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Abstract
This paper presents sufficient conditions for strong metric subregularity (SMsR) of
the optimality mapping associated with the local Pontryagin maximum principle for
Mayer-type optimal control problems with pointwise control constraints given by a
finite number of inequalities G j (u) ≤ 0. It is assumed that all data are twice smooth,
and that at each feasible point the gradientsG ′

j (u) of the active constraints are linearly
independent. The main result is that the second-order sufficient optimality condition
for a weak local minimum is also sufficient for a version of the SMSR property,
which involves two norms in the control space in order to deal with the so-called
two-norm-discrepancy.
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1 Introduction

This paper contributes to the analysis ofLipschitz stabilitywith respect to perturbations
of the following Mayer type optimal control problem:
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minimize J (x, u) := F(x(0), x(1)), (1)

ẋ(t) = f (x(t), u(t)) a.e. in [0, 1], (2)

G(u(t)) ≤ 0 a.e. in [0, 1], (3)

where F : R2n → R, f : Rn+m → R
n , and G : Rm → R

k are of class C2, u ∈ L∞,
x ∈ W 1,1. More precisely, we investigate the property of Strong Metric subRegularity
(SMsR) of the so-called optimality mapping, associated with the system of first order
necessary optimality conditions (Pontryagin’s conditions in local form) for problem
(1)–(3). These optimality conditionsmayhave various forms. In this paperwedealwith
the representation using the augmented Hamiltonian, where the control constraints
are included with corresponding Lagrange multipliers (see next section for a detailed
formulation).

In general, the local Potryagin principle can be written in the form of an inclusion
(also called optimality system)

0 ∈ Φ(y),

where y incorporates the state, control, adjoint variables, and possibly the Lagrange
multipliers associated with the control constraints. In this general setting, y belongs
to a metric space (Y , dY ) and the image of Φ is contained in another metric space
(Z , dZ ). Each of these spaces is endowed with an additional metric: dY◦ in Y , and dZ◦
in Z .

The definition of strong metric subregularity of the mapping Φ that we use is a
slight (however substantial) extension of the standard one, introduced under this name
in [9], also see [10, Chapter 3.9] and the recent paper [6]. The difference is, that the
definition below involves the four metrics, dY , dY◦ in Y , and dZ , dZ◦ in Z , instead of
a single metric in each of the two spaces.

Definition 1.1 The set-valued mapping Φ : Y ⇒ Z is strongly metrically subregular
(SMsR) at (ŷ, ẑ) ∈ Y×Z if ẑ ∈ �(ŷ) and there exist number κ ≥ 0 and neighborhoods
BY of ŷ in the metric dY◦ and BZ of ẑ in the metric dZ◦, such that for any z ∈ BZ and
any solution y ∈ BY of the inclusion z ∈ Φ(y), it holds that dY (y, ŷ) ≤ κ dZ (z, ẑ).

Versions of the SMsR property have also been introduced and utilized in [3, 5, 11].
Metric regularity properties with two norms in the space Z (a Banach space) are first
introduced in [22], while utilization of two metrics in Y , in relation with the SMsR
property, is important in [2]. It is well recognized that the SMsR of the optimality
mapping in optimal control is a key property for ensuring convergence with error
estimates of numerous methods for solving optimal control problems: discretization
methods, gradient methods, Newton-type methods, etc. (see e.g. [3, 6, 21], in addition
to a large number of papers where the SMsR property is implicitly used).

Wemention that there exists an amount of literature on Lipschitz continuity (related
to the property of strong metric regularity) and differentiability of the optimal solution
with respect to parameters; see e.g. [8] and [13], correspondingly, as well as the bibli-
ography therein. These properties are stronger than SMsR, therefore the corresponding
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sufficient conditions for their validity are also stronger. On the other hand, the SMsR
property is useful enough for the applications mentioned in the last paragraph.

TheSMsRproperty of the optimalitymapping associatedwith optimal control prob-
lems has been investigated and used in several papers, e.g. [1, 7, 20, 21]. However,
the sufficient conditions obtained in these papers require various kinds of coercivity
conditions for a quadratic form defined by the second derivatives of the (augmented)
Hamiltonian. These conditions have to be satisfied for all (sufficiently small) admissi-
ble variations of the reference solution of the optimality system. In the present paper,
we require coercivity of this quadratic form on an extended critical cone only, which
is a subset of the set of all admissible variations. Namely, we establish that the known
second-order sufficient optimality conditions for problem (1)–(3) (in terms of the
extended critical cone) are also sufficient for SMsR. This makes the conditions for
SMsR close to those in mathematical programming. A remarkable additional result
is that in the second-order sufficient optimality conditions, the extended critical cone
can be replaced with the usual critical cone, provided that a point-wise Legendre-type
condition is satisfied. Moreover, we show that the converse is also true: the latter
condition together with coercivity of the quadratic form on the critical cone implies
coercivity on the extended critical cone.
In Sect. 2 we introduce some basic notations and assumptions. In Sect. 3 we define
the extended critical cone and recall a second order sufficient optimality condition
ensuring local quadratic growth of the objective function (1). This condition involves
coercivity of the quadratic form associated with the Hamiltonian along the directions
of the extended critical cone. In Sect. 4 we prove that for the local quadratic growth it
suffices to require coercivity on the usual (not extended) critical cone, together with
a Legendre-type condition. The main result—the sufficient conditions for SMsR—is
formulated in Sect. 5, while the long Sect. 6 contains its proof.

2 Notations and Assumptions

First we recall some standard notations. The scalar product and the norm in the
Euclidean space R

n is defined in the usual way: 〈x, x ′〉 := x1x ′
1 + . . . + xnx ′

n , and
|x | = √〈x, x〉 for any x = (x1, . . . , xn) ∈ R

n and x ′ = (x ′
1, . . . , x

′
n) ∈ R

n . The
elements of Rn are regarded as column-vectors with the exception of the adjoint vari-
ables p and λ (to appear later), which are row-vectors. For a functionψ : Rk → R

r of
the variable z we denote by ψ ′(z) its derivative (Jacobian), represented by an (r × k)-
matrix. For r = 1, ψ ′′(z) denotes the second derivative (Hessian), represented by a
(k × k)-matrix. For a function ψ : Rk×q → R of the variables (z, v), ψ ′(z, v) and
ψ ′′(z, v) still denote the first and the second derivatives with respect to (z, v), however
the partial derivatives are denoted by ψz , ψv , ψzz , ψzv and ψvv .

The space Lk = Lk([0, 1],Rr ), with k = 1, 2 or k = ∞, consists of all
(classes of equivalent) Lebesgue measurable r -dimensional vector-functions defined
on the interval [0, 1], for which the standard norm ‖ · ‖k is finite. As usual,
W 1,1 = W 1,1([0, T ],Rr ) denotes the space of absolutely continuous functions
x : [0, T ] → R

r for which the first derivative belongs to L1. For convenience, the
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norm in W 1,1 is defined as ‖x‖1,1 := |x(0)| + ‖ẋ‖1, so that ‖x‖∞ ≤ ‖x‖1,1. The
specification ([0, 1],Rr ) will be omitted if clear from the context.

According to (3), the set of admissible control values is

U := {v ∈ R
m : G(v) ≤ 0}.

Let Gi denote the i th component of the vector G. For any v ∈ U define the set of
active indices

I (v) = {i ∈ {1, . . . , k} : Gi (v) = 0}.

Assumption 2.1 (regularity of the control constraints) The set U is nonempty and at
each point v ∈ U the gradients G ′

i (v), i ∈ I (v) are linearly independent.

In the sequel we use the notation

q = (x(0), x(1)) = (x0, x1), w = (x, u), W = W 1,1 × L∞.

Similarly, we denote ŵ = (x̂, û) ∈ W , q̂ = (x̂(0), x̂(1)).

Assumption 2.2 The triplet (ŵ, p̂, λ̂) ∈ W×W 1,1×L∞ satisfies the following system
of equations and inequalities:

λ̂(t) ≥ 0, λ̂(t)G(û(t)) = 0 a.e. in [0, 1], (4)

(− p̂(0), p̂(1)) = F ′(q̂), (5)
˙̂p(t) + p̂(t) fx (ŵ(t)) = 0 a.e. in [0, 1], (6)

p̂(t) fu(ŵ(t)) + λ̂(t)G ′(û(t)) = 0 a.e. in [0, 1], (7)

− ˙̂x(t) + f (ŵ(t)) = 0 a.e. in [0, 1], (8)

G(û(t)) ≤ 0 a.e. in [0, 1]. (9)

Observe that this system represents the first order necessary optimality condition for a
weak local minimum1 of the pair ŵ = (x̂, û) (see e.g. [14, part 1, section 18]); later on
we refer to it as to optimality system. Namely, if ŵ is a point of weak local minimum
in problem (1)–(3), then there exist p̂ ∈ W 1,1 and λ̂ ∈ L∞ such that the optimality
system is fulfilled. Note that for a given ŵ the pair ( p̂, λ̂) is uniquely determined
by these conditions. Indeed, the adjoint variable p is uniquely determined by adjoint
equation (6) and transversality conditions (5), and then λ̂ is uniquely determined by
equation (7) and complementary slackness condition in (4) due to Assumption 2.1.

Introduce the Hamiltonian and the augmented Hamiltonian

H(w, p) = p f (w), H̄(w, p, λ) = p f (w) + λG(u).

Then equations (6) and (7) take the form

− ˙̂p(t) = Hx (ŵ(t), p̂(t)), H̄u(ŵ(t), p̂(t), λ̂(t)) = 0 a.e. in [0, 1].
1 This means that J (x̂, û) ≤ J (x, u) for every admissible pair (x, u) which is close enough to (x̂, û) in
the space W .
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Notice that here and below, the dual variables p and λ are treated as row vectors, while
x , u, w, f , and G are treated as column vectors.

3 Second-Order Sufficient Conditions for aWeak Local Minimum

Now we discuss the second-order sufficient conditions for a weak local minimum
(references will be given at the end of Sect. 4). Set

Mj = {t ∈ [0, 1] : G j (û(t)) = 0}, j = 1, . . . , k.

Define the critical cone

K :=
{

w ∈ W : ẋ(t) = f ′(ŵ(t))w(t), Hu(ŵ(t), p̂(t))u(t) = 0 a.e. in [0, 1],
G ′

j (û(t))u(t) ≤ 0 a.e. on Mj , j = 1, . . . , k
}
.

(10)

It can be easily verified that F ′(q̂)q = 0 for any element w of the critical cone.
Indeed, let w ∈ K . Then ẋ(t) = f ′(ŵ(t))w(t) a.e. in [0, 1]. Multiplying this

equation by p̂(t)we get that p̂(t)ẋ(t) = p̂(t) fx (ŵ(t))x(t)+ p̂(t) fu(ŵ(t))u(t) a.e. in
[0, 1]. The equalities p̂(t) fx (ŵ(t)) = − ˙̂p(t) and p̂(t) fu(ŵ(t))u(t) = 0 a.e. in [0, 1],
give p̂(t)ẋ(t) + ˙̂p(t)x(t) = 0 a.e. in [0, 1]. Integrating this equation on [0, 1], we
obtain that p̂(1)x(1) − p̂(0)x(0) = 0. Using the transversality conditions (5), we get
Fx0(q̂)x(0) + Fx1(q̂)x(1) = 0 q.e.d.

In many cases (in ”smooth problems” of mathematical programming and the cal-
culus of variations) it is sufficient for local minimality that the critical cone consists
only of the zero element. However, this is not the case for optimal control problems
with a control constraint of the type u(t) ∈ U .

An equivalent definition of the critical cone is the following. Set

M+(λ̂ j ) = {t ∈ [0, 1] : λ̂ j (t) > 0}, j = 1, . . . , k.

Then, due to (7).

K =
{

w ∈ W : ẋ(t) = f ′(ŵ(t))w(t) a.e. in [0, 1], G ′
j (û(t))u(t) ≤ 0 a.e. on Mj ;

G ′
j (û(t))u(t) = 0 a.e. on M+(λ̂ j ), j = 1, . . . , k

}
.

(11)

We introduce an extension of the critical cone. For any � > 0 and j = 1, . . . , k
we set

M+
�(λ̂ j ) = {t ∈ [0, 1] : λ̂ j (t) > �}.

For any � > 0 we set

K� =
{

w ∈ W : ẋ(t) = f ′(ŵ(t))w(t) a.e. in [0, 1], G ′
j (û(t))u(t) ≤ 0 a.e. on Mj ,

G ′
j (û(t))u(t) = 0 a.e. on M+

�(λ̂ j ), j = 1, . . . , k
}
.

(12)
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Notice that the cones K� form a non-increasing family as � → 0+. In particular,
K ⊂ K� for any � > 0.

Define the quadratic form:

�(w) := 〈F ′′(q̂)q, q〉 +
∫ 1

0
〈H̄ww(ŵ(t), p̂(t), λ̂(t))w(t), w(t)〉 dt,

where q = (x(0), x(1)). (13)

Assumption 3.1 There exist � > 0 and c� > 0 such that

�(w) ≥ c�

(|x(0)|2 + ‖u‖22
) ∀w ∈ K�. (14)

Remark 3.1 Assumption 3.1 is equivalent to the following: there exist � > 0 and
c� > 0 such that

�(w) ≥ c�

(‖x‖2∞ + ‖u‖22
) ∀w ∈ K�. (15)

Indeed, if w ∈ K�, then ẋ(t) = fx (ŵ(t))x(t) + fu(ŵ(t))u(t) a.e. in [0, 1], whence

‖x‖∞ ≤ c(|x(0)| + ‖u‖1)) ≤ c(|x(0)| + ‖u‖2)

with some c > 0. The required equivalence follows.

Remark 3.2 Notice that if (14) is true for some � > 0 and c� > 0, then it is true for
any positive �′ < � and the same c�.

In the sequel we use the notations c, c′, c′′, c1, c2, etc. for constants which may
have different values in different estimations.

We recall the following theorem, first published in [15, 16] in a slightly different
formulation.

Theorem 3.1 (sufficient second order condition) Let Assumptions 2.1, 2.2, and 3.1 be
fulfilled. Then there exist δ > 0 and c > 0 such that

J (w) − J (ŵ) ≥ c
(‖x − x̂‖2∞ + ‖u − û‖22

)
(16)

for all admissible w = (x, u) ∈ W 1,1 × L∞ such that ‖w − ŵ‖∞ < δ.

In the next section, we discuss the equivalent formulation of this theorem and then
provide references to the literature, where proofs can be found.

4 An Equivalent Form of the Second-Order Sufficient Condition for
Local Optimality

In this section we show that Assumption 3.1 can be reformulated in terms of the
critical cone K , instead of K�, provided that an additional condition of Legendre type
is fulfilled.

123



Applied Mathematics & Optimization (2023) 87 :43 Page 7 of 29 43

Let (ŵ, p̂, λ̂) ∈ W × W 1,1 × L∞, and let Assumptions 2.1 and 2.2 hold.

Assumption 4.1 There exists c0 > 0 such that

�(w) ≥ c0
(|x(0)|2 + ‖u‖22

) ∀w ∈ K . (17)

Further, for any � > 0 and any t ∈ [0, 1] denote by IC�(t) the cone of all vectors
v ∈ R

m satisfying for all j = 1, . . . , k the conditions

{
G ′

j (û(t))v ≤ 0 if G j (û(t)) = 0,

G ′
j (û(t))v = 0 if λ̂ j (t) > �.

For any � > 0 and any j ∈ {1, . . . , k} we set

m�(λ̂ j ) := {t ∈ [0, 1] : 0 < λ̂ j (t) ≤ �}, m� :=
k⋃
j=1

m�(λ̂ j ).

Clearly, measm� → 0 as � → 0+.

Assumption 4.2 (strengthened Legendre condition on m�). There exist � > 0 and
cL� > 0 such that for a.a. t ∈ m� we have

〈H̄uu(ŵ(t), p̂(t), λ̂(t))v, v〉 ≥ cL�|v|2 ∀ v ∈ IC�(t). (18)

Remark 4.1 Similarly as in Remark 3.2, if (18) is true for some � > 0 and cL� > 0,
then it is true for any positive �′ < � and the same cL�.

In the sequel, we often omit the argument t of x , u, x̂ , û, etc.
The following lemma follows from the definition of � in (13).

Lemma 4.1 Let w = (x, u) ∈ W , w′ = (x ′, u′) ∈ W . Then

�(w + w′) = �(w) + E(w,w′), (19)

where

E(w,w′) = �(w′) + 2〈F ′′(q̂)q, q ′〉
+2

∫ 1

0

(
〈Hxx (ŵ, p̂)x, x ′〉 + 〈Hxu(ŵ, p̂)u, x ′〉

+〈Hux (ŵ, p̂)x, u′〉 + 〈H̄uu(ŵ, p̂, λ̂)u, u′〉
)
dt

Moreover, there exists a constant c, independent of w and w′, such that

∣∣∣∣E(w,w′) −
∫ 1

0
〈H̄uu(ŵ, p̂, λ̂)u′, u′〉 dt

∣∣∣∣
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≤ c
(
‖x‖∞‖x ′‖∞ + ‖x ′‖2∞ + ‖x ′‖∞‖u′‖1

+‖x‖∞‖u′‖1 + ‖x ′‖∞‖u‖1 + ‖ |u| · |u′| ‖1
)
. (20)

Henceforth, for w = (x, u) ∈ W we set

γ0(w) = |x(0)|2 +
∫ 1

0
|u|2 dt, γ (w) = ‖x‖2∞ +

∫ 1

0
|u|2 dt .

It is clear that γ0(w) ≤ γ (w), and, as shown in Remark 3.1, if ẋ = fw(ŵ)w, then
there exists c > 0, independent of w, such that

γ (w) ≤ cγ0(w).

Proposition 4.1 Assumptions 4.1 and 4.2 imply Assumption 3.1.

Proof Let Assumptions 4.1 and 4.2 hold with some c0 > 0,� > 0 and cL� > 0, where
� will be fixed later as small enough, see Remark 4.1. Set

α(�) = √
meas (m�). (21)

Note that α(�) → 0+ as� → 0+. We may assume that� is so small that α(�) ≤ 1.
Let w̃ ∈ K�. Set

u′ = ũχm�,

where χm� is the characteristic function of the set m�. Obviously, u′(t) ∈ IC�(t) a.e.
on [0, 1] and, therefore,

〈H̄uu(ŵ(t), p̂(t), λ̂(t))u′(t), u′(t)〉 ≥ cL�|u′(t)|2 a.e. on [0, 1].
Hence,

∫ 1

0
〈H̄uu(ŵ, p̂, λ̂)u′, u′〉 dt ≥ cL�

∫ 1

0
|u′|2 dt .

Let x ′ be the solution to the equation

ẋ ′ = fx (ŵ)x ′ + fu(ŵ)u′, x ′(0) = 0.

Then

‖x ′‖∞ ≤ c‖u′‖1 ≤ c
√
meas (m�)‖u′‖2 ≤ c α(�)‖ũ‖2.

Hence,

‖x ′‖∞ ≤ c α(�)
√

γ0(w̃), ‖u′‖1 ≤ α(�)
√

γ0(w̃).
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Set

w′ = (x ′, u′), x = x̃ − x ′, u = ũ − u′, w = (x, u).

Since x ′(0) = 0, we have

γ0(w
′) =

∫ 1

0
|u′|2 dt . (22)

Obviously,

w ∈ K , w̃ = w + w′, |u| · |u′| = 0, γ0(w̃) = γ0(w) + γ0(w
′). (23)

Using the estimate (20) in Lemma 4.1, Assumptions 4.1, 4.2, and the third relation in
(23), we obtain the inequality

�(w̃) ≥ c0γ0(w) + cL�‖u′‖22
−c

(
‖x‖∞‖x ′‖∞ + ‖x ′‖2∞ + ‖x ′‖∞‖u′‖1 + ‖x‖∞‖u′‖1 + ‖x ′‖∞‖u‖1

)
. (24)

We consecutively estimate

‖x‖∞ ≤ ‖x̃‖∞ + ‖x ′‖∞ ≤ c
√

γ0(w̃) + c α(�)
√

γ0(w̃) ≤ c′√γ0(w̃),

‖x‖∞‖x ′‖∞ ≤ c′′α(�)γ0(w̃),

‖x ′‖2∞ ≤ c2α2(�)γ0(w̃), ‖x ′‖∞‖u′‖1 ≤ cα2(�)γ0(w̃),

‖u‖1‖x ′‖∞ ≤ ‖ũ‖2‖x ′‖∞ ≤ c α(�)γ0(w̃), ‖x‖∞‖u′‖1 ≤ c′ α(�)γ0(w̃),

where c′ and c′′ are appropriate constants. Using these relations and (22) in (24), we
obtain that

�(w̃) ≥ c0γ0(w) + cL�γ0(w
′) − c′′′α(�)γ0(w̃).

with some constant c′′′. Take � > 0 such that

c� := min{c0, cL�} − c′′′α(�) > 0,

keeping the same constant cL� (see Remark 4.1). Then

�(w̃) ≥ c�γ0(w̃),

which completes the proof, since c� is independent of w̃ ∈ K�. ��
The converse is also true.

Proposition 4.2 Assumption 3.1 implies Assumptions 4.1 and 4.2.
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Proof Let Assumption 3.1 be fulfilled, i.e., there exist � > 0 and c� > 0 such that

�(w) ≥ c�γ0(w) ∀w ∈ K�.

According to Remark 3.2, one may fix � > 0 arbitrarily small without changing c�,
which will be done below.

Since K ⊂ K�, this inequality holds also on K , therefore Assumption 4.1 is
fulfilled.

Let us prove that Assumption 4.2 is also fulfilled. Take any u ∈ L∞ satisfying the
conditions

u(t) ∈ IC�(t) a.e. on m�, uχm� = u, (25)

where χm� is the characteristic function of the set m�. Define x by the conditions

ẋ = fx (ŵ)x + fu(ŵ)u, x(0) = 0.

Set w = (x, u). Then, obviously, w ∈ K�, whence it follows that

�(w) ≥ c�γ0(w), where γ0(w) =
∫ 1

0
|u|2 dt .

Moreover,

‖x‖∞ ≤ c‖u‖1 ≤ c
√
meas (m�)‖u‖2 = c α(�)

√
γ0(w),

where α(�) is defined in (21). The latter implies that

|〈F ′′(q̂)q, q〉| ≤ c′α2(�)γ0(w),

‖〈H̄xx (ŵ, p̂, λ̂)x, x〉 + 2〈H̄xu(ŵ, p̂, λ̂)u, x〉‖1 ≤ c′α2(�)γ0(w)

with some c′ > 0. Using these estimates and (13), we get

2c′α2(�)γ0(w) +
∫ 1

0
〈H̄uu(ŵ, p̂, λ̂)u, u〉 dt ≥ �(w) ≥ c�γ0(w).

Take any � > 0 such that

cL� := −2c′α2(�) + c� > 0.

Then we have

∫ 1

0
〈H̄uu(ŵ, p̂, λ̂)u, u〉 dt ≥ cL�

∫ 1

0
|u|2 dt .

This inequality holds for any u ∈ L∞ satisfying (25). The strengthened Legendre
condition on m� follows. ��
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Thus, insteadofAssumption3.1wecanuseAssumptions 4.1 and4.2 in the sufficient
second-order conditions of Theorem 3.1.
The connection between the strengthened Legendre condition and the so-called “local
quadratic growth of the Hamiltonian” (defined below) was studied in [4]. Let us for-
mulate the corresponding result from [4] which may be useful for the problem under
consideration.

Definition 4.1 We say that the local quadratic growth condition of the Hamiltonian is
fulfilled if there exist cH > 0, δ > 0 and � > 0 such that for a.a. t ∈ m� we have

H(x̂(t), u, p̂(t)) − H(x̂(t), û(t), p̂(t)) ≥ cH |u − û(t)|2

for all u ∈ R
m such that G(u) ≤ 0 and |u − û(t)| < δ.

Proposition 4.3 [4] Assumption 4.2 implies the local quadratic growth condition of
the Hamiltonian.

The converse is not true. As shown in [4], the condition of the local quadratic growth
of the Hamiltonian is somewhat finer than Assumption 4.2.

There is the following more subtle second-order sufficient condition for a weak
local minimum at the point ŵ in problem (1)–(3).

Theorem 4.1 (sufficient second order condition) Let Assumptions 2.1, 2.2, and 4.1
hold and the local quadratic growth condition of the Hamiltonian be satisfied. Then
there exist δ > 0 and c > 0 such that

J (w) − J (ŵ) ≥ c
(‖x − x̂‖2∞ + ‖u − û‖22

)
(26)

for all admissible w = (x, u) ∈ W 1,1 × L∞ such that ‖w − ŵ‖∞ < δ.

A sufficient second order condition of this type for a much more general optimal
control problem (together with the corresponding second order necessary condition)
was first published by the first author back in 1978 in [12]. A relatively simple proof
of Theorem 4.1 in the case of k = 1 was recently published in [19]. Proofs of much
more general results of this type can be found, for example, in [17] and [18].

5 StrongMetric Subregularity

In this section we formulate the main result in this paper. Namely, we prove that the
optimality mapping associated with problem (1)–(3) is strongly metrically subregular
at a reference solution (ŵ, p̂, λ̂) = (x̂, û, p̂, λ̂) ∈ W × W 1,1 × L∞ of the optimality
system (4)–(9), provided that Assumptions 2.1, 2.2 and 3.1 hold.

In the sequel, for w = (x, u) ∈ W we set

�w = w − ŵ, γ (�w) = ‖�x‖2∞ + ‖�u‖22.
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Consider the perturbed system of optimality conditions (4)–(9):

λ ≥ 0, λ(G(u) − η) = 0, (27)

(−p(0), p(1)) = F ′(q) + ν, (28)

ṗ + p fx (w) = π, (29)

p fu(w) + λG ′(u) = ρ, (30)

−ẋ + f (x, u) = ξ (31)

G(u) ≤ η, (32)

where p ∈ W 1,1, λ ∈ L∞, ν ∈ R
2n , π ∈ L1, ρ ∈ L∞, ξ ∈ L1, η ∈ L∞. Note that

ν, π , and ρ are treated as row vectors, while ξ and η are treated as column vectors.
Below we set

�x = x − x̂, �u = u − û, �w = (�x,�u) = w − ŵ, �p = p − p̂,

�λ = λ − λ̂,

�q = (�x(0),�x(1)) = (x(0) − x̂(0), x(1) − x̂(1)) = (�x0,�x1),

ω = (ν, π, ρ, ξ, η), ‖ω‖ := |ν| + ‖π‖1 + ‖ρ‖2 + ‖ξ‖1 + ‖η‖2. (33)

Theorem 5.1 Let Assumptions 2.1, 2.2, and 3.1 be fulfilled. Then there exist reals
δ > 0 and κ > 0 such that if

|ν| + ‖π‖1 + ‖ρ‖∞ + ‖ξ‖1 + ‖η‖∞ ≤ δ, (34)

then for any solution (x, u, p, λ) of the perturbed system (27)–(32) such that
‖�w‖∞ ≤ δ the following estimates hold:

‖�x‖1,1 ≤ κ‖ω‖, ‖�u‖2 ≤ κ‖ω‖,
‖�p‖1,1 ≤ κ‖ω‖, ‖�λ‖2 ≤ κ‖ω‖.

Observe that if the disturbance η is not present in the disturbed optimality system
(27)–(32), that is, η = 0, then the inequality (34) follows (modulo a multiplicative
constant) from the assumption ‖�w‖∞ ≤ δ, together with the equations (28)–(31).
Therefore, the claim of the theorem in this case is valid without assuming (34). In this
case again, two metrics are needed in Definition 1.1 of SMsR only in the space Y :=
W 1,1×L∞×W 1,1×L∞. The neighborhood BY inDefinition 1.1 is BY := {(w, p, λ) :
‖w − ŵ‖∞ ≤ δ} while the metric dY is induced by the norm ‖(w, p, λ)‖ := ‖x‖1,1 +
‖p‖1,1 + ‖u‖2 + ‖λ‖2. The metric in Z is induced by the norm ‖ω‖ in (33).
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6 Proof of Theorem 5.1

1.We start with the following auxiliary statement related to the constraint G(u) ≤ 0.
Let

I = {i1, . . . , is} ⊂ {1, . . . , k}

be a nonempty set of indices, and let GI (v) be a column vector with elements
Gi1(v), . . . ,Gis (v). Set

AI (v) = G ′
I (v)(G ′

I (v))∗, μI (v) = | det AI (v)|, QI = {v ∈ B : GI (v) = 0},

where B is a fixed closed ball in Rm . Then, according to Assumption 2.1,

μI (v) > 0 for all v ∈ QI .

For any ε > 0, we set

QI ,ε = {v ∈ B : |Gi (v)| ≤ ε for all i ∈ I }.

Lemma 6.1 There exist positive numbers ĉ and ε̂ such that

μI (v) ≥ ĉ for all I ⊂ {1, . . . , k} and for all v ∈ QI ,ε̂.

Proof Since there are finite number of subsets I ∈ {1, . . . , k}, it is enough to prove
the lemma for a fixed I . If the statement is false, then there exists a sequence vs ∈ B
such that GI (vs) → 0 with s → ∞ and μI (vs) ≤ s−1. Without loss of generality we
assume that vs converges to some vector v ∈ B. Then GI (v) = 0 and μI (v) = 0. A
contradiction. ��
Since G is uniformly continuous on the compact set B, there exists δ̂ > 0 such that

|G(v) − G(v′)| ≤ ε̂ whenever v, v′ ∈ B and |v − v′| ≤ δ̂. (35)

Decreasing, if necessary, δ̂, we can assume that δ̂ ≤ ε̂.
2. We analyze conditions (27)–(32). Take any δ > 0 such that δ ≤ δ̂. Suppose that a
collection (ν, π, ρ, ξ, η) satisfies condition (34) and there exists a solution (x, u, p, λ)

of the perturbed system (27)–(32) such that ‖�w‖∞ ≤ δ. Consider this solution. It is
clear, that ‖w‖∞ is bounded (that is, ‖w‖∞ ≤ C , where C > 0 does not depend on
w), and ‖ω‖ ≤ δ.

Further, note that ‖p‖1,1 is bounded due to conditions (28) and (29) and also because
‖w‖∞, |ν| and ‖π‖1 are bounded. Therefore, ‖�p‖1,1 is also bounded. Moreover, the
following is true.

Proposition 6.1 The norms ‖λ‖∞ and ‖�λ‖∞ are bounded.
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Proof For the ball appearing in Part 1 of the proof we choose B := {v ∈ R
m : |v| ≤

‖û‖∞ + δ}. Consider equation (30):

p(t) fu(w(t)) + λ(t)G ′(u(t)) = ρ(t) for a.a. t ∈ [0, 1].

We assume that λ �= 0, otherwise the claims of the proposition are obvious. Set

M(λ) = {t ∈ [0, 1] : λ(t) �= 0}.

Then measM(λ) > 0. For any t ∈ M(λ) we set

I (t) = {i ∈ {1, . . . , k} : λi (t) > 0}, λI (t)(t) = {λi (t)}i∈I (t).

Let t ∈ M(λ). The complementary slackness conditions

λi (t)
(
Gi (u(t)) − ηi (t)

) = 0, i = 1, . . . , k,

imply that Gi (u(t)) − ηi (t) = 0 for all i ∈ I (t), and then, |Gi (u(t))| = |ηi (t)| for all
i ∈ I (t). Therefore, in virtue of (34),

|GI (t)(u(t))| ≤ |η(t)| ≤ δ.

Since δ ≤ δ̂, we obtain

u(t) ∈ QI (t),δ̂ for a.a. t ∈ M(λ).

Here GI (t) and QI (t),δ̂ are defined similarly to GI and QI ,δ̂ in Part 1 of the proof.

Hence, by Lemma 6.1, and since δ̂ ≤ ε̂,

| det AI (t)(u(t)))| ≥ ĉ > 0 for a.a. t ∈ M(λ),

where

AI (t)(u(t)) = G ′
I (t)(u(t))(G ′

I (t)(u(t)))∗.

Obviously, λ(t)G ′(u(t)) = λI (t)(t)G ′
I (t)(u(t)) for a.a. t ∈ M(λ), and, therefore,

p(t) fu(w(t)) + λI (t)(t)G
′
I (t)(u(t)) = ρ(t) for a.a. t ∈ M(λ).

(Note that the dimensions of the vector λI (t)(t) and the matrices G ′
I (t)(u(t))

and AI (t)(u(t)) depend on t .) Multiplying this equation by the transposed matrix
(G ′

I (t)(u(t)))∗ on the right, we get

p(t) fu(w(t))(G ′
I (t)(u(t)))∗ + λI (t)(t)AI (t)(u(t)))

= ρ(t)(G ′
I (t)(u(t)))∗ for a.a. t ∈ M(λ).
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Then

p(t) fu(w(t))(G ′
I (t)(u(t)))∗(AI (t)(u(t)))−1 + λI (t)(t)

= ρ(t)(G ′
I (t)(u(t)))∗(AI (t)(u(t)))−1

for a.a. t ∈ M(λ). Since here all matrices are essentially bounded and |λ(t)| =
|λI (t)(t)| for a.a. t ∈ M(λ), we obtain the estimate

|λ(t)| ≤ C
(|p(t)| + |ρ(t)|) for a.a. t ∈ M(λ)

with some C > 0, and therefore,

‖λ‖∞ ≤ C(‖p‖∞ + ‖ρ‖∞).

Since ‖p‖∞ is bounded and ‖ρ‖∞ ≤ δ, we obtain that ‖λ‖∞ is bounded. Hence
‖�λ‖∞ is also bounded. ��
3. Further, subtracting (8) from (31) we obtain that

− �ẋ + f (w) − f (ŵ) = ξ. (36)

It follows that

|�x(t)| ≤ |�x0| + ‖ξ‖1 + L‖�u‖1 + L
∫ t

0
|�x(τ )| dτ, t ∈ [0, 1],

with some L > 0, where

�x0 = �x(0).

Using the Grönwall inequality, we get

‖�x‖1,1 ≤ C
(|�x0| + ‖�u‖1 + ‖ξ‖1

)
(37)

with some C > 0. In what follows we use a more rough estimate. Namely, since
‖�u‖1 ≤ ‖�u‖2 and ‖ξ‖1 ≤ ‖ω‖, we have

‖�x‖1,1 ≤ C
(|�x0| + ‖�u‖2 + ‖ω‖). (38)

Consequently,

|�q| ≤ 2C
(|�x0| + ‖�u‖2 + ‖ω‖). (39)

Clearly, relation (36) implies

− �ẋ + f ′(ŵ)�w + O(|�w|2) = ξ. (40)
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As usual, for ε ∈ R+, the symbol O(ε) means that there exists a constant C > 0,
independent of ε, such that |O(ε)| ≤ C |ε| as ε → 0+, and the symbol o(ε)means that
o(ε)/ε → 0 as ε → 0+. We use these symbols for O(ε) and o(ε), taking values in R
or in Rn . Moreover, throughout the paper, the functions O and o may directly depend
on �w, not only on the norms appearing as arguments at the place of ε. However, the
“smallness”with respect to the arguments of O and owill be uniform in�w, satisfying
‖�w‖∞ ≤ δ. For example, O(|�w|2) in (40), which is a shortening of O(|�w(t)|2),
means that there exists a constant C such that O(|�w(t)|2) ≤ C |�w(t)|2 for all �w

satisfying ‖�w‖∞ ≤ δ and for a.e. t ∈ [0, 1]. Similarly, o(γ (�w)), appearing later,
means that o(γ (�w))/γ (�w) → 0 with γ (�w) → 0, uniformly with respect �w

satisfying ‖�w‖∞ ≤ δ.
4. Subtracting (5) from (28) we obtain

(−�p(0),�p(1)) = F ′(q) − F ′(q̂) + ν,

hence,

(−�p(0),�p(1)) = F ′′(q̂)�q + o(|�q|) + ν. (41)

This implies that

|�p(0)| + |�p(1)| ≤ C
(|�q| + |ν|) (42)

with some C > 0. Multiplying (41) by �q = (�x(0),�x(1)), we obtain

�p�x |10= 〈F ′′(q̂)�q,�q〉 + o(|�q|2) + ν�q. (43)

5. Subtracting (6) from (29) we obtain

� ṗ + p fx (w) − p̂ fx (ŵ) = π. (44)

Using the Grönwall inequality and the inequality ‖�u‖1 ≤ ‖�u‖2 we get

‖�p‖1,1 ≤ c
(|�p(0)| + ‖�x‖∞ + ‖�u‖2 + ‖π‖1

)
(45)

with some c > 0. Using (38), (39), (42) in this inequality, and also taking into account
the definition of ‖ω‖, we obtain

‖�p‖1,1 ≤ C
(|�x0| + ‖�u‖2 + ‖ω‖) (46)

with some C > 0. Moreover, since ‖�w‖∞ ≤ δ and ‖ω‖ ≤ δ, we also get

‖�p‖1,1 ≤ 2Cδ. (47)

Further, we have

p fx (w) − p̂ fx (ŵ) = p̂( fx (w) − fx (ŵ)) + �p fx (w)
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= p̂ fxw(ŵ)�w + �p fx (ŵ) + �p fxw(ŵ)�w + o(|�w|)
= Hxw(ŵ, p̂)�w + �p fx (ŵ) + �p fxw(ŵ)�w + o(|�w|).

Therefore, relation (44) implies

� ṗ + Hxw(ŵ, p̂)�w + �p fx (ŵ) + �p fxw(ŵ)�w + o(|�w|) = π. (48)

6. Next we analyze condition (30). Subtracting (7) from (30), we obtain

p fu(w) − p̂ fu(ŵ) + λG ′(u) − λ̂G ′(û) = ρ.

Consequently,

p̂( fu(w) − fu(ŵ)) + �p fu(w) + λ̂(G ′(u) − G ′(û)) + �λG ′(u) = ρ.

From here

p̂ fuw(ŵ)�w + �p fu(ŵ) + �p fuw(ŵ)�w + λ̂G ′′(û)�u + �λG ′(u) + o(|�w|) = ρ.

Here,

p̂ fuw(ŵ)�w = Huw(ŵ, p̂)�w = Hux (ŵ, p̂)�x + Huu(ŵ, p̂)�u.

Therefore,

Hux (ŵ, p̂)�x + Huu(ŵ, p̂)�u + �p fu(ŵ) + �p fuw(ŵ)�w

+λ̂G ′′(û)�u + �λG ′(u) + o(|�w|) = ρ.

Since H̄ = H + λG,

Hux (ŵ, p̂)�x + H̄uu(ŵ, p̂, λ̂)�u + �p fu(ŵ) + �p fuw(ŵ)�w + �λG ′(u)

+ o(|�w|) = ρ. (49)

Using this equality and the boundedness of ‖�λ‖∞ and ‖�w‖∞, we estimate

|�λG ′(u)| ≤ C
(|�x | + |�u| + |�p| + |ρ|) (50)

with some C > 0.
In the next paragraphs, we shall utilize Assumption 2.1 and Lemma 6.1 to estimate

for a.e t ∈ [0, 1]

|�λ| ≤ C ′(|�x | + |�u| + |�p| + |ρ|). (51)

with some C ′ > 0.
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Set

M(�λ) = {t ∈ [0, 1] : �λ(t) �= 0}.

IfmeasM(�λ) = 0 the estimate is trivial, thereforewe assume thatmeasM(�λ) > 0.
For any t ∈ M(�λ), we set

J (t) = { j ∈ {1, . . . , k} : �λ j (t) �= 0}.

Let �λJ (t)(t) be a row vector, composed of all nonzero components of �λ(t), and let
GJ (t) be a column vector with the components G j for all j ∈ J (t). Then, obviously,

|�λ(t)| = |�λJ (t)(t)|, �λ(t)G ′(u(t)) = �λJ (t)(t)G
′
J (t)(u(t)) for a.a. t ∈ M(�λ).

(52)

Let t ∈ M(�λ), j ∈ J (t). If λ j (t) > 0, then, by the complementary slackness
condition in (27),we haveG j (u(t)) = η j (t), and hence, |G j (u(t))| ≤ ε̂ since‖η‖∞ ≤
δ ≤ δ̂ ≤ ε̂.

If λ j (t) = 0, then λ̂ j (t) > 0, and then, by the complementary slackness condition
in (4), we have G j (û(t)) = 0. But then, since ‖u − û‖∞ ≤ δ̂, by condition (35) we
again have |G j (u(t))| ≤ ε̂.

Thus, for all j ∈ J (t) we have |G j (u(t))| ≤ ε̂. This implies that

u(t) ∈ QJ (t),ε̂ for a.a. t ∈ M(�λ),

where the set QJ (t),ε̂ is defined similarly to the set QI ,ε and the ball B is defined as
at the beginning of the proof of Proposition 6.1. By Lemma 6.1, it follows that

| det AJ (t)(u(t))| ≥ ĉ > 0 for a.a. t ∈ M(�λ),

where

AJ (t)(u(t)) = G ′
J (t)(u(t))(G ′

J (t)(u(t)))∗.

Let

z(t) := �λ(t)G ′(u(t)), t ∈ [0, 1].

According to (50) and the second equality in (52) we have

|z(t)| ≤ C
(|�x(t)| + |�u(t)| + |�p(t)| + |ρ(t)|), z(t) = �λJ (t)(t)G

′
J (t)(u(t))

(53)

for a.a. t ∈ M(�λ). Consequently,

z(t)(G ′
J (t)(u(t)))∗ = �λJ (t)(t)AJ (t)(u(t)),
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hence,

z(t)(G ′
J (t)(u(t)))∗A−1

J (t)(u(t)) = �λJ (t)(t).

This equality, the inequality in (53), and the equality |�λ(t)| = |�λJ (t)(t)|, satisfied
for a.a. t ∈ M(�λ), imply estimate (51).

Estimate (51) together with the inequalities ‖�w‖∞ ≤ δ, (34), and (47) imply

‖�λ‖∞ ≤ Cδ (54)

with some C > 0. In addition, from (38), (46), and (51) it follows that

‖�λ‖2 ≤ C
(|�x0| + ‖�u‖2 + ‖ω‖) (55)

with some C > 0.
7. Next, we estimate �(�w). Multiplying (48) by �x , we get

� ṗ�x + 〈Hxw(ŵ, p̂)�w, �x〉 + �p fx (ŵ)�x + 〈�p fxw(ŵ)�w,�x〉 + o(|�w|2)
= π�x . (56)

Further, since

G ′(u) = G ′(û) + G ′′(û)�u + o(|�u|)

and ‖�λ‖∞ is bounded, relation (49) implies

Hux (ŵ, p̂)�x + H̄uu(ŵ, p̂, λ̂)�u + �p fu(ŵ) + �p fuw(ŵ)�w

+�λG ′(û) + �λG ′′(û)�u + o(|�w|) = ρ.

Multiplying this relation by �u, we get

〈Hux (ŵ, p̂)�x,�u〉 + 〈H̄uu(ŵ, p̂, λ̂)�u,�u〉 + �p fu(ŵ)�u + 〈�p fuw(ŵ)�w,�u〉
+�λG ′(û)�u + 〈�λG ′′(û)�u,�u〉 + o(|�w|2) = ρ�u. (57)

Adding equalities (56) and (57), we get

� ṗ�x + 〈Hxw(ŵ, p̂)�w,�x〉 + 〈Hux (ŵ, p̂)�x,�u〉 + 〈H̄uu(ŵ, p̂, λ̂)�u,�u〉
+�p fx (ŵ)�x + 〈�p fxw(ŵ)�w,�x〉 + �p fu(ŵ)�u + 〈�p fuw(ŵ)�w,�u〉
+�λG ′(û)�u + 〈�λG ′′(û)�u,�u〉 + o(|�w|2) = π�x + ρ�u.

Further, we have

〈Hxw(ŵ, p̂)�w,�x〉 + 〈Hux (ŵ, p̂)�x,�u〉 + 〈H̄uu(ŵ, p̂, λ̂)�u,�u〉
= 〈H̄xw(ŵ, p̂, λ̂)�w,�x〉 + 〈H̄uw(ŵ, p̂, λ̂)�w,�u〉 = 〈H̄ww(ŵ, p̂, λ̂)�w,�w〉.
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Moreover,

�p fx (ŵ)�x + 〈�p fxw(ŵ)�w,�x〉 + �p fu(ŵ)�u + 〈�p fuw(ŵ)�w,�u〉
= �p f ′(ŵ)�w + 〈�p f ′′(ŵ)�w,�w〉.

Consequently,

� ṗ�x + 〈H̄ww(ŵ, p̂, λ̂)�w,�w〉 + �p f ′(ŵ)�w + 〈�p f ′′(ŵ)�w,�w〉
+�λG ′(û)�u + 〈�λG ′′(û)�u,�u〉 + o(|�w|2) = π�x + ρ�u.

Integrating this equality over the segment [0,1], we obtain

∫ 1

0
� ṗ�x dt +

∫ 1

0
〈H̄ww(ŵ, p̂, λ̂)�w,�w〉 dt +

∫ 1

0
�p f ′(ŵ)�w dt

+
∫ 1

0
〈�p f ′′(ŵ)�w,�w〉 dt +

∫ 1

0
�λG ′(û)�u dt

+
∫ 1

0
〈�λG ′′(û)�u,�u〉 dt +

∫ 1

0
o(|�w|2) dt =

∫ 1

0
(π�x + ρ�u) dt .

Integrating by parts the first integral on the left side of this equality and applying (43),
we get

∫ 1

0
� ṗ�x dt = �p�x |10 −

∫ 1

0
�p�ẋ dt

= 〈F ′′(q̂)�q,�q〉 + o(|�q|2) + ν�q −
∫ 1

0
�p�ẋ dt .

Substituting this expression into the previous equality and taking into account
definition (13) of �, we get

�(�w) + o(|�q|2) + ν�q +
∫ 1

0
�p

(
f ′(ŵ)�w − �ẋ

)
dt

+
∫ 1

0
〈�p f ′′(ŵ)�w,�w〉 dt +

∫ 1

0
�λG ′(û)�u dt +

∫ 1

0
〈�λG ′′(û)�u,�u〉 dt

+
∫ 1

0
o(|�w|2) dt =

∫ 1

0

(
π�x + ρ�u

)
dt . (58)

Notice that

o(|�q|2) +
∫ 1

0
o(|�w|2) dt = o(γ (�w)).
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Using this equality and equality (40) in equality (58), we obtain

�(�w) + ν�q −
∫ 1

0
�p O(|�w|2) dt +

∫ 1

0
�p ξ dt

+
∫ 1

0
〈�p f ′′(ŵ)�w,�w〉 dt

+
∫ 1

0
�λG ′(û)�u dt +

∫ 1

0
〈�λG ′′(û)�u,�u〉 dt + o(γ (�w))

=
∫ 1

0

(
π�x + ρ�u

)
dt . (59)

According to (47), we have ‖�p‖∞ ≤ 2Cδ. Therefore,

∣∣∣∣
∫ 1

0
�p O(|�w|2) dt

∣∣∣∣ ≤ ‖�p‖∞
∫ 1

0
|O(|�w|2)| dt ≤ cδγ (�w) (60)

with some c > 0. Similarly,

∣∣∣∣
∫ 1

0
〈�p f ′′(ŵ)�w,�w〉 dt

∣∣∣∣ ≤ cδγ (�w). (61)

In addition, in view of (54),

∣∣∣∣
∫ 1

0
〈�λG ′′(û)�u,�u〉 dt

∣∣∣∣ ≤ cδγ (�w) (62)

with some c > 0. Hence, (59) gives

�(�w) ≤ −
∫ 1

0
�λG ′(û)�u dt

+
∫ 1

0

( − �p ξ + π�x + ρ�u
)
dt − ν�q + Cδγ (�w) (63)

with some C > 0.
8. Now we estimate the first term

−
∫ 1

0
�λG ′(û)�u dt = −

k∑
j=1

∫ 1

0
�λ j G

′
j (û)�u dt

in the righ-handt side of inequality (63). Let us fix j ∈ {1, . . . , k} and consider the
term

−
∫ 1

0
�λ j G

′
j (û)�u dt .
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We use conditions (4), (9), (27), and (32). If �λ j = 0, then this term is equal to zero.
Therefore, we assume that the set

M(�λ j ) = {t ∈ [0, 1] : �λ j (t) �= 0}

has a positive Lebesgue measure.
8.1. Consider the set

{t ∈ M(�λ j ) : λ j (t) = 0}.

A.e. on this set we have

�λ j = −λ̂ j < 0.

Then, by the complementary slackness condition in (4), G j (û) = 0. In this case, the
condition G j (u) ≤ η j yields G ′

j (û)�u + O(|�u|2) ≤ η j , whence, multiplying by
−�λ j > 0, we get

− �λ j G
′
j (û)�u − �λ j O(|�u|2) ≤ −�λ j · η j . (64)

8.2. Consider the set

{t ∈ M(�λ j ) : λ j (t) > 0}.

Then, by the complementary slackness condition in (27), a.e. on this set we have

G j (u) = η j .

(a) Let also G j (û) = 0. Then

G ′
j (û)�u + O(|�u|2) = η j .

Multiplying this equality by −�λ j , we get

−�λ j G
′
j (û)�u − �λ j · O(|�u|2) = −�λ j · η j .

(b) Let now G j (û) < 0. Then, by the complementary slackness condition in (4),
we have λ̂ j = 0, and then �λ j = λ j > 0.

Again, by the complementary slackness condition (but now in (27)), we have
G j (u) = η j , which implies

G j (û) + G ′
j (û)�u + O(|�u|2) = η j .

Multiplying this equality by −�λ j < 0, we get

−�λ j · G j (û) − �λ j · G ′
j (û)�u − �λ j · O(|�u|2) = −�λ j · η j .
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Since −�λ j · G j (û) > 0, we obtain

−�λ j G
′
j (û)�u − �λ j · O(|�u|2) < −�λ j · η j .

Consequently, inequality (64) holds a.e. on the set M(�λ j ), and then it holds a.e.
on [0.1]. This implies that

−
∫ 1

0
�λ j G

′
j (û)�u dt −

∫ 1

0
�λ j O(|�u|2) dt ≤ −

∫ 1

0
�λ j · η j dt . (65)

Recall that according to (54), ‖�λ‖∞ ≤ Cδ. Therefore,

∫ 1

0
|�λ j | · |O(|�u|2)| dt ≤ C ′δ · γ (�w)

with some C ′ > 0. This and (65) imply

−
∫ 1

0
�λ j G

′
j (û)�u dt ≤ −

∫ 1

0
�λ j · η j dt + C ′δγ (�w).

If �λ j = 0, then this equality also holds. Thus, it is true for all j = 1, . . . , k.
Consequently,

−
∫ 1

0
�λG ′(û)�u dt ≤

∫ 1

0
|�λ| · |η| dt + C ′δγ (�w).

This and inequality (63) imply

�(�w) ≤
∫ 1

0
|�λ| · |η| dt +

∫ 1

0

( − �p ξ + π�x + ρ�u
)
dt − ν�q + c δ γ (�w)

(66)

with some c > 0. Using now the inequality ‖η‖2 ≤ ‖ω‖, we obtain from this that

�(�w) ≤ ‖�λ‖2‖ω‖ +
∫ 1

0

( − �p ξ + π�x + ρ�u
)
dt − ν�q + c δ γ (�w).

(67)

9. Let� > 0 appearing in Assumption 3.1 be given. In order to apply this assumption,
with the help of (31) and (32), we pass from the element �w to an element δw ∈ K�,
using a "small correction" w′ = δw − �w.

First we use the condition G(u) ≤ η. Let j ∈ {1, . . . , k}. We remind the notations
Mj := {t ∈ [0, 1] : G j (û(t) = 0} and M+

�(λ̂ j ) := {t ∈ [0, 1] : λ̂ j (t) > �} used in
the definition (12) of the cone K�. Set

M�(λ̂ j ) = {t ∈ Mj : λ̂ j ≤ �}.
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Then

Mj = M�(λ̂ j ) ∪ M+
�(λ̂ j ).

Since G j (u) ≤ η j and G j (û) = 0 a.e. on Mj , and since M�(λ̂ j ) ⊂ Mj , we obtain
that

G ′
j (û)�u ≤ η j − O(|�u|2) a.e. on M�(λ̂ j ). (68)

Now we use the complementary slackness condition in (27). According to this
condition, we have λ j (G j (u) − η j ) = 0. Using (54), we get

λ j = λ̂ j + �λ j ≥ � − |�λ j | ≥ � − C δ > 0 a.e. on M+
�(λ̂ j ),

whenever C δ < �. Let δ > 0 be so small that this condition is fulfilled. Then, it
follows that G j (u) = η j a.e. on M+

�(λ̂ j ). Since G j (û) = 0 on Mj , we get

G ′
j (û)�u = η j − O(|�u|2) a.e. on M+

�(λ̂ j ). (69)

By virtue of Assumption 2.1, relations (68) and (69) imply that there exists u′ such
that for all j ∈ {1, . . . , k} we have

G ′
j (û)

(
�u + u′) ≤ 0 a.e. on M�(λ̂ j ), (70)

G ′
j (û)

(
�u + u′) = 0, a.e. on M+

�(λ̂ j ), (71)

|u′| ≤ c
(|η| + O(|�u|2)) (72)

with some c > 0, and, therefore,

‖u′‖1 ≤ c‖η‖1 + O(‖�u‖22) ≤ c‖ω‖ + O(‖�u‖22). (73)

Here we use ‖η‖1 ≤ ‖η‖2 ≤ ‖ω‖. Moreover, due to (72) and since ‖�u‖∞ ≤ δ, the
product of functions |�u| · |u′| satisfies the estimate

∫ 1

0
|�u| · |u′| dt ≤ c‖�u‖2‖ω‖ + c′δ‖�u‖22 (74)

with some c′ > 0, and also by virtue of (72) for the function |u′|2 we have the estimate

∫ 1

0
|u′|2 dt = ‖u′‖22 ≤ 2c2‖η‖22 + c′

∫ 1

0
|�u|4 dt ≤ c‖ω‖2 + c′δ2‖�u‖22 (75)

with some c > 0 and c′ > 0.
10. Set

δu = �u + u′.
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There exists δx ∈ W 1,1 such that

δ ẋ = fx (ŵ)δx + fu(ŵ)δu, δx(0) = �x(0). (76)

Recall that by (40)

�ẋ = fx (ŵ)�x + fu(ŵ)�u + O(|�w|2) − ξ.

Then δx = �x + x ′, where x ′ satisfies

ẋ ′ = fx (ŵ)x ′ + fu(ŵ)u′ − O(|�w|2) + ξ, x ′(0) = 0.

This and (73) imply the following estimate

‖x ′‖∞ ≤ c(‖u′‖1 + ‖ξ‖1) + O(‖�w‖22) ≤ c′‖ω‖ + O(‖�w‖22) (77)

with some c > 0 and c′ > 0. Set w′ = (x ′, u′). Then δw = �w + w′. Due to (70)
and (71), it is easy to verify that

δw = (δx, δu) ∈ K�,

and hence, by Assumption 3.1 (see also Remark 3.1),

�(δw) ≥ c�γ (δw). (78)

11. Let us compare �(δw) with �(�w). According to Lemma 4.1, we have

�(δw) = �(�w + w′) = �(�w) + E(�w,w′), (79)

where

|E(�w,w′)| ≤ cE
(‖�x‖∞‖x ′‖∞ + ‖x ′‖2∞ + ‖x ′‖∞‖�u‖1

+‖�x‖∞‖u′‖1 + ‖x ′‖∞‖u′‖1 + ‖u′‖22 + ‖|�u| · |u′|‖1
)
. (80)

According to the above estimates (72)-(75), and (77) (we replace c′ with c, taking the
maximum of these two constants as the new c), we have

‖�x‖∞‖x ′‖∞ ≤ c‖�x‖∞‖ω‖ + o(γ (�w)),

‖x ′‖2∞ ≤ (
c‖ω‖ + O(‖�w‖22)

)2 ≤ 2c2‖ω‖2 + 2O(‖�w‖42) ≤ 2c2‖ω‖2 + o(γ (�w)),

‖�u‖1‖x ′‖∞ ≤ ‖�u‖2‖x ′‖∞ ≤ c‖�u‖2‖ω‖ + o(γ (�w)),

‖�x‖∞‖u′‖1 ≤ c‖�x‖∞‖ω‖ + o(γ (�w)),

‖x ′‖∞‖u′‖1 ≤ (
c‖ω‖ + O(γ (�w)

)2 ≤ 2c2‖ω‖2 + o(γ (�w)),

‖u′‖22 ≤ c‖ω‖2 + cδ2‖�u‖22,
‖|�u| · |u′|‖1 ≤ c‖ω‖‖�u‖2 + cδ‖�u‖22.
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This implies that

|E(�w,w′)| ≤ c�Rδ(�w,ω) (81)

with some c� > 0, where (provided that δ > 0 is sufficiently small)

Rδ(�w,ω) := ‖ω‖2 + ‖ω‖‖�x‖∞ + ‖ω‖‖�u‖2 + δγ (�w).

12. Let us compare γ (δw) with γ (�w). We have

γ (δw) = γ (�w) + rγ (�w,w′), (82)

where

rγ (�w,w′) := ‖�x + x ′‖2∞ − ‖�x‖2∞ + 2
∫ 1

0
〈�u, u′〉 dt +

∫ 1

0
〈u′, u′〉 dt .

Here

∣∣‖�x + x ′‖2∞ − ‖�x‖2∞
∣∣ = ∣∣‖�x + x ′‖∞ − ‖�x‖∞

∣∣ · ∣∣‖�x + x ′‖∞ + ‖�x‖∞
∣∣}

≤ c‖x ′‖∞
(
2‖�x‖∞ + ‖x ′‖∞

)

with some c > 0. This implies that

|rγ (�w,w′)| ≤ cr
(‖�x‖∞‖x ′‖∞ + ‖x ′‖2∞ + ‖|�u| · |u′|‖1 + ‖u′‖22

)

with some cr > 0. All these terms are contained in the estimate (80) for |E(�w,w′)|.
Consequently,

|rγ (�w,w′)| ≤ cγ Rδ(�w,ω) (83)

with some cγ > 0.
13. Inequality (78) along with relations (79) and (82) implies the inequality

�(�w) + E(�w,w′) ≥ c�

(
γ (�w) + rγ (�w,w′)

)
,

whence

c�γ (�w) − c�|rγ (�w,w′)| − |E(�w,w′)| ≤ �(�w).

Using estimates (81) and (83) in this inequality, we get

c�γ (�w) − (c�cγ + c�) Rδ(�w,ω) ≤ �(�w). (84)

14. Combining inequality (67) with (84) we get

c�γ (�w) − (c�cγ + c�) Rδ(�w,ω) ≤ �(�w)
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≤ ‖�λ‖2‖ω‖ +
∫ 1

0

( − �p ξ + π�x + ρ�u
)
dt − ν�q + c δ γ (�w).

Consequently,

c�γ (�w) ≤ (c�cγ + c�) Rδ(�w,ω) + ‖�λ‖2‖ω‖
+‖�p‖∞‖ξ‖1 + ‖π‖1‖�x‖∞ + ‖ρ‖2‖�u‖2 + |ν| · |�q| + c δ γ (�w).

Substituting the expression for Rδ(�w,ω) in this inequality, we obtain that

c�γ (�w) ≤ c̃
(
‖ω‖2 + ‖ω‖‖�x‖∞ + ‖ω‖‖�u‖2 + δγ (�w))

)
+ ‖�λ‖2‖ω‖

+‖�p‖∞‖ξ‖1 + ‖π‖1‖�x‖∞ + ‖ρ‖2‖�u‖2 + |ν| · |�q| + c δ γ (�w),

where c̃ = c�cγ + c�. Then

(c� − c̃ δ − c δ)γ (�w) ≤ c̃
(
‖ω‖2 + ‖ω‖‖�x‖∞ + ‖ω‖‖�u‖2

)
+ ‖�λ‖2‖ω‖

+‖�p‖∞‖ξ‖1 + ‖π‖1‖�x‖∞ + ‖ρ‖2‖�u‖2 + |ν| · |�q|.

Take δ > 0 so small that c′
� := c� − c̃ δ − c δ > 0. Then

c′
�(‖�x‖2∞ + ‖�u‖22) ≤ c̃(‖ω‖2 + ‖ω‖‖�x‖∞ + ‖ω‖‖�u‖2) + ‖�λ‖2‖ω‖
+‖�p‖∞‖ξ‖1 + ‖π‖1‖�x‖∞ + ‖ρ‖2‖�u‖2 + |ν| · |�q|. (85)

Relations (38) and (46) imply

‖�x‖∞ ≤ C
(|�x0| + ‖�u‖2 + ‖ω‖), ‖�p‖∞ ≤ C

(|�x0| + ‖�u‖2 + ‖ω‖).

Moreover, according (55), we have

‖�λ‖2 ≤ C
(|�x0| + ‖�u‖2 + ‖ω‖).

Using these relations in (85) together with the definition ‖ω‖ := |ν|+‖π‖1 +‖ρ‖2 +
‖ξ‖1 + ‖η‖2 and taking into account the inequalities |�x0| ≤ |�q| ≤ 2‖�x‖∞, we
get

c′′
�

(|�x0|2 + ‖�u‖22
) ≤ (|�x0| + ‖�u‖2)‖ω‖ + ‖ω‖2

with some c′′
� > 0 provided that δ > 0 is small enough. Set z = |�x0| + ‖�u‖2,

y = ‖ω‖. Since |�x0|2 + ‖�u‖22 ≥ 1
2 z

2, we obtain

az2 ≤ zy + y2,
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where a = c′′
�/2. This implies that

bz ≤ y, where b =
√
4a + 1 − 1

2
.

Consequently, b(|�x0| + ‖�u‖2) ≤ ‖ω‖, or equivalently,

|�x0| + ‖�u‖2 ≤ c1‖ω‖, (86)

where c1 = 1/b. Then relations (38), (46), and (55) imply

‖�x‖1,1 ≤ c2‖ω‖, ‖�p‖1,1 ≤ c3‖ω‖, ‖�λ‖2 ≤ c4‖ω‖ (87)

with some c2 > 0, c3 > 0, and c4 > 0. The theorem is proved.

Funding Open access funding provided by Austrian Science Fund (FWF). The authors have not disclosed
any funding.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alt, W., Schneider, C., Seydenschwanz, M.: Regularization and implicit Euler discretization of linear-
quadratic optimal control problemswith bang-bang solutions. Appl.Math. Comput. 287–288, 104–124
(2016)

2. Angelov, G., Corella, A. Domínguez., Veliov, V.M.: On the accuracy of the model predictive control
method. SIAM J. Control Optim. 60(4), 2469–2487 (2022)

3. Bonnans, F.J.: Local analysis of Newton-type methods for variational inequalities and nonlinear
programming. Appl. Math. Optim. 29, 161–186 (1994)

4. Bonnans, F.J., Osmolovskii, N.P.: Characterization of a local quadratic growth of the Hamiltonian for
control constrained optimal control problems. Dyn. Contin. Discret. Impuls. Syst. Ser. B 19, 1-2–1-16
(2012)

5. Bonnans, F.J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
6. Cibulka, R., Dontchev, A.L., Kruger, A.Y.: Strong metric subregularity of mappings in variational

analysis and optimization. J. Math. Anal. Appl. 457, 1247–1282 (2018)
7. Corella, A. Domínguez., Jork, N., Veliov, V.M.: Stability in affine optimal control problems constrained

by semilinear elliptic partial differential equations. Submitted. Available as Research Report 2022-01,
ORCOS, TU Wien (2022)

8. Dontchev, A.L., Hager, W.W., Malanowski, K., Veliov, V.M.: On qualitative stability in optimization
and optimal control. Set-Valued Anal. 8, 31–50 (2000)

123

http://creativecommons.org/licenses/by/4.0/


Applied Mathematics & Optimization (2023) 87 :43 Page 29 of 29 43

9. Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational
analysis. Set-Valued Anal. 12, 79–109 (2004)

10. Dontchev, A.L., Rockafellar, T.R.: Implicit Functions and SolutionMappings: AView fromVariational
Analysis, 2nd edn. Springer, New York (2014)

11. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Kluwer Academic Publisher, New
York (2002)

12. Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Higher-order local minimum conditions in problems
with constraints. UspekhiMat. Nauk. 33, 85–148 (1978); English translation in RussianMath. Surveys,
33, 97–168 (1978)

13. Malanowski, K., Maurer, H.: Sensitivity analysis for parametric control problems with control-state
constraints. Comput. Optim. Appl. 5, 253–283 (1996)

14. Milyutin, A.A., Osmolovskii, N.P.: Calculus of Variations and Optimal Control. Translations of
mathematical monographs, vol. 180. American Mathematical Society, Providence, RI (1998)

15. Osmolovskii, N.P.: Second-order conditions for a weak local minimum in an optimal control problem
(necessity, sufficiency). Dokl. Akad. Nauk SSSR 225(2), 259–262 (1975)

16. Osmolovskii, N.P.: Second-order conditions for a weak local minimum in an optimal control problem
(necessity, sufficiency). Soviet Math. Dokl. 16(3), 1480–1484 (1975)

17. Osmolovskii, N.P.: Sufficient quadratic conditions of extremum for discontinuous controls in optimal
control problems with mixed constraints. J. Math. Sci. 173, 1–106 (2011)

18. Osmolovskii, N.P.: Second-order sufficient optimality conditions for control problems with linearly
independent gradients of control constraints. ESAIM 18(2), 452–482 (2012)

19. Osmolovskii, N.P.: A second-order sufficient condition for a weak local minimum in an optimal control
problem with an inequality control constraint. Control Cybern. 51(2), 151–169 (2022)

20. Osmolovskii, N.P., Veliov, V.M.: Metric sub-regularity in optimal control of affine problems with free
end state. ESAIM 26, 47 (2020)

21. Preininger, J., Scarinci, T., Veliov, V.M.:Metric regularity properties in bang-bang type linear-quadratic
optimal control problems. Set-Valued Var. Anal. 27, 381–404 (2019)

22. Quincampoix, M., Veliov, V.M.: Metric regularity and stability of optimal control problems for linear
systems. SIAM J. Control Optim. 51(5), 4118–4137 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On the Strong Subregularity of the Optimality Mapping in an Optimal Control Problem with Pointwise Inequality Control Constraints
	Abstract
	1 Introduction
	2 Notations and Assumptions
	3 Second-Order Sufficient Conditions for a Weak Local Minimum
	4 An Equivalent Form of the Second-Order Sufficient Condition for Local Optimality
	5 Strong Metric Subregularity
	6 Proof of Theorem 5.1
	References




