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Abstract
We show a connection between global unconstrained optimization of a continuous
function f and weak KAM theory for an eikonal-type equation arising also in ergodic
control. A solution v of the critical Hamilton–Jacobi equation is built by a small dis-
count approximation as well as the long time limit of an associated evolutive equation.
Then v is represented as the value function of a control problemwith target,whose opti-
mal trajectories are driven by a differential inclusion describing the gradient descent
of v. Such trajectories are proved to converge to the set of minima of f , using tools
in control theory and occupational measures. We prove also that in some cases the set
of minima is reached in finite time.

Keywords Global optimization · Weak KAM theory · Exit-time control problem ·
Ergodic Hamilton–Jacobi equation · Occupational measures · Long time behavior of
solutions · Eikonal equation · Łojasiewicz inequality
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1 Introduction

Let f ∈ C(Rn) be a bounded function attaining the global minimum. Global opti-
mization is concerned with the search of the minimum points, i.e., finding the set
M = argmin f . For convex smooth functions this is achieved by the gradient flow, i.e.,
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by following the trajectories of ẏ(s) = −∇ f (y(s)) from any initial point x = y(0).
However, if the function f is not convex the trajectory y(·) may converge to a local
minimum or a saddle point. Several alternative algorithms have been designed to
handle non-convex optimization, such as the stochastic gradient descent, simulated
annealing, or consensus-based methods. In particular the case of non-smooth f in
high dimensions is important for the applications to machine learning, see, e.g., the
recent paper [14] and the references therein.

In this paper we construct and study a Lipschitz function v : Rn → R such that the
following normalized non-smooth gradient descent differential inclusion

ẏ(s) ∈
{
− p

|p| , p ∈ D−v(y(s))

}
, for a.e. s > 0, (1.1)

has a solution for any initial condition x = y(0) and all solutions converge to M as
t → +∞. Here D−v is the sub-differential of the theory of viscosity solutions (see,
e.g., [4]). The construction of such a generating function v is based on a classical
problem for Hamilton–Jacobi equations: find a constant c such that the stationary
equation

H(x, Dv) = c in Rn, (1.2)

has a solution v. The minimal c with this property is the critical value of the Hamil-
tonian H and, if H(x, ·) is convex, it is also the value of an optimal control problem
with ergodic cost having H as its Bellman Hamiltonian. If the critical solution v is
interpreted in the viscosity sense, the problem fits in the weak KAM theory, and it is
well-known that, for H = 1

2 |p|2− f (x)with f periodic, c = −min f [19, 28]; more-
over the same holds for any bounded f ∈ C2(Rn) by a result of Fathi and Maderna
[20], and for uniformly continuous f as proved by Barles and Roquejoffre [5]. In Sect.
2 we extend such result to f ∈ C(Rn), bounded, and attaining its minimum. We also
prove that min f and v solving the critical equation

min f + 1

2
|∇v(x)|2 = f (x) in Rn,

can be approximated in two ways: by the solution of the stationary equation

λuλ + 1

2
|Duλ|2 = f (x), x ∈ Rn, (1.3)

as λ → 0+, the so-called small discount limit, as well as by the long-time limit of the
solution of the evolution equation

∂t u + 1

2
|Du|2 = f (x), in Rn × (0,+∞), u(x, 0) = 0. (1.4)
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More precisely, for the evolutive Eq. (1.4) we prove

lim
t→+∞ (u(x, t) − t min f ) = v(x) locally uniformly in Rn . (1.5)

Note that the two problems (1.3) and (1.4) do not require the a-priori knowledge of
min f and argmin f . If, in addition, f is Lipschitz and semiconcave, we show that v
is semiconcave and Duλ and Dxu(·, t) both converge (a.e.) to Dv, therefore giving an
approximation of the gradient descent Eq. (1.1). Moreover, in this case (1.1) becomes
the classical normalised gradient descent

ẏ(t) = − Dv(y(t))

|Dv(y(t))| , ∀ t > 0.

The main result of the paper is the convergence of the gradient descent trajectories
(1.1) to the set M of minima of f . This is done in Sect. 3.1 after observing that v

solves also the Dirichlet problem for the eikonal equation

{
|∇v(x)| = �(x), x ∈ Rn \ M

v(x) = 0, x ∈ M
, (1.6)

with �(x) := √
2( f (x) − min f ). (In fact, our analysis of this problem requires only

that � ∈ C(Rn) is bounded, non-negative, and M = {x : �(x) = 0}). We exploit that
the unique solution of (1.6) is the value function

v(x) = inf
α(·)

∫ tx (α)

0
�(yα

x (s)) ds, ẏα
x (s) = α(s), for s > 0, yα

x (0) = x,

where α is measurable, |α(s)| ≤ 1, and tx (α) is the first time the trajectory yα
x hitsM.

We show that optimal trajectories exist, satisfy the gradient descent inclusion (1.1), and
tend to M as t → +∞ under a slightly strengthened positivity condition at infinity
for �. A crucial new tool for the proof are the occupational measures associated to
these trajectories.

In the final section of the paper we give sufficient conditions such that the optimal
trajectories reachM in finite time. This is a nontrivial problem even when v is smooth,
because it is equivalent to the finite length of gradient orbits ż(s) = −Dv(z(s)), a
question with a very large literature and open problems, see, e.g., [7, 16] and the
references therein. Here we prove the finite hitting time by assuming a bound from
below on � near the target and showing an inequality of Łojasiewicz type along optimal
trajectories.

In a forthcoming companion paper we also study the approximation of v andM by
vanishing viscosity. We add to (1.3) a term −εΔuλ and let λ → 0+ to get the viscous
critical equation

U ε − εΔvε(x) + 1

2
|∇vε(x)|2 = f (x) in Rn,
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whereU ε is a constant. We prove that 0 ≤ U ε −min f ≤ Cεβ for some β > 0. Then
we define the approximate stochastic gradient descent

dXs = −∇uλ(Xs) ds + √
2ε dWs,

and show that the trajectories converge to M in a suitable sense, for small λ and ε.
These results can be found also in the second author’s thesis [27].

Note that (1.4) is the classical Hamilton–Jacobi equation with the mechanical
Hamiltonian H(x, p) = 1

2 |p|2 − f (x), where − f is the potential energy. Then
our results of Sect. 2 have an interpretation in analytical mechanics. For instance,
the long-time behavior (1.5) describes a thermodynamical trend to equilibrium in a
non-turbulent gas or fluid: see [12, 13].

We do not attempt to review all the literature related to the topics mentioned above.
For weak KAM theory on compact manifolds we refer to [17–19], and for the PDE
approach to ergodic control, mostly under periodicity assumptions, the reader can
consult [1, 2] and the references therein. When the state space is not bounded one
must add conditions to get some compactness. In addition to [5, 20] already quoted,
such problems were studied in all Rn by [3, 9, 10, 24, 30, 32] assuming that f is large
enough at infinity, and by [22, 23, 25] for equations involving a linear first order term
that satisfies a recurrence condition, see also the references therein. Here, instead, we
get compactness from the boundedness of f and the assumption that its minimum is
attained. Several of the results just quoted were used for homogenisation and singular
perturbation problems, e.g., [1, 3, 28, 32], so we believe that also our results will have
such applications.

The Dirichlet problem (1.6) with � vanishing at the boundary was studied, e.g., in
[29, 31, 34]. The case of a cost that does not vanish is part of time-optimal control
and it is treated in [4], see also the references therein. The synthesis of an optimal
feedback from the value function v leading to (1.1) uses method from [4] based on
the earlier papers [6, 21].

Wedonot try here to design algorithms for global optimizationbasedon the previous
results. Let us mention, however, that an efficient numerical method for computing
at the same time c and v in the critical/ergodic PDE (1.2) was proposed in [8].

The paper is organized as follows. In Sect. 2.1 we prove the weak KAM theorem
by the small discount approximation (1.3) and in Sect. 2.2 we study the long-time
asymptotics of solutions to (1.4). Section 3.1 is devoted to the optimal control problem
with targetM associated to (1.6) andSect. 3.2 to deriving the gradient descent inclusion
(1.1) for the optimal trajectories. In Sect. 3.3 we prove that such trajectories converge
toM, and in Sect. 3.4 we show two cases where the hitting time is finite.

2 AWeak KAM Theorem and Approximation of the Critical Solution

We introduce the following assumptions and refer to them wherever it is needed:
Assumptions (A)

123



Applied Mathematics & Optimization (2023) 87 :49 Page 5 of 26 49

(A1) f : Rn → R is continuous and

∃ f , f s.t. f ≤ f (x) ≤ f , ∀ x ∈ Rn . (2.1)

(A2) f attains the minimum, i.e.,

M := {x ∈ Rn : f (x) = f := min
z∈Rn

f (z)} 
= ∅. (2.2)

Assumptions (B)

(B1) f is C1-Lipschitz continuous, i.e. C1 = ‖∇ f ‖∞.
(B2) f is C2-semiconcave, i.e., D2

ξξ f ≤ C2 a.e. for all ξ ∈ Rn s.t. |ξ | = 1, where

D2
ξξ f is the second order derivative of f in the direction ξ .

A weak KAM theorem for the Hamiltonian H(x, p) = 1
2 |p|2 − f (x) should give

conditions under which there exists a constant U ∈ R, the (Mané) critical value, such
that the equation

U + 1

2
|∇v(x)|2 = f (x), in Rn, (2.3)

has a viscosity solution v. Clearly any critical valuemust satisfyU ≤ f . In this section
we prove under the current assumptions that f is a critical value and construct the
solution v by two different approximation procedures, both having an interpretation
in terms of ergodic problems in optimal control.

The fact that f is the maximal critical value was proved in [20] for f ∈ C2 and
with R

n replaced by any complete Riemannian manifold, by methods of weak KAM
theory different form ours.

2.1 The Small Discount Limit

We consider the stationary approximation of (2.3)

λuλ + 1

2
|Duλ|2 = f (x), x ∈ Rn, (2.4)

where λ > 0 will be sent to 0. The viscosity solution uλ is known to be the value
function of the following infinite horizon discounted optimal control problem

uλ(x) = inf
α·

J (x, α·) :=
∫ +∞

0

(
1

2
|αt |2 + f (x(t))

)
e−λt dt,

s.t. ẋ(s) = αs, x(0) = x ∈ Rn, s ≥ 0,

(2.5)

where the controls α. : [0,+∞) → Rn are measurable functions. The main result of
this section is the following.
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Theorem 1 Under assumptions (A), as λ → 0

λuλ(x) → f and uλ(x) − f λ−1 → v(x) locally uniformly in Rn,

where v(·) is a Lipschitz continuous viscosity solution to

f + 1

2
|Dv(x)|2 = f (x), x ∈ Rn . (2.6)

Moreover v ≥ 0 in R
n and null on M, and it is the unique viscosity solution of

(2.6) in Rn \ M vanishing on ∂M and bounded from below.
If we assume moreover that assumptions (B) hold, then

Duλ(x) → Dv(x) a.e.

For the proof we need some estimates uniform in λ. The first Lemma is known and
we omit the proof (see [27] for the details).

Lemma 1 Under the assumption (A1), for all x ∈ Rn and λ > 0,

f ≤ λuλ(x) ≤ f , (2.7)

|Duλ(x)| ≤ √
4‖ f ‖∞ a.e.. (2.8)

Lemma 2 Assume (A) and (B) hold. Then uλ is C̃3−semiconcave, where C̃3 is a
positive constant independent of λ > 0.

Proof We will skip the more standard parts and refer to [27] for the complete details.
We use the vanishing viscosity approximation

λuε
λ − εΔuε

λ + 1

2
|Duε

λ|2 = f (x), x ∈ Rn . (2.9)

We fix ξ ∈ Rn such that |ξ | = 1 and denote ωλ(x) := D2
ξξ
uε

λ(x) the second order

derivative in the direction ξ . The estimates ωλ(x) ≤ λ−1C2 and

|Duε
λ(x)| ≤ λ−1C1, (2.10)

are standard and can be got, for instance, by representing uε
λ as the value function of

the stochastic infinite-horizon discounted optimal control problem associated to (2.9)
and exploiting the C2-semiconcavity and C1-Lipschitz continuity of f .

Next we differentiate twice (2.9) in the direction of ξ and obtain

−εΔωλ + Duε
λ · Dωλ + |Dξ Duε

λ|2 + λωλ = D2
ξξ
f , in Rn .

By ω2
λ ≤ |Dξ Duλ|2 and the semiconcavity assumption D2

ξξ
f ≤ C2 we get

− εΔωλ + Duε
λ · Dωλ + ω2

λ + λωλ ≤ C2, in Rn . (2.11)
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In the case ωλ attains its maximum at some x̄ we have

ω2
λ(x̄) + λωλ(x̄) ≤ C2.

By the elementary inequality 1
2

(
z2 − λ2

) ≤ z2 + λz we get, for λ ≤ 1,

ω2
λ(x̄) ≤ 2C2 + 1,

and then we easily reach the conclusion. For the general case we set, for β > 0 to be
chosen,

Ψλ(x) := ωλ(x) − β log

(
1 + |x |2

)
.

Since ωλ is bounded from above, Ψλ attains a global maximum in Rn , say at x
(which depends on λ and β). By evaluating (2.11) in x , after some calculations and
using the bound (2.10) we arrive at

ω2
λ(x) + λωλ(x) ≤ C2 + 2εβn + 2βλ−1C1.

Arguing as above we get, for β ≤ λ/2 ≤ 1,

ωλ(x)
2 ≤ 2(C1 + C2 + 2εn) + 1. (2.12)

Now we claim that

ωλ(x) ≤ C3 := √
2(C1 + C2 + 2ε n) + 1, for all x ∈ Rn .

To prove the claim we suppose by contradiction there exists y ∈ Rn such that
ωλ(y, s) − C3 =: δ > 0. Denote g(x) := log(1 + |x |2) and choose β > 0 small
enough such that βg(y) ≤ δ

2 . Then

0 <
δ

2
≤ δ − βg(y) = ωλ(y) − βg(y) − C3 = Ψλ(y) − C3,

and hence Ψλ(x) − C3 > 0. On the other hand (2.12) gives ωλ(x) ≤ C3 and

Ψλ(x) − C3 ≤ −βg(x) ≤ 0,

which is the desired contradiction. This proves the claim and the C3-semiconcavity
of uε

λ, uniformly in λ, for every 0 < ε ≤ 1. Finally we let ε → 0 in (2.9) and get that
the solution uλ to (2.4) is semi-concave with constant C̃3 := √

2(C1 + C2) + 1. ��
Proof of Theorem 1. First we claim that λuλ(x̄) = f if x̄ ∈ M (i.e., f (x̄) = f =
min f ), for all λ > 0. In fact, for such x̄ ,

uλ(x) = inf
α·

∫ +∞

0

(
1

2
|αt |2 + f (x(t))

)
e−λ t dt ≤

∫ +∞

0
f (x)e−λ t dt = f λ−1,
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where the inequality follows from the choice α· ≡ 0. The other inequality ≥ is true
for all x ∈ Rn by Lemma 1, so the claim is proved.

Now we denote R := √
4‖ f ‖∞ and use the gradient bound (2.8) to get

|λuλ(x) − f | ≤ λR dist(x,M) ∀ x ∈ R
n .

Then λuλ(x) → f locally uniformly.

Define ϕλ(·) := uλ(·) − f λ−1 ≥ 0 and use (2.8) to get, for all x, y ∈ Rn ,

|ϕλ(x)| ≤ R dist(x,M), |ϕλ(x) − ϕλ(y)| ≤ R |x − y|. (2.13)

Hence, {ϕλ(·)}λ∈(0,1) is a uniformly bounded and equi-continuous family on any
ball of Rn . So we can choose a sequence λk → 0 as k → +∞, such that ϕλk (·) →
v(·) ∈ C(Rn) locally uniformly. Plugging ϕλ in (2.4) we get

λϕλ + f + 1

2
|Dϕλ(x)|2 = f (x), x ∈ Rn .

We let λk → 0 and use the stability of viscosity solutions to find that v satisfies
(2.6).

Now we note that (2.6) is an eikonal equation with right hand side f (x) − f > 0
in Rn \M, v ≥ 0 and v = 0 on ∂M. This Dirichlet boundary value problem is known
to have a unique viscosity solution bounded from below. Therefore the convergence
of ϕλ is for λ → 0 and not only on subsequences.

The convergence of the gradient Duλ(·) to Dv(·) is a direct consequence of [11,
Theorem 3.3.3], recalling that |ϕλ(x)| ≤ R |x | and using the uniform semiconcavity
estimate in Lemma 2. ��

2.2 Long Time Asymptotics

Here we consider the evolutive Hamilton-Jacobi equation

⎧⎨
⎩

∂t u(x, t) + 1

2
|Du(x, t)|2 = f (x), (x, t) ∈ Rn × (0,+∞),

u(x, 0) = 0, x ∈ Rn,

(2.14)

where D = ∇ = Dx denotes the gradient with respect to the space variables x , and
we will study the limit as t → +∞. The viscosity solution u(x, t) is known to be the
value function of the following finite-horizon optimal control problem

u(x, t) = inf
α·

J (x, t, α·) :=
∫ t

0

1

2
|αs |2 + f (x(s)) ds,

s.t. ẋ(s) = αs, x(0) = x ∈ Rn,

(2.15)
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where α. : [0,+∞) → Rn are measurable functions. The main result of this section
is the following.

Theorem 2 Under assumptions (A), as t → +∞,

u(x, t)

t
→ f and u(x, t) − f t → v(x) locally uniformly in Rn,

where v(·) is the viscosity solution of (2.6) found in Theorem 1.
If we assume moreover that assumptions (B) hold, then

Dxu(x, t) → Dv(x) a.e.

To proceed with its proof we need some estimates uniform in t .

Lemma 3 Under the assumption (A1), for all (x, t) ∈ Rn × (0,+∞),

f ≤ u(x, t)

t
≤ f , (2.16)

|∂t u(x, t)| ≤ ‖ f ‖∞ a.e., (2.17)

|Du(x, t)| ≤ √
4‖ f ‖∞ a.e. (2.18)

Proof The arguments are standard, for the reader’s convenience we show (2.17). Fix
h ∈ R and x ∈ Rn . Note first that |u(x, h)| ≤ |h|‖ f ‖∞. Let us now denote v(x, t) :=
u(x, t+h)+|h|‖ f ‖∞. Bothu andv solve the samePDE in (2.14)with initial conditions
u(x, 0) = 0 and v(x, 0) = u(x, h)+|h|‖ f ‖∞ ≥ 0, hence by the comparison principle
in [15, Theorem 2.1] we get u(x, t) ≤ v(x, t).

Conversely, v(x, t) := u(x, t + h) − |h|‖ f ‖∞ solves the same PDE in (2.14) with
initial condition v(x, 0) = u(x, h) − |h|‖ f ‖∞ ≤ u(x, 0) = 0. The same comparison
principle now implies that v(x, t) ≤ u(x, t). Therefore, one gets |u(x, t + h) −
u(x, t)| ≤ |h|‖ f ‖∞. ��
Lemma 4 Assume (A) and (B) hold. Then u is C̃3−semiconcave, where C̃3 is a positive
constant independent of t ≥ 0.

Proof As we did in the proof of Lemma 2, we consider the vanishing viscosity
approximation

⎧⎨
⎩

∂t u
ε − εΔuε + 1

2
|∇uε|2 = f (x), (x, t) ∈ Rn × (0,∞)

uε(x, 0) = 0, x ∈ Rn
(2.19)

It is known that uε is the value function of the stochastic control problem

uε(x, t) = inf
α·∈A

E

[∫ t

0

1

2
|αs |2 + f (Xs) ds

∣∣∣∣ X0 = x

]
, dXs = αs ds + √

2ε dWs .

(2.20)
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Take ξ ∈ Rn with |ξ | = 1 and let ω(x, t) := D2
ξξu

ε(x, t) be the second order
derivative in space in the direction ξ .We claimfirst thatω(x, t) ≤ t C2 or, equivalently,
the value function uε(x, t) is t C2-semiconcave in the spatial variable x . Let δ > 0
and take a δ

2 -optimal control for the initial point x . By using the same control for the
initial points x + h and x − h we get

uε(x + h, t) − 2uε(x, t) + uε(x − h, t) − δ

≤ E

[∫ t

0
f (Xx+h

s ) − 2 f (Xx
s ) + f (Xx−h

s ) ds

]
.

(2.21)

From the controlled diffusion in (2.20) we have Xx
s = 1

2

(
Xx+h
s + Xx−h

s

)
, and f

C2-semiconcave implies

E

[∫ t

0
f (Xx+h

s ) − 2 f (Xx
s ) + f (Xx−h

s ) ds

]

≤ C2E

[∫ t

0

1

4

∣∣∣Xx+h
s − Xx−h

s

∣∣∣2 ds

]
≤ t C2 |h|2.

(2.22)

Since δ > 0 is arbitrary we have proved the claim. Similar computations (see [27])
yield

|Duε(x, t)| ≤ t C1. (2.23)

Next we differentiate twice (2.19) in the direction of ξ and obtain

∂tω − εΔω + Duε · Dω + |Dξ Duε|2 = Dξξ f , in Rn × (0, T ]. (2.24)

Since ω2 ≤ |Dξ Duε|2 and by the semiconcavity assumption D2
ξξ f ≤ C2

∂tω − εΔω + Duε · Dω + ω2 ≤ C2, in Rn × (0,+∞). (2.25)

Now set g(x) := log(1+ |x |2) and Φ(x, t) := ω(x, t) − βg(x), inRn × (0,+∞)

for some β > 0 to be made precise. Since ω is bounded from above for 0 ≤ t ≤ T ,
Φ admits a global maximum inRn × [0, T ]. Let (x, t) be such a maximum point. We
consider first the case t ∈ (0, T ) and evaluate (2.25) in (x, t) to get

ω2(x, t) ≤ C2 + 2εβ
n + (n − 2)|x |2

(1 + |x |2)2 − 2βDuε(x, t) · x

1 + |x |2 . (2.26)

Note that x ∈ Rn �→ n+(n−2)|x |2
(1+|x |2)2 has a global maximum in x = 0, and x

1+|x |2 is
bounded. Then, by (2.23) the bound in (2.26) gives

ω2(x, t) ≤ C2 + 2εβn + 2β T C1.
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We choose β and T such that β ≤ 1/(2T ) < 1. Then

ω(x, t)2 ≤ C2 + C1 + 2nε. (2.27)

On the other hand, if t = 0, uλ(x, 0) = 0 for all x implies ω(x, 0) = 0 and (2.27)
still holds. And if t = T then ∂tΦ(x, T ) ≥ 0, i.e., ∂tω(x, T ) ≥ 0 and (2.27) still
holds. Therefore we have

ω(x, t) ≤ C3 := √
C1 + C2 + 2εn. (2.28)

We are now ready to prove that ω(x, t) ≤ C3 for all (x, t) ∈ Rn × (0,+∞).
As in the proof of Theorem 1 we suppose by contradiction there exists (y, s) such
ω(y, s)−C3 =: δ > 0.Without loss of generality, we can choose T > 0 large enough
such that s < T . Then we argue exactly as in the proof of Theorem 1 and reach a
contradiction by choosing β such that βg(y) ≤ δ

2 . This proves the C3-semiconcavity
of u with respect to x uniformly in t , for every 0 < ε ≤ 1. Finally, we let ε → 0
in (2.19) and get that the solution u to (2.14) is semi-concave in x with constant
C̃3 := √

C1 + C2. ��
Proof of Theorem 2. First we observe that 1

t u(x, t) = f if x̄ ∈ M.
In fact, for such x̄ ,

u(x, t) = inf
α·

∫ t

0

1

2
|αs |2 + f (x(s)) ds ≤

∫ t

0
f (x) dt = t f ,

where the inequality follows from the choice α· ≡ 0. The other inequality ≥ is true
for all x ∈ Rn by Lemma 3.

Denote R := √
4‖ f ‖∞ and use the gradient bound (2.18) to get

∣∣∣∣1t u(x, t) − f

∣∣∣∣ ≤ 1

t
R dist(x,M) ∀ x ∈ R

n, t > 0.

Then u(x, t)/t → f locally uniformly as t → ∞.
Define now ϕt (·) := u(·, t) − f t . We observe that, in view of (2.18), |ϕt (x)| ≤

R dist(x,M) and |ϕt (x)−ϕt (y)| ≤ R|x − y|. Hence, {ϕt (·)}t≥0 is a locally uniformly
bounded and equi-continuous family. We claim that ϕt (·) → ψ(·) ∈ C(Rn) locally
uniformly as t → +∞ and ψ(·) is a viscosity solution of

f + 1

2
|Dψ(x)|2 = f (x), in Rn . (2.29)

To prove the claim define uη(x, t) := ϕt/η (x) = u
(
x, t

η

)
− t

η
f . Then we have

η∂t uη + f + 1

2
|Duη|2 = f (x), in Rn × (0,∞).
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Now consider the upper and lower relaxed semilimits

θ(x, t) := lim sup
η→0, s→t, y→x

uη(y, s), ζ(x, t) := lim inf
η→0, s→t, y→x

uη(y, s),

and note that they are finite by the local equiboundedness of ϕt . It is well-known from
the stability properties of viscosity solutions (see, e.g., [4]) that they are, respectively,
a sub- and supersolution of (2.29) for any t > 0. Moreover, for all t > 0,

θ(x, t) = lim sup
s→+∞, y→x

ϕs(y) = lim sup
s→+∞

ϕs(x),

where the last equality comes from the equicontinuity of ϕt . Similarly,

ζ(x, t) = lim inf
s→+∞ ϕs(x),

and so both θ and ζ do not depend on t . Next note that ϕs(x) = 0 for all x ∈ M and
it is non-negative everywhere. Then θ(x) = ζ(x) = 0 on ∂M, and they are a sub-
and a supersolution bounded from below of (2.29) in R

n \ M, where f (x) − f > 0.
Then a standard comparison principle for the Dirichlet problem associated to eikonal
equations gives θ(x) = ζ(x). This proves that ϕt converges pointwise to ψ := θ =
ζ ≥ 0, and the convergence is locally uniform by the Ascoli-Arzela theorem, which
gives the claim. Moreover ψ coincides with the function v found in Theorem 1.

Finally, the convergence of the gradient Dxu(·, t) = Dϕt to Dψ is a direct con-
sequence of [11, Theorem 3.3.3], recalling that |ϕt (x)| ≤ R dist(x,M) and using the
uniform semiconcavity estimate in Lemma 4. ��

3 Reaching theMinima Via Optimal Control

3.1 The Optimal Control Problemwith Target

In this section we consider the Dirichlet problem

{
|∇v(x)| = �(x), x ∈ Rn \ M,

v(x) = 0, x ∈ M,
(3.1)

motivated by the ergodic equation (2.6) of the previous section if �(x) =√
2( f (x) − f ). Here, however, the standing assumptions are only that M ⊆ R

n

is a closed nonempty set, possibly unbounded, and

� ∈ C(Rn) is bounded , �(x) > 0 if x ∈ Rn \ M, � ≡ 0 onM. (F)
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Also define � := sup
x∈Rn

�(x). The Lipschitz and semiconcavity conditions of the

previous section (assumptions (B)) will not be needed inmost statements of the present
section.

We recall that the continuous viscosity solution of (3.1) is the value function of the
control problem

v(x) = inf
α

∫ tx (α)

0
�(yα

x (s)) ds, (3.2)

where α (an admissible control) is a measurable function [0,+∞) → B(0, 1), the
unit ball in Rn , tx (α) := inf{s ≥ 0 : yα

x (s) ∈ M}, and

ẏα
x (s) = α(s), ∀ s ≥ 0, yα

x (0) = x . (3.3)

Theorem 3 Under Assumption (F) there exists an optimal control α∗ for the problem
(3.2).

Proof Notice first that (F) allows to rewrite v as

v(x) = inf
∫ +∞

0
�(yα

x (s)) ds, s.t.: (3.3) with s �→ α(s) ∈ B(0, 1) measurable.

Fix x ∈ Rn and consider a minimizing sequence (yk, αk)k , i.e., satisfying

lim
k→+∞

∫ +∞

0
�(yk(t)) dt = v(x), yk(t) = x +

∫ t

0
αk(s) ds, ∀ t ≥ 0. (3.4)

Fix N ∈ N. Using Alaoglu’s theorem, we can extract a subsequence that we denote
by (yk(N ), αk(N )), where k(N ) → +∞, such that

αk(N )
∗
⇀α∗

N , a.e. in [0, N ],
yk(N ) → y∗

N , loc. unif. on [0, N ],
and y∗

N (t) = x +
∫ t

0
α∗
N (s) ds, for all t ∈ [0, N ].

We repeat this procedure in the interval [0, N + 1] and extract from the previ-
ous subsequence another subsequence (yk(N+1), αk(N+1)) with the same properties in
[0, N + 1]. Note that

α∗
N+1 = α∗

N , a.e. in [0, N ].
y∗
N+1 = y∗

N , in [0, N ].

This suggests the definition of the candidate optimal pair (y∗, α∗) as

(y∗, α∗) := (y∗
N , α∗

N ) in [0, N ].
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To prove its optimality consider the diagonal subsequence (yN (N ), αN (N )). By the
previous construction, for any fixed T > 0 we have

αN (N )
∗
⇀α∗, a.e. in [0, T ],

yN (N ) → y∗, loc. unif. on [0, T ],
and y∗(t) = x +

∫ t

0
α∗(s) ds, for all t ∈ [0, T ].

(3.5)

Now use Fatou’s lemma

∫ ∞

0
lim inf
N→+∞ �(yN (N )(t)) dt ≤ lim inf

N→∞

∫ +∞

0
�(yN (N )(t)) dt .

By (3.4) the right-hand side is v(x) because yN (N ) is a subsequence of yk . Now use
the continuity of � in the left hand side and get

∫ ∞

0
�(y∗(t)) dt =

∫ ∞

0
lim inf
N→+∞ �(yN (N )(t)) dt ≤ v(x),

which says that (y∗, α∗) is an optimal pair solution to (3.2). ��

Next we show that the fraction of time spent by an optimal trajectory away from
the minimizers of � tends to zero as t → +∞.

For a given fixed δ > 0 we define the set of quasi-minimizers

Kδ := {x ∈ Rn : �(x) ≤ δ},

and the fraction of time ρδ(t) spent by an optimal trajectory starting from x away from
Kδ

ρδ(t) = ρδ(t, x, α∗) := 1

t

∣∣{s ∈ [0, t] : yα∗
x (s) /∈ Kδ}

∣∣,

where
∣∣I ∣∣ denotes the Lebesgue measure of I ⊆ R. In other words, ρδ(t) is the image

of the complement of Kδ by the occupational measure of the optimal trajectory yα∗
x .

Theorem 4 Under Assumption (F), for any x ∈ Rn and δ > 0, an optimal trajectory
yα∗
x (·) for the problem (3.2) satisfies

ρδ(t, x, α∗) ≤ �

t δ
dist(x,M). (3.6)

In particular, lim
t→+∞ ρδ(t) = 0.
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Proof Since � ≥ 0, using the characteristic function 1Q(y) = 1 if y ∈ Q and 0
otherwise,

∫ t

0
�(yα∗

x (s))ds ≥
∫ t

0
1Kc

δ
(yα∗

x (s)) �(yα∗
x (s)) ds ≥ δ

∫ t

0
1Kc

δ
(yα∗

x (s)) ds,

and hence

1

t

∫ t

0
�(yα∗

x (s))ds ≥ δ ρδ(t).

Now, since �(yα∗
x (s)) = 0 for all s ≥ tx (α∗) and �(·) ≤ �̄, we have for all t ≥ 0

∫ t

0
�(yα∗

x (s)) ds ≤
∫ tx (α∗)

0
�(yα∗

x (s)) ds,

= v(x) ≤ �̄ inf {tx (α) : (3.3) holds with |α(s)| ≤ 1} .

The second factor on the right-hand side is theminimal time functionwhose optimal
trajectories are the straight lines from the initial position x to its orthogonal projection
on the setM, withmaximal speed 1. Therefore the right-hand side in the last inequality
is less or equal �̄|z − x | for any z ∈ M, and then

v(x) ≤ �̄ dist(x,M).

Combining the inequalities we get

0 ≤ δ ρδ(t) ≤ 1

t

∫ t

0
�(yα∗

x (s)) ds ≤ v(x)

t
≤ �̄

t
dist(x,M),

which concludes the proof. ��

3.2 A Gradient Descent Inclusion for the Optimal Trajectories

So far, we showed that an optimal control exists and the corresponding optimal tra-
jectory does not leave the set of minimizers in average as time goes to infinity, i.e. in
the sense of (3.6). We now synthesize optimal feedback controls that give the gradient
descent differential inclusion anticipated in the Introduction. We recall the definition
of subdifferential of a continuous function

D−v(z) :=
{
p : lim inf

x→z

v(x) − v(z) − p · (x − z)

|x − z| ≥ 0

}
.
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Theorem 5 Assume (F). A control α with corresponding trajectory y(·) := yα
x (·) is

optimal if and only if

ẏ(s) ∈
{
− p

|p| , p ∈ D−v(y(s))

}
, for a.e. s ∈ (0, tx (α)). (DI)

Proof By the dynamic programming principle, the function

h(t) := v(yα
x (t)) +

∫ t

0
�(yα

x (s))ds, 0 ≤ t ≤ tx (α), (3.7)

is non-decreasing for all α, and non-increasing (hence constant) if and only if α is
optimal. And since h is locally Lipschitz, we get

α is optimal if and only if h′(t) ≤ 0 a.e. t .

Proof of Necessity Assume α is optimal, and so h′ ≤ 0. Let y(·) := yα
x (·).

Claim 1. p · ẏ(t) + �(y(t)) ≤ 0 for all p ∈ D−v(y(t)) a.e. t .
Let ∂−v(x; q) be the lower Dini derivative at x in the direction q (see Eq. (2.47) in

[4, p. 125]). Then by [4, Lemma 2.50, p. 135], one has

∂−(v ◦ y)(s; 1) = ∂−v(y(s); ẏ(s)),

and for almost every t , h′(t) = ∂−v(y(t); ẏ(t)) + �(y(t)). Next, using [4, Lemma
2.37, p. 126], one has, for any z ∈ Rn ,

D−v(z) = { p : p · q ≤ ∂−v(z; q), ∀ q ∈ Rn},

and hence, for almost every t and for all p ∈ D−v(y(t)),

p · ẏ(t) + �(y(t)) ≤ ∂−v(y(t); ẏ(t)) + �(y(t)) = h′(t) ≤ 0.

Claim 2. ẏ(t) = − p
|p| for all p ∈ D−v(y(t)), a.e. t .

By [4, Proposition 5.3, p. 344], v is a bilateral supersolution of |Dv(x)|−�(x) = 0
in Rn \ M, i.e. |p| − �(x) = 0 for all p ∈ D−v(x). This implies in particular that
p 
= 0 if x /∈ M. Hence, and using claim 1 together with ẏ ∈ B(0, 1), one gets

|p| = �(y(t)) ≤ −p · ẏ(t) ≤ |p|,

that is, ẏ(t) = −p/|p|.
Proof of Sufficiency By the non-smooth calculus rule just recalled, for a.e. t ,

h′(t) = −∂−v(y(t);−ẏ(t)) + �(y(t))

≤ −p · (−ẏ(t)) + �(y(t)), ∀ p ∈ D−v(y(t)).

123



Applied Mathematics & Optimization (2023) 87 :49 Page 17 of 26 49

Then, if we assume y(·) solves (DI),

h′(t) ≤ −p · p

|p| + �(y(t)) = −|p| + �(y(t)) ≤ 0

because v is a supersolution of |Dv| − � = 0 and p ∈ D−v(y(t)). ��
Remark 1 Combining Theorems 3 and 5, the differential inclusion (DI) has at least a
solution and all such solutions are optimal.

We recall the definition of limiting gradient of a Lipschitz function

D∗v(z) := { p : p = lim
n→+∞ Dv(xn) for some xn → z},

and the super-differential of a continuous function

D+v(z) :=
{
p : lim sup

x→z

v(x) − v(z) − p · (x − z)

|x − z| ≤ 0

}
.

Theorem 6 Assume (F). The following necessary and sufficient conditions of
optimality hold.

(I) If y(·) is optimal, then
(i) ẏ(t) = − p

|p| , for all p ∈ D+v(y(t)), p 
= 0 and almost all t ∈ (0, tx (α∗)),
(ii) |p| = �(y(t)), for all p ∈ D+v(y(t)) and all t ∈ (0, tx (α∗)),
(iii) D+v(y(t)) is a singleton for all t ∈ (0, tx (α∗)).
(iv) If �(x) =

√
2( f (x) − f ) and assumptions (A) and (B) are satisfied, then v is

differentiable at all points y(t) with t ∈ (0, tx (α∗)) and

ẏ(t) = − Dv(y(t))

|Dv(y(t))| , ∀ t ∈ (0, tx (α
∗)). (3.8)

(II) A sufficient condition for the optimality of y(·) is

ẏ(t) ∈ −
{

p

|p| : p ∈ D∗v(y(t)) ∩ D+v(y(t)), p 
= 0

}
, a.e. t . (3.9)

Proof To prove (I.i) we take h defined by (3.7) and let ∂+v(x; q) be the upper Dini
derivative of v in direction q, with |q| = 1.
Claim 1. p · ẏ(t) + �(y(t)) ≤ 0, for all p ∈ D∗v(y(t)), a.e. t .

Using [4, Lemma 2.37, p. 126], one has, for any z ∈ Rn

D+v(z) =
{
p : p · q ≥ ∂+v(z; q), ∀ q ∈ Rn

}
.
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Hence, for p ∈ D+v(y(t)), one has

p · ẏ(t) + �(y(t)) = −p · (−ẏ(t)) + �(y(t)) ≤ −∂+v(y(t);−ẏ(t)) + �(y(t)).

But, as in Claim 1 in the proof of Theorem 5, and since y is optimal, one gets

−∂+v(y(t);−ẏ(t)) + �(y(t)) = h′(t) ≤ 0,

which proves the claim.
Claim 2. ẏ(t) = − p

|p| for all p ∈ D+v(y(t)), p 
= 0, a.e. t .
Recalling |ẏ| ∈ B(0, 1) and v being a subsolution of |Dv| − � = 0, we have for

all p ∈ D+v(y(t)), |p| ≤ �(y(t)) ≤ −p · ẏ(t) ≤ |p|, and hence, either p = 0 or
ẏ(t) = − p

|p| .
To prove (I.ii) we use the fact that h is non-increasing if and only if y(·) is optimal.

Hence, for t > 0 and τ > 0 small, one has

h(t) − h(t − τ) ≤ 0 ⇒ v(y(t)) − v(y(t − τ)) +
∫ t

t−τ

�(y(s))ds ≤ 0

⇒ v(y(t)) − v(y(t − τ)) ≤ −�(y(t))τ + o(τ ).

Recalling the definition of p ∈ D+v(y(t)), one has

v(y(t)) − v(y(t − τ)) ≥ p · (y(t) − y(t − τ)) + o(τ )

⇒ v(y(t)) − v(y(t − τ)) ≥
∫ t

t−τ

p · α(s)ds + o(τ ) ≥ −|p|τ + o(τ ),

and together with the previous inequality this yields

|p| ≥ �(y(t)), ∀ t ∈ (0, tx (α
∗)).

The other inequality is a direct consequence of p being in D+v(y(t)) and v a
subsolution. This concludes the proof of statement (I.ii).

The property (I.iii) follows immediately from the equality |p| = �(y(t)) for all
p ∈ D+v(y(t)) and the convexity of the set D+v(y(t)).

Under the additional conditions of (I.iv), v is semiconcave thanks to Lemma 2 (or
Lemma 4).

This implies that v is differentiable at all points where the superdifferential is
a singleton (see, e.g., [4, Proposition II.4.7 (c), p. 66]), and then at all y(t) with
t ∈ (0, tx (α∗)). Hence, (DI) becomes (3.8).

To prove (II) note that at all points of differentiability of v, one has |Dv(z)| = �(z).
Then for all p ∈ D∗v(z), |p| = �(z). And one has

h′(t) = ∂+v(y(t); ẏ(t)) + �(y(t)) ≤ p · ẏ(t) + �(y(t)), ∀ p ∈ D+v(y(t)).
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Then, for y solving (3.9), p 
= 0

h′(t) ≤ −p · p

|p| + �(y(t)) = −|p| + �(y(t)) = 0

which concludes the proof as it has been done for Theorem 5. ��

3.3 Convergence of Optimal Trajectories to the Argmin

In order to show stability of M, we need an assumption which prevents �(·) from
approaching 0 when dist(x,M) → ∞, that is,

• for all δ > 0, there exists γ = γ (δ) > 0 such that

inf{�(x) : dist(x,M) > δ} > γ (δ). (H)

IfM is bounded, then it is easy to see that this condition is equivalent to

lim inf|x |→∞ �(x) > 0,

which is also equivalent to Assumption (A3) in [24], Assumption (L3)–(3.2) in [10],
and Assumption (L3) in [9]. The last inequality, however, is impossible when M is
unbounded.

Remark 2 An example of function with a unique global minimizer that does not satisfy
hypothesis (H) is �(x) = |x |e−x2 . In this case M = {0} and inf{�(x) : |x | > δ} = 0
for all δ.

A direct consequence of Theorem 5 is the following result.

Corollary 1 Assume the conditions (F) and (H). Let yα∗
x (·) be an optimal trajectory

and δ > 0. If there exists τ > 0 such that dist(y∗(τ ),M) > δ, then, for γ (·) defined
in (H),

ργ (δ/2)(t) ≥ δ

t
, ∀ t > τ + δ

2
. (3.10)

Proof Set y∗(·) := yα∗
x (·). Since it satisfies (DI), we have |ẏ∗(·)| ≤ 1 and hence

y∗(·) is Lipschitz continuous. Therefore, given δ > 0, if there exists τ > 0 such that
dist(y∗(τ ),M) > δ, then

δ < dist(y∗(τ ),M) ≤ dist(y∗(s),M) + |y∗(s) − y∗(τ )|
≤ dist(y∗(s),M) + |s − τ |,

which yields

dist(y∗(s),M) >
δ

2
, ∀ s ∈]τ − δ/2, τ + δ/2[.
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Hence one has

�(y∗(s)) ≥ inf

{
�(x) : dist(x,M) >

δ

2

}
, ∀ s ∈]τ − δ/2, τ + δ/2[,

and together with (H), one gets

�(y∗(s)) > γ (δ/2), ∀ s ∈]τ − δ/2, τ + δ/2[. (3.11)

Therefore
∣∣∣∣{s ∈ [0, t] : y∗(s) /∈ Kγ (δ/2)}

∣∣∣∣ ≥
∣∣∣∣ ]τ − δ/2, τ + δ/2[

∣∣∣∣, ∀ t > τ + δ

2
.

The latter writes as

t ργ (δ/2)(t) ≥ δ

and concludes the proof. ��
We are now ready to show stability properties of the set of global minimizers M

with respect to the optimal trajectories yα∗
x (·).

Theorem 7 Assume (F) and (H) hold. Then for y∗(·) as in (DI),
(i) M is Lyapunov stable 1,
(ii) M is globally asymptotically stable 2.

Proof Let y∗(·) := yα∗
x (·) be an optimal trajectory, i.e., a solution of (DI). We proceed

by contradiction.
Proof of (i). Let ε > 0 be fixed and suppose for all η > 0, ∃ τ > 0 such that

dist(y∗(τ ),M) > ε and dist(x,M) < η. Then from Corollary 1, one has

ργ (ε/2)(t) ≥ ε

t
, ∀ t > τ + ε

2
.

And from Theorem 4, one has

t γ (ε/2)

�
ργ (ε/2)(t) ≤ dist(x,M).

Therefore one gets

ε γ (ε/2)

�
≤ dist(x,M),

1 This means ∀ ε > 0, ∃ η > 0 such that dist(x,M) ≤ η ⇒ dist
(
yα∗
x (t),M

)
≤ ε, ∀ t ≥ 0.

2 This means M is Lyapunov stable and lim
t→+∞ dist

(
yα∗
x (t),M

)
= 0 for all x ∈ Rn .
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which contradicts dist(x,M) < η when we choose η <
ε γ (ε/2)

�
. Hence we can

conclude that, for all ε > 0, there exists η > 0 such that if dist(x,M) ≤ η then
dist(y∗(t),M) ≤ ε for all t .

Proof of (ii). Suppose there exist a diverging sequence {τk}k≥0 and ε > 0 such that
dist(y∗(τk),M) > ε. Without loss of generality, one can extract a subsequence (again
denoted by τk) such that τk+1 − τk ≥ ε. Using Corollary 1, in particular (3.11), one
has for all k ≥ 0

�(y∗(s)) ≥ γ (ε/2), ∀ s ∈]τk − ε/2, τk + ε/2[,

and therefore
∣∣∣∣{s ∈ [0, t] : y∗(s) /∈ Kγ (ε/2)}

∣∣∣∣ >
∑

{k≥0 : τk≤t− ε
2 }

∣∣∣∣ ]τk − ε/2, τk + ε/2[
∣∣∣∣ = N (t) ε,

where N (t) is the number of distinct elements {τk}k≥0 that are in [0, t + ε/2], i.e.

N (t) := #{τk : τk ≤ t + ε/2, k ≥ 0}.

The previous inequality writes as

tργ (ε/2)(t) > N (t) ε.

On the other hand, we know from Theorem 4, in particular (3.6), that

tργ (ε/2)(t) ≤ � dist(x,M)

γ (ε/2)
,

and so we have N (t) <
� dist(x,M)

ε γ (ε/2) . But this cannot be true since N (t) → +∞ as
t → +∞, and hence it concludes the proof. ��

3.4 On Reaching the Argmin in Finite Time

Here we investigate whether the hitting time tx (α∗) of an optimal trajectory with
the target M is finite or not. In view of the gradient descent inclusion (1.1), or its
smooth version (3.8), the question is equivalent to the finite length of the orbits of the
gradient flow ẏ ∈ −D−v(y), or ẏ = −∇v(y). This is a classical problem with a large
literature. Positive results require strong regularity of v, such as quasiconvexity and
subanaliticity [7]. On the other hand, counterexamples are known for v ∈ C∞(R2)

and target a circle [33] or a single point [16].
In our case v is not smooth, but it is the value function of a control problem and

solves an eikonal equation. These properties can be exploited to prove that the hitting
time is finite in some cases.

The first sufficient condition, that complements the hypothesis (H), is the following,
where d(x) := dist(x,M):
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• there exist a continuous function γ̃ (s) > 0 for all s > 0 and γ̃ (0) = 0, and some
r > 0 such that

�(x) = γ̃ (d(x)), ∀ x s.t. d(x) ≤ r . (L)

Proposition 1 Assume (F), (H), and (L) hold, andα∗ be an optimal control for problem
(3.2). Then the hitting time tx (α∗) = d(x) whenever d(x) ≤ r and it is finite for all x.

Proof Let us first note that the finiteness for all x follows from the property in the
case d(x) ≤ r , because by Theorem 7 (ii) there exists a finite time t̃x such that
d(yα∗

x (̃tx )) ≤ r .
We assume that the initial position x satisfies d(x) ≤ r and aim to prove that

v(x) =
∫ d(x)

0
γ̃ (s) ds, (3.12)

where v(x) is the value function defined in ( 3.2). Denote by V (x) the right-hand side
of the last equality.

We first claim that v(x) ≤ V (x). Take z is in the set of projections of x onto M
and consider the straight line from x to z given by the trajectory yx (t) = x − pt ,
t ≥ 0, where p = x−z

|x−z| . Note that t x := inf{t ≥ 0 : yx (s) ∈ M} = d(x), and that
d(x − pt) ≤ r for all 0 ≤ t ≤ t x . Then, by (L),

v(x) ≤
∫ t x

0
�(yx (t)) dt =

∫ t x

0
γ̃ (d(yx (t))) dt =: J (x).

Observe now that d(yx (t)) = ∣∣|x − z|− t
∣∣ = d(x)− t . Therefore, using the change

of variable s := d(yx (t)) = d(x) − t , we obtain

J (x) =
∫ d(x)

0
γ̃ (d(yx (t))) dt =

∫ d(x)

0
γ̃ (s) ds = V (x),

and this proves the claim.
Next we show that v(x) ≥ V (x). Since v(x) is a continuous viscosity solution to

(3.1), then using [34, Theorem 3.2 (ii)] it satisfies the upper optimality principle [34,
Definition 3.1], that is,

v(x) ≥ inf
α

∫ t

0
�(yα

x (s)) ds + v(yα
x (t)), ∀t ≥ 0,

where the dynamics of yα
x (·) is again (3.3) with |α(s)| ≤ 1. Using (L) and v ≥ 0 we

get

v(x) ≥ inf
α

∫ t

0
γ̃ (d(yα

x (s))) ds, ∀t ≥ 0.
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In particular, since γ̃ (s) = 0 if and only if s = 0, we have

v(x) ≥ inf
α∈B(0,1)

∫ tx (α)

0
γ̃ (d(yα

x (s))) ds =: W (x).

Then the function W (x) solves in the viscosity sense the Dirichlet problem

{
|∇W (x)| = γ̃ (d(x)), x ∈ Rn \ M

W (x) = 0, x ∈ M.
(3.13)

But V (x) := ∫ d(x)
0 γ̃ (s) ds is also a viscosity solution of this Dirichlet problem

because |D±V (x)| = |D±d(x)|γ̃ (d(x)). We conclude using [29, Theorem 1 and
Remark 3.1] that V (x) = W (x) and hence v(x) ≥ V (x).

Finally we use in the integral of the formula (3.12) the same change of variable as
above to get

v(x) =
∫ d(x)

0
γ̃ (d(yx (t))) dt =

∫ d(x)

0
�(yx (t)) dt .

This proves that yx (t) := x − pt is an optimal trajectory and d(x) is its hitting
time. ��
Remark 3 In some control problems it may happen that an optimal trajectory remains
arbitrarily close to a target without ever reaching it. Such a behavior has been observed
in a linear-quadratic control problem studied in [26, Sect. 6.1] with the target is a

singleton {x◦} and the time tε of being ε-close to x◦ is shown to be tε = C ln
( |x−x◦|

ε

)
,

where x is the initial state. Moreover, an optimal trajectory oscillates periodically
around x◦ (see [26, p. 55]).

Next we show that, under the set of assumptions of Sect. 2, a bound from below on
� near the target is a sufficient condition for the finite hitting time. The proof uses an
inequality of Łojasiewicz type along optimal gradient orbits.

Theorem 8 Assume �(x) =
√
2( f (x) − f ), (A), (B), and (H) are satisfied, and for

some c, r > 0, 0 < β < 3/2,

�(x) ≥ c d(x)β, ∀ x s.t. d(x) ≤ r . (3.14)

If α∗ is an optimal control for x, then the hitting time tx (α∗) is finite for all x, and
for d(x) sufficiently small

tx (α
∗) ≤ C

1 − 2β/3
d(x)

3
2−β. (3.15)
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Proof Set y(t) := yα∗
x (t) and recall from Theorem 7 that

lim
t→tx (α∗)

d(y(t)) = 0.

Therefore it is not restrictive to assume that d(y(t)) ≤ r for all t > 0.
We re-parametrise the trajectory y to get a gradient orbit. Set

s(t) :=
∫ t

0
|Dv(y(τ ))|−1dτ ∈ [0, T ), 0 ≤ t < tx (α

∗),

where T ≤ +∞. Define s �→ t(s), [0, T ) → [0, tx (α∗)), the inverse function of s(t)
and z(s) := y(t(s)). Then

ż(s) = −Dv(z(s)), z(0) = x, lim
s→T

d(z(s)) = 0,

and

t(s) =
∫ s

0
|Dv(z(τ ))|dτ =

∫ s

0
|ż(τ )|dτ.

Therefore

tx (α
∗) = lim

s→T
t(s) =

∫ T

0
|ż(τ )|dτ,

and so tx (α∗) < ∞ if the length of the gradient orbit z(·) is finite. By Theorem 6, v is
differentiable at all points z(s), s > 0, and then

|Dv(z(s))| = �(z(s)) ≥ c d(z(s))β, ∀s > 0, (3.16)

by (3.14) and d(z(s)) ≤ r . On the other hand, by assumptions (A2) and (B1), for some
C3 > 0

�(x) ≤ C3

√
d(x).

By repeating the 1st half of the proof of Proposition 1 we get

v(x) ≤
∫ d(x)

0
C3

√
s ds = 2C3

3
d(x)3/2. (3.17)

By combining this with (3.16) we obtain

|Dv(z(s))| ≥ C4v(z(s))ρ,
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where ρ := 2β/3 < 1. This is a Łojasiewicz inequality along the gradient orbit z(·),
and we can use the following classical argument:

−1

1 − ρ

d

ds
[v(z(s))1−ρ] = −Dv(z(s)) · ż(s)

v(z(s))ρ
= |Dv(z(s))||ż(s)|

v(z(s))ρ
≥ C4|ż(s)|,

which integrated from 0 to T gives

tx (α
∗) ≤ v(x)1−ρ

C4(1 − ρ)
.

Now we combine this with (3.17) to get the estimate (3.15). ��
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