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Abstract
This paper will deal with differentiability properties of the class of Hellinger–
Kantorovich distances HK�,� (�,� > 0) which was recently introduced on the space
M(Rd) of finite nonnegative Radonmeasures. The derivatives of t �→ HK�,�(μt , νt )

2,

for absolutely continuous curves (μt )t , (νt )t in (M(Rd),HK�,�), will be computed
L 1-a.e.. The characterization of absolutely continuous curves in (M(Rd),HK�,�)

will be refined.

1 Introduction

Recently, a new class of distances on the space M(Rd) of finite nonnegative Radon
measures was established by three independent teams [3, 4, 7–9]. We will follow
the presentation of these distances by Liero, Mielke and Savaré [8, 9] who named
it Hellinger–Kantorovich distances. The class of Hellinger–Kantorovich distances
HK�,� (�,� > 0) is based on the conversion of onemeasure into another one (possibly
having different total mass) by means of transport and creation / annihilation of mass.
The parameters � and � serve as weightings of the transport part and the mass
creation/annihilation part respectively. To be more precise, the squareHK�,�(μ1, μ2)

2

of the Hellinger–Kantorovich distanceHK�,� between twomeasuresμ1, μ2 ∈ M(Rd)

on Rd corresponds to

min
{ 2∑

i=1

4

�

∫

Rd
(σi log σi − σi + 1) dμi

+
∫

Rd×Rd
c�,�(|x1 − x2|) dγ : γ ∈ M(Rd × R

d), γi � μi

}
, (1.1)
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with entropy cost functions 4
�

(σi log σi − σi + 1),

σi := dγi

dμi
(γi i-th marginal of γ ), (1.2)

and transportation cost function

c�,�(d) :=
{

− 8
�
log(cos(

√
�/(4�)d)) if d < π

√
�/�,

+∞ if d ≥ π
√

�/�.
(1.3)

There exists an optimal plan γ for the Logarithmic Entropy-Transport problem (1.1)
(cf. Thm. 3.3 in [9]), and if μ1 is absolutely continuous with respect to the Lebesgue
measure and γ is such optimal plan, then there exists aBorel optimal transportmapping
t : Rd → R

d so that γ takes the form

γ = (I × t)#γ1 = (I × t)#σ1μ1

(cf. Thm. 4.5 in [6] and Thm. 6.6 in [9]). We refer the reader to ([9], Cor. 7.14,
Thms. 7.17 and 7.20) for the proofs that HK�,� defined via the Logarithmic Entropy-
Transport problem (1.1) indeed represents a distance on the space of finite nonnegative
Radon measures and that (M(Rd),HK�,�) is a complete metric space. Furthermore,
the Hellinger–Kantorovich distance HK�,� metrizes the weak topology on M(Rd) in
duality with continuous and bounded functions (cf. Thm. 7.15 in [9]) and can be
interpreted as weighted infimal convolution of the Kantorovich-Wasserstein distance
and the Hellinger-Kakutani distance. A representation formula à la Benamou-Brenier
which can be proved for HK�,� (cf. ([9], Thm. 8.18; [8], Thm. 3.6(v))) justifies this
interpretation:

HK�,�(μ1, μ2)
2 = min

{ ∫ 1

0

∫

Rd
(�|vt |2 + �|wt |2) dμt dt : μ1

(μ,v,w)� μ2

}

(1.4)

whereμ1
(μ,v,w)� μ2 means thatμ : [0, 1] → M(Rd) is a continuous curve connecting

μ(0) = μ1 and μ(1) = μ2 and satisfying the continuity equation with reaction

∂tμt = −�div(vtμt ) + �wtμt , (1.5)

governed by Borel functions v : (0, 1) × R
d → R

d and w : (0, 1) × R
d → R with

∫ 1

0

∫

Rd
(�|vt |2 + �|wt |2) dμt dt < +∞, (1.6)
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in duality with C∞-functions with compact support in (0.1) × R
d , i.e.

∫ 1

0

∫

Rd
(∂tψ(t, x) + �〈∇ψ(t, x), v(t, x)〉

+�ψ(t, x)w(t, x)) dμt (x) dt = 0 (1.7)

for all ψ ∈ C∞
c ((0, 1) × R

d).
The class of such continuous curves μ satisfying (1.5), (1.6) for some Borel vector

field (v,w) coincides with the class of absolutely continuous curves (μt )t∈[0,1] in
(M(Rd),HK�,�) with square-integrable metric derivatives (cf. Thms. 8.16 and 8.17
in [9], see Sect. 3 in this paper).

In order to deepen our understanding of a distance, it is always worth studying
its differentiability along absolutely continuous curves (e.g. see Chap. 8 in [1] for
the corresponding analysis of the Kantorovich-Wasserstein distance on the space of
Borel probability measures with finite second order moments). The present paper
addresses this issue for the class of Hellinger–Kantorovich distances on the space of
finite nonnegative Radon measures. Clearly, if (μt )t∈[0,1], (νt )t∈[0,1] are absolutely
continuous curves in (M(Rd),HK�,�), then the mapping

t �→ HK�,�(μt , νt )
2 (1.8)

is absolutely continuous and thereforeL 1-a.e. differentiable. A natural question that
arises is the one of the concrete form of the corresponding derivatives. We will answer
this question for absolutely continuous curves with square-integrable metric deriva-
tives (for which such characterization (1.5) is available), refine that characterization by
providing more information on (v,w) (see Prop. 3.1), establish a linearization result
(see Thm. 3.4), and determine

d

dt
HK�,�(μt , νt )

2 (1.9)

atL 1-a.e. t ∈ [0, 1] (see Thm. 4.1). This piece of work can be viewed as continuation
of Sect. 3 in the author’s paper [5] constituting a starting point for the study of differ-
entiability properties of the Hellinger–Kantorovich distances. Therein, we identified
elements of the Fréchet subdifferential of mappings

t �→ −HK�,�((I + tv)#(1 + t R)2μ0, ν)2

at t = 0, for μ0, ν ∈ M(Rd) and bounded Borel functions v : Rd → R
d and R :

R
d → R. That subdifferential calculus was an essential ingredient for ourMinimizing

Movement approach to a class of scalar reaction-diffusion equations [5] substantiating
their gradient-flow-like structure in the space of finite nonnegative Radon measures
endowed with the Hellinger–Kantorovich distance HK�,� .

The proof in [9] that absolutely continuous curves in (M(H),HK�,�) with square-
integrable metric derivatives are characterized via (1.5), (1.6) was carried out only
for H = R

d , endowed with usual scalar product 〈·, ·〉 and norm | · | := √〈·, ·〉, but

123



37 Page 4 of 24 Applied Mathematics & Optimization (2023) 87 :37

according to a comment at the beginning of Sect. 8.5 in [9], it should be possible to
prove such characterization result in a more general setting. We would like to remark
that also our computation of the derivatives (1.9) may be adapted for general separable
Hilbert spaces H.

Our plan for the paper is to give an equivalent characterization of the Hellinger–
Kantorovich distances in Sect. 2, to state and prove new results on absolutely
continuous curves in Sect. 3 and to perform the computation of the derivatives (1.9)
in Sect. 4.

2 Optimal Transportation on the Cone

According to ([8], Sect. 4) and ([9], Sect. 7), the Logarithmic Entropy-Transport
problem (1.1) translates into a problem of optimal transportation on the geometric
cone C onRd , see (2.16), (2.17) below. The fact that all the information on transport of
mass and creation / annihilation of mass according to (1.1) lies in a pure transportation
problem has proved extremely useful for the analysis of HK�,� in [9] and for our
subdifferential calculus in [5].

Geometric cone (C,dC,�,�). The geometric cone is defined as the quotient space

C := R
d × [0,+∞)/ ∼ (2.1)

with

(x1, r1) ∼ (x2, r2) ⇔ r1 = r2 = 0 or r1 = r2, x1 = x2 (2.2)

and is endowed with a class of distances dC,�,� (�,� > 0). The vertex o (for r = 0)
and [x, r ] (for x ∈ R

d and r > 0) denote the corresponding equivalence classes and

dC,�,�([x1, r1], [x2, r2])2

:= 4

�

(
r21 + r22 − 2r1r2 cos

((√
�/4� |x1 − x2|

)
∧ π

))
(2.3)

(where o is identified with [x̄, 0] for some x̄ ∈ R
d ). It can be proved that

dC,�,�(y0, y1)
2 = min

{ ∫ 1

0

( 4

�
(ṙ(s))2 + 1

�
r(s)2|ẋ(s)|2

)
ds

∣∣∣ y0
[x,r ]� y1

}

(2.4)

for yi = [xi , ri ] ∈ C, where y0
[x,r ]� y1 means that x ∈ C1([0, 1];Rd), r ∈

C1([0, 1]; [0,+∞)) and [x(i), r(i)] = yi , so that the cone distance may be inter-
preted as dissipation distance generated by the metric tensor

G�,�
[x,r ]((ẋ1, ṙ1), (ẋ2, ṙ2)) := 4

�
ṙ1ṙ2 + 1

�
r2〈ẋ1, ẋ2〉 (2.5)
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(cf. Sect. 8.1 in [9]). This metric tensor (2.5) will appear in the formulas in our
differential calculus of HK�,� .

We show how to construct geodesics in (C,dC,�,�) (cf. Sect. 8.1 in [9]) as they
will play an important role in our analysis of (1.9), too. Let yi := [xi , ri ] ∈ C, i =
1, 2, and suppose that |x1 − x2| ≤ π

√
�/�, r1, r2 > 0. We search for func-

tions Ry1,y2 : [0, 1] → [0,+∞) and θy1,y2 : [0, 1] → [0, 1] so that the curve
η : [0, 1] → C defined as η(s) := [x1 + θy1,y2(s)(x2 − x1),Ry1,y2(s)] is a (constant
speed) geodesic connecting [x1, r1] and [x2, r2], which means dC,�,�(η(s), η(t)) =
|s − t |dC,�,�([x1, r1], [x2, r2]) for all s, t ∈ [0, 1]. If x1 = x2, we set θy1,y2 ≡ 0. We
note that

dC,�,�(η(s), η(t))2 = |z(s) − z(t)|2
C
, (2.6)

where z : [0, 1] → C is the curve in the complex plane C defined as

z(s) := 2√
�
Ry1,y2(s) exp

(
iθy1,y2(s)

√
�/4� |x1 − x2|

)
, (2.7)

and | · |C denotes the absolute value for complex numbers. Thus, if z is a geodesic in

the complex plane between z1 := 2√
�

r1 and z2 := 2√
�

r2 exp
(

i
√

�/4� |x1 − x2|
)
,

i.e.

z(s) = z1 + s(z2 − z1) for all s ∈ [0, 1], (2.8)

then η is a geodesic in (C,dC,�,�) between [x1, r1] and [x2, r2]. This condition yields
an appropriate choice for Ry1,y2 : [0, 1] → [0,+∞) and θy1,y2 : [0, 1] → [0, 1],
and it is not difficult to see that they are both smooth functions, their first derivatives
satisfy

4

�
(R′

y1,y2(s))
2 + 1

�
Ry1,y2(s)

2(θ ′
y1,y2(s))

2|x1 − x2|2

= dC,�,�([x1, r1], [x2, r2])2 for all s ∈ (0, 1), (2.9)

and they are right differentiable at s = 0 with right derivatives

θ ′
y1,y2,+(0) = r2

r1

sin(
√

�/4� d(x1, x2))√
�/4� d(x1, x2)

,

R′
y1,y2,+(0) = r2 cos

(√
�/4� d(x1, x2)

)
− r1. (2.10)

It is noteworthy that

ty1,y2(s) :=
(
θ ′

y1,y2(s)(x2 − x1),R
′
y1,y2(s)

)
(2.11)
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represents the tangent vector to the geodesic at η(s), s ∈ (0, 1), with

ty1,y2(0) := lim
s↓0 ty1,y2(s) =

(
θ ′

y1,y2,+(0)(x2 − x1),R
′
y1,y2,+(0)

)
, (2.12)

and the left-hand side of (2.9) equals the metric tensor G�,�
η(s) (ty1,y2(s), ty1,y2(s)) (cf.

(2.5)).
We obtain a geodesic from [x1, r1] to the vertex o by setting θy1,o ≡ 0 and

Ry1,o(s) := (1 − s)r1 and identifying o with [x1, 0]. Also in this case, (2.9) and
the second part of (2.10) hold good.

Optimal transportation problem. The distance dC,�,� gives rise to an optimal
transport problem on the cone and therefore to an extended quadratic Kantorovich-
Wasserstein distance WC,�,� on the space M2(C) of finite nonnegative Radon mea-
sures on C with finite second order moments, i.e.

∫
C dC,�,�([x, r ], o)2 dα([x, r ]) <

+∞. The extended Kantorovich-Wasserstein distance WC,�,�(α1, α2) between two
measures α1, α2 ∈ M2(C) is equal to +∞ if α1(C) �= α2(C) and is given by

WC,�,�(α1, α2)
2

:= min
{ ∫

C×C
dC,�,�([x1, r1], [x2, r2])2 dβ | β ∈ �(α1, α2)

}
(2.13)

if α1(C) = α2(C), with �(α1, α2) being the set of finite nonnegative Radon measures
on C × C whose first and second marginals coincide with α1 and α2. Every measure
α ∈ M2(C) on the cone is assigned a measure hα ∈ M(Rd) on R

d ,

hα := x#(r2α), (2.14)

with (x, r) : C → R
d × [0,+∞) defined as

(x, r)([x, r ]) := (x, r) for [x, r ] ∈ C, r > 0, (x, r)(o) := (x̄, 0), (2.15)

which means
∫
Rd φ(x) d(hα) = ∫

C r2φ(x) dα for all continuous and bounded func-
tions φ : Rd → R (short φ ∈ C0

b(R
d)). Please note that the mapping h : M2(C) →

M(Rd) is not injective.
Now, an equivalent characterization of the Hellinger–Kantorovich distance HK�,�

is given by the transportation problems

HK�,�(μ1, μ2)
2 = min

{
WC,�,�(α1, α2)

2
∣∣∣ αi ∈ M2(C), hαi = μi

}

(2.16)

= min
{
WC,�,�(α1, α2)

2 + 4

�

2∑
i=1

(μi − hαi )(R
d)

∣∣∣ αi ∈ M2(C),

hαi ≤ μi

}
, (2.17)
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cf. Probl. 7.4, Thm. 7.6, Lem. 7.9, Thm. 7.20 in [9]. Every solution γ ∈ M(Rd ×R
d)

to the Logarithmic Entropy-Transport problem (1.1) induces a solution β ∈ M(C×C)

to ((2.17), (2.13)): if γ is an optimal plan for (1.1) with Lebesgue decompositions 1

μi = ρiγi + μ⊥
i , (2.18)

then

β := ([x1,
√

ρ1(x1)], [x2,
√

ρ2(x2)])#γ ∈ M(C × C) (2.19)

is an optimal plan for the transport problem (2.17), (2.13) (cf. ([9], Thm. 7.20(iii))).
Furthermore, if β ∈ M(C × C) is a solution to (2.17), (2.13) or a solution to (2.16),
(2.13) (which exists by ( [9], Thm. 7.6)), then

β
({

([x1, r1], [x2, r2]) ∈ C × C : r1, r2 > 0, |x1 − x2| > π
√

�/�
})

= 0,

(2.20)

(cf. ([9], Lem. 7.19)).

3 Absolutely Continuous Curves

We fix �,� > 0 and examine the behaviour of absolutely continuous curves in
(M(Rd),HK�,�).

Let (μt )t∈[0,1] be an absolutely continuous curve in (M(Rd),HK�,�) with square-
integrable metric derivative, i.e. the limit

|μ′
t | := lim

h→0

HK�,�(μt+h, μt )

|h| (3.1)

exists for L 1-a.e. t ∈ (0, 1), the function t �→ |μ′
t | which is called metric derivative

of (μt )t belongs to L2((0, 1)) and

HK�,�(μs, μt ) ≤
∫ t

s
|μ′

r | dr for all 0 ≤ s ≤ t ≤ 1 (3.2)

(cf. Def. 1.1.1 and Thm. 1.1.2 in [1]). According to Thms. 8.16 and 8.17 in [9], there
exists an essentially unique Borel vector field (v,w) : (0, 1) ×R

d → R
d ×R so that

the continuity equation with reaction

∂tμt = −�div(vtμt ) + �wtμt (3.3)

1 according to Lem. 2.3 in [9], there exist Borel functions ρi : Rd → [0, +∞) and nonnegative finite
Radon measures μ⊥

i ∈ M(Rd ), μ⊥
i ⊥γi , so that (2.18) holds good.
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(vt := v(t, ·), wt := w(t, ·)) holds good, in duality with C∞-functions with compact
support in (0, 1) × R

d (see (1.7)), and

∫

Rd
(�|vt |2 + �|wt |2) dμt = |μ′

t |2 forL 1-a.e. t ∈ (0, 1). (3.4)

For every t ∈ (0, 1) and h ∈ (−t, 1 − t), there exists a plan βt,t+h ∈ M(C × C)

which is optimal in the definition of HK�,�(μt , μt+h)2 according to (2.16), (2.13), i.e.

HK�,�(μt , μt+h)2 =
∫

C×C
dC,�,�([x1, r1], [x2, r2])2 dβt,t+h,

h(π1
#βt,t+h) = μt , h(π2

#βt,t+h) = μt+h,

and whose first marginal π1
#βt,t+h satisfies

∫

C
φ([x, r ]) d(π1

#βt,t+h) =
∫

Rd
φ([x, 1]) dμt + h2φ(o) (3.5)

for all φ ∈ C0
b(C) (cf. Thm. 7.6 and Lem. 7.10 in [9]).

This notation holds good throughout the rest of the paper.
As a first result of our analysis of absolutely continuous curves, Prop. 3.1 will identify
(vt , wt ) as belonging to a particular class of functions.

Proposition 3.1 For L 1-a.e. t ∈ (0, 1), the Borel function (vt , wt ) belongs to the
closure in L2(μt ,R

d × R) of the subspace {(∇ζ, ζ ) : ζ ∈ C∞
c (Rd)}.

Here (L2(μt ,R
d × R), || · ||L2(μt ,Rd×R)) denotes the normed space of all μt -

measurable functions (v̄, w̄) from R
d to Rd × R satisfying

||(v̄, w̄)||L2(μt ,Rd×R) :=
( ∫

Rd
(�|v̄|2 + �|w̄|2) dμt

)1/2
< +∞. (3.6)

Proof We construct a Borel vector field (ṽ, w̃) : (0, 1) × R
d → R

d × R satisfying
(3.3) so that, for L 1-a.e. t ∈ (0, 1), the function (ṽt , w̃t ) belongs to the closure in
L2(μt ,R

d × R) of the subspace {(∇ζ, ζ ) : ζ ∈ C∞
c (Rd)} and

||(ṽt , w̃t )||2L2(μt ,Rd×R)
=

∫

Rd
(�|ṽt |2 + �|w̃t |2) dμt ≤ |μ′

t |2. (3.7)
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We begin the proof with some estimations. Let φ ∈ C∞
c (Rd). It follows from the

construction of R[x1,r1],[x2,r2] and θ[x1,r1],[x2,r2] according to (2.6)-(2.9) that

2

�

d2

ds2
R[x1,r1],[x2,r2](s)2 = dC,�,�([x1, r1], [x2, r2])2,

∣∣∣θ ′′[x1,r1],[x2,r2](s)R[x1,r1],[x2,r2](s)2(x2 − x1)
∣∣∣ ≤ C�,�dC,�,�([x1, r1], [x2, r2])2,

∣∣∣2θ ′[x1,r1],[x2,r2](s)R[x1,r1],[x2,r2](s)R′[x1,r1],[x2,r2](s)(x2 − x1)
∣∣∣

≤ C�,�dC,�,�([x1, r1], [x2, r2])2,
∣∣∣ d2

ds2

[
φ(x1 + θ[x1,r1],[x2,r2](s)(x2 − x1))R[x1,r1],[x2,r2](s)2

]∣∣∣
≤ CφC�,�dC,�,�([x1, r1], [x2, r2])2,

for s ∈ (0, 1), with Cφ > 0 only depending on φ and C�,� := 2� + 4�; we refer
the reader to the proof of Prop. 2.5 in [5] for details. With (2.9) and these estimations
on hand, it is straightforward to prove that there exists a constant Cφ,�,� > 0 only
depending on φ, � and � so that

|ϕ′
y1,y2(s̄) − ϕ′

y1,y2(s)| ≤ Cφ,�,� dC,�,�(y1, y2)
2, (3.8)∣∣∣ϕ′

y1,y2(s) − 〈∇φ(x1), θ
′
y1,y2(s)(x2 − x1)〉Ry1,y2(s)

2 + 2φ(x1)R
′
y1,y2(s)Ry1,y2(s)

∣∣∣
≤ Cφ,�,� dC,�,�(y1, y2)

2 (3.9)

and
∣∣∣
(
〈∇φ(x1), θ

′
y1,y2(s)(x2 − x1)〉Ry1,y2(s) + 2φ(x1)R

′
y1,y2(s)

)(
Ry1,y2(s) − r1

)∣∣∣
≤ Cφ,�,� dC,�,�(y1, y2)

2 (3.10)

for all s, s̄ ∈ (0, 1), with yi := [xi , ri ], ϕy1,y2(s) := φ(x1 + θ[x1,r1],[x2,r2](s)(x2 −
x1))R[x1,r1],[x2,r2](s)2.

Now, let t ∈ (0, 1) so that the limit (3.1) exists and Co := C \ {o}. By applying
(2.20), (3.9), (3.10), (3.5), Hölder’s inequality and (2.9), we obtain

∣∣∣
∫

Rd
φ dμt+h −

∫

Rd
φ dμt

∣∣∣ =
∣∣∣
∫

C×C
(φ(x2)r

2
2 − φ(x1)r

2
1 ) dβt,t+h

∣∣∣

≤
∫

C×C

∫ 1

0
|ϕ′

y1,y2 (s)| ds dβt,t+h ≤
∫

Co×C

∫ 1

0

∣∣∣〈∇φ(x1), θ
′[x1,r1],[x2,r2](s)(x2 − x1)〉R[x1,r1],[x2,r2](s) + 2φ(x1)R

′[x1,r1],[x2,r2](s)
∣∣∣ ds dβt,t+h

+ 2Cφ,�,�HK�,�(μt , μt+h)2

≤
( ∫

Co

(
�|∇φ|2 + �φ2

)
d(π1

#βt,t+h)
)1/2

Big(

∫

Co×C

∫ 1

0

( 1

�
R2(θ ′)2|x2 − x1|2 + 4

�
(R′)2

)
ds dβt,t+h

)1/2

+ 2Cφ,�,�HK�,�(μt , μt+h)2 ≤ ||(∇φ, φ)||L2(μt ,Rd ×R)HK�,�(μt , μt+h) + 2Cφ,�,�HK�,�(μt , μt+h)2
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and thus,

lim sup
h→0

1

|h|
∣∣∣
∫

Rd
φ dμt+h −

∫

Rd
φ dμt

∣∣∣ ≤ ||(∇φ, φ)||L2(μt ,Rd×R)|μ′
t |. (3.11)

At this point, we may follow the proof of Thm. 8.3.1 in [1]. Therein, a similar charac-
terization of absolutely continuous curves in the space of Borel probability measures
with finite second order moments, endowed with the Kantorovich-Wasserstein dis-
tance, was given by solving a suitable minimum problem.We adapt that approach. Let
μ ∈ M((0, 1) × R

d) be defined by

∫

(0,1)×Rd
ψ(t, x) dμ(t, x) =

∫ 1

0

∫

Rd
ψ(t, x) dμt (x) dt

for all ψ ∈ C0
b((0, 1) × R

d), and let (L2(μ,Rd × R), || · ||L2(μ,Rd×R)) denote the
normed space of all μ-measurable vector fields (v̂, ŵ) from (0, 1) × R

d to R
d × R

satisfying

||(v̂, ŵ)||L2(μ,Rd×R) :=
( ∫ 1

0

∫

Rd
(�|v̂t |2 + �|ŵt |2) dμt dt

)1/2
< +∞.

(3.12)

An application of (3.11), Fatou’s Lemma, Hölder’s inequality and Hahn-Banach The-
orem shows that there exists a unique bounded linear functional L defined on the
closure V in L2(μ,Rd × R) of the subspace {(∇ζ, ζ ) : ζ ∈ C∞

c ((0, 1) × R
d)},

satisfying

L((∇ζ, ζ )) := −
∫ 1

0

∫

Rd
∂tζ(t, x) dμt dt for all ζ ∈ C∞

c ((0, 1) × R
d).

(3.13)

We consider the minimum problem

min
{1
2
||(v̂, ŵ)||2L2(μ,Rd×R)

− L((v̂, ŵ)) : (v̂, ŵ) ∈ V
}
. (3.14)

The same argument as in the proof of Thm. 8.3.1 in [1] proves that the unique solution
(ṽ, w̃) to (3.14) (which clearly exists) satisfies (3.3) and, for L 1-a.e. t ∈ (0, 1), the
function (ṽt , w̃t ) belongs to the closure in L2(μt ,R

d ×R) of the subspace {(∇ζ, ζ ) :
ζ ∈ C∞

c (Rd)} and (3.7) holds good. By Thm. 8.17 in [9], for every Borel vector field
(v̂, ŵ) ∈ L2(μ,Rd × R) satisfying the continuity equation with reaction (3.3) the
opposite inequality holds good, i.e.
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∫

Rd
(�|v̂t |2 + �|ŵt |2) dμt ≥ |μ′

t |2 for L 1-a.e.t ∈ (0, 1).

It follows from this and from the strict convexity of || · ||2
L2(μt ,Rd×R)

that the Borel

vector field (ṽ, w̃) solves (3.3), (3.4) and that it coincides L 1-a.e. with any other
vector field solving (3.3), (3.4). This completes the proof of Prop. 3.1. ��
Definition 3.2 Let C(Rd) be a countable subset of C∞

c (Rd) so that every function in
C∞

c (Rd) can be approximated in the C1-norm by a sequence of functions in C(Rd).
We define Nμ as the set of points t ∈ (0, 1) at which the following holds good:

(i) The limit (3.1) exists,
(ii) (vt , wt ) belongs to the closure in L2(μt ,R

d × R) of the subspace {(∇ζ, ζ ) :
ζ ∈ C∞

c (Rd)} and satisfies (3.4),
(iii) and, for all ψ ∈ C(Rd),

lim
h→0

1

h

( ∫

Rd
ψ dμt+h −

∫

Rd
ψ dμt

)
=

∫

Rd
(�〈∇ψ, vt 〉 + �ψwt ) dμt .

(3.15)

Please note that (0, 1) \ Nμ is an L 1-negligible set; it follows from (1.7) that, for
fixed ψ ∈ C∞

c (Rd), the mapping t �→ ∫
Rd ψ dμt is absolutely continuous from [0, 1]

to R and (3.15) holds good at L 1-a.e. t ∈ (0, 1).
The second step in our analysis is to establish a connection between the “tangent

vector” (vt , wt ) to μt and tangent vectors to geodesics in (C,dC,�,�), measured by
βt,t+h for |h| small. For t ∈ Nμ, h ∈ (−t, 1 − t) and s ∈ (0, 1), the mappings

Dt,h,s : (y1, y2) �→
(
(x(y1), r(y1)),

( 1

h�
Ry1,y2(s)θ

′
y1,y2(s)(x(y2)

−x(y1)),
2

h�
R′

y1,y2(s)
))

(3.16)

from
(
C × C

)
\

{
([x1, r1], [x2, r2]) ∈ C × C : r1, r2 > 0, |x1 − x2| > π

√
�/�

}
to

(Rd ×R)× (Rd ×R)will be considered, with x, r as in (2.15), andRy1,y2 , θy1,y2 being
constructed according to (2.6)–(2.9). Their second components may be interpreted as
blow-ups of tangent vectors to geodesics in (C,d C,�,�); in fact, the transition from
(x, r) to the local chart (1/�Ry1,y2(s) x, 2/� r) transforms the tangent vector ty1,y2(s)
from (2.11) into the tangent vector

t̃y1,y2(s) :=
( 1

�
Ry1,y2(s)θ

′
y1,y2(s)(x(y2) − x(y1)),

2

�
R′

y1,y2(s)
)
. (3.17)

Wewill take advantage of the fact that this chart transition transforms themetric tensor
G�,� from (2.5) into a metric tensor which is equal to � < v1,w1 > +� v2w2 for
tangent vectors v := (v1, v2),w := (w1,w2) ∈ R

d × R at [x,Ry1,y2(s)] ∈ C.
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We turn to the push-forward �t,h,s ∈ M((Rd ×R) × (Rd ×R)) of βt,t+h through
(3.16), defined by

∫

(Rd×R)×(Rd×R)

�(y) d�t,h,s =
∫

C×C
�(Dt,h,s(y1, y2)) dβt,t+h

for all � ∈ C0
b((R

d × R) × (Rd × R)). Please recall (2.20) in this context and note
that, by (2.9), the mappings (3.16) are Borel measurable. The following proposition
will provide information on the limits of �t,h,s as h → 0, linking them to (vt , wt ).

Proposition 3.3 Let t ∈ Nμ and s ∈ (0, 1). Then

lim
h→0

∫

(Rd×R)×(Rd×R)

�(y) d�t,h,s =
∫

Rd
�((x, 1), (vt (x), wt (x))) dμt

(3.18)

for all continuous functions � : (Rd × R) × (Rd × R) → R satisfying the growth
condition

|�((x1, r1), (x2, r2))| ≤ C
(
1 + |x2|2 + |r2|2

)
(3.19)

for some C > 0.

Proof We set Y := R
d × R.

Let t ∈ Nμ and s ∈ (0, 1). We note that, by (2.9) and Def. 3.2(i),

∫

Y×Y
(�|x2|2 + �|r2|2) d�t,h,s((x1, r1), (x2, r2))

= HK�,�(μt , μt+h)2

h2 → |μ′
t |2 as h → 0. (3.20)

We may apply Prokhorov’s Theorem to any sequence (�t,hk ,s)k∈N, hk → 0, of
measures from the family (�t,h,s)h∈(−t,1−t) ⊂ M(Y × Y ), since such sequence is
bounded and equally tight by (3.5) and (3.20), and we obtain a subsequence hkl → 0
and a measure � ∈ M(Y × Y ) so that (�t,hkl ,s

)l∈N converges to � in the weak
topology on M(Y × Y ), in duality with continuous and bounded functions. So let
(�t,hl ,s)l∈N (hl → 0) be a convergent sequence with limit measure � ∈ M(Y × Y ),
i.e.

lim
l→∞

∫

Y×Y
�(y) d�t,hl ,s =

∫

Y×Y
�(y) d� (3.21)

for all � ∈ C0
b(Y × Y ). We want to identify � as ((x, 1), (vt (x), wt (x)))#μt . It is not

difficult to infer from (3.5) that the first marginal π1
#� of � coincides with (x, 1)#μt ,

i.e.
∫

Y
φ((x, r)) d(π1

#�) =
∫

Rd
φ((x, 1)) dμt (3.22)
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for allφ ∈ C0
b(Y ). Letψ ∈ C(Rd). Then (3.21) alsoholds good for�((x1, r1), (x2, r2))

:=
[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
r1: Indeed, we have

lim
l→∞

∫

Y×Y
(�N ) d�t,hl ,s =

∫

Y×Y
(�N ) d�

for all N > 0, with �N := (�∧ N )∨ (−N ). Setting YN := {(x, r) ∈ Y : |x |+ |r | >

N }, Cψ := supx∈Rd {|∇ψ(x)| + |ψ(x)|}, and applying (3.5), (3.20) and (3.22), we
conclude that for every ε > 0 there exists Nε > 0 so that

∫

Y×YN

(|x2| + |r2|) d�t,hl ,s +
∫

Y×YN

(|x2| + |r2|) d� ≤ ε for all N ≥ Nε, l ∈ N,

and

lim sup
l→∞

∣∣∣
∫

Y×Y
� d�t,hl ,s −

∫

Y×Y
� d�

∣∣∣

≤ lim sup
l→∞

∣∣∣
∫

Y×Y
(�Cψ(�+�)Nε

) d�t,hl ,s −
∫

Y×Y
�Cψ(�+�)Nε

d�
∣∣∣

+ Cψ(� + �) lim sup
l→∞

∫

Y×YNε

(|x2| + |r2|) d(�t,hl ,s + �)

≤ Cψ(� + �)ε.

Hence, taking (3.22) into account, we obtain

lim
l→∞

∫

Y×Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
r1 d�t,hl ,s

=
∫

Y×Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
d�. (3.23)

It holds that
∫

Rd
ψ dμt+hl −

∫

Rd
ψ dμt =

∫

C×C
(ψ(x2)r

2
2 − ψ(x1)r

2
1 ) dβt,t+h

=
∫

C×C

∫ 1

0

d

ds

[
ψ(x1 + θ[x1,r1],[x2,r2](s)(x2 − x1))R[x1,r1],[x2,r2](s)2

]
ds dβt,t+hl

so that (3.15), (3.8), (3.9), (3.10), Def. 3.2(i) and (3.23) yield

∫

Rd
(�〈∇ψ, vt 〉 + �ψwt ) dμt = lim

l→∞
1

hl

( ∫

Rd
ψ dμt+hl −

∫

Rd
ψ dμt

)

= lim
l→∞

∫

Y×Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
r1 d�t,hl ,s

=
∫

Y×Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
d�.
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According to the Disintegration Theorem (see e.g. Thm. 5.3.1 in [1]) and (3.22), there
exists a Borel family of probability measures (�x1)x1∈Rd ⊂ M(Y ), �x1(Y ) = 1, so
that

∫

Y×Y
� d� =

∫

Rd

( ∫

Y
�((x1, 1), (x2, r2)) d�x1((x2, r2))

)
dμt (x1)

for all �-integrable maps � : Y × Y → R. We infer from (3.20) that, for μt -a.e.
x1 ∈ R

d , the measure �x1 has finite second order moment and we define the function
(v�,w�) : Rd → R

d × R by

v�(x1) :=
∫

Y
x2 d�x1((x2, r2)), w�(x1) :=

∫

Y
r2 d�x1((x2, r2))

for μt -a.e. x1 ∈ R
d . (3.24)

The function (v�,w�) is Borel measurable (cf. (5.3.1) and Def. 5.4.2 in [1]), and

∫

Y×Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
d�

=
∫

Rd

( ∫

Y

[
�〈∇ψ(x1), x2〉 + �ψ(x1)r2

]
d�x1((x2, r2))

)
dμt (x1)

=
∫

Rd
(�〈∇ψ, v�〉 + �ψw�) dμt .

All in all, we have found that

∫

Rd
(�〈∇ψ, vt 〉 + �ψwt ) dμt =

∫

Rd
(�〈∇ψ, v�〉 + �ψw�) dμt (3.25)

for all ψ ∈ C(Rd). Since every function in C∞
c (Rd) can be approximated in the C1-

norm by a sequence of functions in C(Rd) (cf. Def. 3.2) and, by (3.20) and Def. 3.2(ii),
the functions v�,w�, vt , wt are square-integrable w.r.t. μt , (3.25) holds good for all
ψ ∈ C∞

c (Rd) and for all pairs in the L2(μt ,R
d × R)-closure of {(∇ζ, ζ ) : ζ ∈

C∞
c (Rd)}. It follows from this and from Def. 3.2(ii) that

||(vt , wt )||2L2(μt ,Rd×R)
=

∫

Rd
(�〈vt , v�〉 + �wtw�) dμt . (3.26)

ApplyingHölder’s inequality to (3.26), taking the definition (3.24) of v�,w�, Jensen’s
inequality, (3.21), (3.20) and Def. 3.2(ii) into account, we obtain
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||(vt , wt )||L2(μt ,Rd×R) ≤ ||(v�,w�)||L2(μt ,Rd×R)

≤
( ∫

Y×Y
(�|x2|2 + �|r2|2) d�

)1/2 ≤ (3.27)

≤ lim
l→∞

( ∫

Y×Y
(�|x2|2 + �|r2|2) d�t,hl ,s

)1/2

= ||(vt , wt )||L2(μt ,Rd×R) (3.28)

so that, in fact, equality holds good everywhere in (3.27) and (3.28). We infer from
this and from (3.26) that

||(vt , wt ) − (v�,w�)||L2(μt ,Rd×R) = 0

which means

vt (x) = v�(x) and wt (x) = w�(x) for μt -a.e. x ∈ R
d . (3.29)

Moreover, the fact that the second inequality in (3.27), resulting from Jensen’s inequal-
ity, is in fact an equality and (3.29) yield �x1 = δvt (x1) ⊗ δwt (x1) for μt -a.e. x1 ∈ R

d

(cf. a canonical proof of Jensen’s inequality), i.e.

∫

Y
φ((x, r)) d�x1 = φ(vt (x1), wt (x1)) (3.30)

for all φ ∈ C0
b(Y ), for μt -a.e. x1 ∈ R

d .
Altogether, we may conclude that � = ((x, 1), (vt (x), wt (x)))#μt ,

∫

Y×Y
(�|x2|2 + �|r2|2) d� = |μ′

t |2

= lim
l→∞

∫

Y×Y
(�|x2|2 + �|r2|2) d�t,hl ,s (3.31)

and that (3.18) holds good for all � ∈ C0
b(Y × Y ). A similar argument as in the

proof of (3.23), making use of (3.31), will show (3.18) for all continuous functions
� : Y ×Y → R satisfying the growth condition (3.19) (cf. Thm. 7.12 in [10] where the
space of Borel probability measures with finite second order moments is considered
and the equivalence between convergence in the Kantorovich-Wasserstein distance
and convergence in duality with continuous functions satisfying a suitable growth
condition is proved). This completes the proof of Prop. 3.3. ��

Now, Theorem 3.4 yields a linearization result for absolutely continuous curves.
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Theorem 3.4 Let t ∈ Nμ.

Define Ct,h :=
{
[x, r ] ∈ C \ {o} : |vt (x)| < 1√|h| and |wt (x)| < 2√|h|�

}
and

�t,h : C → C,

�t,h([x, r ]) :=
{

[x + �hvt (x), r(1 + �
2 hwt (x))] if [x, r ] ∈ Ct,h,

[x, r ] else .
(3.32)

Let χt,h := (�t,h)#(π
1
#βt,t+h) be the push-forward of the first marginal of βt,t+h

through �t,h, i.e.

∫

C
φ([x, r ]) dχt,h =

∫

C
φ(�t,h([x, r ])) d(π1

#βt,t+h)

for all φ ∈ C0
b(C). Then

lim
h→0

HK�,�(μt+h, hχt,h)2

h2 = 0. (3.33)

Remark 3.5 The technical role of Ct,h will be visible in the proof. First, the restriction
to Ct,h ensures that [x + �hvt (x), r(1+ �

2 hwt (x))] ∈ C is well-defined, and second,
we will take advantage thereof in order to suitably estimate dC,�,�(�t,h(y1), y2)2/h2

for (y1, y2) ∈ supp βt,t+h .

Proof We set Y := R
d × R.

Let t ∈ Nμ. According to (2.13), (2.16), we have

HK�,�(μt+h, hχt,h)2

h2 ≤ 1

h2

∫

C×C
dC,�,�(�t,h([x1, r1]), [x2, r2])2 dβt,t+h .

(3.34)

We will prove that the right-hand side of (3.34) converges to 0 as h → 0.
First we note that, by Prokhorov’s Theorem, Def. 3.2(ii) and the proof of Prop.

3.3, every sequence
(
((vt (x1), wt (x1)), (x2, r2))#�t,hl ,s

)
l∈N, hl → 0, is relatively

compactw.r.t. theweak topology inM(Y ×Y ) and in dualitywith continuous functions
� : Y ×Y → R satisfying (3.19), and the secondmarginals of the corresponding limit
measures coincide with (vt (x), wt (x))#μt . It follows therefrom that for N ∈ N, s̄ ∈
(0, 1),

lim sup
h→0

1

h2

∫

(C\Ct,1/N )×C
dC,�,�([x1, r1], [x2, r2])2 dβt,t+h

= lim sup
h→0

∫

Y×Y
(�|x2|2 + �|r2|2)1{x :|vt (x)|≥√

N or |wt (x)|≥2
√

N/�}(x1) d�t,h,s̄

≤
∫

Y×Y
(�|x2|2 + �|r2|2)1{(x,r):|x |≥√

N or |r |≥2
√

N/�}(x1, r1) d�̃,
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(where �̃ denotes a suitable limit measure of ((vt (x1), wt (x1)), (x2, r2))#�t,h,s̄) and
an application of the Dominated Convergence Theorem then yields

lim
N→∞ lim sup

h→0

1

h2

∫

(C\Ct,1/N )×C
dC,�,�([x1, r1], [x2, r2])2 dβt,t+h = 0,

which implies

lim
h→0

1

h2

∫

(C\Ct,h)×C
dC,�,�([x1, r1], [x2, r2])2 dβt,t+h = 0. (3.35)

Next we consider 1
h2

∫
Ct,h×C dC,�,�(�t,h([x1, r1]), [x2, r2])2 dβt,t+h . According

to ([2], Sect. 3.6) and ([9], Sect. 8.1), the geometric cone (C,dC,�,�) is a length space
and it holds that any curve η := [x, r ] : [0, 1] → C for C1-functions x : [0, 1] → R

d

and r : [0, 1] → [0,+∞) is absolutely continuous in (C,dC,�,�) and

dC,�,�(η(1), η(0))2 ≤
∫ 1

0

( 4

�
(r ′(s))2 + 1

�
r(s)2|x ′(s)|2

)
ds

(cf. ([9], Lem. 8.1)). We define, for y1 := [x1, r1] ∈ Ct,h , y2 := [x2, r2] ∈ C,
with |x1 − x2| ≤ π

√
�/� if r2 > 0, an absolutely continuous curve Ah,�(y1),y2 :

[0, 1] → C connecting �(y1) = [x1 + �hvt (x1), r1(1 + �hwt (x1)/2)] and y2 by
setting Ah,�(y1),y2 := [Xh,�(y1),y2 ,Rh,�(y1),y2 ],

Xh,�(y1),y2(s) := x1 + θy1,y2(s)(x2 − x1) + �(1 − s)hvt (x1), (3.36)

Rh,�(y1),y2(s) := Ry1,y2(s)
(
1 + �(1 − s)hwt (x1)/2

)
(3.37)

(cf. (2.6)-(2.9), (2.20)). The functions Xh,�(y1),y2 : [0, 1] → R
d and Rh,�(y1),y2 :

[0, 1] → [0,+∞) are continuously differentiable with

(R′
h,�(y1),y2(s))

2

=
(
�R′

y1,y2(s)(1 − s)hwt (x1)/2 + R′
y1,y2(s) − �Ry1,y2(s)hwt (x1)/2

)2

≤ 2|h|� dC,�,�(y1, y2)
2 + 2

(
R′

y1,y2(s) − �r1hwt (x1)/2
)2

and

Rh,�(y1),y2(s)
2|X′

h,�(y1),y2(s)|2
≤ 4Ry1,y2(s)

2|θ ′
y1,y2(s)(x2 − x1) − �hvt (x1)|2

≤ 8
(
|Ry1,y2(s)θ

′
y1,y2(s)(x2 − x1) − �r1hvt (x1)|2 + �2|h||Ry1,y2(s) − r1|2

)

≤ 8
(
|Ry1,y2(s)θ

′
y1,y2(s)(x2 − x1) − �r1hvt (x1)|2 + �2�|h|/4 dC,�,�(y1, y2)

2
)
,
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where we have made use of (2.9) and the fact that y1 = [x1, r1] ∈ Ct,h . It follows
from the above estimations and an application of Fubini’s Theorem that

1

h2

∫

Ct,h×C
dC,�,�(�t,h([x1, r1]), [x2, r2])2 dβt,t+h

≤ 1

h2

∫

Ct,h×C

∫ 1

0

( 4

�
(R′

h,�(y1),y2 (s))
2 + 1

�
Rh,�(y1),y2 (s)

2|X′
h,�(y1),y2 (s)|2

)
ds dβt,t+h

≤
∫ 1

0

∫

Y×Y

(
2�(r2 − r1wt (x1))

2 + 8�|x2 − r1vt (x1)|2
)
d�t,h,s((x1, r1), (x2, r2)) ds

+ C�,�

HK�,�(μt , μt+h)2

|h|

with C�,� only depending on � and �. According to Def. 3.2(ii), there exists a
sequence of functions ζn ∈ C∞

c (Rd) (n ∈ N) so that ((∇ζn, ζn))n∈N converges to
(vt , wt ) in L2(μt ,R

d × R), which means

lim
n→∞

∫

Y×Y

(
r21 (ζn(x1) − wt (x1))

2

+r21 |∇ζn(x1) − vt (x1)|2
)
d�t,h,s((x1, r1), (x2, r2)) = 0 (3.38)

uniformly in h ∈ (−t, 1 − t) and s ∈ (0, 1). Moreover, Prop. 3.3 and (3.5) yield

lim
h→0

∫

Y×Y

(
�(r2 − r1ζn(x1))

2 + �|x2 − r1∇ζn(x1)|2
)
d�t,h,s

= ||(vt , wt ) − (∇ζn, ζn)||2L2(μt ,Rd×R)
(3.39)

for all n ∈ N and s ∈ (0, 1). Combining (3.38) and (3.39) and the fact that the
right-hand side of (3.39) converges to 0 as n → ∞, we obtain

lim sup
h→0

∫

Y×Y

(
2�(r2 − r1wt (x1))

2

+8�|x2 − r1vt (x1)|2
)
d�t,h,s((x1, r1), (x2, r2)) = 0,

for every s ∈ (0, 1), and thus, by Fatou’s lemma,

lim sup
h→0

∫ 1

0

∫

Y×Y

(
2�(r2 − r1wt (x1))

2

+8�|x2 − r1vt (x1)|2
)
d�t,h,s((x1, r1), (x2, r2)) ds = 0. (3.40)
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Finally, applying the above estimation of 1
h2

∫
Ct,h×C dC,�,�(�t,h([x1, r1]), [x2, r2])2

dβt,t+h , (3.40) and Def. 3.2(i), we obtain

lim
h→0

1

h2

∫

Ct,h×C
dC,�,�(�t,h([x1, r1]), [x2, r2])2 dβt,t+h = 0, (3.41)

which completes the proof of Thm. 3.4. ��

4 Differentiability Results

This section finally treats the differentiability of the Hellinger–Kantorovich distance
HK�,� along absolutely continuous curves; the linearization result of Thm. 3.4 puts us
in a position to precisely compute the corresponding derivatives.
We fix another absolutely continuous curve (νt )t∈[0,1] in (M(Rd),HK�,�)with square-
integrable metric derivative t �→ |ν′

t |. It follows from (3.2) that

t �→ 1

2
HK�,�(μt , νt )

2 (4.1)

is an absolutely continuous mapping from [0, 1] to [0,+∞) and thus L 1-a.e. differ-
entiable.

Let (v̄, w̄) : (0, 1) × R
d → R

d × R be the essentially unique Borel vector field
associated with (νt )t so that the continuity equation with reaction

∂tνt = −�div(v̄tνt ) + �w̄tνt

holds good and

∫

Rd
(�|v̄t |2 + �|w̄t |2) dνt = |ν′

t |2 forL 1-a.e. t ∈ (0, 1),

let Nν be the associated set of times defined according to Def. 3.2 and let N denote
the set of times t ∈ Nμ ∩ Nν at which (4.1) is differentiable. Clearly, (0, 1) \ N is an
L 1-negligible set.

Theorem 4.1 If t ∈ N and βt ∈ M(C×C) is optimal in the definition ofHK�,�(μt , νt )
2

according to ((2.17), (2.13)), i.e.

μ̂t := μt − h(π1
#βt ) ≥ 0, ν̂t := νt − h(π2

#βt ) ≥ 0,

HK�,�(μt , νt )
2 =

∫

C×C
dC,�,�([x1, r1], [x2, r2])2 dβt

+4/� μ̂t (R
d) + 4/� ν̂t (R

d),
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then the derivative d
dt [ 12HK�,�(μt , νt )

2] of (4.1) at t coincides with

−
∫

C×C
[G�,�

y1 (ty1,y2(0), s
μ
t,y1) + G�,�

y2 (ty2,y1(0), s
ν
t,y2)] dβt

+2
( ∫

Rd
wt dμ̂t +

∫

Rd
w̄t dν̂t

)
(4.2)

where sμ
t,y :=(�vt (x(y)),�/2 r(y)wt (x(y)))and sν

t,y :=(�v̄t (x(y)),�/2r(y)w̄t (x(y))).

Before proving Thm. 4.1, let us try to gain an insight into the above formula (4.2).

Remark 4.2 Suppose that νs ≡ ν ∈ M(Rd). There exists an optimal plan βt associated
with μt and ν whose marginals satisfy μt = h(π1

#βt ) and ν = h(π2
#βt ) (cf. Thm. 7.6

in [9]). The derivative d
dt [ 12HK�,�(μt , ν)2] at t ∈ N then takes the form

−
∫

C×C
G�,�

y1 (ty1,y2(0), s
μ
t,y1) dβt . (4.3)

The tangent vectors ty1,y2(0) (see (2.12)) and s
μ
t,y1 to the geometric cone C, for

(y1, y2) ∈ supp βt , represent the directions μt � ν and μt � μt+h (for h > 0
small) respectively on an infinitesimal level (cf. Thm. 3.4). It is noteworthy that the
metric tensor G�,� (see (2.5)) at y1 ∈ C between such tangent vectors ty1,y2(0) and
s
μ
t,y1 is equal to the derivative at h = 0 of h �→ −1/2 dC,�,�(�t,h(y1), y2)2 (see
(3.32)), i.e.

− G�,�
y1 (ty1,y2(0), s

μ
t,y1) = 1

2

d
dh

∣∣∣∣
h=0

dC,�,�(�t,h(y1), y2)
2 (4.4)

for a simple computation shows that both terms in (4.4) equal

2r21wt (x1) − 2r1r2wt (x1) cos(
√

�/4�|x1 − x2|)
−2r1r2

√
�/�

〈 sin(√�/4�|x1 − x2|)
|x1 − x2| (x2 − x1), vt (x1)

〉

(yi = [xi , ri ] ∈ C).
Also, wewould like to remark that the derivatives of (4.1) at t ∈ N can be expressed

equally in terms of the Logarithmic Entropy-Transport characterization (1.1) of the
Hellinger–Kantorovich distanceHK�,� , by applying (2.19) to the above representation
(4.2) of the derivatives.

Proof Let t ∈ N. Then t ∈ Nμ ∩Nν and (4.1) is differentiable at t . We apply Thm. 3.4
to both curves (μs)s and (νs)s defining �μ,t,h, χμ,t,h and �ν,t,h, χν,t,h respectively
according thereto so that, by the corresponding linearization results,
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d

ds

[1
2
HK�,�(μs, νs)

2
]∣∣∣∣

s=t

= lim
h→0

1
2HK�,�(hχμ,t,h, hχν,t,h)2 − 1

2HK�,�(μt , νt )
2

h
(4.5)

(cf. (3.32), (3.33)). Let χ̄μ,t,h := (�μ,t,h)#αμ,t and χ̄ν,t,h := (�ν,t,h)#αν,t be the
push-forwards of the marginals αμ,t := π1

#βt and αν,t := π2
#βt of βt through the

mappings �μ,t,h and �ν,t,h respectively. We have

∫

Rd
φ d(hχ̄μ,t,h) =

∫

Cμ,t,h

r2(1 + �hwt (x)/2)2φ(x + �hvt (x)) dαμ,t

+
∫

C\Cμ,t,h

r2φ(x) dαμ,t

=
∫

x(Cμ,t,h)

(1 + �hwt (x)/2)2φ(x + �hvt (x)) dhαμ,t

+
∫

x(C\Cμ,t,h)

φ(x) dhαμ,t

≤
∫

x(Cμ,t,h)

(1 + �hwt (x)/2)2φ(x + �hvt (x)) dμt

+
∫

x(C\Cμ,t,h)

φ(x) dμt =
∫

Rd
φ d(hχμ,t,h)

for all nonnegative bounded Borel functions φ : Rd → R (cf. (2.14), (2.15)), from
which we infer that

hχ̄μ,t,h ≤ hχμ,t,h, (hχμ,t,h − hχ̄μ,t,h)(Rd ) = μ̂t (R
d ) +

∫

x(Cμ,t,h )

(
�hwt (x) + �2

4
h2wt (x)2

)
dμ̂t .

Similarly,

hχ̄ν,t,h ≤ hχν,t,h,

(hχν,t,h − hχ̄ν,t,h)(Rd) = ν̂t (R
d) +

∫

x(Cν,t,h)

(
�hw̄t (x) + �2

4
h2w̄t (x)2

)
dν̂t .

We obtain

1

2

(
HK�,�(hχμ,t,h, hχν,t,h)2 − HK�,�(μt , νt )

2
)

≤ 1

2

(
WC,�,�(χ̄μ,t,h, χ̄ν,t,h)2 − WC,�,�(αμ,t , αν,t )

2
)

+2
∫

x(Cμ,t,h)

(
hwt (x) + �

4
h2wt (x)2

)
dμ̂t
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+2
∫

x(Cν,t,h)

(
hw̄t (x) + �

4
h2w̄t (x)2

)
dν̂t ,

and

WC,�,�(χ̄μ,t,h, χ̄ν,t,h)2 ≤
∫

C×C
dC,�,�(�μ,t,h([x1, r1]),�ν,t,h([x2, r2]))2 dβt .

The same argument as in the proof of Lem. 2.2 in [5] then yields

lim sup
h↓0

1
2WC,�,�(χ̄μ,t,h, χ̄ν,t,h)2 − 1

2WC,�,�(αμ,t , αν,t )
2

h

≤ 2
∫

C×C

[
r21wt (x1) − r1r2wt (x1) cos(

√
�/4�|x1 − x2|)

−r1r2
√

�/� 〈S�,�(x1, x2), vt (x1)〉
]
dβt

+ 2
∫

C×C

[
r22 w̄t (x2) − r1r2w̄t (x2) cos(

√
�/4�|x1 − x2|)

+r1r2
√

�/� 〈S�,�(x1, x2), v̄t (x2)〉
]
dβt

≤ lim inf
h↑0

1
2WC,�,�(χ̄μ,t,h, χ̄ν,t,h)2 − 1

2WC,�,�(αμ,t , αν,t )
2

h
,

with S�,� defined as

S�,�(x1, x2) :=
{

sin(
√

�/4�|x1−x2|)
|x1−x2| (x2 − x1) if x1 �= x2,

0 if x1 = x2.

Since the limit (4.5) exists, the sum of the above integrands is identical with

−G�,�
y1 (ty1,y2(0), s

μ
t,y1) − G�,�

y2 (ty2,y1(0), s
ν
t,y2) (yi := [xi , ri ])

(cf. Rem. 4.2), and

lim
h→0

∫

x(Cμ,t,h)

(
wt (x) + �

4
hwt (x)2

)
dμ̂t =

∫

Rd
wt (x) dμ̂t ,

lim
h→0

∫

x(Cν,t,h)

(
w̄t (x) + �

4
hw̄t (x)2

)
dν̂t =

∫

Rd
w̄t (x) dν̂t ,
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it follows from the above computations that

lim
h→0

1
2HK�,�(hχμ,t,h, hχν,t,h)2 − 1

2HK�,�(μt , νt )
2

h

= −
∫

C×C
[G�,�

y1 (ty1,y2(0), s
μ
t,y1) + G�,�

y2 (ty2,y1(0), s
ν
t,y2)] dβt

+ 2
( ∫

Rd
wt dμ̂t +

∫

Rd
w̄t dν̂t

)
.

The proof of Thm. 4.1 is complete. ��
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