf. Theorem 2 Proof, below), can be validated via a fixed
point characterization, in this case through the corresponding proximation operator
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ProxλG : V → V , for any real λ > 0, defined by

w �−→ η = ProxλG(w) the solution in K of

((w − η, v − η))V ≤ λG(v) − λG(η), ∀v ∈ K .

Consequently it can be concluded that problem
(
P
)
states, in fact, a variational

optimality condition of the minimization, optimization problem in K of the functional

�(v) = 1/2 |v − w |2V + λG(v), v ∈ K .

Indeed, the mapping v �−→ ((v − w, ·)) is the gradient of the continuous strictly
convex functional v �−→ 1/2 |v − w |2V in V . The solution of such a problem, which
exists uniquely, is the proximity point of w relative to λG. Notice that when G = IK
the solution then turns out to be the projection of w on K .

3.1 Solvability of Macro-hybrid Mixed State System(MH�)

For the existence analysis of subpotential primal evolution macro-hybrid mixed state
problem (MHκ), (cf. [3, Sect. 2]), we first establish its primal duality princi-
ple introducing the corresponding interior classical primal evolution compatibility
condition

(

C(
G,IQ
)
,
(
�,πΓ

)
)

int D
((
G, IQ

)) ∩ R
((

�,πΓ

)) �= ∅,

under which the compositional result [23]

(
�T ,πT

Γ

)(
∂G, ∂ IQ

)◦(�,πΓ

) = ∂
((
G, IQ

) ◦ (�,πΓ

))
(8)

holds true. Then, by convex dualization of the (MHκ )-dual inclusion, it follows that

(
�,πΓ

)
(v, v) − (g, h) ∈ (∂G∗, ∂ IQ∗

)
( y∗,λ∗)

⇐⇒ ( y∗,λ∗) ∈ (∂G, ∂ IQ
)((

�,πΓ

)
(v, v) − (g, h)

)
,

result that in conjunction with compositional dualization (8) leads to the evolution
duality principle of the state multisystem.

Theorem 1 Let compatibility condition
(
C(

G,IQ
)
,
(
�,πΓ

)
)
be fulfilled. Then macro-

hybrid primal evolution mixed state problem
(
MHκ

)
is solvable if, and only if,
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macro-hybrid primal evolution state problem

(
PMHκ

)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find v ∈ WMH :
0V∗

MH
∈ dv

dt
+ ∂ F̃v + ∂

((
G, IQ

) ◦ (�,πΓ

))(
(v, v) − (wg,wh)

)

+B∗κ − f̃ ∗ , in V∗
MH ,

v(0) = v0,

is solvable, where (wg,wh) ∈ VMH ×VMH is a fixed (�,πΓ )-preimage of function
(g, h). That is, if (v, ( y∗,λ∗)) ∈ WMH × (Y∗

MH × B∗
Γ ) is a solution of mixed

state problem
(
MHκ

)
then primal function v is a solution of problem

(
PMHκ

)
and,

conversely, if v ∈ WMH is a solution of primal state problem
(
PMHκ

)
then there is a

dual function ( y∗,λ∗) ∈ ∂
(
(G, IQ)

)(
(�,πΓ

)
(v, v)− (g, h)

) ⊂ (Y∗
MH ×B∗

Γ ), such
that (v, ( y∗,λ∗)) is a solution of mixed state problem

(
MHκ

)
.

Lastly, on the basis of Lemma 2 and Theorem 1, and themacro-hybridmonotonicity
of the primal state operator

(C∂ F̃

)

⎧
⎪⎨

⎪⎩

∂ F̃ : VMH → 2V
∗
MH is strongly monotone; i.e., ∃ α > 0 :

〈
w̃∗ − ṽ∗, w̃ − ṽ

〉
VMH

≥ α‖w̃ − ṽ‖2VMH
,

∀w̃, ṽ ∈ VMH , w̃∗ ∈ ∂ ˜Fw̃, ṽ∗ ∈ ∂ ˜Fṽ,

the following solvability result can be established via a primal evolution resolvent
fixed point existence analysis [3]. For completeness and due to the importance that
this result plays in the context of our multidomain optimal control theory, we shall
provide here the details of its validity.

Theorem 2 Under the functional compatibility condition
(
C(

G,IQ
)
,
(
�,πΓ

)
)
, and the

monotonicity primal operator qualifying condition
(
C∂ F̃

)
, primal evolution macro-

hybridized statemultisystem
(
MHκ

)
has a solution, with a unique primal component,

for initial data as regular as

v0 ∈ VMH ⊂ HMH . (9)

Proof Taking into account regularity condition (9), we consider the auxiliary state
primal evolution inclusion, with an homogeneous initial data,

(˜PMHκ )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find s ∈ WMH :
0V∗

MH
∈ ds

dt
+ ∂ F̃s + ∂

((
G, IQ

) ◦ (�,πΓ

))(
(s, s) − (wg,wh)

)

+B∗κ − f̃ ∗ , in V∗
MH ,

s(0) = s0 ,

whose solvability, for s = v + v0, results to be equivalent to that of primal state
problem (PMHκ ). Further, we note that, importantly, its time derivative operator in
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the sense

d/dt : D(d/dt) =
{
w ∈ WMH : w(0) = 0

}
⊂ VMH → V∗

MH , (10)

is, in fact, a linear densely defined maximal monotone operator (cf. [24, Proposition
32.10]). Thereby, in accordance with [25], we can now apply a fixed-point subdiffer-
ential approach for the existence analysis. Indeed, due to the monotonicity of time
derivative operator (10), qualifying condition

(
C∂ F̃

)
results to be equivalent to the

strong monotonicity condition of the primal combined operator

˜A = d/dt + ∂ F̃ : VMH → 2V
∗
MH . (11)

Moreover, operator ˜A is maximal monotone, since intD(d/dt)∩D(∂ F̃) �= ∅. Then,
for an m-linearly strongly monotone and a-Lipschitz operatorM : VMH → V∗

MH ,

the primal state (˜PMHκ )-equation is M-preconditioned, augmented and exactly
penalized with a parameter r > 0, for s∗ ∈ ˜As, by

M(s, s) − r
(
s∗ − f̃ ∗) ∈

(
M + r∂

((
G, IQ

) ◦ (�wg,h ,πΓ

)))
(s, s)

⇐⇒ (s, s) = Fr
s∗(s, s)

≡ Jr
M,∂
((

G,IQ
)
◦
(
�wg,h ,πΓ

))
(
M(s, s) − r

(
s∗ − f̃ ∗)).

(12)

Here Jr
M,∂
((

G,IQ
)
◦
(
�wg,h ,πΓ

)) =
(
M + r∂

((
G, IQ

) ◦ (�wg,h ,πΓ

)))−1 : V∗
MH

→ VMH is theM-resolvent operator of themaximal monotone composition operator

∂
((
G, IQ

) ◦ (�wg,h ,πΓ

)) = ∂
((
G, IQ

) ◦ (�,πΓ

))(
(·) − wg,h

)
, which is a well

defined 1/m-firm contraction [26].
Thereby, auxiliary state primal evolution inclusion problem (˜PMHκ ) has the M-
resolvent fixed-point problem characterization

(
˜

˜PMHκ )

⎧
⎪⎨

⎪⎩

Find s ∈ D
(

˜A + ∂
((
G, IQ

) ◦ (�wg ,πΓ

))) ⊂ WMH :
for s∗ ∈ ˜As,
(s, s) = Fr

s∗(s, s),

which has a unique solution by the Banach fixed-point theorem, due to the 1/m-firm
contraction resolvent property that implies the contraction of fixed point operator

Fr
s∗ : D

(
˜A + ∂

((
G, IQ

) ◦ (�wg ,πΓ

)))→ D
(

˜A + ∂
((
G, IQ

) ◦ (�wg ,πΓ

)))
,

with contraction parameter 1/m(a − rα) < 1, for r > (a − m)/α ≥ 0 . ��
Now, we can conclude the multidomain state primal evolution mixed variational

existence result of the theory, from the conjunction of Theorems 1 and 2.

123



Applied Mathematics & Optimization (2023) 88 :35 Page 11 of 30 35

Corollary 1 Let primal functional compatibility condition
(
C(

G,IQ
)
,
(
�,πΓ

)
)

and

monotonicity primal operator qualifying condition
(
C∂ F̃

)
be fulfilled. Then primal

evolution macro-hybridized state system problem (MHκ) is solvable, with a unique
primal solution component, for initial condition data satisfying variational regularity
(9).

4 Multidomain Primal EvolutionMacro-hybrid Mixed Transport Flow
Mechanical System

In this section,we apply themultidomain evolutionvariational theorydeveloped above,
to mechanical Darcian transport flow processes in the subsurface, with intrinsic mass
concentration and pressure controlling constraints, demonstrating its versatility.

4.1 MultidomainMacro-hybrid MixedVariational Transport Local State System

For a transport model with implemented intrinsic mass concentration control mech-
anisms, applicable to underground compressible flow mechanical systems, in the
setting of spatialmultidomain decompositions andmacro-hybridmixed real functional
frameworks of Sect. 2, we shall consider the following one.

Let {ce} be local mass concentration scalar fields, say, of distributed-chemical con-
taminants, and let {d∗

e} = −{D∗
w∗
e
grad ce} denote the corresponding vector flux

field of a transport process driven by an underground compressible flow, with local
velocity vector fields {w∗

e}. Here {D∗
w∗
e
} is the diffusion-dispersion tensor (cf., e.g.,

[27]). Further, let {s∗
αe

} be the local distributed intrinsic mass concentration control
scalar fields, and let { f̂ ∗

e } denote a given contaminant local source.
Then related to instantaneous material connected local parts Pet (x) of each sub-

domain Ωe, e = 1, 2, . . . , E , surrounding any point x ∈ Ωe at a time t ∈]0, T [, the
Reynolds transport theorem establishes that, for local unit Pet - neboundary normal
vectors, the following local mass balances must hold true (cf. e.g., [28]):

d

dt

∫

Pet

ce dΩe =
∫

Pet

dce
dt

+ div({w∗
e ce) dΩe

= −
∫

Pet

s∗
e dΩe +

∫

Pet

{ f̂ ∗
e } dΩe −

∫

∂Pet

d∗
e ·ne d∂Ωe ,

(13)

andby thedivergence theoremapplied to (13)-boundary term, and a continuous integral
localization, the next local evolution mixed concentration-flux multidomain physical
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transport models are obtained:

d{ce}
dt

+ [

w∗
e ·grade

]{ce} + {divew∗
ece} + {dived∗

e}
= −{s∗

e } + { f̂ ∗
e },

{d∗
e} = −[D∗

w∗
e

]{gradece},
{s∗
e } ∈ [∂ϕτe ]{ce} ⇔ {ce} ∈ [∂ϕ∗

τe

]{s∗
e },

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

in {Ωe}×]0, T [ , (14)

where [∂ϕτe ] stands as a subpotential maximal monotone subdifferential of primal
distributed local control mechanisms, for the intrinsic concentration control,—the
constraint of the transport processes,—with inverse control mechanisms [∂ϕ∗

τe
] (ϕ∗

τe
,

the local conjugate functional of ϕτe ) [22].
Here we are considering the classical macro-hybrid primal evolution transport

formulation, whose continuity local transmission internal boundary constraints corre-
spond to the dual normal diffusion-dispersion fluxes and the primal concentrations:

{d∗
e ·ne} = −{d∗

e ·nk},
{cαe } = {ck}, (15)

across the internal boundary interfaces Γek = Γe ∩ Γk , 1 ≤ e < k ≤ E .

4.1.1 Multidomain Macro-hybrid Mixed Variational Transport Local State System

Related to [16], the variational primal evolution formulation of localizedmacro-hybrid
mixed constrained τ -transportmodel (13)-(15), as a state systemgoverning the optimal
control minimization problem (OMH ) of the theory, is given as follows, adopting a
simplified boldface generic notation of the previous sections.

(MHκτ )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given f̃ ∗
τ ∈ R(divTτ ) ⊂ V∗

τMH
, ĉ0 ∈ HMH τ ,

find c ∈ WMH τ and (d∗,λ∗
τ ) ∈ Y∗

MH τ
× B∗

Γτ
:

−
(
divTτ ,πT

Γτ

)
(d∗,λ∗

τ )

∈ dc
dt

+
(
∂ F̃τ + ∂ϕτ

)
c+ B∗κτ − f̃ ∗

τ , in V∗
MH τ

,

c(0) = ĉ0 ;
(divτ ,πΓτ )(c, c) ∈

(
D∗−1
u , ∂ IQ∗

τ

)
(d∗,λ∗

τ ), in YMH τ × BΓτ ,

where dual unknown λ∗
τ = δ∗

Γτ
d∗ ∈ Q∗

τ ⊂ B∗
Γτ

corresponds to the transport macro-
hybrid synchronizing internal boundary field (cf. (3)). Further, macro-hybrid primal
subdifferential and right hand side terms correspond to

∂ F̃τ = w∗·gradτ + divτw
∗ + ∂

(
Îc ◦ π τD

)
: VMHτ → 2V

∗
MHτ ,

− f̃ ∗
τ = πT

Nτ
d̂∗ − f̂ ∗ ∈ V∗

MH τ
,

(16)
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with local essential Dirichletπ�τ c = ĉ andNeumann δ∗
�τ

d∗ = d̂∗ prescribed external
boundary trace fields, where indicator functional Iĉ implements the primal Dirichlet
condition.

In order to apply primal evolution macro-hybrid mixed fixed point existence The-
orem 2, we assume that the transport local concentration initial data satisfies the
regularity condition

{cαe0} ∈ VMH τ ⊂ HMH τ . (17)

Theorem 3 Under Theorem 2 corresponding transport interior compatibility local
condition, (C

(D∗−1
w∗ ,∂ IQ∗

τ
)
), and qualifying strong monotonicity condition (C∂ F̃τ

)
, pri-

mal evolution transport state system (MHκτ ) attains a multidomain macro-hybrid
mixed solution with a unique primal concentration solution component.

For this transport underground mechanical system, we recall that the primal con-
straints of intrinsic concentration controlmechanisms ∂ϕτ must be defined by strongly
monotone maximal monotone operators [22].

4.2 Multidomain Primal EvolutionMacro-hybrid Mixed Compressible Darcian
FlowMechanical System

For a compressible flow component of the underground mechanical process, we shall
consider a constrained driving flow in the spatial multidomain, with a macro-hybrid
decomposition Ω = ⋃E

e=1{Ωe} ⊂ �n of the porous medium in the sense of Sect. 2.
Let {u∗

e} = {φeu∗
ae } be considered as the dual local fluid velocity vector field, defined

in terms of the local porosity {φe} and the average fluid velocity {u∗
ae } fields. We shall

assume that the fluid is characterized by the local compressibility parameters
{
ϑρ

}
=
{

∂ρe

∂ pe

}

, (18)

where {pe} denotes the primal local scalar pressure field of the mixed flowmodel, and
{ρe} > {0e} the local compressible fluid mass density (pressure dependent).

Let {̂q∗
e } be a given local mass flow rate per unit mass, and let {s∗

e } be the local
distributed intrinsic pressure control dual field. Then the local mass balance principle
that corresponds to the fluid mass density {ρe} is stated via the Reynolds theorem as
follows (cf. (13)), for e = 1, 2, . . . , E ,

d

dt

∫

Pet

ρe dΩe =
∫

Pet

∂ρe

∂t
+ dive(ρeu∗

e) dΩe = −
∫

Pet

s∗
e +
∫

Pet

q̂∗
e ρe dΩe .

(19)

Thereby, by a continuous integral localization, and applying the expanded time
differentiation

∂ρe

∂t
= ∂ρe

∂ pe

∂ pe
∂t

= ϑρe

∂ pe
∂t

, (20)
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the local equations system of compressible Darcian flow constitutivity and mass
balance turns out to be:

ϑρe

∂ pe
∂t

+ div w∗
e = −s∗

e + q̂∗
e ρe ,

μe(ρeK e)
−1w∗

e = −grad pe + ρeg,

s∗
e ∈ ∂ϕ fe(pe) ⇔ pe ∈ ϕ fe (s

∗
e ),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

in Ωe×]0, T [ , (21)

with given local flow physical parameters: {μe} and {K e} of dynamic viscosity and
invertible symmetric intrinsic permeability tensor. Here, for variational convenience,
the mass flux rate fieldw∗

e = ρeu∗
e is utilized as the dual dependent variable, instead of

the common compressible fluid velocity u∗
e . Further, g denotes the gravity acceleration

vector field.
Flow system (21) constitutes a local primal evolution mixed pressure-velocity

constrained model, with a local primal pressure intrinsic control mechanism ∂ϕe,
a subpotential maximal monotone subdifferential, with inverse ∂ϕ∗

e , subdifferential of
the conjugate functional ϕ∗

e [22].
Regarding the interaction of the flow system with its underground exterior, we

shall consider, for e = 1, 2, . . . , E , prescribed local normal mass flux rates {ŵ∗
ne } as

Neumann natural boundary conditions and local pressures { p̂e} as Dirichlet essential
boundary ones; i.e.,w∗

e ·ne = ŵ∗
ne on ∂ΩNe and pe = p̂e on ∂ΩDe . Particularly, in the

case of pure local Neumann boundary conditions, ∂ΩDe = ∅, we assume that for con-
servation of mass the local compatibility conditions

∫
∂Ωe

û∗
ne d∂Ωe = ∫

Ωe
q̂∗
e dΩe are

satisfied.On the other hand, in relationwith the spatial nonoverlapping decompositions
of the underground porous medium, the continuity transmission internal boundary
constraints are stated by the dual mass flux rate and primal pressure mechanical
constraints:

pe = ppk ,

w∗
e · ne = −w∗

e · nk ,

}

on Γek×]0, T [ , (22)

across the underground multidomain interfaces Γek = Γe ∩ Γk , 1 ≤ e < k ≤ E .

4.2.1 Multidomain Primal Evolution Macro-hybrid Mixed Variational Compressible
Darcian Flow State System

As for the previous transport case, on the basis of [16], the variational primal evo-
lution formulation of localized macro-hybrid mixed pressure-flux rate constrained
f -model (18)–(22), as a state system governing the optimal control minimization
problem (OMH ) of the theory, turns out to be the following variational version of
the Darcian flow underground process, (utilizing once again the simplified boldface
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generic notation).

(MHκ f )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Given ̂q∗ρ ∈ R(div f ) ⊂ V∗
MH f

, p̂0 ∈ HMH f ,

ρg ∈ R(divTf ) ⊂ YMH f ,

find p ∈ WMH f and (w∗,λ∗
f ) ∈ Y∗

MH f
× B∗

Γ f
:

−
(
div f ,π

T
Γ f

)
(w∗,λ∗

f )

∈ ϑρ

∂ p
∂t

+
(
∂ F̃ f + ∂ϕ f

)
p + B∗κ f − f̃ ∗

f , in V∗
MH f

,

p(0) = p̂0 ;
(
divTf ,πΓ f

)
( p, p) ∈

(
μ(ρK )−1, ∂ IQ∗

f

)
(w∗,λ∗

f ) − (ρg, 0BMH f
),

in YMH f × BΓ f .

Here dual unknown λ∗
f = δ∗

Γ f
w∗ ∈ Q∗

τ ⊂ B∗
Γτ

stands as the flow macro-hybrid
synchronizing internal boundary field, (cf. (3)). Also macro-hybrid primal pressure
flow subdifferential and right hand side term correspond to

∂ F̃ f = ∂(I p̂ ◦ π fD ) p : VMH f → 2
V∗
MH f ,

− f̃ ∗
f = −̂q∗ρ + πT

N f
w∗ ∈ V∗

MH f
,

(23)

where the local essential Dirichlet π� f p = p̂ and Neumann δ∗
� f

w∗ = ŵ∗,
prescribed external boundary trace fields, indicator functional I p̂ implementing the
primal Dirichlet condition.

Regarding the abstract primal evolution macro-hybrid mixed state problem
(MHκ) of Sect. 3, as operator identifications: the primal coupling operator
� f = divTf ∈ L(VMH f ,YMH f ) with negative transpose −�T

f = −div f ∈
L(Y∗

MH f
,V∗

MH f
); and the primal subdifferential ∂F f = ∂ϕ f , the dual pressure

maximalmonotone control mechanism. Also, corresponding dual subdifferential ∂G∗
f

is given by the operator μ(ρK )−1 : Y∗
MH f

→ 2YMH f .
In order to apply primal evolution macro-hybrid mixed fixed point existence The-

orem 2, we assume that the subsurface flow local pressure initial data satisfies the
regularity

p̂0 ∈ VMH f ⊂ HMH f . (24)

Hence, a primal compressible flow solvability result is as follows.

Theorem 4 Under dual corresponding interior local compatibility condition(
C(∂G∗,∂ IQ∗ )

)
and qualifying strong monotonicity condition (C∂ F̃ f

)
of Theorem 2,

primal state evolution compressible Darcian flow constrained problem (MHκ f ) has
a macro-hybrid mixed solution with a unique primal pressure component.
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Lastly, for this compressible Darcian flow case, we emphasize that the primal con-
straints of intrinsic pressure control mechanisms ∂ϕ f should be modeled by strongly
monotone maximal monotone operators [22].

5 Perturbation Conjugate Duality Evolution Optimal Control

In this sectionwepresent themultidomain,macro-hybridmixedperturbation conjugate
duality optimal control theory, an extensionof the evolutionmixed set-value variational
theory [1].

Specifically, once the perturbation theory is stated through the corresponding mini-
mization primal, maximization dual and Lagrangian minimax optimization problems,
the corresponding multidomain macro-hybrid mixed optimality condition will be
established, whose existence analysis via a primal resolvent stationary type fixed point
characterization, will be treated in the next section, Sect. 6, performing then the whole
optimization analysis of the theory in the last Sect. 7.

In accordance with the perturbation conjugate duality evolution mixed method [1],
from the (MHκ)-primal evolution state inclusion, the primal macro-hybrid mixed
state-control operator T MH : WMH × (Y∗

MH × B∗
Γ ) × CMH → V∗

MH is given by

T MH (w, (x∗,χ∗), η) = dw

dt
+ w∗

w +
(
�T ,πT

Γ

)
(x∗,χ∗)+ B∗η,

w∗
w ∈ ∂ F̃w,

(25)

whose closed convex constraint domain turns out to be

MMH =
{
(w, (x∗,χ∗), η) ∈ WMH × (Y∗

MH × B∗
Γ ) × CMH :

w ∈ D
(
F̃
)
, (x∗,χ∗) ∈ D

(
G∗) × Q∗, η ∈ CMHad

}
.

(26)

Then, assuming that there is a closed subspace Q∗
MH ⊂ V∗

MH of macro-hybrid
perturbations such that

(CTMH ) Q∗
MH ⊂ �+(T MH

(
MMH

)− f̃ ∗),

and introducing the closed convex subsetKMH ⊂ (WMH × (Y∗
MH ,B∗

Γ )×CMH
)×

Q∗
MH ,

KMH =
{
((w, (x∗,χ∗), η), q∗) ∈ MMH × Q∗

MH :
q∗ = T MH

(
MMH

)− f̃ ∗
}
,

(27)
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the perturbation functional SMH : (WMH × (Y∗
MH ,B∗

Γ

) × CMH ) × Q∗
MH →

� ∪ {+∞}, proper convex and lower semicontinuous, is naturally defined as

SMH
(
(w, (x∗,χ∗), η), q∗)

= JMH
(
w, (x∗,χ∗), η

) + IKMH

(
(w, (x∗,χ∗), η

)
, q∗),

(28)

with an associated marginal or infimal value convex functional μ∗
MH : Q∗

MH →
� ∪ {+∞},

μ∗
MH (q∗) = inf

(w,(x∗,χ∗),η)∈(WMH×(Y∗
MH ,B∗

Γ )×CMH

SMH
(
(w, (x∗,χ∗), η), q∗). (29)

Thereby, the primal, dual and Lagrangian mixed optimization problems of the
theory, in amultidomainmacro-hybrid perturbation sense, following the duality theory
[23] (cf. [1]), can be defined as follows:

Firstly, the optimal control (OMH )-subpotential JMH : WMH × (Y∗
MH , B∗

Γ ) ×
CMH → � ∪ {+∞} corresponds to a zero perturbation; i.e.,

JMH
(
w, (x∗,χ∗), η

) = SMH
(
(w, (x∗,χ∗), η), 0Q∗

MH

)
, (30)

with a perturbed primal evolution macro-hybrid mixed optimal control problem given
by

(˜OCMH )

⎧
⎪⎨

⎪⎩

Find
(
v, ( y∗,λ∗), κ

) ∈ MMH :
SMH
(
(v, ( y∗,λ∗), κ), 0Q∗

MH

) ≤ SMH
(
(w, (x∗,χ∗), η), 0Q∗

MH

)
,

∀(w, (x∗,χ∗), η) ∈ (WMH × (Y∗
MH ,B∗

Γ )) × CMH .

Secondly, the perturbed dual convex functional is defined by πMH : QMH →
�∪{+∞} on the primal constraint qualifying closed subspaceQMH ⊂ VMH , via the
perturbation conjugate functional S∗

MH : (W∗
MH × (YMH ,BΓ )×C∗

MH )×QMH →
� ∪ {+∞}, for q ∈ QMH , is given by

πMH (q) = S∗
MH

(
(0V∗

MH
, (0YMH , 0BΓ

), 0C∗
MH

), q
)
, (31)

which results to be the conjugate of marginal functional (29); i.e, πMH = μMH . Then
the perturbation dual maximization problem is expressed as

(˜OC
∗
MH )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find p ∈ D(πMH ) :
−S∗

MH

(
(0V∗

MH
, (0YMH , 0BΓ

), 0C∗
MH

), p
)

≥ −S∗
MH ((0V∗

MH
,
(
0YMH , 0BΓ

), 0C∗
MH

), q
)

∀q ∈ QMH .

And thirdly, the perturbed convex-concave dual macro-hybrid mixed Lagrangian
LMH : (WMH × (Y∗

MH ,B∗
MH ) × CMH × QMH → � ∪ {+∞} of the theory is
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defined by

LMH ((w, (x∗,χ∗), η), p) = −S∗
MH (w,(x∗,χ∗),η)

( p)

=

⎧
⎪⎨

⎪⎩

JMH (w, (x∗,χ∗), η) − 〈T MH (w, (x∗,χ∗), η) − f̃ ∗,
p
〉
Q∗,Q, if (w, (x∗,χ∗), η) ∈ DMH ,

+∞, if (w, (x∗,χ∗)), η) /∈ DMH ,

DMH =
{
(w, (x∗,χ∗), η) ∈ MMH : T MH (MMH ) − f̃ ∗ ⊂ Q∗

MH

}
,

(32)

where S∗
MH (w,x∗,χ∗),η)

: QMH → � ∪ {+∞} is the conjugate of functional

SMH (w,(x∗,χ∗),η)
= SMH (w, (x∗,χ∗), η), ·) : Q∗

MH → �∪{+∞}, for (w, (x∗,χ∗), η)

∈ WMH ×(Y∗
MH ,B∗

Γ ) ×CMH . Further,DMH corresponds to the projection of per-
turbation constraint set KMH on (WMH × (Y∗

MH ,B∗
MH ) × CMH ). Consequently,

the macro-hybrid mixed perturbed LMH -minimax problem turns out to be

( ˜MOCMH )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ((v, ( y∗,λ∗), κ), p) ∈ D(LMH ) :
LMH ((v, ( y∗,λ∗), κ), q)

≤ LMH ((v, ( y∗,λ∗), κ), p)

≤ LMH ((w, (x∗,χ∗), η), p),

∀ ((w, (x∗,χ∗), η), q)

∈ (WMH × (Y∗
MH ,B∗

Γ ) × CMH ) × QMH .

Next, we lastly determine a new multidomain macro-hybrid mixed optimality
condition for this perturbed Lagrangian problem (cf. [8]).

Theorem 5 Let ((v, ( y∗,λ∗), κ), p) ∈ DMH be a solution of perturbed min-

imax problem ˜MOC∗
MH ), then as an state control-perturbation function, ((v,

( y∗,λ∗), κ), p) solves the macro-hybrid dual mixed problem

(MOCMH )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find (v, (y∗,λ∗), κ) ∈ MMH and p ∈ QMH :
T T

MH p ∈ ∂ JMH
(
v, ( y∗,λ∗), κ

)
,

inW∗
MH × (YMH ,BΓ ) × C∗

MH ,

−T MH
(
v, ( y∗,λ∗), κ

) ∈ ∂0QMH p − f̃ ∗, inQ∗
MH ,

a variational optimality condition of Lagrangian perturbed minimax optimization

problem ( ˜MOC∗
MH ).

Proof The Lagrangian functional LMH value at ((w, (x∗,χ∗), η), q) ∈ DMH ,
turns out to be LMH ((w, (x∗,χ∗), η), q) = JMH (w, (x∗,χ∗), η) − 〈T MH (w, (x∗,
χ∗), η) − f̃ ∗, q

〉
V∗
MH ,VMH

, and from the dual inclusion in Q∗
MH of mixed prob-

lem (MOCMH ), T MH (w, ( y∗,χ∗), η) = f̃ ∗. Consequently, LMH ((w, (x∗,χ∗),
η), q) = JMH ((w, (x∗,χ∗)), η), and multidomain macro-hybrid dual mixed system
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(MOCMH ) states a variational optimality condition for Lagrangian LMH -perturbed

optimization ( ˜MOC∗
MH ) problem. ��

5.1 Multidomain Optimal Control of Transport State System

For transport macro-hybrid mixed state system (MHκτ ), formulated in Sect. 4.1,
the cost or objective macro-hybrid mixed functional JMH : WMH × (Y∗

MH ,B∗
Γ ) ×

CMH → � ∪ {+∞} of the theory is related to the local mixed mechanical state fields
c ∈ WMH τ and (d∗,λ∗) ∈ Y∗

MH τ
× B∗

Γτ
, of primal mass concentration and dual

diffusion-dispersion flux, and syncronizing interior boundary.
In this case, for proposed optimal local target profiles of the primal concentration

field c̃ ∈ WMHτ , the dual diffusion-dispersion and syncronization interior boundary
fields (d̃∗, λ̃∗) ∈ Y∗

MH τ
×B∗

Γτ
, the optimal control of the transport state system may

be implemented in terms of instantaneous convex cost functionals defined by

g1τ (t; c(t)) = wg1τ (t) 1
2‖c(t) − c̃(t)‖2WMHτ

,

g2τ (t; d∗(t)) = wg2τ (t) 1
2‖d∗(t) − d̃∗(t)‖2Y∗

MHτ

,

g3τ (t;λ∗(t)) = wg3τ (t) 1
2‖λ∗(t) − λ̃∗(t)‖2B∗

Γτ

,

(33)

and further, for a specific local κ-optimal control field on the Hilbert space CMH τ =
HMH τ ≡ L2(]0, T [; L2

MH ), by the convex functional

jτ (t; κ(t)) = w jτ (t)
1
2‖κ(t)‖2CMHτ

; (34)

where the weight coefficientswg1τ ,wg2τ ,wg3τ andw jτ , are given bounded and strictly
positive L∞]0, T [-functions. Also, the set CMHcd ⊂ CMH of admissible controls may
be of an obstacle constraint model type [22].

Consequently, in this manner, a specific transport cost functional would be defined
inWMH τ × (Y∗

MH τ
× B∗

Γτ
) × CMH τ by the continuous convex functional

J̃MH τ (c, (d
∗,λ∗), κ)

= wg1τ (t) 1
2‖c(t) − c̃(t)‖2WMHτ

+ wg2τ (t) 1
2‖d∗(t) − d̃∗(t)‖2Y∗

MHτ

+ wg3τ (t) 1
2‖λ∗(t) − λ̃∗(t)‖2B∗

Γτ

+ w jτ (t)
1
2‖κ(t)‖2CMHτ

,

(35)

such that, for the validity of Corollary 2—of next Sect. 6,—that will determine the
solvability of the optimality macro-hybrid mixed problem (MOC∗

MH ), its own trans-
port objective maximal monotone subdifferential operator ∂ J̃MH τ should be strongly
monotone.

Concerning the primalmacro-hybridmixed state-control operatorT MH : WMH ×
(Y∗

MH × B∗
MH ) × CMH → V∗

MH of the theory, (25), its transport model version is
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given, for c∗c ∈ (∂ ˜Fτ + ∂ϕτ

)
c, by

TτMH (c, (d∗,λ∗), κ) = dc
dt

+ c∗c +
(
divTτ ,πT

Γτ

)
(d∗,λ∗) + B∗κτ . (36)

5.2 Multidomain Optimal Control of Flow State System

In the case of flow state system (MH fκ ) of Sect. 4.2, governing optimal control
problem (OMH ), its control is realized by the cost or objective macro-hybrid mixed
functional JMH : WMH × (Y∗

MH ×B∗
Γ ) × CMH → � ∪ {+∞}, related to the local

mechanical state fields: p ∈ W fMH and (w∗,λ∗
f ) ∈ Y∗

fMH
× B∗

fΓ , of multidomain
primal pressure, dual mass flux rate and internal boundary synchronizing fields.

Hence, considering the control of the system in accordance with optimal local
target profiles of primal pressure p̃, dual mass flux rate w̃∗ and internal boundary
synchronizing λ̃∗

f fields, objective functional JMH would be implemented in terms of
instantaneous convex state-control functionals, defined by

g1 f (t; p(t)) = wg1 f
(t) 1

2‖ p(t) − p̃(t)‖2VMH f
,

g2 f (t;w∗(t)) = wg2 f
(t) 1

2‖w∗(t) − w̃∗(t)}‖2Y∗
MH f

,

g3 f (t;λ∗
f (t)) = wg3 f

(t) 1
2‖λ∗

f (t) − λ̃∗
f (t)}‖2Y∗

MH f
,

j f (t; κ(t)) = w j f (t)
1
2‖κ(t)‖2HMH f

;

(37)

the latter functional term, for a specific local κ-optimal control field from the Hilbert
space CMH = HMH f ≡ L2(]0, T [; L2

MH ). Here, as in the previous transport case,
the weight coefficients wg1 f

, wg2 f
, wg3 f

and w j f , are assumed to be bounded and
strictly positive L∞]0, T [-functions.

In such a manner, a flow cost functional defined in WMH f × (Y∗
MH f

× B∗
Γ f

) ×
CMH f , would turn out to be

J̃MH f (( p, (w
∗,λ∗

f )), κ)

= wg1 f
(t) 12‖ p(t) − p̃(t)‖2VMH f

+ wg2 f
(t) 12‖w∗(t) − w̃∗(t)}‖2Y∗

MH f

+ wg3 f
(t) 12‖λ∗

f (t) − λ̃∗
f (t)}‖2Y∗

MH f
+ w j f (t)

1
2‖κ(t)‖2HMH f

,

(38)

a continuous and convex functional. Further, in this flow case, for the solvability

of corresponding optimality macro-hybrid mixed problem ( ˜MOCMH ), objective
monotone subdifferential operator ∂ ˜JMH f should satisfy the strong monotonicity
condition of Corollary 2, to be established in Sect. 6 below.

Lastly, on the other hand, the primalmacro-hybridmixed flow state-control operator
T MH : (VMH f × X ∗

MH f
) × CMH f → YMH f of the theory, (25), is identified in
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terms of p∗
f ∈ (∂ ˜F f + ∂ϕ f

)
p by

T ∗
MH f

( p, (w∗,λ∗
f ), κ) = ϑρ

∂ p
∂t

+ p∗
f +
(
div f ,π

T
Γ f

)
(w∗,λ∗

f ) + B∗κ f . (39)

6 Existence Analysis of Optimality Mixed System (MOCMH)

For the solvability analysis of multidomain macro-hybrid mixed optimality problem
(MOCMH ) of Theorem 5, we next apply a resolvent fixed point stationary type
method [3].

We first establish the primal duality principle of the optimality system, (cf. [26,
Sect. 2]), introducing the dual state-control compatibility condition

(C̃−TMH ) −T MH : WMH × (Y∗
MH ,B∗

Γ ) × CMH → Q∗
MH , is surjective,

that permits the composition dualizaion of its dual inclusion.

Theorem 6 Under compatibility condition (C̃−TMH ), the macro-hybrid mixed opti-
mality problem (MOCMH ) solvability, is equivalent to that of its macro-hybrid
primal optimality problem

(PMH )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find ((v, ( y∗,λ∗)), κ) ∈ MMH :
0 ∈ ∂ JMH (v, ( y∗,λ∗), κ) + ∂

(
I{

0Q∗
MH

} ◦ (−T MH )
)

(
(v, ( y∗,λ∗), κ) − (w, (x∗, η∗), ν)− f̃ ∗

)
,

inW∗
MH × (YMH ,BΓ ) × C∗

MH ,

where (w, (x∗, η∗, ν)− f̃ ∗ ∈ WMH × (Y∗
MH ,B∗

Γ ) × CMH is a −T MH-preimage of

functional − f̃ ∗. That is, if ((v, ( y∗,λ∗), κ), p) ∈ MMH × QMH is a solution of
mixed optimality problem (MOCMH ) then (v, ( y∗,λ∗), κ) is a solution of primal
optimality problem (PMH ). Conversely, if (v, ( y∗,λ∗), κ) ∈ MMH is a solution

of problem (PMH ) then there is a dual perturbation functional p ∈ ∂ I {0Q∗
MH

}
(

−
T MH

(
(v, ( y∗,λ∗), κ)+− f̃ ∗)) ⊂ QMH such that ((v, ( y∗,λ∗), κ), p) is a solution

of mixed optimality problem (MOCMH ).

Proof Indeed, under dual state-control condition (C̃−TMH ), the principle is a direct
necessary result via the convex dualization of problem (MOCMH )-dual inclusion
followed by its corresponding composition dualization (cf. Lemma 1 Proof):

−T MH
(
v, ( y∗,λ∗), κ

) ∈ ∂0QMH p − f̃ ∗

⇐⇒
−T T

MH p ∈ ∂
(
I{0Q∗

MH
} ◦ (−T MH )

)(
(v, ( y∗,λ∗), κ) − (w, (x∗, η∗), ν)− f̃ ∗

)
.

(40)
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For the sufficiency, let ((v, (y∗,λ∗)), κ) ∈ MMH ⊂ WMH × (Y∗
MH , B∗

MH ) ×
CMH be a solution of primal optimality problem (PMH ). Then there is a func-
tional (w∗, (x,χ), η∗) ∈ ∂ JMH

(
(v, ( y∗,λ∗)), κ

)
such that −(w∗ (x,χ), η∗) −

f̃ ∗ ∈ ∂
(
I{

0Q∗
MH

} ◦ (−TMH )
) (

(v, ( y∗,λ∗)) − (w, (x∗, η∗), ν)− f̃ ∗
)
. Taking vari-

ations for the variational inequality of this last subdifferential inclusion of the

kind (w, (x∗,χ∗),+η) = ±(v, (w, (x∗,χ∗), η)0, +
(
(v, ( y∗,λ∗)) −(w, (x∗, η∗),

ν)− f̃ ∗
)

∈ D
(
I{

0Q∗
MH

} ◦ (−T MH )
)
, for any (w, (x∗,χ∗), η)0 in the neg-

ative state-control kernel N (−T MH ), it follows that
〈 − (w∗, (x,χ), η∗),

(w, (x∗,χ∗), η)0
〉
MMH

= 0. That is, (−(w∗, (x,χ), η∗)) belongs to the polar sub-

space (N (−T MH ))◦. Now, since condition (˜C−TMH ) implies the closure of the range
R(−T MH ), from the Closed Range Theorem N (−T MH )◦ = R(−T T

MH ). There-
fore, there is a functional p ∈ QMH such that (w∗, (x,χ), η∗) = −T T

MH p − f̃ ∗,
and applying composition dualization (40), ((v, ( y∗,λ∗), κ), p) is a solution of mixed
optimality problem (MOCMH ). ��

Next, introducing the macro-hybrid objective subdifferential monotonicity quali-
fying condition

(C∂ JMH )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ JMH : UMH → U∗
MH is strongly monotone; i.e., ∃ α > 0 :

〈
ṽ

∗ − v∗, ṽUMH − vUMH

〉
UMH

≥ α‖ṽUMH − vUMH ‖2UMH
,

∀ (ṽUMH = ((ṽ, q̃∗
), η̃), vUMH = ((v, q∗), η)

) ∈ UMH ,

ṽ
∗ ∈ ∂ JMH ṽUMH , v∗ ∈ ∂ JMHvUMH ,

where UMH = WMH × (Y∗
MH × B∗

Γ ) × CMH stands as the variational macro-
hybrid state-control space. The validity of the next fixed point solvability result can
be demonstrated in accordance with [3, Sect. 4.2].

Theorem 7 Letmacro-hybrid strongmonotonicity condition ( ˜C∂ JMH ) be fulfilled, then
macro-hybrid primal optimality problem (PMH ) has a unique solution.

Proof Given anm-stronglymonotone anda-Lipschitz continuous preconditioner oper-
ator MMH : UMH → U∗

MH , and an exact penalization parameter r > 0, the primal
optimality (PMH )-equation is characterized as an augmented preconditioned and
exactly penalized one introducing the state-control fields

ṽ = (v, ( y∗,λ∗), κ
)
, and v∗ = (ṽ∗, ( y,λ), κ∗) ,

for ṽ∗ ∈ ∂ JMH ṽ, by

MMH ṽ − r ṽ∗ ∈ (MMH + r∂
(
I{0QMH } ◦ (−T MH− f̃ ∗ )

))
ṽ

⇐⇒ ṽ = Fr
ṽ∗ ṽ ≡ JrMMH ,∂(I{0QMH

}◦(−TMH− f̃ ∗ ))

(
MMH ṽ − r ṽ∗), (41)
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where the state-control operator notation −T MH− f̃ ∗ ṽ = −T MH
(
ṽ − w̃− f̃ ∗

)

has been utilized. Further, JrMMH ,∂(I{0QMH
}◦(−TMH− f̃ ∗ ))

=
(
MMH + r∂

(
I{0QMH }

◦(−T MH− f̃ ∗ )
))−1 : U∗

MH → UMH , is the MMH -resolvent operator of the

subpotential subdifferential ∂
(
I{0QMH } ◦ (−T MH− f̃ ∗ )

)
, a well defined 1/m-firm con-

traction [26]. Thereby, the primal optimality problem (PMH ) is characterized by the
MMH -resolvent fixed point problem,

(˜PMH )

{
Find ṽ ∈ D

(
∂(I{0QMH } ◦ (−T MH− f̃ ∗ ))

) : for ṽ∗ ∈ ∂ JMH ṽ,

ṽ = Fr
ṽ∗ ṽ,

and by the Banach fixed-point theorem the desired existence result is concluded, due
to the fact that the 1/m-firm contraction resolvent property implies the contraction
of fixed point operator Fr

ṽ∗ : D
(
∂(I{0QMH } ◦ (−T MH− f̃ ∗ ))

) → D
(
∂(I{0QMH } ◦

(−T MH− f̃ ∗ ))
)
for r > (a −m)/α ≥ 0, with contraction parameter 1/m(a − rα) < 1

[25]. ��

Therefore, from the compositionduality principle ofTheorem6, and theprimal exis-
tence result of Theorem 7, the macro-hybrid mixed optimality variational solvability
is finally achieved.

Corollary 2 Under state-control compatibility condition (C−TMH ) and qualifying
condition (C∂ JMH ), optimality macro-hybrid mixed problem (MOCMH ) attains a
solution, with a unique primal component.

6.1 Macro-hybrid Mixed Proximal Penalty-Duality Algorithms

In this subsection we introduce two- and three-field proximal penalty-duality algo-
rithms, of a stationary type, for the resolution of multidomain macro-hybrid primal
mixed optimality problem (MOCMH ) [26, 29, 30], which follow via preconditioned
and augmented variational reformulations, with exact penalizations, characterized
in terms of resolvent and proximation operators. Such preconditioned iterative
penalty-duallity procedures have demonstrated to be of the most effective schemes
in mechanics, for parallel computing, of multidomain mixed variational inclusions
associated to optimization problems.

6.1.1 Two-field Algorithm

In accordance with [1, Sect. 5.1.1], in terms of a linear symmetric M : Q → Q∗
preconditioner, continuous and m-strongly monotone, with inverse M−1 : Q∗ → Q,
and an exact penalization parameter r > 0, a primal augmented regularization of
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mixed optimality problem (MOCMH ) is given by

(
MOCr

MHM−1

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (v, ( y∗,λ∗), κ) ∈ MMH and p ∈ QMH :
T T

MH p ∈
(
∂ JMH + r∗T T

MHM−1T MH

)(
v, ( y∗,λ∗), κ

)

−rT T
MHM−1 f̃ ∗ ,

inW∗
MH × (YMH ,BΓ ) × C∗

MH ,

p = p − rM−1T MH
(
v, ( y∗,λ∗), κ

)+ rM−1 f̃ ∗ ,

inQMH .

Thereby, a proper associated macro-hybrid primal mixed penalty-duality two-field
iterative algorithm is the following one.

Algorithm IMH

Given p0 ∈ QMH , known pm, m ≥ 0,
calculate (vm+1, ( y∗m+1 ,λ∗m+1), κm+1) and pm+1 :
T T

MH pm ∈ (∂ JMH + r∗T T
MHM−1T MH

)(
vm+1, ( y∗m+1 ,λ∗m+1), κm+1

)

−r∗T T
MHM−1 f̃ ∗ , inW∗

MH × (YMH ,BΓ ) × C∗
MH ,

pm+1 = pm − r∗M−1T MH
(
vm+1, ( y∗m+1 ,λ∗m+1), κm+1

)+ r∗M−1 f̃ ∗ ,

inQMH .

6.1.2 Three-field Algorithm

On the other hand, from a three-field variational version of duality problem
(MOCr

MHM−1
) (cf. [1, Sect. 5.1.2]), an additional primal mixed proximation

penalty-duality algorithm can be produced. Indeed, introducing its dual coupling field

χ∗ = −T MH (v, ( y∗,λ∗) ∈ Q∗
MH , (42)

being regarded as the new dual component, after dualizing the dual equation of the
mixed system a three-field version is concluded. That is, the following precondition
augmented and exactly penalized equivalent version of the mixed optimality problem
is achieved.

(MOCr
˜MHM−1

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (v, ( y∗,λ∗), κ) ∈ MMH , χ∗ ∈ Q∗
MH ,

and p ∈ QMH :
T T

MH ( p − rM−1χ∗)

∈
(
∂ JMH + rT T

MHM−1T MH

)(
v, ( y∗,λ∗), κ

)
,

inW∗
MH × (YMH ,BΓ ) × C∗

MH ,

p − rM−1T MH
(
v, ( y∗,λ∗), κ

)

∈ ∂ I0Q∗ (χ∗ + f̃ ∗) + rM−1χ∗ , inQMH ,

p = p − rM−1
(
T MH

(
v, ( y∗,λ∗), κ

)+ χ∗), in QMH .
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Consequently, a natural macro-hybrid primal mixed proximal-point iterative three-
field algorithm is given by

Algorithm IIMH

Given p0 ∈ QMH , known pm, m ≥ 0,
calculate

(
(vm+1, y∗m+1), κm+1),χ∗m+1

)
and pm+1 :

T T
MH

(
pm − rM−1χ∗m+1

)

∈
(
∂ JMH + rT T

MHM−1T MH

)(
vm+1, ( y∗m+1 ,λ∗m+1), κm+1

)
,

inW∗
MH × (YMH ,BΓ ) × C∗

MH ,

pm − rM−1T MH
(
vm+1, ( y∗m+1 ,λ∗m+1), κm+1

)

∈ ∂ I0Q∗ (χ∗m+1 + f̃ ∗) + rM−1χ∗m+1 , inQMH ,

pm+1 = pm − rM−1
(
T MH

(
vm+1, ( y∗m+1 ,λ∗), κm+1

)+ χ∗m+1
)
, in QMH .

A relevant interpretation, in the context of evolutionary systems, of these stationary
variational proximal penalty-duality algorithms (cf. [30], Sect. 5), is that variational
proximation time marching schemes under appropriate maximal monotonicity con-
ditions, evolve as their step times m → ∞ to corresponding stationary states limits.
Thereby, optimal states (v, (y∗,λ∗), κ) ∈ MMH of macro-hybrid mixed optimal-
ity problem (MOCMH ) may be regarded as stationary states limits, for instance of
a primal semi-implicit Euler time marching scheme, like ALG0 analyzed in ([30],
Sect. 5.1).

For the convergence analysis of these optimality proximal-point, macro-hybrid
mixed penalty-duality iterative algorithms, we refer to [31, Sect. 4], where additionally
some important algorithmic implementation variational results are treated.

Lastly, at this algorithmic stage of the study, we state that some alternative modern
important local optimization splitting methods for multidomain structured monotone
inclusions, are the following [32–37]. Specifically, in paper [32] a primal-dual par-
allel proximal splitting method is proposed and analyzed for domain decomposition
of linear and nonlinear PDE’s problems, via local coupling subdomains minimiza-
tion energy interface functions; several results concerning the solution of monotone
inclusion problems by splitting methods are outlined in study [33], for optimality con-
ditions related to convexoptimization problemswhere the sumofmaximallymonotone
operators is involved, presenting some important contributions of their algorithmic
realizations; paper [34] is concerned with structured coupled monotone inclusions
in Hilbert spaces, analyzing the asymptotic behavior of a general primal-dual split-
ting solving algorithm, most steps of which can be executed in parallel. In paper
[35] two different primal-dual splitting algorithms for solving structured monotone
inclusions are proposed: the preconditioned forward-backward splitting algorithm and
the forward-backward-half-forward splitting algorithm, both being calculated with a
simple framework where single-valued operators are processed via explicit steps and
set-valued operators are computed by their resolvents; rapidly convergent forward-
backward algorithms for computing zeroes of the sum of finitely many maximally
monotone operators, are developed in paper [36], incorporating an inertial term, a
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constant relaxation factor, and a correction term, for general monotone inclusions,
specifically with a fast primal-dual algorithm for solving convex-concave saddle point
problems. Finally, work [37] proposes two iterative penalty schemes for solving struc-
tured monotone inclusion problems, with backward steps for a set-valued operator and
a single forward step for a single-valued operator.

7 MultidomainMacro-hybrid Mixed Optimization Existence Analysis

In this last section we proceed to determine the perturbed primal, dual and Lagrangian
mixed optimization results, complementary to those established in Sect. 6, completing
the proposed multidomain macro-hybrid primal evolution optimal control theory of
the present study.

Let us first consider the classical duality principle, from the perturbation conjugate
duality theory [23, 38],

Lemma 3 Primal and dual solutions ((v, ( y∗,λ∗), κ) ∈ D(JMH ) and p ∈ D(πMH ),

to minimization primal problem (˜OCMH ) and maximization dual problem (˜OC
∗
MH ),

are such that

in f (˜OCMH ) = sup(˜OC
∗
MH ),

if, and only if, ((v, ( y∗,λ∗), κ), p) ∈ D(LMH ) is a solution to minimax Lagrangian

mixed problem ( ˜MOC∗
MH );

as well as the additional conjugate duality result [2, 39, 40] (cf. [40, Proposition 3.1]),
which taking into account that the marginal domain D(μ∗

MH ) is the projection of
perturbation functional domainD(SMH ), on the closed subspaceQ∗ of perturbations,
states the following

Lemma 4 Let the marginal domain D(μ∗
MH ) be such that �+D(μ∗

MH ) is a closed
subspace, and let μ∗

MH (0) be finite. Then

inf
((w,(x∗,χ∗),η)∈(WMH×(Y∗

MH ,B∗
Γ )×CMH

SMH

(
((w, (x∗,χ∗), η), 0QMH )

)

= max
q∈QMH

−S∗
MH

(
((0WMH , (0Y∗

MH
, 0B∗

Γ
), 0CMH ), q)

)
.

(43)

As a third new duality result, complementary to those of Lemmas 3 and 4, we
next establish a fundamental result, that at a first instance permits the implementation
of duality result (43) in the sense of [8], and then leading to the conclusive central
optimality results of the theory.

Lemma 5 Primal and dual optimization solutions (v, ( y∗,λ∗), κ) ∈ D(JMH )

and p ∈ D(πMH ), of respective perturbed minimization problem (˜OCMH ) and

maximization problem (˜OC
∗
MH ), are such that

in f (˜OCMH ) = sup(˜OC
∗
MH ).
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Proof For any perturbation q∗ ∈ Q∗
MH and positive real number λ ∈ �+, in accor-

dance with qualifying condition (CTMH ) (of Sect. 5), there is an admissible mixed
state-control (w, (x∗,χ∗), η) ∈ MMH for which λ−1q∗ ∈ T MH

(
w, (x∗,χ∗), η

)

− f̃ ∗. Then ((w, (x∗,χ∗), η), λ−1q∗) ∈ KMH and SMH
(
(w, x∗), η), λ−1q∗) =

JMH
(
w, (x∗,χ∗), η

)
< ∞. Further, in accordancewithmarginal functional definition

(29), it is concluded that λ−1q∗ ∈ D(μ∗
MH ) and D(μ∗

MH ) = T MH
(
MMH

) − f̃ ∗.
ConsequentlyQ∗

MH = �+D(μ∗
MH ) and the conjugate duality result (43) holds true.

Therefore, from the perturbation definitions of functionals JMH and πMH , (32) and
(31), the desired result is concluded,

inf
((w,(x∗,χ∗)),η)∈WMH×(Y∗

MH ,B∗
Γ )×CMH

JMH

(
((w, (x∗,χ∗)), η)

)

= maxq∈QMH (−πMH q).

��

Finally, let us conclude with the following new multidomain macro-hybrid
optimality results:

The equivalent variational solvability of perturbed macro-hybrid optimization

mixed problem (˜OCMH )-(˜OC
∗
MH ) and Lagrangian problem ( ˜MOC∗

MH ) is achieved
from Lemmas 3 and 5.

Corollary 3 (v, ( y∗,λ∗), κ) ∈ D(JMH ) and p ∈ D(πMH ) are solutions to primal

minimization (˜OCMH ) and dual maximization problem (˜OC
∗
MH ), respectively; if,

and only if, ((v, ( y∗,λ∗), κ), p) ∈ D(LMH ) is a solution to perturbed minimax

Lagrangian problem (( ˜MOC∗
MH )).

Further, from the macro-hybrid mixed optimality condition of Theorem 5,
(MOCMH ), and Corollary 2 on its solvability result, the JMH -solution of the
minimization optimal control problem (OMH ) is achieved.

Theorem 8 Let state-control surjectivity compatibility condition (C−TMH ) and qual-
ifying monotonicity condition (C∂ JMH ) be fulfilled, then multidomain macro-hybrid
optimal control problem (OMH ) possesses an admissible solution.

Consequently, from this Theorem 8 result, in conjunction with the solvability of
macro-hybrid dual mixed state system (MHκ) determined by Theorem 2, in Sec-
tion 3.1, the existence of an state (MHκ) and control (OMH ) coupled solution is
finally concluded.

Corollary 4 Under Theorem 8 compatibility and qualifying conditions, as well as
primal macro-hybrid strong monotonicity condition (C∂ F̃

)
, there exists an optimal

control pair solution (v, ( y∗,λ∗), κ) ∈ MMH ⊂ (WMH × (Y∗
MH ,B∗

Γ ) × CMH ),
to variational coupled multidomain macro-hybrid primal mixed state-control problem
(MHκ)-(OMH ).
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8 Conclusions

Once the evolution macro-hybrid mixed, variational reflexive Banach functional
framework of the study was stated, the solvability of the multidomain subpotential
primal evolution mixed state governing system, was demonstrated as a resolvent fixed
point characterization result, under a strongly monotone qualifying condition. Then
the analysis has been illustrated, in the sequel, through the variational implemen-
tation of an underground transport flow mechanical process, with intrinsic control
constraints. Next the perturbation conjugate duality optimal control, of the multido-
main evolution mixed theory was presented, establishing its own Lagrangian mixed
variational optimality condition, as a new result, showing its applicability to the mul-
tidomain optimal control of the mechanical transport flow process. Then the mixed
optimality fixed point solvability was proved, concluding with the optimality two- and
three-field macro-hybrid mixed proximal penalty-duality algorithms. Finally, an inno-
vating optimization existence analysis was performed, determining the solvability of
the minimization optimal control problem of the theory, as well as the corresponding
variational solution existence of the coupled macro-hybrid mixed pair state-control
system.
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