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Abstract
A supremum-of-quadratics representation for a class of extended real valued barrier
functions is developed and applied in the context of solving a continuous time linear
regulator problem subject to a single state constraint of bounded norm. It is shown that
this very simple state constrained regulator problem can be equivalently formulated
as an unconstrained two-player game. By demonstrating equivalence of the upper
and lower values, and exploiting existence and uniqueness of the optimal actions for
both players, state feedback characterizations for the corresponding optimal policies
for both players are developed. These characterizations are illustrated by a simple
example.
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1 Introduction

Finite horizon continuous time linear quadratic regulator (LQR) problems and their
solution can be considered classical in systems theory, see for example [2, 16, 18]. The
value function that attends their solution as an optimal control problem is quadratic
in the initial system state, with its Hessian determined by the unique solution of a
differential Riccati equation (DRE) subject to a terminal condition set by the terminal
cost. Standard tools exist for the efficient solution of DREs, and thus for such LQR
problems.

The inclusion of nonlinear dynamics, non-quadratic costs, and/or a constraint into
anLQRproblem introduces a non-quadratic term into the associatedHamiltonian. This
non-quadratic term prevents the Hamilton–Jacobi–Bellman (HJB) partial differential
equation (PDE) from simplifying to a DRE, so that computationally more expensive
numerical methods are usually required [20, 21]. However, if the non-quadratic term
introduced is semiconvex [15, 21], it can be equated with a supremum over a family
of quadratic functions, which can be exploited in the subsequent analysis [22]. An
example of this type of sup-of-quadratics representation is illustrated in Fig. 1.

The purpose of this paper is to explore the inclusion of a semiconvex extended
real valued barrier function in the cost function for an LQR problem via its sup-of-
quadratics representation, with the proviso that convexity of the cost function (with
respect to the control input) is retained. The intention is to implement an elemen-
tary state constraint of bounded norm, containing the origin, using computations that
involve a DRE. The development reported is a compendium of earlier efforts [11, 12]
by the authors, augmented with detailed proofs to support its validity. The focus is
deliberately on the sup-of-quadratics representation for the barrier function involved,
and the implications its use has in the formulation and solution of the optimal control
problems of interest.

Fig. 1 A semiconvex function
and its sup-of-quadratics
representation
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1.1 Approach and Contribution

A typical extended real valued barrier function, and its finite approximation, is illus-
trated in Fig. 2. This type of barrier function is intended for the implementation of an
elementary state constraint of bounded norm, containing the origin. Under reasonable
conditions, either an exact or an approximate sup-of-quadratics representation can be
constructed for such a barrier function, analogously to Fig. 1. Adding either represen-
tation to the cost function for an otherwise standard LQR problem, with the proviso
that convexity must be retained, yields a non-quadratic value function for an exact or
an approximate state constrained optimal control problem (respectively). Exploiting
the aforementioned convexity, and other properties of the cost functions, yields con-
vergence of the approximate problem to the exact problem, in terms of their value
functions and their corresponding optimal controls and state trajectories. Satisfaction
of the state constraint for the exact problem also follows.

The exact and approximate sup-of-quadratics representation can be further inter-
preted, via measurable selection, as encoding the actions of an auxiliary player in
corresponding games. The value of the approximate game is shown to exist, and to
coincide with that of the approximate regulator problem. The earlier convergence
results allow corresponding conclusions in the exact case. Further consideration of the
lower value of the approximating game leads to state feedback characterizations for
the optimal policies of both players. These policies are shown to explicitly depend on
the solution of the state dynamics driven by the optimal control, and the solution of a
DRE facilitated by the sup-of-quadratics representation. As the state dynamics and the
DRE evolve their respective solutions forwards and backwards in time, application of
these policies is admitted via solution of a two point boundary value problem.

1.2 Context

The value function of a general state constrained control problem, including for the
simple case considered in this paper, can be characterized as the viscosity solution of
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(a) Barrier Φ and approximation ΦM .
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Fig. 2 Extended real valued barrier Φ and its approximation ΦM
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the aforementioned non-stationary HJB PDE. Uniqueness of this solution can be guar-
anteed in the presence of suitable controllability assumptions on the constraint set, for
example, via inward pointing [8, 26, 27] or related boundary conditions [19]. Alterna-
tively, the value function can be characterized uniquely as the viscosity solution of a
variational inequality, in very general settings, using viability theory and non-smooth
analysis [1, 4].Moreover, consistent approximations generatedvia temporal and spatial
discretization provide the foundation for finite difference methods for numerical com-
putation, see for example [7, 9]. In the context of the curse-of-dimensionality, recent
advances in optimization based approaches exploiting (for example) reproducing ker-
nels [3] and optimistic planning [5] have provided very promising computational
improvements over those earlier grid-based methods.

In the context of duality and barrier function approaches to state constrained optimal
control, immediately relevant prior works include [6, 10, 13, 17, 24, 29]. Specifically,
[29] develops an approximation scheme for general convex costs, and studies consis-
tency of this approximation, while [10] considers continuous time constrained control
in a model predictive control setting, subject to an inward pointing condition on the
feedback policy. One of many related investigations exploiting barrier functions in the
implementation of constraints is detailed in [13], via a discrete time setting. Duality
and saddle point properties are explored in amore general setting in [6, 17], albeit in the
case of control constraints. The tools of convex analysis are employed in the general
treatment of a closely related class of continuous time problems in [24] that addresses
both control and state constraints. A key contribution of the current work relative to
[24] concerns the sup-of-quadratics representation developed, and the exploitation of
the game formulation that follows from it via measurable selection.

1.3 Organization and Notation

The regulator problem of interest is posed in Sect. 2, along with the barrier functions
involved. This is followed in Sect. 3 by development of the exact and approximate sup-
of-quadratics representations for these barrier functions, and the introduction of the
approximate regulator problem. Existence and uniqueness of optimal trajectories for
the exact and approximate regulator problems are considered inSect. 4, alongwith their
behaviour relative to the state constraint of interest. Exact and approximate two player
games are formulated in Sect. 5, and their respective equivalences with the exact and
approximate regulator problems is demonstrated. A further equivalence of the upper
and lower values is demonstrated in each case. This in turn motivates characterization
of the optimal policies involved via solution of a two-point boundary value problem
defined in termsof aDRE.This characterization is illustrated by example inSect. 6. The
paper concludes with some minor summarizing remarks in Sect. 7. Some additional
technicalities and proofs appear inAppendicesAandB,while a summary of significant
notations is included in Appendix C.

Throughout, R, N, Z denote the reals, natural numbers, and integers, while R≥0,
R>0, andR denote the non-negative, positive, and extended reals respectively, with the
latter defined by R

.= R
− ∪ R

+
, R

± .= R ∪ {±∞}. For convenience, R≥a
.= [a,∞)

and R>a
.= (a,∞) for any a ∈ R. An n-dimensional Euclidean space is denoted
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by R
n . The space of n × m matrices on R is denoted by R

n×m . The set of positive
semidefinite symmetricmatrices inRn×n is denoted byΣn . TheEuclidean and induced
matrix norms are denoted by |·| and ‖·‖ respectively. Otherwise, the norm on aBanach
space U is denoted by ‖ · ‖U , or simply ‖ · ‖ if the space is contextually clear. Open
and closed balls of radius r ∈ R≥0 in U are denoted respectively by BU (0; r)

and BU [0; r ]. Weak convergence of a sequence {uk}k∈N ⊂ U to some ū ∈ U is
denoted by uk⇀ū (as k → ∞). The product space U × · · · × U of k ∈ N instances
of U is denoted by U k . The space of bounded linear operators between Banach
spaces U and V is denoted by L(U ;V ). The spaces of continuous and k-times
continuously differentiable functions mappingU to V are denoted by C(U ;V ) and
Ck(U ;V ) for k ∈ N ∪ {∞}. Differentiability at a closed left or right end-point of an
interval is interpreted throughout to mean right- or left-differentiability respectively.
The space of (Lebesgue) square integrable mappings from [0, t] ⊂ R≥0 to U is
denoted byL2([0, t];U ). Unless otherwise specified, C([0, t];U ) is equipped with
the sup norm. A function f : U → R has (possibly empty) domain dom f

.= {u ∈
U | f (u) < ∞}, is proper if dom f 	= ∅ and f is finite on dom f . f : U → R is lower
semicontinuous if lsc f (u)

.= lim inf ũ→u f (ũ) ≥ f (u) for all u ∈ U , and (lower)
closed if its epigraph is closed. f : U → R is (strictly) convex if f : dom f → R

−

is (strictly) convex, and coercive if lim‖u‖→∞ f (u)/‖u‖ = ∞.

2 State Constrained Linear Regulator Problem

Interest is restricted to optimal control problems defined on a finite time horizon
t ∈ R≥0, with respect to linear dynamics and a convex barrier state constraint. The

value function W t : Rn → R
+
involved is defined by

W t (x)
.= inf

u∈U [0,t]
J̄t (x, u) , (1)

for all x ∈ R
n , in whichU [0, t] .= L2([0, t];Rm) is the space of open loop controls,

and J̄t is a cost function defined with respect to the integrated running costs Īt and
I κ
t , κ ∈ R>0, and a terminal cost Ψ . Specifically, J̄t , Īt : R

n × U [0, t] → R
+
,

I κ
t : U [0, t] → R≥0, and Ψ : Rn → R≥0, are defined by

J̄t (x, u)
.= Īt (x, u) + I κ

t (u) + Ψ (xt ), (2)

Īt (x, u)
.=

∫ t

0

K
2 |ξs |2 + 1

2 Φ(|ξs |2) ds, It (u)
.= I κ

t (u)
.= κ

2 ‖u‖2U [0,t], (3)

Ψ (x)
.= 1

2 〈x − z, Pt (x − z)〉, (4)

for all x ∈ R
n , u ∈ U [0, t], in which K ∈ R and Pt ∈ Σn are a priori fixed,

and Φ is an extended real valued barrier function to be specified below. The map
s 
→ ξs ∈ R

n , s ∈ [0, t], describes the unique trajectory of a linear dynamical system
corresponding to an initial state x ∈ R

n and input u ∈ U [0, t], given explicitly via a
map χ : Rn × U [0, t] → R

n , where
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ξs = [χ(x, u)]s
.= eA s x +

∫ s

0
eA (s−σ) B uσ dσ , (5)

for all s ∈ [0, t], given A ∈ R
n×n , B ∈ R

n×m , B 	= 0. The barrier function Φ : R →
R

+
is defined by

Φ(ρ)
.=

{
φ(ρ) , ρ ∈ [0, b2),
+∞ , ρ /∈ [0, b2),

(6)

for fixed b ∈ R>0, in which φ : [0, b2) → R satisfies the following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) φ is twice continuously differentiable, with φ′′ strictly positive;
(i i) limρ↑b2 φ(ρ) = ∞, and φ′(0) ≥ −K ;
(i i i) φ is strictly convex;
(iv) φ′ is strictly increasing, and φ′ : [0, b2) → [φ′(0),∞); and
(v) (φ′)−1 : [φ′(0),∞) → [0, b2) exists and is strictly increasing.

(7)

Note in particular that (iii)–(v) follow as a consequence of (i)–(ii), see for example
[25, Theorem 2.13, p. 46]. As a consequence, φ has a well-defined convex dual a :
R≥φ′(0) → R≥−φ(0) given by

a(β)
.= β (φ′)−1(β) − φ ◦ (φ′)−1(β) , (8)

for all β ∈ R≥φ′(0), that satisfies a variety of properties, including invertibility, etc,
see Lemma 13 in Appendix A. It defines a useful change of coordinates in the sup-of-
quadratics representation that is developed for barrier Φ in Sect. 3. Two preliminary
lemmas concerning (1), (5) are included prior to commencing this development. Their
proofs are standard and are omitted for brevity.

Lemma 1 Given any t ∈ R≥0, x ∈ R
n, U ∈ R≥0, {uk}k∈N ⊂ BU [0,t][0; U ], with

ξk
.= χ(x, uk) defined via (5) for all k ∈ N, the following properties hold:

(i) ξ
.= χ(x, u) : [0, t] → R

n is uniformly continuous, given u ∈ U [0, t];
(ii) χ(x, ·) ∈ C1(U [0, t]; C([0, t];Rn)), with Frèchet derivative

[Du χ(x, u) h]s = [A h]s
.=

∫ s

0
eA (s−σ) B hσ dσ,

‖A h‖C([0,t];Rn) ≤ sup
s∈[0,t]

‖eA s B‖√
t ‖h‖U [0,t],

(9)

for all u, h ∈ U [0, t], s ∈ [0, t]; and
(iii) {ξk}k∈N ⊂ C([0, t];Rn) is uniformly equicontinuous and bounded. Furthermore,

there exists a ū ∈ U [0, t] and subsequences {vk}k∈N ⊂ {uk}k∈N and {yk}k∈N ⊂
{ξk}k∈N such that vk⇀ū weakly and yk → ξ̄

.= χ(x, ū) uniformly, in which
yk = χ(x, vk) for all k ∈ N.

Lemma 2 0 ∈ dom W t for all t ∈ R≥0.
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In view of (3), (5), (6), (7), it is emphasized that attention is restricted to the
very simple case of a single state constraint of bounded norm, i.e. |ξs | ≤ b for all
s ∈ [0, t]. While this case is seemingly trivial, it is sufficient to demonstrate the
details of how the barrier function implementing this constraint can be relaxed in
the optimal control problem to yield an unconstrained game. The treatment of more
general convex constraints in [11], defined with respect to the intersection of a family
of ellipses, is founded on this development.

3 Barrier Representations and an Approximate Regulator Problem

Exact and approximate sup-of-quadratics representations for closed convex barrier
functions of the form ofΦ of (6) can be established via convex duality [23, 25]. These
representations are fundamental to the development of a convergent approximation for
the state constrained regulator problem (1), and its representation via unconstrained
linear quadratic games. The development of these representations and the approximate
regulator problem follow below.

3.1 Exact Sup-of-Quadratics Representation for Convex Barriers

Convex duality and the asserted properties (7) of barrier (6) yield the following, via
some rudimentary calculations.

Lemma 3 The barrier function Φ : R → R
+

of (6) is closed and convex, and there
exists a closed and convex function Θ : R → R such that

Φ(ρ) = sup
β∈R

{β ρ − Θ(β)} ,

Θ(β) = sup
ρ∈R

{β ρ − Φ(ρ)} =
{−φ(0), β ∈ R<φ′(0),

a(β), β ∈ R≥φ′(0),
(10)

for all ρ, β ∈ R, with a as per (8). Furthermore, the optimizers β̂∗ : R → R and
ρ̂∗ : R → R in (10), defined by β̂∗(ρ)

.= argmaxβ∈R{β ρ − Θ(β)} and ρ̂∗(β)
.=

argmaxρ∈R{β ρ − Φ(ρ)}, are given by

β̂∗(ρ) =
⎧⎨
⎩

−∞, ρ ∈ R<0,

φ′(ρ), ρ ∈ [0, b2) ,

+∞, ρ ∈ R≥b2 ,

ρ̂∗(β) =
{

0, β ∈ R<φ′(0),
(φ′)−1(β), β ∈ R≥φ′(0),

(11)

for all β, ρ ∈ R.

A change of coordinates via (8) yields the sup-of-quadratics representation, the details
of which are analogous to the later proof of Proposition 2.
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Proposition 1 The barrier function Φ(| · |2) : Rn → R
+

appearing in (1) via (2), (3),
and defined by (6), has the exact sup-of-quadratics representation

Φ(|x |2) = sup
α≥−φ(0)

{a−1(α) |x |2 − α} (12)

for all x ∈ R
n, in which a−1 is defined via (8). Furthermore, the optimizer α̂∗(| · |2) :

R
n → R

+
≥−φ(0) in (12) is defined via φ′, a of (7), (8) by

α̂∗(|x |2) = argmax
α≥−φ(0)

{a−1(α) |x |2 − α} =
{

a ◦ φ′(|x |2) , |x | < b ,

∞ , |x | ≥ b ,
(13)

for all x ∈ R
n.

Remark 1 While the barrier map ρ 
→ Φ(ρ) : R → R
+
of (6) is guaranteed to be

convex by Lemma 3, the corresponding map x 
→ Φ(|x |2) : Rn → R
+
need not be

convex. However, Proposition 1 implies that this map is uniformly semiconvex [15,
21]. Choosing any η ≥ −2 a−1(−φ(0)), (12) yields

Φ(|x |2) + η
2 |x |2 = sup

α≥−φ(0)

{
[a−1(α) + η

2 ] |x |2 − α
}

, (14)

for all x ∈ R
n , in which a−1(α)+ η

2 ≥ a−1(α)−a−1(−φ(0)) ≥ 0 for all α ≥ −φ(0),
as a−1 is strictly increasing by Lemma 13. The right-hand side of (14) is thus a
supremum of convex functions, which is thus also convex, see [23, p. 7]. That is, (14)
implies that there exists an η ∈ R such thatΦ(| · |2)+ η

2 | · |2 is convex, so thatΦ(| · |2)
is uniformly semiconvex by definition, see [15, 21].

3.2 Approximate Sup-of-Quadratics Representation for Convex Barriers

An approximate sup-of-quadratics representation can be obtained by restricting the
interval over which the supremum is evaluated in the first equation in (10). To this
end, define ΦM : R → R

+
and ρ̂ : [−φ(0),∞) → [0, b2) by

ΦM (ρ)
.= sup

β≤a−1(M)

{β ρ − Θ(β)} , ρ̂(M)
.= (φ′)−1 ◦ a−1(M), (15)

for all M ∈ R≥−φ(0), ρ ∈ R, with φ′, a, Θ as per (7), (8), (10), with the range of ΦM

to be verified. The proof of the following appears in Appendix B.

Lemma 4 With M ∈ R≥−φ(0), ΦM : R → R
+

of (15) satisfies the following:

(i) ΦM has the explicit representation

ΦM (ρ) =
⎧⎨
⎩

∞, ρ ∈ R<0,

φ(ρ), ρ ∈ [0, ρ̂(M)],
a−1(M) ρ − M, ρ ∈ R>ρ̂(M),

(16)
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for all ρ ∈ R, with the maximizer β = βM∗ : R → R
−

given by

β̂M∗(ρ)
.=

⎧⎨
⎩

−∞, ρ ∈ R<0,

φ′(ρ), ρ ∈ [0, ρ̂(M)],
a−1(M), ρ ∈ R>ρ̂(M).

(17)

(ii) ΦM ∈ C(R≥0;R) ∩ C1(R>0;R), and it is closed and strictly convex;
(iii) ΦM is pointwise non-decreasing in M ∈ R≥−φ(0), with

Φ(ρ) = sup
M≥−φ(0)

ΦM (ρ) = lim
M→∞ ΦM (ρ),

for all ρ ∈ R, with Φ as per (6);
(iv) There exist M1 ∈ R≥−φ(0), c ∈ R such that infM≥M1 infρ∈R ΦM (ρ) > c.
(v) ρ̂ of (15) is strictly increasing, and satisfies limM→∞ ρ̂(M) = b2.

As per the exact case of Proposition 1, application of this lemma alongwith a change
of coordinates defined by (8) admits an approximate sup-of-quadratics representation.

Proposition 2 Given b ∈ R>0, the following holds:

(i) Given M ∈ R≥−φ(0), the approximation ΦM of the barrier function Φ of (6),
represented in (15), (16), has the sup-of-quadratics representation

ΦM (|x |2) = sup
α∈[−φ(0),M]

{a−1(α) |x |2 − α} (18)

for all x ∈ R
n, in which a−1 is as per (8), with the maximizer given by

α̂M∗(|x |2) .= argmax
α∈[−φ(0),M]

{a−1(α) |x |2 − α} =
{

a ◦ φ′(|x |2) , |x |2 ≤ ρ̂(M) ,

M , |x |2 > ρ̂(M) ,

(19)

where φ′, a, ρ̂ are as per (7), (8), (15); and
(ii) ΦM (|·|2) : Rn → R defined by (18) is pointwise non-decreasing in M ∈ R≥−φ(0),

and converges pointwise to Φ(| · |2) : Rn → R
+

of (12) in the limit as M → ∞.

Proof (i) Fix M ∈ R≥−φ(0), x ∈ R
n . Applying Lemma 4 (i), note that the optimizer

(17) in (15) satisfies β̂M∗(|x |2) ∈ [φ′(0), a−1(M)], as |x |2 ∈ R≥0.Meanwhile,a of (8)
defines a change of variable α = a(β) for all β ∈ [φ′(0),∞), via Lemma 13. Hence,
ΦM (|x |2) transforms from (15) to ΦM (|x |2) = supβ∈[φ′(0),a−1(M)]{β |x |2 −Θ(β)} =
supβ∈[a−1(−φ(0)),a−1(M)]{β |x |2 − a(β)} via (10), which yields (18). The same change

of variable applied to β̂M∗(|x |2) of (17) yields (19). (ii) is immediate by Lemma 4
(iii). ��

Some useful bounds follow by Proposition 2 and (7), (8).
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Corollary 1 Given K ∈ R≥−φ′(0) as per (3), (7),

ΦM (ρ) ≥ φ′(0) ρ + φ(0), K ρ + ΦM (ρ) ≥ [K + φ′(0)] ρ + φ(0) ≥ φ(0),

Φ(ρ) ≥ φ′(0) ρ + φ(0), K ρ + Φ(ρ) ≥ φ(0),

for all M ∈ R≥−φ(0), ρ ∈ R≥0.

3.3 Approximate Regulator Problem and Its Convergence to the Exact Problem

The sup-of-quadratics representation (12) for the convex barrier functionΦ of (6), and
its convergent approximation (18), can be used to formulate an approximate regulator

problem for (1). Given t ∈ R≥0, M ∈ R≥−φ(0), the value function W
M
t : Rn → R

for this approximate problem is defined by

W
M
t (x)

.= inf
u∈U [0,t]

J̄ M
t (x, u) (20)

for all x ∈ R
n , with J̄ M

t : Rn × U [0, t] → R defined with respect to I κ
t and Ψ of

(3), (4) and Ī M
t : Rn × U [0, t] → R by

J̄ M
t (x, u)

.= Ī M
t (x, u) + I κ

t (u) + Ψ (ξt ), (21)

Ī M
t (x, u)

.=
∫ t

0

K
2 |ξs |2 + 1

2 ΦM (|ξs |2) ds, (22)

for all x ∈ R
n , u ∈ U [0, t], inwhich ξ

.= χ(x, u) andΦM are as per (5) and (15), (16),
(18) respectively, and K ∈ R≥−φ′(0), κ ∈ R>0 are fixed. This approximate problem
recovers the original problem of (1) in the limit as M → ∞, as formalized by the
theorem below. For convenience, J̄∞

t : Rn × U [0, t] → R
+
and W

∞
t : Rn → R

+

are defined by

J̄∞
t (x, u)

.= sup
M∈R≥−φ(0)

J̄ M
t (x, u) , W

∞
t (x)

.= sup
M∈R≥−φ(0)

W
M
t (x) , (23)

for all x ∈ R
n , u ∈ U [0, t].

Theorem 1 Given t ∈ R≥0, the cost and value functions J̄ M
t , W

M
t of (21), (20) are

pointwise non-decreasing in M ∈ R≥−φ(0), and satisfy

− ∞ < J̄ M
t (x, u) ≤ J̄∞

t (x, u) = lim
M→∞ J̄ M

t (x, u) = J̄t (x, u), (24)

− ∞ < W
M
t (x) ≤ W

∞
t (x) = lim

M→∞ W
M
t (x) = W t (x),

R
n = dom W

M
t ⊃ dom W t 	= ∅ ,

(25)
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for all x ∈ R
n, u ∈ U [0, t]. where J̄t , J̄∞

t : Rn × U [0, t] → R
+

and W t , W
∞
t :

R
n → R

+
are defined by (1), (2), and (23).

Proof Fix t ∈ R≥0, x ∈ R
n . [Non-decreasing property] This is immediate by inspec-

tion of (20), (21), (22), and the non-decreasing property of ΦM (| · |2) provided by
Proposition 2 (ii).

[Left-hand inequalities in (24), (25)] Immediate by the definition of J̄∞
t , W

∞
t in

(23). Also, Corollary 1 implies that −∞ <
φ(0)
2 t ≤ J̄ M

t (x, u). Moreover, as u is

arbitrary here, −∞ <
φ(0)
2 t ≤ W

M
t (x) = infu∈U [0,t] J̄ M

t (x .u).
[Domain properties in (25)] Fix M ∈ R≥−φ(0). It is immediate by the left-

hand inequality in (25) and Lemma 2 that dom W
M
t ⊃ dom W t 	= ∅ holds. For

the remaining assertion, fix u ∈ U [0, t], and recall that χ(x, u) ∈ C([0, t];Rn)

via (5) and Lemma 1. Applying Lemma 4 (ii), ΦM (|χ(x, u)|2) ∈ C([0, t];R), so

that J̄ M
t (x, u) < ∞ by inspection of (21). Hence, as u is arbitrary, W

M
t (x) =

infu∈U [0,t] J̄ M
t (x .u) < ∞, and as x ∈ R

n is arbitrary, dom W
M
t = R

n .
[Limits in (24), (25) ] Immediate from the non-decreasing property above.
[Right-hand equality in (24)] Fix u ∈ U [0, t]. In view of Corollary 1 and (22), it

follows that Ī M
t (x, u) = ∫ t

0 νM
s ds+ φ(0)

2 t , where s 
→ νM
s

.= K
2 |ξs |2+ 1

2 ΦM (|ξs |2)−
φ(0)
2 is nonnegative by Corollary 1, non-decreasing in M ∈ R≥−φ(0) by Proposition

2 (ii), and continuous (and hence measurable). Applying the monotone convergence
theorem,

sup
M>−φ(0)

Ī M
t (x, u) = lim

M→∞

∫ t

0
νM

s ds + φ(0)
2 t =

∫ t

0
lim

M→∞ νM
s ds + φ(0)

2 t

=
∫ t

0

K
2 |ξs |2 + 1

2 lim
M→∞ ΦM (|ξs |2) ds = Īt (x, u),

in which the final equality follows by Lemma 4 (iii). Hence, recalling (21), (23),

J̄∞
t (x, u) = sup

M∈R≥−φ(0)

Ī M
t (x, u) + I κ

t (u) + Ψ (ξt )

= Īt (x, u) + I κ
t (u) + Ψ (ξt ) = J̄t (x, u) ,

in which it is noted that x ∈ R
n and u ∈ U [0, t] are arbitrary.

[Right-hand equality in (25)] Applying (23), (24),

W
∞
t (x) = sup

M≥−φ(0)
inf

u∈U [0,t]
J̄ M

t (x, u) ≤ inf
u∈U [0,t]

sup
M≥−φ(0)

J̄ M
t (x, u)

= inf
u∈U [0,t]

J̄t (x, u) = W t (x) . (26)

It remains to demonstrate the opposite inequality. To this end, fix an arbitrary ε ∈ R>0,
and any non-decreasing sequence {Mk}k∈N ⊂ R≥−φ(0) such that limk→∞ Mk = ∞.
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Define a sequence {uε
k}k∈N ⊂ U [0, t] by

J̄ Mk
t (x, uε

k) < W
Mk
t (x) + ε, (27)

and note by definition (20) of W
Mk
t (x) that this is always possible. Suppose that

{uε
k}k∈N is unbounded. Applying Corollary 1 in the definition (22) of Ī Mk

t (x, ·),
note that Ī Mk

t (x, u) ≥ φ(0)
2 t for all u ∈ U [0, t]. Combining this with (21), (27)

yields W
∞
t (x) = limk→∞ W

Mk
t (x) ≥ limk→∞ J̄ Mk

t (x, uε
k) − ε ≥ φ(0)

2 t − ε +
κ
2 limk→∞ ‖uε

k‖2U [0,t] = ∞ which yields W
∞
t (x) ≥ W t (x), as required to complete

the proof in that unbounded case.
Alternatively, suppose that {uε

k}k∈N is bounded, i.e. there exists U ∈ R≥0 such
that {uε

k}k∈N ∈ BU [0,t][0; U ]. Lemma 1 (iii) implies that there exists a ūε ∈ U [0, t]
and a subsequence {ũε

k}k∈N ⊂ {uε
k}k∈N such that uε

k⇀ūε and ξ̃ ε
k → ξ̄ ε uniformly as

k → ∞, where ξ̃ ε
k

.= χ(x, ũε
k). In view of (3), (22), and Corollary 1, define a sequence

{ν̃ε
k }k∈N of maps from [0, t] to R≥0, and candidate limit ν̄ε : [0, t] → R

+
≥0, by

[ν̃ε
k ]s

.= K
2 |[ξ̃ ε

k ]s |2 + 1
2 ΦMk (|[ξ̃ ε

k ]s |2) − φ(0)
2 ,

ν̄ε
s

.= K
2 |[ξ̄ ε]s |2 + 1

2 Φ(|[ξ̄ ε]s |2) − φ(0)
2 , (28)

for all s ∈ [0, t], k ∈ N. Fix any s ∈ [0, t], j ∈ N. Note that by mono-
tonicity of {ΦMk }k∈N, see Lemma 4 (iii) or Proposition 2 (ii), ΦMk (|[ξ̃ ε

k ]s |2) =
[ΦMk (|[ξ̃ ε

k ]s |2) − ΦM j (|[ξ̃ ε
k ]s |2)] + ΦM j (|[ξ̃ ε

k ]s |2) ≥ ΦM j (|[ξ̃ ε
k ]s |2) for all k ≥

j . Hence, as ΦM j is continuous, lim infk→∞ ΦMk (|[ξ̃ ε
k ]s |2) ≥ ΦM j (|[ξ̄ ε]s |2),

so that lim infk→∞ ΦMk (|[ξ̃ ε
k ]s |2) ≥ lim j→∞ ΦM j (|[ξ̄ ε]s |2) = Φ(|[ξ̄ ε]s |2). As

limk→∞ |[ξ̃ ε
k ]s |2 = |[ξ̄ ε]s |2, (28) subsequently yields that

ν̄ε
s ≤ lim inf

k→∞ [ν̃ε
k ]s . (29)

By inspection, ν̄ε
s = ∞ implies that limk→∞[ν̃ε

k ]s = ∞ = ν̄ε
s .

Alternatively, suppose that ν̄ε
s < ∞. In view of (28), define [ν̂ε

k ]s
.= K

2 |[ξ̃ ε
k ]s |2 +

1
2 Φ(|[ξ̃ ε

k ]s |2)− φ(0)
2 for all k ∈ N. As ν̄ε

s < ∞, there exists an open interval containing
|[ξ̄ ε]s |2 on which Φ is continuous, and limk→∞[ξ̃ ε

k ]s = [ξ̄ ε]s , so that [ν̂ε
k ]s < ∞ for

all k ∈ N sufficiently large, and limk→∞[ν̂ε
k ]s = ν̄ε

s . Note further that [ν̃ε
k ]s ≤ [ν̂ε

k ]s

for all k ∈ N, again by Lemma 4 (iii). Hence,

lim sup
k→∞

[ν̃ε
k ]s ≤ lim sup

k→∞
[ν̂ε

k ]s = ν̄ε
s . (30)

Consequently, combining (29) and (30), and recalling the ν̄ε
s = ∞ case above, it may

be concluded that limk→∞[ν̃ε
k ]s = ν̄ε

s for both the ν̄ε
s = ∞ and the ν̄ε

s < ∞ cases.
Next, recall by definition (28) and Corollary 1, that {ṽε

k }k∈N defines a non-
negative sequence of functions in C([0, t];R). Consequently, every element of this
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sequence is measurable and non-negative, so that Fatou’s lemma yields
∫ t
0 ν̄ε

s ds =∫ t
0 lim infk→∞[ν̃ε

k ]s ≤ lim infk→∞
∫ t
0 [ν̃ε

k ]s ds. Hence, recalling (28), the definitions
of ξ̃ ε

k , ξ̄
ε prior, and (3), (22),

Īt (x, ūε) =
∫ t

0

K
2 |ξ̄ ε

s |2 + 1
2 Φ(|ξ̄ ε

s |2) ds =
∫ t

0
ν̄ε

s ds + φ(0)
2 t

≤ lim inf
k→∞

∫ t

0
[ν̃ε

k ]s ds + φ(0)
2 t

= lim inf
k→∞

∫ t

0

K
2 |[ξ̃ ε

k ]s |2 + 1
2 ΦMk (|[ξ̃ ε

k ]s |2) ds

= lim inf
k→∞ Ī Mk

t (x, ũε
k) . (31)

Meanwhile, by weak convergence of ũε
k to ūε , ‖ūε‖U [0,t] ≤ lim infk→∞ ‖ũε

k‖U [0,t],
so that (3) implies

I κ
t (ūε) = κ

2‖ūε‖2U [0,t] ≤ lim inf
k→∞

κ
2 ‖ũε

k‖2U [0,t] = lim inf
k→∞ I κ

t (ũε
k) . (32)

Moreover, continuity of [χ(x, ·)]t by Lemma 1 (ii), along with continuity ofΨt of (4),
imply that

Ψ (ξ̄ ε
t ) = lim

k→∞ Ψ ([ξ̃ ε
k ]t ) . (33)

Combining (31), (32), (33) via (2), (21) yields

J̄t (x, ūε) = Īt (x, ūε) + I κ
t (ūε) + Ψ (ξ̄ ε

t )

≤ lim inf
k→∞ Ī Mk

t (x, ũε
k) + lim inf

k→∞ I κ
t (ũε

k) + lim
k→∞ Ψ ([ξ̃ ε

k ]t )

≤ lim inf
k→∞

{
Ī Mk
t (x, ũε

k) + I κ
t (ũε

k) + Ψ ([ξ̃ ε
k ]t )

}
= lim inf

k→∞ J̄ Mk
t (x, ũε

k).

(34)

Hence, applying (27) and (34)while recalling that {ũε
k}k∈N ⊂ {uε

k}k∈N is a subsequence
of the near-optimal inputs involved, and noting that ūε is suboptimal in the definition
(1) of W t (x), yields

W t (x) ≤ J̄t (x, ūε) ≤ lim inf
k→∞ J̄ Mk

t (x, ũε
k) ≤ lim inf

k→∞ W
Mk
t (x) + ε = W

∞
(x) + ε .

As ε ∈ R>0 is arbitrary, it follows that W t (x) ≤ W
∞

(x). Recalling (26) and the fact
that t ∈ R≥0 and x ∈ R

n are also arbitrary completes the proof of the equality in
(25). ��
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4 Optimal Trajectories and Constraint Satisfaction

Existence and uniqueness of the optimal trajectories in (1), (20) is demonstrated via
analysis of the attendant cost functions (2), (22). In particular, these cost functions
are shown to be proper, lower semicontinuous, strictly convex, and coercive. These
properties are demonstrated tobe sufficient for the required existence anduniqueness of
the optimal controls involved, as summarised in Theorem 2. The relevant behaviour of
the corresponding optimal trajectories, with respect to the state constraint, is concluded
in Theorem 3.

4.1 Existence and Uniqueness of the Optimal Controls

In order to demonstrate that the cost functions J̄t (x, ·), J̄ M
t (x, ·) : U [0, t] → R

+
of

(2), (22) are proper, convex, and coercive for fixed t ∈ R≥0, M ∈ R≥−φ(0), x ∈ R
n , it

is useful to consider the map γ
s,α
x : U [0, t] → R defined for fixed x ∈ R

n , s ∈ [0, t],
α ∈ R≥−φ(0) by

γ s,α
x (u)

.= 1
2 [K + a−1(α)] |[χ(x, u)]s |2 − α

2 (35)

for all u ∈ U [0, t], in which χ is as per (5).

Lemma 5 Given t ∈ R≥0, x ∈ R
n, s ∈ [0, t], α ∈ R≥−φ(0), γ

s,α
x : U [0, t] → R of

(35) is convex.

Proof Fix t ∈ R≥0, x ∈ R
n , s ∈ [0, t], α ∈ R≥−φ(0). As u 
→ [χ(x, u)]s is affine by

(5), convexity of γ
s,α
x follows by inspection of (35), (7), and Lemma 13. ��

Lemma 6 Given any t ∈ R>0, M ∈ R≥−φ(0), the cost functions J̄t (x, ·), J̄ M
t (x, ·) :

U [0, t] → R
+

defined for x ∈ R
n by (2), (22) satisfy the following:

(i) J̄ M
t (x, ·) and J̄t (x, ·) are respectively continuous and lower semicontinuous for

all x ∈ R
n;

(ii) Both are strictly convex and coercive for all x ∈ R
n; and

(iii) J̄ M
t (x, ·) and J̄t (y, ·) are proper for all x ∈ dom W

M
t = R

n and all y ∈ dom W t .

Proof Fix t ∈ R>0, M ∈ R≥−φ(0). (i) Fix x ∈ R
n . [Continuity of J̄ M

t (x, ·)] By inspec-
tion of (21), (22), and (3), (4), continuity of J̄ M

t (x, ·) on U [0, t] requires continuity
of its constituent maps Ī M

t (x, ·), I κ
t , and Ψ ([χ(x, ·)]t ) onU [0, t]. This is immediate

for I κ
t and Ψ ([χ(x, ·)]t ), by (3), (4), and Lemma 1 (ii). The same conclusion follows

for Ī M
t (x, ·), by application of Lemma 1 (ii) and Lemma 4 (ii).

[Lower semicontinuity of J̄t (x, ·)] Fix u ∈ U [0, t], and any sequence {ũi }i∈N ⊂
U [0, t] such that limi→∞ ‖u − ũi‖U [0,t] = 0. By continuity of J̄ M

t (x, ·), note that
J̄ M

t (x, u) = limi→∞ J̄ M
t (x, ũi ). Hence, applying Theorem 1, and in particular (23),

(24),
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J̄t (x, u) = sup
M≥−φ(0)

J̄ M
t (x, u) = sup

M≥−φ(0)
lim inf

i→∞ J̄ M
t (x, ũi )

≤ lim inf
i→∞ sup

M≥−φ(0)
J̄ M

t (x, ũi ) = lim inf
i→∞ J̄t (x, ũi ) .

As u ∈ U [0, t] and {ũi }i∈N ⊂ U [0, t] are arbitrary, the assertion follows.
(ii) Fix x ∈ R

n . [Convexity of J̄ M
t (x, ·)] Fix u ∈ U [0, t], and ξ

.= χ(x, u) by (5).
By (3), (18), (22),

Ī M
t (x, u) =

∫ t

0

K
2 |ξs |2 + 1

2 ΦM (|ξs |2) ds =
∫ t

0
sup

α∈[−φ(0),M]
γ s,α

x (u) ds, (36)

where γ
s,α
x is as per (35). Recall by Lemma 5 that γ s,α

x : U [0, t] → R is convex for
any s ∈ [0, t], α ∈ R≥−φ(0). As convexity is preserved under suprema and integration,
see [23, Theorem 3 and (2.6), p. 7], it follows by (36) that Ī M

t (x, ·) : U [0, t] → R is
convex.AsΨ of (4) is convex by definition of Pt ∈ Σn , and [χ(x, ·)]t : U [0, t] → R

n

is affine,Ψ ([χ(x, ·)]t ) : U [0, t] → R is also convex. By (21), J̄ M
t (x, ·)− κ

2‖·‖2U [0,t]
is convex, and so J̄ M

t (x, ·) is strictly convex.
[Convexity of J̄t (x, ·)] Recalling the convexity argument immediately above,

J̄ M
t (x, ·) − κ

2‖ · ‖2U [0,t] is convex. Moreover, Theorem 1 implies that (24), (23) hold.

Hence, as convexity is preserved under suprema [23, (2.6), p. 7], J̄t (x, ·)− κ
2‖·‖2U [0,t]

is convex, so that J̄t (x, ·) is strictly convex.
[Coercivity of J̄ M

t (x, ·)] Recall by Corollary 1 that K
2 | · |2 + 1

2 ΦM (| · |2) ≥ φ(0)
2 .

Applying (2), (4),

J̄ M
t (x, u) ≥ φ(0)

2 t + κ
2 ‖u‖2U [0,t], (37)

for all x ∈ R
n , u ∈ U [0, t]. Hence, J̄ M

t (x, ·) is coercive, as κ ∈ R>0.
[Coercivity of J̄t (x, ·)] Follows by coercivity of J̄ M

t (x, ·) and Theorem 1.
(iii) Lemma 2 demonstrates that dom W t 	= ∅. Fix any x ∈ dom W t . Select a

near-optimal input ũ ∈ U [0, t] in the definition (1) of W t (x), such that J̄ M
t (x, ũ) ≤

J̄t (x, ũ) < W t (x) + 1 < ∞, and note that this is always possible by Theorem 1,
i.e. (24). Hence, dom J̄ M

t (x, ·) 	= ∅ 	= dom J̄t (x, ·). Again recalling (24), along
with (37), note also that −∞ <

φ(0)
2 t + κ

2 ‖u‖2U [0,t] ≤ J̄ M
t (x, u) ≤ J̄t (x, u) for all

u ∈ U [0, t]. Hence, J̄t (x, ·), J̄ M
t (x, ·) : U [0, t] → R

+
of (2), (22) are proper for

any x ∈ dom W t . Finally, recalling (37) yields that J̄ M
t (y, ·) is also proper for any

y ∈ dom W
M
t = R

n . ��

With t ∈ R>0, existence and uniqueness of the optimal controls in (1), (20) may
now be established.

Theorem 2 Given any t ∈ R>0, M ∈ R≥−φ(0), x ∈ dom W t , y ∈ dom W
M
t = R

n,
there exist unique optimal controls u∗, uM∗ ∈ U [0, t] for the respective optimal

123



19 Page 16 of 43 Applied Mathematics & Optimization (2023) 88 :19

control problems (1), (20), with

u∗ = argmin
u∈U [0,t]

J̄t (x, u), uM∗ = argmin
u∈U [0,t]

J̄ M
t (y, u). (38)

Moreover, for x = y ∈ dom W t , these optimal controls converge strongly in the limit
as M → ∞, i.e. limM→∞ ‖uM∗ − u∗‖U [0,t] = 0.

Proof For the first assertion, i.e. (38), as the existence and uniqueness arguments for
the two optimal controls are analogous, only the first is included. The proof involves
twomain steps, prefaced as follows: (I) confirm that the left-hand argmin in (38) is non-
empty, by constructing an element of a sequence of decreasing level sets of J̄t (x, ·),
using the available properness, lower semicontinuity, and coercivity properties of the
latter; and (II) verify that this argmin is a singleton, via convexity. The details of the
proof follow.

(I) Fix any t ∈ R>0, and recall that dom W t 	= ∅ by Lemma 2. Fix any x ∈ dom W t ,
and recall by Lemma 6 that J̄t (x, ·) : U [0, t] → R

+
is proper, lower semicontinuous,

strictly convex, and coercive. Given � ∈ R
+
, define the level set Λ� ⊂ U [0, t] by

Λ�
.= {

u ∈ U [0, t] ∣∣ J̄t (x, u) ≤ �
}
. (39)

As J̄t (x, ·) : U [0, t] → R
+

is proper and coercive, and (37) holds, there exists
û ∈ U [0, t] such that −∞ <

φ(0)
2 t + κ

2 ‖û‖2U [0,t] ≤ J̄t (x, û) < ∞. Consequently,

�0
.= infu∈U [0,t] J̄t (x, u) is finite, i.e. �0 ∈ R, and Λ� of (39) is guaranteed to be

non-empty for all � > �0. Moreover, as κ ∈ R>0, (37) implies that Λ� is bounded

for all � > �0, with Λ� ⊂ BU [0,t][0, r�], r�
.= [� − φ(0)

2 t] 12 (and note by inspection

that �0 ≥ φ(0)
2 t). Define a decreasing sequence {�k}k∈N ⊂ R such that limk→∞ �k =

�0, and a corresponding sequence {uk}k∈N ⊂ U [0, t] such that uk ∈ Λ�k . Note in
particular that uk ∈ Λ�1 ⊂ BU [0,t][0; r�1 ] as Λ�k ⊃ Λ�k+1 	= ∅, for all k ∈ N. That
is, {uk}k∈N is bounded. As per the proof of Theorem 1, this implies the existence of
a subsequence {ûk}k∈N ⊂ {uk}k∈N and a ū ∈ U [0, t] such that ξ̂k → ξ̄ uniformly as
k → ∞, where ξ̂k

.= χ(x, ûk), ξ̄
.= χ(x, ū). Define a sequence of maps {ν̂k}k∈N from

[0, t] to R+
and its candidate limit ν̄ : [0, t] → R

+
by

[ν̂k]s
.= K

2 |[ξ̂k]s |2 + 1
2 Φ(|[ξ̂k]s |2) − φ(0)

2 , ν̄s
.= K

2 |ξ̄s |2 + 1
2 Φ(|ξ̄s |2) − φ(0)

2 ,

(40)

for all k ∈ N, s ∈ [0, t]. By inspection, note that limk→∞[ν̂k]s = ν̄s , irrespec-
tive of finiteness of ν̄s , for all s ∈ [0, t]. Repeating the Fatou’s Lemma argument
of Theorem 1,

∫ t
0 ν̄s ds = ∫ t

0 lim infk→∞[ν̂k]s ds ≤ lim infk→∞
∫ t
0 [ν̂k]s ds. Hence,

(3), (40) imply that Īt (x, ū) = ∫ t
0 ν̄s ds + φ(0)

2 t ≤ lim infk→∞
∫ t
0 [ν̂k]s ds +

φ(0)
2 t = lim infk→∞ Īt (x, ûk), which, again following the proof of Theorem 1, yields

J̄t (x, ū) ≤ lim infk→∞ J̄t (x, ûk). Abuse notation by relabelling {�k}k∈N to match
the subsequence {ûk}k∈N of {uk}k∈N, and note that ûk ∈ Λ�k . Hence, J̄t (x, ū) ≤
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lim infk→∞ J̄t (x, ûk) ≤ lim infk→∞ �k = �0. Consequently, recalling the definition
of �0, J̄t (x, ū) = �0 = infu∈U [0,t] J̄t (x, u), so that ū ∈ argminu∈U [0,t] J̄t (x, u) and
the argmin is non-empty.

(II) Suppose there exists a ũ ∈ argminu∈U [0,t] J̄t (x, u) such that ũ 	= ū, and
define ŭ

.= 1
2 (ū + ũ) ∈ U [0, t]. By strict convexity, J̄t (x, ŭ) < 1

2 J̄t (x, ū) +
1
2 J̄t (x, ũ) = J̄t (x, ū), contradicting ū ∈ argminu∈U [0,t] J̄t (x, u). Hence, the argmin
is a singleton, with {u∗} = argminu∈U [0,t] J̄t (x, u), as u∗ .= ū = ũ.

For the second assertion, i.e. convergence of the optimal controls, fix t > 0, x = y ∈
dom W t , and a sequence {Mk}k∈N ⊂ [−φ(0),∞) such that limk→∞ Mk = ∞. Note
by the first assertion that u∗, uMk∗ ∈ U [0, t] exist and are unique. Define ŭMk

.=
1
2 (u∗ + uMk∗), k ∈ N, and note that

‖ŭMk ‖2U [0,t] = 1
2 ‖u∗‖2U [0,t] + 1

2 ‖uMk∗‖2U [0,t] − 1
4‖u∗ − uMk∗‖2U [0,t] .

As J̄ Mk
t (x, ·) − κ

2 ‖ · ‖2U [0,t] is convex [see the proof of Lemma 6(ii)],

J̄ Mk
t (x, ŭMk ) = [ J̄ Mk

t (x, ŭMk ) − κ
2 ‖ŭMk ‖2U [0,t]] + κ

2 ‖ŭMk ‖2U [0,t]
≤ 1

2

[
J̄ Mk

t (x, u∗)− κ
2 ‖u∗‖2U [0,t]

]
+ 1

2

[
J̄ Mk

t (x, uMk∗)− κ
2‖uMk∗‖2U [0,t]

]

+ κ
4 ‖u∗‖2U [0,t] + κ

4 ‖uMk∗‖2U [0,t] − κ
8‖u∗ − uMk∗‖2U [0,t]

= 1
2 J̄ Mk

t (x, u∗) + 1
2 J̄ Mk

t (x, uMk∗) − κ
8‖u∗ − uMk∗‖2U [0,t] .

Consequently, by the sub-optimality of ŭMk in W
Mk
t (x), optimality of u∗ and uMk∗ in

W t (x) and W
Mk
t (x) respectively, and Theorem 1,

W
Mk
t (x) ≤ J̄ Mk

t (x, ŭMk ) ≤ 1
2 W t (x) + 1

2 W
Mk
t (x) − κ

8‖u∗ − uMk∗‖2U [0,t] .

As κ ∈ R>0, taking the limit as k → ∞ and again applying Theorem 1 yields
limk→∞ ‖u∗ − uMk∗‖U [0,t] ≤ 0, as required. ��

4.2 Constraint Satisfaction

With existence of the optimal controls in (1), (20) guaranteed by Theorem 2, the
corresponding state trajectories can be examined to determine their compliance with
the intended state constraint. To this end, given t ∈ R>0, x ∈ R

n , ε ∈ R>0, define the

sets of ε-optimal inputs in the definitions (1), (20) of W t (x), W
M
t (x), M ∈ R≥−φ(0),

respectively by

U ε
x [0, t] .=

{
u ∈ U [0, t]

∣∣∣∣ W t (x) + ε > J̄t (x, u)

}
, (41)

U M,ε
x [0, t] .=

{
u ∈ U [0, t]

∣∣∣∣ W
M
t (x) + ε > J̄ M

t (x, u)

}
. (42)
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Define the map Δt : Rn × U [0, t] → [0, t], where

Δt (x, u)
.=

⋃
r∈[0,t],s∈[r ,t]

{[r , s] ∣∣ |[χ(x, u)]σ | ≥ b ∀ σ ∈ [r , s]} (43)

for all x ∈ R
n , u ∈ U [0, t]. Observe that Δt (x, u) aggregates the times in [0, t]

at which the state constraint is violated for the trajectory (5), given its initial state
x and control u. The following theorem provides bounds on the measure of this set
Δt (x, u) for any control, for the near optimal controls (41), (42), and subsequently for
the optimal controls of (38).

Theorem 3 The following properties concerning the map Δt of (43) hold for any
t ∈ R>0:

(i) There exist constants M1 ∈ R>−φ(0) and ηt , λt , Ξt ∈ R>0 and non-increasing
β : R>M1 → R>0 satisfying limM→∞ β(M) = 0, such that for any M ∈ R>M1 ,
ε ∈ R>0,

sup
u∈U M,ε

x [0,t]
μ(Δt (x, u)) ≤ β(M)

[
ηt

(
W

M
t (x) + ε

)
+ λt + Ξt |x |2

]
(44)

for all x ∈ R
n, in which μ denotes the Lebesgue measure, and U M,ε

x is as per
(42);

(ii) Given any x ∈ dom W t , and any ε ∈ R>0,

lim
M→∞ sup

u∈U M,ε
x [0,t]

μ(Δt (x, u)) = 0 = sup
u∈U ε

x [0,t]
μ(Δt (x, u)) , (45)

in which U ε
x [0, t] is as per (41); and

(iii) Given any x ∈ dom W t and a strictly increasing sequence {Mk}k∈N ⊂ R>−φ(0),
there exist unique u∗ ∈ U [0, t] and sequence {uMk∗}k∈N ⊂ U [0, t], specified by
(38), such that

lim
k→∞ μ(Δt (x, uMk∗)) = 0 = μ(Δt (x, u∗)) .

Proof Fix any t ∈ R>0. Select M1 ∈ R≥−φ(0), c ∈ R as per Lemma 4 (iv). Fix any
M ∈ R>M1 . By definition of M , M1, c, Lemma 4 (iii) and (iv) imply that

c < inf
M≥M1

inf
ρ∈RΦM (ρ) ≤ ΦM1(b2) ≤ ΦM (b2) . (46)

Motivated by (46), define β : R>M1 → R>0 by

β(M)
.= 2

ΦM (b2) − c
(47)
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for all M > M1, and note that it is non-increasing by Lemma 4 (iii). Furthermore,
(18) and Lemma 14 imply that limM→∞ ΦM (b2) ≥ limM→∞{a−1(M) b2 − M} =
limM→∞ γb2(M) = ∞, where γb2(M) is as per (97). Hence, by inspection of (47),
limM→∞ β(M) = 0.

(i) Fix any x ∈ R
n , ε ∈ R>0, and u ∈ U M,ε

x [0, t], and denote the corresponding
near-optimal trajectory by ξ

.= χ(x, u) as per (5). Applying (42) and Corollary 1,

note that W
M
t (x) + ε > J̄ M

t (x, u) ≥ ∫ t
0

K
2 |ξs |2 + 1

2 ΦM (|ξs |2) ds + κ
2 ‖u‖2U [0,t] ≥

φ(0)
2 t + κ

2 ‖u‖2U [0,t], so that ‖u‖2U [0,t] ≤ 2
κ

[W M
t (x)+ε − φ(0)

2 t]. Recalling (5), there
exist Ξ t , γ̄t ∈ R>0 such that ‖ξ‖2L2([0;t];Rn)

≤ Ξ t |x |2 + γ̄t ‖u‖2U [0,t], so that

‖ξ‖2L2([0;t];Rn) ≤ Ξ t |x |2 + γ̄t ( 2
κ
) [W M

t (x) + ε − φ(0)
2 t] .

Consequently, returning to the definition (42) of near optimality, and applying (43),
Corollary 1, and the bound K + φ′(0) ≥ 0 adopted in (7) (ii),

W
M
t (x) + ε > J̄ M

t (x, u) ≥
∫ t

0

K
2 |ξs |2 + 1

2 ΦM (|ξs |2) ds

≥
∫

[0,t]\Δt (x,u)

−|φ(0)|
2

ds +
∫

Δt (x,u)

−φ′(0)
2 |ξs |2 + c

2 ds

+
∫

Δt (x,u)

K+φ′(0)
2 |ξs |2 + 1

2 [ΦM (|ξs |2) − c] ds

≥ −|φ(0)|+|c|
2 t − |φ′(0)|

2 ‖ξ‖2L2([0;t];Rn) +
∫

Δt (x,u)

1
2 [ΦM (b2) − c] ds

≥ −|φ(0)|+|c|
2 t − |φ′(0)|

2

[
Ξ t |x |2 + γ̄t ( 2

κ
) [W M

t (x) + ε − φ(0)
2 t]

]

+ 1
2 [ΦM (b2) − c] μ(Δt (x, u)) . (48)

That is, with β as per (47),

μ(Δt (x, u)) ≤ β(M)
(

W
M
t (x) + ε + |φ′(0)|+|c|

2 t

+|φ′(0)|
2

[
Ξ t |x |2 + γ̄t ( 2

κ
) [W M

t (x) + ε − φ(0)
2 t]

])

= β(M)
(
[1 + γ̄t |φ′(0)|

κ
](W

M
t (x) + ε)

+ 1
2 [|φ(0)| + |c| − γ̄t

κ
|φ′(0)| φ(0)] t + 1

2 Ξ t |φ′(0)| |x |2
)

, (49)

fromwhich (44) immediately follows by selecting ηt
.= 1+ γ̄t |φ′(0)|

κ
, λt

.= 1
2 [|φ′(0)|+

|c| + γ̄t
κ

|φ′(0)| |φ(0)|] t , and Ξt
.= 1

2 Ξ t |φ′(0)|.
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(ii) Fix any x ∈ dom W t , ε ∈ R>0. The left-hand equality of (45) holds follows by
(16), (25), and assertion (i), i.e. (44). In particular,

lim
M→∞ sup

u∈U M,ε
x [0,t]

μ(Δt (x, u)) ≤ lim
M→∞ β(M)

[
η

(
W

M
t (x) + ε

)
+ λt + Ξt |x |2

]
= 0.

It remains to show that the right-hand equality in (45) holds. Fix any u ∈ U ε
x [0, t].

Suppose there exists δ ∈ R>0 such that μ(Δt (x, u)) ≥ δ > 0. An analogous calcula-

tion to (48), with W
M
t and ΦM replaced with W t and supM≥−φ(0) ΦM , yields

W t (x) + ε + |φ(0)|+|c|
2 t + |φ(0)|

2

[
Ξ t |x |2 + γ̄t ( 2

κ
) [W t (x) + ε − φ(0)

2 t]
]

> 1
2 sup

M≥−φ(0)
[ΦM (b2) − c] δ = 1

2 sup
M≥−φ(0)

[γb2(M) − c] δ = ∞ ,

in which the equalities follow as δ ∈ R>0, and by (18) and Lemma 14. Hence,
W t (x) = ∞, which contradicts the definition of x ∈ dom W t . Consequently, no such
δ ∈ R>0 exists, so that μ(Δt (x, u)) = 0. As u ∈ U ε

x [0, t] is arbitrary, the right-hand
equality in (45) follows as required.

(iii) Immediate by assertion (ii) and Theorem 2. ��

Remark 2 Theorem 3 indicates that the regulator problem defined by W t of (1) imple-
ments the required state constraint for almost every time for those initial states x ∈ R

n

for which W t (x) < ∞, and the approximating regulator problem defined by W
M
t of

(20) implements the same constraint in the limit as M → ∞. This constraint can be
violated for M < ∞, as the finite approximation ΦM of the extended real valued
barrier Φ does not impose an infinite cost penalty on such violations in the definition

(20) of W
M
t . This is reflected in the non-zero right-hand side of (44), which allows

for constraint violations on time intervals of non-zero measure for M < ∞.

5 Equivalent Unconstrained Game

The sup-of-quadratics representation (12) for the convex barrier function Φ in (6)
is used to demonstrate equivalence of the value function for the state constrained
regulator problem (1) with the upper value of an unconstrained two player game, as
summarised in Theorem 4. Similarly, the approximate sup-of-quadratics representa-
tion (18) is used to demonstrate an equivalence between the value function for the
approximate regulator problem (20) with the corresponding upper value of an approx-
imate two player game, see Theorem 5. It is further demonstrated that this approximate
game has equivalent upper and lower values, which is used to demonstrate the cor-
responding equivalence for the exact game, see Theorem 6 and Corollary 2, via the
convergence results of Theorem 1. The lower value is subsequently exploited to exam-
ine solutions of the state constrained regulator problem (1) via DREs, see Theorems
7 and 8.
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5.1 Exact Unconstrained Game and Its Upper Value

Given a horizon t ∈ R≥0, define a function space by

A [0, t] .= {
α : [0, t] → R≥−φ(0) |measurable

}
.

Motivated by (2), (3), (12), define the upper value Wt : Rn → R
+
of a two player

unconstrained linear quadratic game by

Wt (x)
.= inf

u∈U [0,t]
sup

α∈A [0,t]
Jt (x, u, α) (50)

for all x ∈ R
n , in which Jt is a cost function defined with respect to a new integrated

running cost function It motivated by (3), and the existing integrated running cost I κ
t of

(3) and terminal costΨ of (4). In particular, define Jt , It : Rn×U [0, t]×A [0, t] → R

and ν : Rn × R≥−φ(0) → R by

Jt (x, u, α)
.= It (x, u, α) + I κ

t (u) + Ψ (ξt ), (51)

It (x, u, α)
.=

∫ t

0
ν(ξs, αs) ds, ξ

.= χ(x, u), (52)

ν(x, α̂)
.= K

2 |x |2 + 1
2 [a−1(α̂) |x |2 − α̂], (53)

for all x ∈ R
n , u ∈ U [0, t], α ∈ A [0, t], α̂ ∈ R≥−φ(0).

The value functions (1) and (50) defining the exact regulator problem and the exact
unconstrained game are in fact equivalent, as stated in the following theorem.

Theorem 4 Given t ∈ R≥0, the value functions W t , Wt of (1), (50) are equivalent,
with W t (x) = Wt (x) for all x ∈ R

n.

The proof of Theorem 4 follows as a consequence of the following measurable
selection lemma, see for example [14].

Lemma 7 Given t ∈ R≥0, x ∈ R
n, u ∈ U [0, t], ξ

.= χ(x, u) ∈ C([0, t];Rn), the
following hold:

(i) The cost functions Īt , It of (3), (52) associated with the exact regulator problem
(1) and game upper value (50) satisfy

Īt (x, u) =
∫ t

0
sup

α̂≥−φ(0)
ν(ξs, α̂) ds = sup

α∈A [0,t]
It (x, u, α), (54)

in which ν is as per (53);
(ii) If μ(Δt (x, u)) = 0, see (43), then α∗ ∈ A [0, t] given for any M ∈ R≥−φ(0) by

α∗
s = α̂Δ∗(|ξs |2) .=

{
a ◦ φ′(|ξs |2), s ∈ [0, t] \ Δt (x, u),

M, s ∈ Δt (x, u),
(55)
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satisfies

Īt (x, u) = It (x, u, α∗) ; (56)

(iii) If x ∈ dom W t and u ∈ U ε
x [0, t], ε ∈ R>0, see (41), then (56) holds with

α∗ ∈ A [0, t] as per (55), for arbitrary M ∈ R≥−φ(0).

Proof Fix t ∈ R≥0, x ∈ R
n , u ∈ U [0, t], and ξ

.= χ(x, u) ∈ C([0, t];Rn). (i) The
left-hand equality in (54) is immediate by (3), (52), (53), andProposition 1, in particular
(12). For the right-hand equality, first fix any α ∈ A [0, t], and note that it is pointwise
suboptimal in the supremum over α̂ ≥ −φ(0). That is,

∫ t
0 supα̂≥−φ(0) ν(ξs, α̂) ds ≥∫ t

0 ν(ξs, αs) ds for all α ∈ A [0, t]. Hence,
∫ t

0
sup

α̂≥−φ(0)
ν(ξs, α̂) ds ≥ sup

α∈A [0,t]

∫ t

0
ν(ξs, αs) ds = sup

α∈A [0,t]
It (x, u, α). (57)

In order to prove the opposite inequality, fix δ ∈ R>0, and suppose that u ∈ U [0, t]
is such that |Δt (x, u)| ≥ δ > 0, see (43). Given any α−, α+ ∈ R≥−φ(0), define
piecewise constant ᾰ ∈ A [0, t] by

ᾰs =
{

α−, s ∈ [0, t] \ Δt (x, u),

α+, s ∈ Δt (x, u),

for all s ∈ [0, t]. Note that ᾰ is suboptimal insofar as

sup
α∈A [0,t]

It (x, u, α) ≥ It (x, u, ᾰ)

= I − +
∫

Δt (x,u)

ν(ξs, α
+) ds, I − .=

∫
[0,t]\Δt (x,u)

ν(ξs, α
−) ds .

As this is true for any α+ ∈ R≥−φ(0), it follows immediately that

sup
α∈A [0,t]

It (x, u, α) ≥ I − + sup
α+≥−φ(0)

∫
Δt (x,u)

ν(ξs, α
+) ds.

Lemma 14 implies that ν(ξs, ·) = γ|ξs |2(·) is strictly increasing for any s ∈
Δt (x, u) fixed, as |ξs |2 ≥ b2 by (43), with limα+→∞ ν(ξs, α

+) = K
2 |ξs |2 +

limα+→∞ γ|ξs |2(α
+) = ∞. Consequently, there exists an M0 ∈ R≥−φ(0) such that

ν(ξs, α
+) ≥ a−1(α+) b2 − α+ > 0 for all α+ > M0. Hence, the monotone conver-

gence theorem implies that

sup
α∈A [0,t]

It (x, u, α) ≥ I − + lim
α+→∞

∫
Δt (x,u)

ν(ξs, α
+) ds

= I − +
∫

Δt (x,u)

limα+→∞ ν(ξs, α
+) ds = ∞.
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As the left-hand side here is the right-hand side of (57), it follows immediately that
the opposite inequality to (57) always holds where |Δt (x, u)| ≥ δ > 0.

Alternatively, suppose u ∈ U [0, t] is such that μ(Δt (x, u)) = 0, and let α∗ ∈
A [0, t] be defined by (55). Recalling the left-hand equality of (54), and the definition
(13) of α̂∗(·) in Proposition 1,

Īt (x, u) =
∫ t

0
sup

α̂≥−φ(0)
ν(ξs, α̂) ds =

∫
[0,t]\Δt (x,u)

ν(ξs, α̂
∗
s (|ξs |2)) ds

=
∫

[0,t]\Δt (x,u)

ν(ξs, α
∗
s ) ds =

∫ t

0
ν(ξs, α

∗
s ) ds

≤ sup
α∈A [0,t]

∫ t

0
ν(ξs, αs) ds = sup

α∈A [0,t]
It (x, u, α) . (58)

Combining this inequality with (57) yields (54).
(ii) Immediate by the fourth equality of (58).
(iii) Fix x ∈ dom W t , ε ∈ R>0, u ∈ U ε

x [0, t]. Theorem 3 (ii) implies that
μ(Δ(x, u)) = 0, so that assertion (ii) above applies. ��

Theorem 4 follows by Lemma 7 (i) and by comparison of (1)–(3), (50)–(53).

5.2 Approximate Game and Its Upper and Lower Values

Given M ∈ R≥−φ(0), t ∈ R≥0, defineA M [0, t] .= C([0, t]; [−φ(0), M]). Analogous
to the exact game defined by (50), define the upper value W M

t : R
n → R of an

approximating two player unconstrained linear quadratic game by

W M
t (x)

.= inf
u∈U [0,t]

sup
α∈A M [0,t]

Jt (x, u, α) (59)

for all x ∈ R
n , where cost Jt is as per (51). As in the exact case, the value function (20)

of the approximating regulator problem and the upper value (59) of the approximating
game are equivalent.

Theorem 5 Given t ∈ R≥0, M ∈ R≥−φ(0), the value functions W
M
t , W M

t of (20),

(59) are equivalent, with W
M
t (x) = W M

t (x) for all x ∈ R
n.

The proof of Theorem 5 follows as a consequence of a corresponding measurable
selection lemma, the proof of which is similar to that of Lemma 7.

Lemma 8 Given any t ∈ R≥0, M ∈ R≥−φ(0), x ∈ R
n, u ∈ U [0, t], and ξ

.=
χ(x, u) ∈ C([0, t];Rn), the cost functions Ī M

t , It and J̄ M
t , Jt of (22), (52) and (21),

(51) satisfy
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Ī M
t (x, u) =

∫ t

0
sup

α̂∈[−φ(0),M]
ν(ξs, α̂) ds = sup

α∈A M [0,t]
It (x, u, α) = It (x, u, αM∗),

J̄ M
t (x, u) = sup

α∈A M [0,t]
Jt (x, u, α) = Jt (x, u, αM∗), (60)

in which αM∗ ∈ A M [0, t] is defined via (19) by, and satisfies,

αM∗
s

.= α̂M∗(|ξs |2), s ∈ [0, t], (61)

αM∗ ∈ argmax
α∈A M [0,t]

It (x, u, α) ≡ argmax
α∈A M [0,t]

Jt (x, u, α). (62)

Proof Fix any t ∈ R≥0, M ∈ R≥−φ(0), x ∈ R
n ,u ∈ U [0, t], and define ξ

.= χ(x, u) ∈
C([0, t];Rn). Define αM∗ as per (61), and note in particular that αM∗ ∈ A M [0, t] by
Lemma 13 and (7), (15), (19).

[(60) and the left-hand argmax in (62)] The first equality in (60) is immediate by
Proposition 2 (i), i.e. (18). For the remaining equalities, anyα ∈ A M [0, t] is pointwise
suboptimal in the supremum over α̂ ∈ [−φ(0), M], so that

Ī M
t (x, u) =

∫ t

0
sup

α̂∈[−φ(0),M]
ν(ξs, α̂) ds ≥

∫ t

0
ν(ξs, αs) ds

for all α ∈ A M [0, t]. Hence,

Ī M
t (x, u) =

∫ t

0
sup

α̂∈[−φ(0),M]
ν(ξs, α̂) ds ≥ sup

α∈A M [0,t]

∫ t

0
ν(ξs, αs) ds

= sup
α∈A M [0,t]

It (x, u, α) . (63)

In order to prove the opposite inequality, recall by (61) and Proposition 2, i.e. (19),
that αM∗

s is the pointwise maximizer of ν(ξs, ·). That is,

Ī M
t (x, u) =

∫ t

0
sup

α̂∈[−φ(0),M]
ν(ξs, α̂) ds =

∫ t

0
ν(ξs, α

M∗
s ) ds = It (x, u, αM∗)

≤ sup
α∈A M [0,t]

∫ t

0
ν(ξs, αs) ds = sup

α∈A M [0,t]
It (x, u, α). (64)

Hence, combining inequalities (63) and (64) yields (60), and the left-hand argmax in
(62).

[(60) and the right-hand argmax in (62)] Immediate by definitions (21), (22), (51),
(52) of J̄ M

t , Ī M
t , Jt , It , (60), (61), and the left-hand argmax in (62). (Note in particular

that the dependence of Jt (·, ·, α) on α ∈ A M [0, t] comes only through It (·, ·, α).) ��
Theorem 5 subsequently follows by Lemma 8 and comparison of (20)–(22) and

(51)–(53), (59).
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With a view to addressing computation, the remaining objective is to demonstrate
equivalence of the upper and lower values for the game (59). To this end, a number of
useful properties of the cost function Jt of (51) are summarised via the following two
lemmas.

Lemma 9 Given any t ∈ R>0, x ∈ R
n, M ∈ R≥−φ(0), α ∈ A M [0, t], the cost function

Jt (x, ·, α) : U [0, t] → R defined by (51) is Frèchet differentiable, strictly convex,
and coercive.

Proof The differentiability assertion follows by Lemma 1(ii) and the chain rule, while
the strict convexity and coercivity assertions follow via analogous arguments to the
proof of Lemma 6. The details are omitted. ��
Remark 3 Strict convexity in Lemma 9 requires t ∈ R>0.

Lemma 10 Given t ∈ R>0, M ∈ R≥−φ(0), and x ∈ R
n, let uM∗ ∈ U [0, t] be defined

as per (38), and let αM∗ .= α̂M∗(|χ(x, uM∗)|2) ∈ A M [0, t] be defined via (5), (61).
Then, uM∗ and αM∗ are unique, and together satisfy

argmin
u∈U [0,t]

J̄ M
t (x, u) = uM∗ = argmin

u∈U [0,t]
Jt (x, ·, αM∗) .

Proof The proof involves three main steps, prefaced as follows: (I) given the unique
optimal control uM∗ as indicated, construct a unique αM∗ from the corresponding
optimal trajectory via (5), (61); (II) verify by strict convexity that the cost Jt (x, ·, αM∗)
has a unique minimizer; and (III) show that this minimizer must be uM∗, by showing
that perturbations away from uM∗ always result in a higher cost, via a non-negative
directional derivative of Jt (x, ·, αM∗).

Step (III) is complicated by two features of the problem: firstly, perturbations in
the control yield perturbations in the trajectory, which in turn yield perturbations in
the evaluated αM∗ via (61); and secondly, the statement of (61) involves a number of
cases, see (19). In dealing with the first complication, it is convenient to bound the
directional derivative of Jt (x, ·, αM∗) below by that of J̄ M

t (x, ·), for which uM∗
is the

known unique minimizer. In dealing with the second complication, the cases involved
must be exhaustively enumerated.

The details of the proof follow.
(I) Fix t ∈ R>0, M ∈ R≥−φ(0). Define uM∗ ∈ U [0, t] uniquely as per (38), i.e.

as per the left-hand equality in the lemma statement. Given this uM∗, define αM∗ ∈
A M [0, t] as per the lemma statement, and note by Lemma 8 that αM∗ is unique by
definition.

(II) Recall by Lemma 9 that Jt (x, ·, αM∗) : U [0, t] → R is Frèchet differentiable
and strictly convex. Hence, in order to verify that Jt (x, ·, αM∗) is (uniquely) mini-
mized at uM∗, it is sufficient to show that the directional derivative of Jt (x, ·, αM∗) is
nonnegative in all directions when evaluated at uM∗. The details follow in (III) below.

(III) Fix any ũ ∈ U [0, t] with ‖ũ‖U [0,t] = 1. The Frèchet derivative and its Riesz
representation at uM∗ ∈ U [0, t], denoted by Du Jt (x, uM∗, αM∗) ∈ L(U [0, t];R)

and ∇u Jt (x, uM∗, αM∗) ∈ U [0, t], satisfy
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Du Jt (x, uM∗, αM∗)(ũ) = 〈∇u Jt (x, uM∗, αM∗), ũ〉U [0,t]

= lim
δ→0+

{
Jt (x, uM∗ + δ ũ, αM∗) − Jt (x, uM∗, αM∗)

δ

}
. (65)

Fix any ε ∈ R>0 with ε2 < min(1, ρ̂(M)), and ρ̂(M) as per (15). Let Lt
.=

‖A‖L(U [0,t];C([0,t];Rn)) ∈ R>0, with A as per (9), and δ̄ε .= ε/(4 Lt ) ∈ R>0. Fix
any δ ∈ (0, δ̄ε]. Define

ũM∗ .= uM∗ + δ ũ, ξ̃ M∗ .= χ(x, ũM∗), ξ M∗ .= χ(x, uM∗),
α̃M∗

s
.= α̂M∗(|ξ̃ M∗

s |2), αM∗
s

.= α̂M∗(|ξ M∗
s |2), (66)

for all s ∈ [0, t], with χ , α̂M∗ as per (5), (19). Recalling (5) and Lemma 1, note in
particular that

‖ξ̃ M∗ − ξ M∗‖C([0,t];Rn) ≤ Lt δ ‖ũ‖U [0,t] = Lt δ ≤ Lt δ̄ε ≤ ε
4 . (67)

By (51), (52), (53), and Lemma 8,

Jt (x, uM∗, αM∗) = J̄t (x, uM∗),

Jt (x, ũM∗, αM∗) =
∫ t

0
ν(ξ̃ M∗

s , αM∗
s ) ds + I κ

t (ũM∗) + Ψ (ξ̃ M∗
t )

=
∫ t

0
ν(ξ̃ M∗

s , α̃M∗
s ) + [ν(ξ̃ M∗

s , αM∗
s ) − ν(ξ̃ M∗

s , α̃M∗
s )] ds

+ I κ
t (ũM∗) + Ψ (ξ̃ M∗

t )

= J̄t (x, ũM∗) +
∫ t

0
ν(ξ̃ M∗

s , αM∗
s ) − ν(ξ̃ M∗

s , α̃M∗
s ) ds,

so that, by subtraction,

Jt (x, ũM∗, αM∗) − Jt (x, uM∗, αM∗)

= J̄ M
t (x, ũM∗) − J̄ M

t (x, uM∗) +
∫ t

0
ν(ξ̃ M∗

s , αM∗
s ) − ν(ξ̃ M∗

s , α̃M∗
s ) ds. (68)

As per the prefaced first complication of step (III), the first two terms on the right-
hand side of (68) are a prelude to a directional derivative of J̄ M

t (x, ·), in which it is
noted that uM∗ is the minimizer of J̄ M

t (x, ·), see Theorem 2 and (38). Hence, a lower
bound for the integral term in the right-hand side of (68) is sought, as a function of δ,
using Taylor’s theorem. This Taylor’s theorem argument brings in the second prefaced
complication of step (III), due to the cases involved in the definition of αM∗, and this
dominates the remainder of the proof. Persevering, as a first step, it may be shown
with some calculation via (19), (53), (66), (97) that
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αM∗
s − α̃M∗

s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ◦ φ′(|ξ M∗
s |2)

−a ◦ φ′(|ξ̃ M∗
s |2) ,

|ξ̃ M∗
s |2 < ρ̂(M) , |ξ M∗

s |2 < ρ̂(M) ,

M − a ◦ φ′(|ξ̃ M∗
s |2) , |ξ̃ M∗

s |2 < ρ̂(M) ≤ |ξ M∗
s |2 ,

a ◦ φ′(|ξ M∗
s |2) − M , |ξ̃ M∗

s |2 ≥ ρ̂(M) > |ξ M∗
s |2

0 , |ξ̃ M∗
s |2 ≥ ρ̂(M), |ξ M∗

s |2 ≥ ρ̂(M) ,

∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) = |ξ̃ M∗
s |2

a′ ◦ a−1(α̃M∗
s )

− 1 =
{

0 , |ξ̃ M∗
s |2 < ρ̂(M) ,

|ξ̃ M∗
s |2

ρ̂(M)
− 1 , |ξ̃ M∗

s |2 ≥ ρ̂(M) ,

∂2ν
∂α2 (ξ̃

M∗
s , α̃M∗

s ) = −|ξ̃ M∗
s |2

2φ′′(a′ ◦ a−1(α̃M∗
s )) [a′ ◦ a−1(α̃M∗

s )]3

=
⎧⎨
⎩

−1
2φ′′(|ξ̃ M∗

s |2) |ξ̃ M∗
s |2 , |ξ̃ M∗

s |2 < ρ̂(M) ,

−|ξ̃ M∗
s |2

2φ′′(ρ̂(M)) [ρ̂(M)]3 , |ξ̃ M∗
s |2 ≥ ρ̂(M) ,

(69)

inwhich the derivatives followbyLemma14 and the identity ν(ξ̃ M∗
s , α) = K

2 |ξ̃ M∗
s |2+

1
2 γ|ξ̃ M∗

s |2(α) for all α ∈ R≥−φ(0), with γ(·) as per (97).
In evaluating these cases, observe that the second partial derivative in (69) is

unbounded if |ξ̃ M∗
s | → 0. Two cases are thus considered, (i) s ∈ Δε

0, and (ii)
s ∈ [0, t] \ Δε

0, in which

Δε
0

.=
{

s ∈ [0, t] ∣∣ |ξ M∗
s | ≤ ε

2

}
⊂ [0, t]. (70)

(i) Fix s ∈ Δε
0. The triangle inequality, (67), (70) imply that |ξ̃ M∗

s | ≤ |ξ̃ M∗
s −

ξ M∗
s | + |ξ M∗

s | ≤ ε
4 + ε

2 = 3 ε
4 , so that max(|ξ̃ M∗

s |2, |ξ M∗
s |2) ≤ ε2 < ρ̂(M) by

definition of ε. Hence, (19), (66) yield α̃M∗
s = a ◦ φ′(|ξ̃ M∗

s |2), αM∗
s = a ◦ φ′(|ξ M∗

s |2),
so that a−1(α̃M∗

s ) = φ′(|ξ̃ M∗
s |2), a−1(αM∗

s ) = φ′(|ξ M∗
s |2). Note also that a ◦ φ′ is

differentiable by Lemma 13, with (a ◦ φ′)′(ρ) = [a′ ◦ φ′(ρ)] φ′′(ρ) = ρ φ′′(ρ) for all
ρ ∈ [0, ε]. Hence, (53), the triangle inequality, Taylor’s theorem, and (67) together
imply that the integrand in (68) satisfies

|ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s )|
≤ 1

2 |a−1(αM∗
s ) − a−1(α̃M∗

s )| |ξ̃ M∗
s |2 + 1

2 |α̃M∗
s − αM∗

s |
≤ ε2

2 |φ′(|ξ M∗
s |2) − φ′(|ξ̃ M∗

s |2)| + 1
2 |a ◦ φ′(|ξ M∗

s |2) − a ◦ φ′(|ξ̃ M∗
s |2)|

≤ 1
2

(
ε2 |φ′′(μs)| + |ρs φ′′(ρs)|

) ∣∣∣|ξ M∗
s |2 − |ξ̃ M∗

s |2
∣∣∣

≤ ε
2 (ε + 1) sup

ρ∈[0,ε]
|φ′′(ρ)|

∣∣∣|ξ M∗
s |2 − |ξ̃ M∗

s |2
∣∣∣

≤ ε sup
ρ∈[0,ρ̂(M)]

|φ′′(ρ)| (|ξ M∗
s | + |ξ̃ M∗

s |) |ξ M∗
s − ξ̃ M∗

s |

≤ 2 ε2 sup
ρ∈[0,ρ̂(M)]

|φ′′(ρ)| |ξ M∗
s − ξ̃ M∗

s | ≤ K M
0 (ε) δ ,
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in which ε < 1 by definition, andμs, ρs ∈ [0, ε] ⊂ [0, ρ̂(M)] lie in an interval defined
by the end points |ξ M∗

s |2 and |ξ̃ M∗
s |2, and

K M
0 (ε)

.= L M
1 Lt ε2 , L M

1
.= sup

ρ∈[0,ρ̂(M)]
2 |φ′′(ρ)| . (71)

As s ∈ Δε
0 is arbitrary, integration yields

∫
Δε

0

ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s ) ds ≥
∫

Δε
0

−|ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s )| ds

≥ −t K M
0 (ε) δ . (72)

(ii) Fix any s ∈ [0, t] \ Δε
0. As |ξ M∗

s | > ε
2 , by definition of Δε

0, the triangle
inequality and (67) imply that |ξ̃ M∗

s | ≥ |ξ M∗
s | − |ξ̃ M∗

s − ξ M∗
s | > ε

2 − ε
4 = ε

4 , so
that ξ̃ M∗

s , ξ M∗
s /∈ BRn [0; ε

4 ]. Consequently, (66), (69) imply that ∂ν
∂α

(ξ̃ M
s , α̃M∗

s ) and
∂2ν
∂α2 (ξ̃

M
s , ᾱs) exist and are uniformly bounded for s ∈ [0, t], given any ᾱs contained

in the interval defined by the end points α̃M∗
s and αM∗

s . By Taylor’s theorem, such an
ᾱs exists, and satisfies

ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s ) = ∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) (αM∗
s − α̃M∗

s )

+ 1
2

∂2ν
∂α̂2 (ξ̃

M∗
s , ᾱs) (αM∗

s − α̃M∗
s )2 . (73)

Note by inspection of the various cases in (69) that the first order term is equivalently
given by

∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) (αM∗
s − α̃M∗

s )

=
{

(a ◦ φ′(|ξ M∗
s |2) − M) (

|ξ̃ M∗
s |2

ρ̂(M)
− 1), |ξ̃ M∗

s |2 ≥ ρ̂(M) > |ξ M∗
s |2 ,

0 , otherwise.

Let RM .= ‖ξ M∗‖C([0,t];Rn) > ε
2 , and note that |ξ̃ M∗

s | ≤ |ξ M∗
s | + |ξ̃ M∗

s − ξ M∗
s | ≤

RM + ε
4 , by (67). In the non-zero case above, as M = a ◦ φ′(ρ̂(M)), a second

application of Taylor’s theorem yields

|a ◦ φ′(|ξ M∗
s |2) − M | = |a ◦ φ′(ρ̂(M) + [|ξ M∗

s |2 − ρ̂(M)]) − a ◦ φ′(ρ̂(M))|
= |(a ◦ φ′)′(μs)|

∣∣∣|ξ M∗
s |2−ρ̂(M)

∣∣∣=|μs φ′′(μs)|
∣∣∣|ξ M∗

s |2−ρ̂(M)

∣∣∣
≤ sup

μ∈[0,ρ̂(M)]
|μ φ′′(μ)|

∣∣∣|ξ M∗
s |2 − |ξ̃ M∗

s |2
∣∣∣

≤ ρ̂(M) sup
μ∈[0,ρ̂(M)]

|φ′′(μ)|
(
|ξ M∗

s | + |ξ̃ M∗
s |

)
|ξ M∗

s − ξ̃ M∗
s |

≤ ρ̂(M) sup
μ∈[0,ρ̂(M)]

|φ′′(μ)|
(
2 RM + ε

4

)
Lt δ

= ρ̂(M) L M
1 (RM + ε

8 ) Lt δ ,
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in which μs ∈ [|ξ M∗
s |2, ρ̂(M)]. Similarly,

∣∣∣ |ξ̃ M∗
s |2

ρ̂(M)
− 1

∣∣∣ ≤ 1
ρ̂(M)

∣∣∣|ξ M∗
s |2 − |ξ̃ M∗

s |2
∣∣∣ ≤ 2

ρ̂(M)

(
RM + ε

8

)
Lt δ .

Hence, combining these inequalities yields a lower bound for the first order term, with

∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) (αM∗
s − α̃M∗

s ) ≥ −| ∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) (αM∗
s − α̃M∗

s )|
≥ −K M

1 (ε) δ2 , (74)

with K M
1 (ε)

.= 2 L M
1

(
RM + ε

8

)2
L2

t .
The second order term in (73) has the same form as (69), with

∂2ν
∂α2 (ξ̃

M∗
s , ᾱs) = −|ξ̃ M∗

s |2
2φ′′(a′ ◦ a−1(ᾱs)) [a′ ◦ a−1(ᾱs)]3 = −|ξ̃ M∗

s |2
2φ′′ ◦ ρ̂(ᾱs) [ρ̂(ᾱs)]3 ,

in which ᾱs is in the interval defined by the end points α̃M∗
s and αM∗

s . As ξ̃ M∗
s , ξ M∗

s /∈
BRn [0; ε

4 ], (66) implies thatαM∗
s , α̃M∗

s ∈ [a◦φ′( ε2

16 ), M], so that ᾱs ∈ [a◦φ′( ε2

16 ), M].
Hence, Lemma 13, i.e. (92), yields

| ∂2ν
∂α2 (ξ̃

M∗
s , ᾱs)| ≤ |ξ̃ M∗

s |2
inf

ρ∈[ε2/16,ρ̂(M)]
{2 ρ3 φ′′(ρ)} ≤ L M

2 ( 16
ε2

)3 (RM + ε
4 )

2 ,

with L M
2

.= supρ∈[0,ρ̂(M)][2φ′′(ρ)]−1. Furthermore, in each of the four cases listed
for αM∗

s − α̃M∗
s in (69), Taylor’s theorem again yields

|αM∗
s − α̃M∗

s | ≤ (a ◦ φ)′(ρs)

∣∣∣|ξ M∗
s |2 − |ξ̃ M∗

s |2
∣∣∣

≤ sup
ρ∈[0,ρ̂(M)]

ρ φ′′(ρ) (|ξ M∗
s | + |ξ̃ M∗

s |) |ξ M∗
s − ξ̃ M∗

s | ≤ ρ̂(M) L M
1 (RM + ε

8 ) Lt δ ,

in which ρs ∈ [0, ρ̂(M)] in every case. Hence, a lower bound for the second order
term is

1
2

∂2ν
∂α̂2 (ξ̃

M∗
s , ᾱs) (αM∗

s − α̃M∗
s )2 ≥ − 1

2 | ∂2ν
∂α̂2 (ξ̃

M∗
s , ᾱs)| |αM∗

s − α̃M∗
s |2

≥ −K M
2 (ε) δ2 , (75)

with K M
2 (ε)

.= 1
2 L M

2 ( 16
ε2

)3 (RM + ε
4 )

2 [ρ̂(M) L M
1 (RM + ε

8 ) Lt ]2. Thus, integrating
(73) via (74), (75),

∫
[0,t]\Δε

0

ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s ) ds

=
∫

[0,t]\Δε
0

∂ν
∂α̂

(ξ̃ M∗
s , α̃M∗

s ) (αM∗
s − α̃M∗

s ) + 1
2

∂2ν
∂α̂2 (ξ̃

M∗
s , ᾱs) (αM∗

s − α̃M∗
s )2 ds
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≥
∫

[0,t]\Δε
0

−K M
1 (ε) δ2 − K M

2 (ε) δ2 ds ≥ −t [K M
1 (ε) + K M

2 (ε)] δ2 . (76)

Cases (i) and (ii) may now be combined, via (72) and (76), in (68), to finally deal
with the second prefaced complication of step (III). In particular,

Jt (x, ũM∗, αM∗) − Jt (x, uM∗, αM∗) = J̄ M
t (x, ũM∗) − J̄ M

t (x, uM∗)

+
∫

Δε
0

ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s ) ds +
∫

[0,t]\Δε
0

ν(ξ̃ M∗
s , αM∗

s ) − ν(ξ̃ M∗
s , α̃M∗

s ) ds

≥ J̄ M
t (x, ũM∗) − J̄ M

t (x, uM∗) − t K M
0 (ε) δ − t [K M

1 (ε) + K M
2 (ε)] δ2 .

Recalling (66), a lower bound for the directional derivative (65) can subsequently be
evaluated, with

Du Jt (x, uM∗, αM∗)(ũ) = lim
δ→0+

{
Jt (x, uM∗ + δ ũ, αM∗) − Jt (x, uM∗, αM∗)

δ

}

≥ lim inf
δ→0+

{
J̄ M

t (x, uM∗ + δ ũ) − J̄t (x, uM∗)
δ

}
− t K M

0 (ε) ≥ −t K M
0 (ε) ,

in which the second inequality follows by Theorem 2, i.e. (38), effectively dealing
with the first prefaced complication of step (III). Furthermore, as ε ∈ R>0 can be
selected arbitrarily small, cf. its definition prior to (66), and K M

0 (0) = 0 by (71), it
follows that

Du Jt (x, uM∗, αM∗)(ũ) ≥ 0 ,

in which ũ ∈ U [0, t], ‖ũ‖U [0,t] = 1, is arbitrary. Hence, uM∗ ∈ U [0, t] minimizes
Jt (x, ·, αM∗). ��
Theorem 6 Given t ∈ R>0, M ∈ R≥−φ(0), x ∈ R

n, and uM∗, αM∗ as per Lemma 10,

W
M
t (x) = W M

t (x) = inf
u∈U [0,t]

sup
α∈A M [0,t]

Jt (x, u, α)

= min
u∈U [0,t]

max
α∈A M [0,t]

Jt (x, u, α)

= max
α∈A M [0,t]

min
u∈U [0,t]

Jt (x, u, α) = Jt (x, uM∗, αM∗) (77)

Proof Fix t ∈ R>0, M ∈ R≥−φ(0), x ∈ R
n , and αM∗, uM∗ as per Lemma 10.

Recalling Theorem 5, W
M
t (x) = W M

t (x) = infu∈U [0,t] supα∈A M [0,t] Jt (x, u, α) ≥
supα∈A M [0,t] infu∈U [0,t] Jt (x, u, α). For the opposite inequality, and existence of the
minimizer and maximzer as per the final equality in (77), note by Theorem 2, Lemma
8, the definition of αM∗, and finally Lemma 10, that

inf
u∈U [0,t]

sup
α∈A M [0,t]

Jt (x, u, α) = inf
u∈U [0,t]

J̄ M
t (x, u)
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= J̄ M
t (x, uM∗) = Jt (x, uM∗, αM∗) = min

u∈U [0,t]
Jt (x, u, αM∗)

≤ max
α∈A M [0,t]

min
u∈U [0,t]

Jt (x, u, α) = sup
α∈A M [0,t]

inf
u∈U [0,t]

Jt (x, u, α) .

��
Corollary 2 Given t ∈ R>0 and x ∈ R

n, the game upper value defined by Wt of (50)
and the corresponding game lower value are equivalent, with

Wt (x)
.= inf

u∈U [0,t]
sup

α∈A [0,t]
Jt (x, u, α) = sup

α∈A [0,t]
inf

u∈U [0,t]
Jt (x, u, α). (78)

Proof Fix t ∈ R>0, x ∈ R
m . Applying Theorem 4, followed by Theorems 1 and 6,

Wt (x) = W t (x) = sup
M≥−φ(0)

W
M
t (x) = sup

M≥−φ(0)
W M

t (x)

= sup
M≥−φ(0)

inf
u∈U [0,t]

sup
α∈A M [0,t]

Jt (x, α, u)

= sup
M≥−φ(0)

sup
α∈A M [0,t]

inf
u∈U [0,t]

Jt (x, u, α)

= sup
α∈A [0,t]

inf
u∈U [0,t]

Jt (x, u, α).

��

5.3 Computation via the Lower Value

Theorems 4, 5, 6, and Corollary 2, together establish equivalences of the exact and
approximate regulator problems (1) and (20) with the corresponding exact and approx-
imate games (50), (59), (77), (78), and that the upper and lower values of these games
are equivalent in both cases. With a view to computation, via the value function and
optimal trajectories corresponding to the approximate regulator problem (20), it is
useful to explicitly consider the lower value of the approximate game. To this end,
given M ∈ R≥−φ(0), α ∈ A M [0, t], define an auxiliary value function Ŵ α

t by

Ŵ α
t (x)

.= inf
u∈U [0,t]

Jt (x, u, α) (79)

for all t ∈ R≥0, x ∈ R
n . The following is then immediate.

Lemma 11 Given any t ∈ R≥0, M ∈ R≥−φ(0), the value functions W M
t , Ŵ α

t : Rn →
R

+
, α ∈ A M [0, t], of (50), (79) satisfy W M

t (x) = supα∈A M [0,t] Ŵ α
t (x) for all

x ∈ R
n.

By inspection of (51), (52), (53), Ŵ α
t of (79) defines the value of an LQR problem,

parameterized by α ∈ A M [0, t]. In order to demonstrate that Ŵ α
t has an explicit
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quadratic representation, it is convenient to consider the final value problem (FVP)

− ˙̂Pα
s = Â′ P̂α

s + P̂α
s Â − 1

κ
P̂α

s B̂ B̂ ′ P̂α
s + V̂ α

s , P̂α
t = P̂t , (80)

for all s ∈ [0, t], in which Â, P̂s, P̂t , V̂s ∈ R
(n+1)×(n+1), s ∈ [0, t], B̂ ∈ R

(n+1)×m ,
Ĉ ∈ R

n×(n+1) are defined via κ , K of (2), A, B of (5), and Pt of (4) by

Â
.=

(
A 0n

0′
n 0

)
, B̂

.=
(

B
0′

m

)
, P̂t

.=
(

Pt Qt

Q′
t Rt

)
, Qt

.= −Pt z, Rt
.= 〈z, Pt z〉,

V̂ α
s

.=
( [K + a−1(αs)] In 0n

0′
n −αs

)
, P̂α

s
.=

(
Pα

s Qα
s

(Qα
s )′ Rα

s

)
, (81)

in which In ∈ R
n×n and 0n ∈ R

n×1 denote the identity matrix and zero vector
respectively.

Remark 4 FVP (80) may be expressed as three component FVPs

− Ṗα
s = A′ Pα

s + Pα
s A − 1

κ
Pα

s B B ′ Pα
s + [K + a−1(αs)]In, (82)

− Q̇α
s = (A − 1

κ
B B ′ Pα

s )′ Qα
s , (83)

− Ṙα
s = −αs − 1

κ
(Qα

s )′ B B ′ Qα
s , s ∈ (0, t), (84)

subject to Pα
t = Pt , Qα

t = Qt , and Rα
t = Rt , by (4), (81).

Lemma 12 Given fixed t ∈ R>0, M ∈ R≥−φ(0), and any α ∈ A M [0, t], there exists a
unique P̂α ∈ C([0, t];Σn+1) ∩ C1((0, t);Σn+1) of the form (81) that satisfies FVP
(80).

Proof See for example [28, Theorem 37, p. 364]. ��

Theorem 7 Given any t ∈ R>0, M ∈ R≥−φ(0), α ∈ A M [0, t], the auxiliary value
function Ŵ α

t of (79) satisfies Ŵ α
t (x) = W̆ α

t (0, x) for all x ∈ R
n, where W̆ α

t :
[0, t] × R

n → R
+

is given by

W̆ α
t (s, x)

.= 1
2

〈(
x
1

)
, [P̂α

t ]s

(
x
1

)〉

for all s ∈ [0, t], x ∈ R
n, in which P̂α

t ∈ C([0, t];Σn+1) ∩ C1((0, t);Σn+1) is the
unique solution of FVP (80). Furthermore, the optimal input uα ∈ U [0, t] in (79) has
the state feedback characterization
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ξ̇ α
s = A ξα

s + B uα
s , ξα

0 = x,

uα
s

.= − 1
κ

B ′ [Pα
s ξα

s + Qα
s ], s ∈ (0, t),

(85)

for any x ∈ R
n, where Pα

s , Qα
s are as per (82), (83).

Proof Fix arbitrary t ∈ R>0, M ∈ R≥−φ(0), and α ∈ A M [0, t]. Applying Lemma 12,
there exists a unique P̂α ∈ C([0, t];Σn+1) ∩ C1((0, t);Σn+1) of the form (81) that
satisfies FVP (80). Consequently, given any s ∈ (0, t), x ∈ R

n , (80), (81), (82), (83),
(84) imply that

∂W̆α
t

∂s (s, x) = 1
2 〈x, Ṗα

s x〉 + 〈x, Q̇α
s 〉 + 1

2 Ṙα
s

= − 1
2 〈x, (A′ Pα

s + Pα
s A − 1

κ
Pα

s B B ′ Pα
s + [K + a−1(αs)]In) x〉

− 〈x, (A − 1
κ

B B ′ Pα
s )′ Qα

s 〉 + 1
2 [αs + 1

κ
(Qα

s )′ B B ′ Qα
s ],

∇x W̆ α
t (s, x) = Pα

s x + Qα
s . (86)

Define the Hamiltonian Hα : [0, t] × R
n × R

n → R by

Hα(s, x, p)
.= 〈p, A x〉 − 1

2 κ
〈p, B B ′ p〉 + 1

2 [K + a−1(αs)] |x |2 − αs
2

= inf
u∈Rm

{〈p, A x + B u〉 + κ
2 |u|2 + 1

2 [K + a−1(αs)] |x |2 − αs
2 } (87)

for all x, p ∈ R
n , s ∈ [0, t]. Combining (86), (87), note that − ∂W̆α

t
∂s (s, x) =

Hα(s, x,∇x W̆ α
t (s, x)). Fix any ū ∈ U [0, t]. Define ξ̄

.= χ(x, ū) via (5), and observe
via (87) that ūs is pointwise suboptimal in Hα(s, ξ̄s,∇x W̆ α

t (s, ξ̄s)) for any s ∈ [0, t].
Consequently, 0 ≤ ∂W̆α

t
∂s (s, ξ̄s) + 〈∇x W̆ α

t (s, ξ̄s), A ξ̄s + B ūs〉 + κ
2 |ūs |2 + 1

2 [K +
a−1(αs)] |ξ̄s |2 − αs

2 = d
ds W̆ α

t (s, ξ̄s) + κ
2 |ūs |2 + 1

2 [K + a−1(αs)] |ξ̄s |2 − αs
2 . Inte-

grating with respect to s ∈ [0, t], and observing that W̆ α
t (t, x) = Ψ (x), yields

W̆ α
t (0, x) ≤ ∫ t

0
κ
2 |ūs |2 + 1

2 [K + a−1(αs)] |ξ̄s |2 − αs
2 ds + Ψ (ξ̄t ) = Jt (x, ū, α).

As ū ∈ U [0, t] is arbitrary, it follows by (79) that

W̆ α
t (0, x) ≤ Ŵ α

t (x) , (88)

for all x ∈ R
n . Consider the initial value problem (85). By Lemma 12, note that

ξα ∈ L2([0, t];Rn) and uα ∈ U [0, t]. Note further that uα
s ∈ R

m is pointwise
optimal in Hα(s, ξα

s ,∇x W̆ α
t (s, ξα

s )) for any s ∈ [0, t]. Hence, repeating the above
argument and applying (79), (88), Ŵ α

t (x) ≤ Jt (x, uα, α) = W̆ α
t (0, x) ≤ Ŵ α

t (x).
Recalling that x ∈ R

n is arbitrary completes the proof. ��

Theorem 8 Given any t ∈ R>0, M ∈ R≥−φ(0), suppose there exists a solution P∗ ∈
C([0, t];Σn) ∩ C1((0, t);Σn), Q∗, ξ∗ ∈ C([0, t];Rn) ∩ C1((0, t);Rn) of the two
point boundary value problem (TPBVP)
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−Ṗ∗
s = A′ P∗

s + P∗
s A − 1

κ
P∗

s B B ′ P∗
s + [K + a−1 ◦ α̂M∗(|ξ∗

s |2)] In ,

−Q̇∗
s = (A − 1

κ
B B ′ P∗

s )′ Q∗
s , ξ̇∗

s = (A − 1
κ

B B ′ P∗
s ) ξ∗

s − 1
κ

B B ′ Q∗
s , (89)

for all s ∈ (0, t), subject to P∗
t = Pt , Q∗

t = Qt = −Pt z, and ξ0 = x, where Pt , z are
as per (4). Then, the optimal inputs uM∗ ∈ U [0, t], αM∗ ∈ A M [0, t] in (38), (77),
and Lemma 10 are given by the state feedback characterizations

uM∗
s = − 1

κ
B ′(P∗

s ξ∗
s + Q∗

s ) , αM∗
s = α̂M∗(|ξ∗

s |2) , (90)

for all s ∈ [0, t], in which α̂M∗ is as per (19), (61).

Proof Fix t ∈ R>0, M ∈ R≥−φ(0). Suppose that a solution of TPBVP (89) exists as
per the theorem statement, and denote it by s 
→ (P+

s , Q+
s , ξ+

s ). Note in particular that
P+

t = Pt , Q+
t = −Pt z, and ξ+

0 = x . Define the corresponding inputs u+ ∈ U [0, t]
and α+ ∈ A M [0, t] analogously to (90), i.e.

u+
s = − 1

κ
B ′ (P+

s ξ+
s + Q+

s ) , α+
s = α̂M∗(|ξ+

s |2),

for all s ∈ [0, t]. Observe that s 
→ (P+
s , Q+

s ) satisfy the FVPs (82), (83), as these are
identical to the first two equations of (89). Augmenting these FVPs with (84) yields
FVP (80), so that Theorem 7 may be applied. In particular, u+ = uα+

is the optimal
control (85) in Ŵ α+

t (x). Hence, by Lemma 8,

J̄ M
t (x, u+) = Jt (x, u+, α+) = sup

α∈A M [0,t]
Jt (x, u+, α)

≥ W
M
t (x) = sup

α∈A M [0,t]
Ŵ α

t (x) = sup
α∈A M [0,t]

Jt (x, uα, α)

≥ Jt (x, uα+
, α+) = Jt (x, u+, α+) .

Hence, W
M
t (x) = Jt (x, u+, α+), and the uniqueness assertions of Theorem 6 and

Lemma 10 imply that u+ = uM∗ and α+ = αM∗ as required. ��
Remark 5 Theorem 8 implies that the unique optimal inputs uM∗ and αM∗ of Theorem
2 and Lemma 10 can be computed via the state feedback characterizations (90), which
depend on the solution of TPBVP (89). Consequently, as expected, a shooting method
applied to TPBVP (89) will yield numerical approximations of these optimal inputs
in specific examples.

Remark 6 Preliminary work [11] by the authors has illustrated how the approach in
this paper may be generalized to include linear time-varying dynamics, and convex
constraints defined by the intersection of a finite collection of ellipses. The latter
generalization involves an increase in the dimension of the range of the actions of the
barrier penalty negotiating player, i.e. αs ∈ R

p, s ∈ [0, t], where p is the number
of ellipses. Crucially, the dimension of the DRE (80), or equivalently the DREs (82),
(83), (84), does not change, so that the dimension of the dynamics underlying the
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TPBVP involved does not increase beyond that presented here. The interested reader
is referred to [11] for those preliminary details and examples.

6 Illustrative Example

In illustrating an application of Theorems 4, 6, and 8 the approximate solution of a state
constrained regulator problem (1) via the approximate problem (20) and corresponding
game (59), a simple example is considered. The linear dynamics (5) and a hyperbolic
barrier (6) are specified by

A
.=

[−1 2
−1 1

]
, B

.=
[
1
0

]
,

φ : [0, b2) → R, b
.= 3,

φ(ρ)
.= ρ

b2 − ρ
,

(91)

while the running cost (3) and its approximation (22) are specified by t
.= 4, κ

.= 1,
K

.= 0.1, and M
.= 50. Some straightforward calculations yield that

φ′(ρ) = b2

(b2 − ρ)2
, φ′′(ρ) = 2 b2

(b2 − ρ)3
,

a(β) = 1 + b2 β − 2 b
√

β, a′(β) = (φ′)−1(β) = b2 − b√
β

, a′′(β) = b

2 β
3
2

,

a−1(α) = 1

b2
(1 + α + 2

√
α),

so that (7) holds. Note in particular that φ(0) = 0, φ′(0) = 1
9 , and K ≥ −φ′(0).

Using this data, the sup-of-quadratics representation for ΦM provided by Propo-
sition 2 is illustrated in Fig. 2a. The trajectory defined by TPBVP (89) is computed
using a standard shooting method, which integrates the state dynamics (5) and FVP
(80) backward in time from the known terminal cost P̂∗

t = P̂t ∈ Σ3, and a candidate
terminal state ξ∗

t = ξt ∈ R
2. The squared error in the obtained initial state |x − ξ∗

0 |2 is
iteratively minimized by varying ξt within a Nelder-Mead simplex method. The state
feedback a−1 ◦ α̂M∗(|ξ∗

s |2) appearing in (89) is evaluated using (19) and the explicit
expressions above.

Case I Terminal cost (4) with z
.= 0 and Pt

.= I2. A pair of optimal trajectories
for this terminal cost case is illustrated in Fig. 3a, corresponding to the barrier cost
being active or inactive, i.e. included or excluded, in the cost (2), (22). The circle
included identifies the boundary of the state constraint imposed. An initial state of
x

.= [ 4
3 − 4

3 ]′ for dynamics (5) is assumed. Figures4a and 5a illustrate the optimal
inputs α̃∗ and ũ∗ of (90) respectively. By inspection of the unconstrained case, α̃∗
attains its maximum value of M = 50 where the constraint is violated. However,
as α̃∗ does not influence the control in the unconstrained case, the trajectory is not
adjusted accordingly. In contrast, in the active constraint case, α̃∗ attains a maximum
of approximately 35 as the trajectory approaches the constraint. By inspection, the
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Fig. 3 State trajectory with constraint active and inactive (Cases I and II)
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Fig. 4 Optimal input α̃∗ (Cases I and II)

state constraint is not violated, due to the intervention evident in the large actuated
control ũ∗ that ensues.

Case II Terminal cost (4) with z
.= [ 1 1 ]′ and Pt

.= 10 I2. An initial state
of x

.= [ 0 5
3 ]′ for dynamics (5) is assumed. The terminal cost is adjusted so as to

encourage the trajectory to move towards the non-zero terminal state ξt = z = [ 1 1 ]′,
while respecting the state constraint. Figures3b, 4b, and 5b illustrate respectively the
corresponding state trajectories, the optimal input α̃∗, and the optimal control ũ∗
obtained, by solving TPBVP (89), with the constraint inactive and active.

7 Conclusions

A sup-of-quadratics representation is developed for a class of convex barrier func-
tions for encoding a simple state constraint in a linear regulator problem. Using this
representation, an equivalent unconstrained two player linear quadratic game is con-
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Fig. 5 Optimal control ũ∗ (Cases I and II)

structed. By demonstrating equivalence of its upper and lower values, an approach to
computation is presented, and illustrated by example.
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Appendix A: Some Useful Properties of the Barrier and Its Dual

Lemma 13 Given φ satisfying (7), the function a of (8) is well-defined, differentiable,
and strictly increasing, and has well-defined, differentiable, and strictly increasing
derivative a′ and inverse a−1, and well-defined, strictly positive second derivative a′′,
satisfying

a′ : R≥φ′(0) → [0, b2), a′(β) = (φ′)−1(β), (92)

a′′ : R≥φ′(0) → R>0, a′′(β) = 1

φ′′ ◦ (φ′)−1(β)
. (93)

a−1 : R≥−φ(0) → R≥φ′(0), a−1(−φ(0)) = φ′(0), (94)

123

http://creativecommons.org/licenses/by/4.0/


19 Page 38 of 43 Applied Mathematics & Optimization (2023) 88 :19

(a−1)′ : R≥−φ(0) → R
+
>1/b2 , (a−1)′(α) = 1

a′ ◦ a−1(α)
, (95)

lim
α↑∞(a−1)′(α) = 1/b2, lim

α↓−φ(0)
(a−1)′(α) = +∞. (96)

Proof By inspection of (8), and the properties of (φ′)−1 provided by (7) (v), it is evident
that a is well-defined onR≥φ′(0). Note further that [(φ′)−1]′(β) = 1/[φ′′ ◦ (φ′)−1(β)]
for all β ∈ R≥φ′(0), in which the denominator is strictly positive by (7) (i), (v).
Hence, a is differentiable by inspection of (8), and the chain rule yields a′(β) =
(φ′)−1(β) + β [(φ′)−1]′(β) − [φ ◦ (φ′)−1(β)] [(φ′)−1]′(β) = (φ′)−1(β) for all β ∈
R≥φ′(0). Consequently, a′ = (φ′)−1 is well-defined and strictly increasing, with a′ :
R≥φ′(0) → [0, b2), by (7) (v). That is, (92) holds. As a′(φ′(0)) = 0 (by substitution),
the strict increase property of a′ implies that a′(β) ∈ R>0 for all β ∈ (φ′(0),∞).
Hence, a is also strictly increasing, and so (8) implies that a(β) ≥ a(φ′(0)) = −φ(0)
for allβ ∈ [φ′(0),∞). By the same strict increase property of a′, note further that there
exists an ε > 0 and βε > φ′(0) such that a′(β) ≥ ε > 0 for all β ≥ βε . Consequently,
limβ→∞ a(β) ≥ limβ→∞[(β −βε) ε + a(βε)] = ∞. Hence, a(β) ∈ [−φ(0),∞) for
all β ∈ [φ′(0),∞), which confirms the range of a specified in (8).

By inspection of (92) and (7) (i), a′ is differentiable with derivative a′′ given by
a′′(β) = [(φ′)−1]′(β) = 1/[φ′′ ◦ (φ′)−1(β)] for all β ∈ R≥φ′(0), which (as indicated
previously) is strictly positive by (7) (i), (v). Hence, (93) holds.

As a is strictly increasing, the existence of its strictly increasing inverse a−1, with
domain and range specified by (94), follows immediately from (8). The chain rule and
(92) subsequently imply that a−1 is also differentiable, with derivative (95). There, the
range of this derivative follows by (7) (v), (92). The two limits in (96) follow directly
from (95), with

lim
α↑∞(a−1)′(α) = lim

α↑∞
1

a′ ◦ a−1(α)
= 1

limβ↑∞(φ′)−1(β)
= 1

b2
,

lim
α↓−φ(0)

(a−1)′(α) = 1

limβ↓φ′(0)(φ′)−1(β)
= +∞,

These limits, along with the fact that (a−1)′ is decreasing, confirm the range in (95).��
The following two lemmas are stated without proof.

Lemma 14 Given ρ ∈ R≥0, and a−1 as per (94), the map γρ : R≥−φ(0) → R defined
by

γρ(α)
.= a−1(α) ρ − α, ρ ∈ R≥0, (97)

is twice differentiable with γ ′
ρ : R>−φ(0) → (ρ/b2 − 1,∞), γ ′′

ρ : R>−φ(0) → R<0
given by

γ ′
ρ(α) = ρ

ρ̂(α)
− 1, γ ′′

ρ (α) = −ρ

φ′′ ◦ ρ̂(α) [ρ̂(α)]3 (98)
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with ρ̂ as per (15). With ρ ≥ b2, α 
→ γρ(α) is strictly increasing with
limα→∞ γρ(α) = ∞.

Lemma 15 Given M ∈ R≥−φ(0),

0 ≥ φ(0) + φ′(0) ρ − Φ(ρ) ∀ ρ ≥ 0, (99)

0 ≥ φ(0) + φ′(0) ρ − a−1(M) ρ + M ∀ ρ ≥ ρ̂(M), (100)

0 ≥ λM+ (β) ∀β ≤ a−1(−φ(0)), (101)

0 ≥ λM+ (β) − a(β) − φ(0) ∀β ∈ [a−1(−φ(0)), a−1(M)], (102)

in which a, a−1, ρ̂(M) are given by (8), (94), (15), and λM+ : R → R is defined by

λM+ (β)
.= M + φ(0) − (a−1(M) − β) ρ̂(M). (103)

Appendix B: Proof of Lemma 4

Proof [Lemma 4] (i) Fix M ∈ R≥−φ(0). By the monotonicity of a−1, see Lemma 13
and (94), note that a−1(M) ≥ a−1(−φ(0)) = φ′(0). Hence, recalling (15), and (10),

ΦM (ρ) = max

{
sup

β<φ′(0)
{β ρ + φ(0)}, sup

β∈[φ′(0),a−1(M)]
{β ρ − Θ(β)}

}

= max{Γ−(ρ), Γ M+ (ρ)},
Γ−(ρ)

.= sup
β<φ′(0)

{β ρ + φ(0)} =
{ +∞, ρ ∈ R<0,

φ(0) + φ′(0) ρ, ρ ∈ R≥0,
(104)

with Γ M+ (ρ)
.= supβ∈[φ′(0),a−1(M)]{β ρ − a(β)}. The supremum in (104) is achieved

at

β = β̂∗−(ρ)
.=

{ −∞, ρ ∈ R<0,

φ′(0), ρ ∈ R≥0.
(105)

Following some further rudimentary calculations,

Γ M+ (ρ) =
⎧⎨
⎩

φ(0) + φ′(0) ρ, ρ ∈ R<0,

φ(ρ), ρ ∈ [0, ρ̂(M)],
a−1(M) ρ − M, ρ ∈ R>ρ̂(M),

(106)

with the supremum achieved at the β = β̂M∗+ (ρ) specified. The pointwise maximum
(104) may be evaluated via (106), and the inequalities (99), (100) of Lemma 15.
Indeed, inspection of (104), (106), (99), (100) immediately yields (16). The optimizer
(17) that achieves the supremum in (15) follows by matching the corresponding cases
in (105), (106).
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(ii) In view of ΦM , ρ̂(M) of (16), (15), define

L
.= ΦM ◦ ρ̂(M) = φ ◦ (φ′)−1 ◦ a−1(M),

U
.= a−1(M) ρ̂(M) − M = a−1(M) (φ′)−1 ◦ a−1(M) − M,

for M ∈ R≥−φ(0). With β̄
.= a−1(M), note that L = φ ◦ (φ′)−1(β̄) and U =

β̄ (φ′)−1(β̄) − M , so that U − L = [β̄ (φ′)−1(β̄) − φ ◦ (φ′)−1(β̄)] − M = a(β̄) −
M = a ◦ a−1(M) − M = 0, via (8). That is, ΦM is continuous at ρ̂(M), and
ΦM ∈ C(R≥0;R). By inspection of (16),

(ΦM )′(ρ) =
{

φ′(ρ), ρ ∈ (0, ρ̂(M)),

a−1(M), ρ ∈ (ρ̂(M),∞),

and limρ↑ρ̂(M)(Φ
M )′(ρ) = φ′ ◦ ρ̂(M) = a−1(M) = limρ↓ρ̂(M)(Φ

M )′(ρ) via (15).
Hence, ΦM ∈ C(R≥0;R) ∩ C1(R>0;R). As (ΦM )′ is non-decreasing on R>0, and

infinite elsewhere, ΦM : R → R
+
is (lower) closed convex on R, see for example

[23, (3.8), pp. 15,17].
(iii) Follows by inspection of (6), (10), (15), via Lemma 3.
(iv) The following claim is first demonstrated.
Claim: Given M ∈ R≥−φ(0), there exists ΘM : R → R

+
≥−φ(0) such that

ΦM (ρ) = sup
β∈R

{β ρ − ΘM (β)}, (107)

ΘM (β) = sup
ρ∈R

{β ρ − ΦM (ρ)} =
⎧⎨
⎩

−φ(0), β ∈ R<φ′(0),
a(β), β ∈ [φ′(0), a−1(M)],
+∞, β ∈ R>a−1(M),

(108)

for all ρ, β ∈ R, with φ, a as per (7), (8). ��

Proof of Claim Convexity assertion (ii) and [23, Theorem 5, p. 16] imply that their
exists a one-to-one pairing between ΦM and its Fenchel transform ΘM : R → R

+

as per (107) and the left-hand equation in (108). For the right-hand equation in (108),
note by (16) that the supremum in the left-hand equation in (108) is never achieved at
ρ ∈ R<0. Hence,

Θ M (β) = max{ΛM− (β), ΛM+ (β)}, (109)

ΛM− (β)
.= sup

ρ∈[0,ρ̂(M)]
πβ(ρ), ΛM+ (β)

.= sup
ρ∈R>ρ̂(M)

{(β − a−1(M)) ρ + M},

(110)

πβ(ρ)
.= β ρ − φ(ρ), (111)
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for all β ∈ R. Some rudimentary calculations subsequently yield

ΛM− (β) =
⎧⎨
⎩

−φ(0), β ∈ R<φ′(0),
a(β), β ∈ [φ′(0), a−1(M)],

λM− (β), β ∈ R>a−1(M),

λM− (β)
.= β ρ̂(M) − φ ◦ ρ̂(M).

(112)

By inspection of (110), and recalling (103),

ΛM+ (β) =
{

λM+ (β) − φ(0) , β ∈ R≤a−1(M) ,

∞ , β ∈ R>a−1(M) .
(113)

Hence, the pointwisemaximum in (109)may be evaluated by (112), (113) and inequal-
ities (101), (102) fromLemma 15 inAppendix A, which yields the right-hand equation
in (108). ��

Returning to the proof of (iv), by Lemma 13, there exists an M1 ∈ R≥−φ(0) such that
a−1(M) ∈ R>0 for all M ∈ R≥M1 .Meanwhile, applying the above claim, in particular
(108), ΘM (0) = supρ∈R{−ΦM (ρ)} for any M ∈ R≥−φ(0). Hence, recalling (108),

ĉ
.= inf

M≥M1
inf
ρ∈RΦM (ρ) = − sup

M≥M1

ΘM (0) =
{

φ(0), 0 ∈ R<φ′(0),
φ ◦ (φ′)−1(0), 0 ∈ R≥φ′(0),

so that the assertion is proved for any c ∈ R satisfying c < ĉ ∈ R, as required.
(v) Monotonicity of ρ̂ follows by applying the chain rule and Lemma 13 to (15).

That it converges to b2 in the limit as M → ∞ follows by a simple contradiction
argument, whose details are omitted. ��

Appendix C: Summary of Significant Notations

Significant notations, and references to their introduction, are summarized in the table
that follows.
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Exact regulator problem
W t Value function (1)

J̄t , Īt Cost function and its trajectory dependence (2), (3)

I κ
t , Ψ Input and terminal costs (3), (4)

K , κ , Pt , z Cost function parameters / data (3), (4)

A, B Linear system matrices (5)

Φ, Θ Extended barrier function and its convex dual (6), (10)

φ, a Real valued barrier function and its convex dual (6), (7), (8)

u∗ Optimal open loop control (38)

U [0, t], U ε
x [0, t] Admissible and near-optimal controls (1), (41)

Approximate regulator problem

W
M
t Value function (20)

J̄ M
t , Ī M

t Cost function and its trajectory dependence (21), (22)

ΦM Sup-of-quadratics barrier function approximation (15)

uM∗ Optimal open loop control (38)

U [0, t], U M,ε
x [0, t] Admissible and near-optimal controls (20), (42)

Exact and approximate game problems

W M
t Value function (59)

Jt , It Cost function and its trajectory dependence (51), (52)

ν Running cost (53)

α̂∗, α∗
s Auxiliary player action (exact) (13), (55)

α̂M∗, αM∗
s Auxiliary player action (approx.) (19), (61)

A [0, t] Auxiliary player actions (59)

Ŵα
t Auxiliary value function (79)

Pα
s , Qα

s , Rα
s Quadratic form for Ŵα

t (80) - (84)
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