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Abstract
The objective of this paper is to study a class of zero-sum optimal stopping games of
diffusions under a so-called Poisson constraint: the players are allowed to stop only at
the arrival times of their respective Poissonian signal processes. These processes can
have different intensities, which makes the game setting asymmetric. We give a weak
and easily verifiable set of sufficient condition under which we derive a semi-explicit
solution to the game in terms of the minimal r -excessive functions of the diffusion.
We also study limiting properties of the solutions with respect to the signal intensities
and illustrate our main findings with explicit examples.

Keywords Dynkin game · Optimal stopping · Diffusion processes · Excessive
functions · Resolvent operator

Mathematics Subject Classification 60G40 · 49L20 · 91A05 · 91A55 · 60J60

1 Introduction

Optimal stopping games were introduced in the seminal paper [7], for other classical
references, see [17, 29, 33]; see also [18] for a review article. In the typical form,
these are two-player games, where the sup- (inf -) players objective is to maximize
(minimize) the expected present value of the exercise payoff. Important applications
of stopping games in mathematical finance are cancellable (or callable) options [3, 11,
19] and convertible bonds [16, 20, 32]. Here, the issuer (i.e., inf -player) has the right
to cancel (or convert) the contract by paying a fee to the holder (i.e., sup-player).
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The stopping game considered in our study stems from the so-called Poisson stop-
ping problem, this term was coined in [22]. Poisson stopping problems are built on
continuous-time dynamics but stopping is only allowed at the arrival times of an
exogenous signal process, usually a Poisson process. This type of stopping problem
first appeared in [5], where optimal stopping of geometric Brownian motion on the
arrival times on an independent Poisson process (later, Poisson stopping) was studied.
Papers in the same vein include the following. The paper [12] addresses Poisson stop-
ping at the maximum of Geometric Brownian motion. In [26], Poisson stopping of
general one-dimensional diffusion processes is considered. Poisson stopping is gen-
eralized to optimal switching problems in [23], and to a multi-dimensional setting in
[22]. Extension to more general, time-inhomogeneous signal processes is addressed
in [28]. Time-inhomogeneous Poissonian signal process is considered in [13, 14]. In
[13], the stopping problem is set up so that the decision maker can control the intensity
of the Poissonian signal process, whereas [14] addresses the shape properties of the
value function in a time-inhomogeneous Poisson stopping problem.

We extend the Poisson stopping framework to zero-sum stopping games in the
following way. Similarly to [26], we study a perpetual problem and assume that
the underlying dynamics follow a general one-dimensional diffusion. Moreover, we
assume that there is two independent Poisson signal processes, one for each player,
and that players can stop only at the arrival times of their respective Poisson pro-
cesses. These processes can have different intensities, which makes the game setting
asymmetric. Our problem setting is closely related to [24, 25], see also [15]. In [24],
a similar game is studied where there is only one signal process and both players are
allowed to stop at its arrival times. This is in contrast to our case when the intensities
of the signal processes coincide. Namely, even though the arrival rates are the same,
the signals will almost surely never appear simultaneously. This eliminates the need
to assume the usual ordering (appearing for instance in [2, 8–10, 21, 24, 27]) that
the payoff of the inf-player has to dominate that of the sup-player which is due to
the fact that immediate comparison of the payoffs is never needed; this observation
is made also in [25] where the heterogeneous case is studied. We point out that some
comparison of the payoffs is still needed, these are spelled out in assumptions 2.4.
The payoff processes in [24, 25] are assumed to be progressively measurable with
respect to the minimal completion of the filtration generated by a (potentially mul-
tidimensional) Wiener process. This is in the same spirit to our model as the paths
dictating the payoffs are continuous in both cases. We refer here to [30], where a
similar constrained game is considered for Lévy-dynamics. The time horizon in [24,
25] is allowed be a stopping time, either bounded or unbounded. For an unbounded
time horizon, the analysis of [24] covers the case where the payoffs are bounded. This
is in contrast to our study, where we allow also for unbounded payoffs. In [24, 25],
the authors provide a characterization of the value in terms of a penalized backward
stochastic differential equation. We take a different route by solving our problem via
a free boundary problem. As a result, we produce explicit (up to a representation of
the minimal r -excessive functions of the diffusion process) solutions for the optimal
value function. We also characterize the optimal threshold rules in terms of the min-
imal r -excessive functions and provide sufficient conditions both for existence and
uniqueness of the solution; to the best of our knowledge, these are new results. These
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results are useful for a few reasons. Firstly, diffusion models are important in many
applications and our results shed a new light on the structure of the solution for this
class of problems. Secondly, the semi-explicit nature of the solution allows a deeper
study on the asymptotics and other properties of the asymmetry. Lastly, the solution
is fairly easy to produce, at least numerically, as it will boil down to solving a linear
second order ordinary differential equation.

The remainder of the study is organized as follows. In Sect. 2 we formulate the opti-
mal stopping game. A candidate solution for the game is derived in Sect. 3, whereas in
Sect. 4 we show that the candidate solution is indeed the solution of the game. Asymp-
totic results are proved in Sect. 5, and the study is concluded by explicit examples in
Sect. 6.

2 The Game

Weassume that the state process X is a regular diffusion evolving onR+ with the initial
state x . Furthermore, we assume that the boundaries of the state space R+ are natural.
Now, the evolution of X is completely determined by its scale function S and speed
measure m inside R+, see [4, pp. 13–14]. Furthermore, we assume that the function
S and the measure m are both absolutely continuous with respect to the Lebesgue
measure, have smooth derivatives and that S is twice continuously differentiable.
Under these assumptions, we know that the infinitesimal generator A : D(A) →
Cb(R+) of X can be expressed as A = 1

2σ
2(x) d2

dx2
+ μ(x) d

dx , where the functions σ

and μ are related to S andm via the formulæ m′(x) = 2
σ 2(x)

eB(x) and S′(x) = e−B(x)

for all x ∈ R+, where B(x) := ∫ x 2μ(y)
σ 2(y)

dy, see [4, p. 17]. From these definitions we

find that σ 2(x) = 2
S′(x)m′(x) and μ(x) = − S′′(x)

S′2(x)m′(x) for all x ∈ R+. In what follows,
we assume that the functions μ and σ 2 are continuous. The assumption that the state
space isR+ is done for convenience. In fact, we could assume that the state space is any
interval I in R and the subsequent analysis would hold with obvious modifications.
Furthermore, we denote as, respectively, ψr and ϕr the increasing and the decreasing
solution of the second order linear ordinary differential equation Au = ru, where
r > 0, defined on the domain of the characteristic operator of X . The functions ψr

and ϕr can be identified as the minimal r -excessive functions ψr and ϕr of X , see [4,
pp. 18–20]. In addition, we assume that the filtration F carries a Poisson processes
Y i = (Y i

t ,Ft ) and Y s = (Y s
t ,Ft ) with intensities λi and λs , respectively. We call the

processes Y i and Y s signal processes, and assume that they are mutually independent
and also independent of X . We denote the arrival times of Y i and Y s , respectively, as
Tni and Tns . Finally, we make the convention that T0i = T0s = 0.

Denote now as Lr
1 the class of measurable mappings f satisfying the integrability

condition

Ex

[ ∫ ∞

0
e−r t | f (Xt )|dt

]

< ∞.
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We know from the literature, see [4, p. 19], that for a given f ∈ Lr
1 the resolvent Rr f

can be expressed as

(Rr f )(x) = B−1
r ϕr (x)

∫ x

0
ψr (y) f (y)m

′(y)dy + B−1
r ψr (x)

∫ ∞

x
ϕr (y) f (y)m

′(y)dy,

(2.1)

for all x ∈ R+, where Br = ψ ′
r (x)

S′(x) ϕr (x) − ϕ′
r (x)
S′(x) ψr (x) denotes the Wronskian

determinant.
Next, we define the stopping game. The players, sup and inf, have their respective

exercise payoff functions gs and gi , and are allowed to stop the process X only at
the arrivals of their respective signal processes Y s and Y i . The sup-player attempts
to maximize the expected present value of exercise payoff, whereas the inf-players
objective is to minimize the same quantity. We define the lower and upper values of
the game as

V (x) = sup
τ∈Ts

inf
σ∈Ti

Ex

[
e−r(τ∧σ)R(τ, σ )

]
, V (x) = inf

σ∈Ti
sup
τ∈Ts

Ex

[
e−r(τ∧σ)R(τ, σ )

]
,

where

Ts = { τ is a F − stopping time | for all ω : τ(ω) = Tns (ω), for some ns = 1, 2, . . . }
Ti = { τ is a F − stopping time | for all ω : τ(ω) = Tni (ω), for some ni = 1, 2, . . . }
R(τ, σ ) = gs(Xτ )1{τ<σ } + gi (Xσ )1{τ>σ }.

When the equality

V (x) = V (x) = V (x) (2.2)

holds the zero-sum game is said to have a value V . Themaximizing strategies in V and
the minimizing strategies in V are called optimal and any pair of optimal strategies
is a Nash equilibrium. We point out that in the game studied here, it is not necessary
to include the possibility of simultaneous stopping as independent Poisson arrivals
do not, almost surely, occur simultaneously. It is also worth pointing out that in the
definition of upper and lower values, the players are not allowed to stop immediately.
One could think the value function as the value of future stopping potentiality without
the immediate stopping optionality.

To solve the problem (2.2), we introduce two auxiliary problems.Auxiliary problem
I is defined via the lower and upper values

V i
0(x) = sup

τ∈Ts
inf

σ∈Ti
0

Ex

[
e−r(τ∧σ)R(τ, σ )

]
, V

i
0(x) = inf

σ∈Ti
0

sup
τ∈Ts

Ex

[
e−r(τ∧σ)R(τ, σ )

]
,

where

Ti
0 = { τ is a F − stopping time | for all ω : τ(ω) = Tni (ω), for some ni = 0, 1, . . . }.
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Similarly, the auxiliary problem S is defined via the lower and upper values

V s
0(x) = sup

τ∈Ts
0

inf
σ∈Ti

Ex

[
e−r(τ∧σ)R(τ, σ )

]
, V

s
0(x) = inf

σ∈Ti
sup
τ∈Ts

0

Ex

[
e−r(τ∧σ)R(τ, σ )

]
,

where

Ts
0 = { τ is a F − stopping time | for all ω : τ(ω) = Tns (ω), for some ns = 0, 1, . . . }.

Finally, the values V i
0 and V s

0 are said to exist, if conditions similar to (2.2) hold. We
point out that in auxiliary problem I the inf-player is allowed to stop immediately,
whereas the sup-player has to wait until the next Y s-arrival to make a choice. The roles
are reversed in auxiliary problem S, where the sup-player can stop immediately. In
Sect. 3, we propose a Bellman principle that binds the candidate values for the main
problem and the auxiliary problems together.

We consider payoff functions similar to the existing literature in optimal stopping
that consider explicitly solvable cases, see [2, 27].

Assumption 2.1 Let gi and gs be real functions defined of positive reals and satisfying
the following conditions:

(1) gi and gs are non-decreasing continuously differentiable,
(2) gi and gs are stochastically C2: they are twice continuously differentiable outside

of a countable set {x j } which has no accumulation points and the limits |g′′
i (x j±)|

and |g′′
s (x j±)| are all finite,

(3) There exists states zi and zs such that

{
(A − r)gi (x)

(A − r)gs(x)
� 0,

{
x � zi ,

x � zs .

Some remarks regarding these assumptions are in order. The monotonicity in point
(1) is satisfied in many potential applications and point (2) essentially guarantees that
we can work with the expressions (A − r)gi and (A − r)gs . The point (3) suggests
that we are setting up problems, where the continuation region is connected, that is,
the equilibrium stopping rule is two-sided. This structure is important and appears in
many applications.

The class of problems given by our assumptions is large and contains important
cases such as linear payoffs. Indeed, when the payoffs are linear gk(x) = x − ck ,
k = i, s, where cs > ci , and X is Geometric Brownian motion such that drift μ < r ,
then (A − r)gk(x) = (μ − r)x + ck . More generally, if the drift coefficient of X is
a polynomial for which the leading term has a negative coefficient (this is typical in
mean-reverting models), then assumptions 2.1 hold for linear payoffs. For example, if
X is aVerhulst-Pearl diffusion (A = 1

2σ
2x2 d2

dx2
+μx(1−βx) d

dx ), then (A−r)gk(x) =
−μβx2 + (μ − r)x + ck .

We address non-smooth payoffs in Sect. 3.4 by studying the payoff structure of
a callable option [3, 11, 19, 21] and observe that its analysis can, fairly directly, be
reduced to our core case.
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Wemake some preliminary analysis. For f ∈ Lr
1, we define the functionals 	i and


s as

(	i f )(x) =
∫ x

0
ψr+λi (z) f (z)m

′(z)dz,

(
s f )(x) =
∫ ∞

x
ϕr+λs (z) f (z)m

′(z)dz,
(2.3)

and, with a slight abuse of notation,

(	 f )(x) =
∫ x

0
ψr (z) f (z)m

′(z)dz,

(
 f )(x) =
∫ ∞

x
ϕr (z) f (z)m

′(z)dz.

Lemma 2.2 Let q > 0 and g ∈ Lq
1 satisfy the points (1) and (2) of Assumption 2.1.

Then

ϕ′
q(x)

S′(x)
g(x) − g′(x)

S′(x)
ϕq(x) =

∫ ∞

x
ϕq(z)(A − q)g(z)m′(z)dz,

g′(x)
S′(x)

ψq(x) − ψ ′
q(x)

S′(x)
g(x) =

∫ x

0
ψq(z)(A − q)g(z)m′(z)dz,

Proof Denote

J (x) = ϕ′
q(x)

S′(x)
g(x) − g′(x)

S′(x)
ϕq(x), I (x) = g′(x)

S′(x)
ψq(x) − ψ ′

q(x)

S′(x)
g(x).

Since the functionsψq and ϕq are solutions of the differential equation (A−q)u = 0,
we find after differentiation that

J ′(x) = −ϕq(x)((A − q)g)(x)m′(x) = ϕq(x)

ψq(x)
I ′(x)

Therefore, an application of the fundamental theorem of calculus combined with the
assumed boundary classification of the diffusion yields the results. ��

Remark 2.3 We note that the point (3) in Assumption 2.1 implies that there exists
unique states x̃i , x̃s ∈ (0,∞) such that

(	i (A − r)gi )(x) � 0, x � x̃i ,

(
s(A − r)gs)(x) � 0, x � x̃s .
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Indeed, first notice that (
s(A− r)gs)(x) < 0 when x > zs . Then taking x < k < zs
we get

(
s(A − r)gs)(x) − (
s(A − r)gs)(k) =
∫ k

x
ϕr+λs (A − r)gs(z)m

′(z)dz.

By mean value theorem we have

(
s(A − r)gs)(x) = (
s(A − r)gs)(k) + (A − r)gs(ξ)

r + λs

(
ϕ′
r+λs

(k)

S′(k)
− ϕ′

r+λs
(x)

S′(x)

)

,

where ξ ∈ (x, k). Because the lower boundary is natural, and hence
ϕ′
r+λs

(x)
S′(x) → −∞

when x → 0, we see that taking the limit x → 0 yields (
s(A − r)gs)(x) → ∞.
Thus, by monotonicity the functional (
s(A−r)gs)(x)must have a finite unique root
x̃s > 0. Similar calculations show that x̃i is finite.

The assumption 2.1 suffice to show uniqueness of our solution in Sect. 3 and to
prove the verification theorem in Sect. 4, but we need to pose additional assumptions
for the existence of the optimal solution. These are collected below.

Assumption 2.4 Let gi , gs and x j be defined as in assumption 2.1 and the states x̃i , x̃s
as in remark 2.3. We assume that

(1) (A − r)gs(x) > (A − r)gi (x) for all R+ \ {x j },
(2) the states x̃i , x̃s have the order x̃i < x̃s ,
(3) the limits satisfy gi

ψr
(0+) < 0 and gs

ϕr
(∞) > 0.

In point (3) of assumption 2.4, we also allow that gi
ψr

(0+) = −∞ and gs
ϕr

(∞) = ∞.
These are the cases in many examples.

For f , g ∈ Lr
1, we define the functionals Hi and Hs as

Hi (g, f ; x) = λi
g(x)(	i f )(x) − f (x)(	i g)(x)

ψr+λi (x)
,

Hs(g, f ; x) = λs
g(x)(
s f )(x) − f (x)(
sg)(x)

ϕr+λs (x)
.

(2.4)

Lemma 2.5 Let g ∈ Lr
1 satisfy the points (1) and (2) of Assumption 2.1. Furthermore,

let ξr be r-harmonic. Then

d

dx
Hi (g, ξr ; x) = λi S′(x)

ψ2
r+λi

(x)
(	iξr )(x)(	i (A − r)g)(x),

d

dx
Hs(ξr , g; x) = λs S′(x)

ϕ2
r+λs

(x)
(
sξr )(x)(
s(A − r)g)(x).
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Proof We prove the first claim, the second can be proved similarly. Elementary
differentiation and a reorganization of the terms yield

λ−1
i ψ2

r+λi
(x)

d

dx
Hi (g, ξr ; x)

= (g′(x)ψr+λi (x) − g(x)ψ ′
r+λi

(x))(	iξr )(x)

− (ξ ′
r (x)ψr+λi (x) − ξr (x)ψ

′
r+λi

(x))(	i g)(x). (2.5)

We apply the second part of Lemma 2.2 to ξr and find that

λi (	iξr )(x) = ψ ′
r+λi

(x)

S′(x)
ξr (x) − ξ ′

r (x)

S′(x)
ψr+λi (x). (2.6)

By substituting this to the Eq. (2.5) and then first applying the second part of Lemma
2.2 to g and then the expression (2.6) again, the claim follows. ��

3 The Solution: Necessary Conditions

3.1 The Candidate Solution

We start the analysis of the problem (2.2) by deriving a candidate solution. To this
end, we recall the main problem (2.2) and the auxiliary problems I and S from Sect.
2. Denote the candidate value for the problem (2.2) as G and the candidate functions
for the auxiliary problems I and S as Gi

0 and G
s
0, respectively. We make the following

working assumptions:
(1) We assume that the candidate value functions satisfy the following dynamic
programming principle:

Gi
0(x) = min(gi (x),G(x)), (3.1)

Gs
0(x) = max(gs(x),G(x)), (3.2)

G(x) = Ex

[
e−r(Ui∧Us )

(
Gi

0(XUi )1{Ui<Us } + Gs
0(XUs )1{Us<Ui }

)]
(3.3)

here the random variables Us ∼ Exp(λs) and Ui ∼ Exp(λi ) are independent. In
auxiliary game I , the inf-player chooses between stopping immediately or waiting
whereas the sup-player can do nothing but wait; this situation is reflected by the Eq.
(3.1); the Eq. (3.2) has a similar interpretation in terms of auxiliary problem S. The
condition (3.3) is the expected present value of the next stopping opportunity, which
will be either for inf- or sup-player and present itself as a choice reflected by the
conditions (3.1) and (3.2). We point out that by the independence of Ui and Us , the
condition (3.3) can be written as

G(x) = λi

λi + λs
(λi + λs)(Rr+λi+λs G

i
0)(x) + λs

λi + λs
(λi + λs)(Rr+λi+λs G

s
0)(x).
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(2) By the time homogeneity of the stopping game, we assume that the continuation
region is the interval (yi , ys), for some constants yi and ys . Thus we can rewrite the
functions Gi

0 and Gs
0 as

Gi
0(x) =

{
G(x), x > yi ,

gi (x), x � yi ,
Gs

0(x) =
{
gs(x), x � ys,

G(x), x < ys .

(3) Furthermore, we assume that the function G is continuous. Then

G(yi ) = Gi
0(yi ) = gi (yi ),

G(ys) = Gs
0(ys) = gs(ys).

These assumptions are used to device the candidate solution for the problem; this is
the task of this section. The candidate solution is then verified to be the actual solution
in Sect. 4.

Since G(x) = Gi
0(x) = Gs

0(x) on (yi , ys) and

G(x) = Ex

[
e−r(Ui∧Us )

(
Gi

0(XUi )1{Ui<Us } + Gs
0(XUs )1{Us<Ui }

)]
,

we find that

λi

λi + λs
Gi

0(x) + λs

λi + λs
Gs

0(x)

= G(x)

= λi

λi + λs
(λi + λs)(Rr+λi+λs G

i
0)(x) + λs

λi + λs
(λi + λs)(Rr+λi+λs G

s
0)(x)

= Ex

[

e−r(Ui∧Us )

(
λi

λi + λs
Gi

0(XUi∧Us ) + λs

λi + λs
Gs

0(XUi∧Us )

)]

.

By [26, Lemma 2.1], the function x 
→ λi
λi+λs

Gi
0(x) + λs

λi+λs
Gs

0(x) is r -harmonic on

(yi .ys). Consequently, we have that G(x) = Gi
0(x) = Gs

0(x) = hr (x), where hr is
r -harmonic, on (yi , ys). Summarizing,

Gi
0(x) =

⎧
⎪⎨

⎪⎩

G(x), x � ys,

hr (x), x ∈ (yi , ys),

gi (x), x � yi ,

Gs
0(x) =

⎧
⎪⎨

⎪⎩

gs(x), x � ys,

hr (x), x ∈ (yi , ys),

G(x), x � yi .

We develop this representation further in the following lemma.

Lemma 3.1 The following representations hold:

G(x) =
⎧
⎨

⎩

λi (Rr+λi gi )(x) + gi (yi )−λi (Rr+λi gi )(yi )
ψr+λi (yi )

ψr+λi (x), x < yi ,

λs(Rr+λs gs)(x) + gs (ys )−λs (Rr+λs gs )(ys )
ϕr+λs (ys )

ϕr+λs (x), x > ys .
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Proof Let x < yi . Then by the conditions (3.3), (3.1) and (3.2), we find that

G(x) = Ex

[
e−rUi

gi (XUi )1{Ui<Us }1{Ui∧Us<τyi }
]

+ Ex

[
e−rUi

Gi
0(XUi )1{Ui<Us }1{Ui∧Us>τyi }

]

+ Ex

[
e−rUs

G(XUs )1{Us<Ui }1{Ui∧Us<τyi }
]

+ Ex

[
e−rUs

Gs
0(XUs )1{Us<Ui }1{Ui∧Us>τyi }

]
.

By Strong Markov property, we obtain

Ex

[
e−rUi

Gi
0(XUi )1{Ui<Us }1{Ui∧Us>τyi }

]

+ Ex

[
e−rUs

Gs
0(XUs )1{Us<Ui }1{Ui∧Us>τyi }

]

= Ex

[
e−rτyi EXτyi

[
e−r(Ui∧Us )

(
Gi

0(XUi )1{Ui<Us } + Gs
0(XUs )1{Us<Ui }

)]
1{Ui∧Us>τyi }

]

Thus,

G(x) = Ex

[
e−rUi

gi (XUi )1{Ui<Us }1{Ui∧Us<τyi }
]

+ Ex

[
e−rUs

G(XUs )1{Us<Ui<τyi }1{Ui∧Us<τyi }
]

+ Ex

[
e−rUs

G(XUs )1{Us<τyi <Ui }1{Ui∧Us<τyi }
]

+ Ex

[
e−rτyi G(Xτyi

)1{Ui∧Us>τyi }
]
.

Since

G(XUs ) = EXUs

[
e−rUi

gi (XUi )
]

on the event {Us < Ui < τyi },
G(XUs ) = EXUs

[
e−rτyi G(Xτyi

)
]

on the event {Us < τyi < Ui },

we find by another application of Strong Markov property, that

G(x) = E

[
e−rUi

gi (XUi )1{Ui<τyi }
]

+ Ex

[
e−rτyi G(Xτyi

)1{Ui>τyi }
]
.

Since G(Xτyi
) = G(yi ) = gi (yi ), we finally obtain

G(x) = Ex

[
e−rUi

gi (XUi )
]

− Ex

[
e−rUi

gi (XUi )1{Ui>τyi }
]

+ Ex

[
e−rτyi 1{Ui>τyi }

]
g(yi )

= λi (Rr+λi gi )(x) + gi (yi ) − λi (Rr+λi gi )(yi )

ψr+λi (yi )
ψr+λi (x).
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The case x > ys is proved similarly. ��
The next lemma provides necessary conditions for the optimality of the thresholds yi
and ys .

Lemma 3.2 Assume, that the condition(3.3) holds for all x ∈ R+. Then

Eyi

[
e−rUi

hr (XUi )1{XUi <yi }
]

= Eyi

[
e−rUi

gi (XUi )1{XUi <yi }
]
,

Eys

[
e−rUs

hr (XUs )1{XUs>ys }
]

= Eys

[
e−rUs

gs(XUs )1{XUs>ys }
]
,

which can be rewritten as
∫ yi

0
ψr+λi (z)gi (z)m

′(x)dz =
∫ yi

0
ψr+λi (z)hr (z)m

′(x)dz,
∫ ∞

ys
ϕr+λs (z)gs(z)m

′(x)dz =
∫ ∞

ys
ϕr+λs (z)hr (z)m

′(x)dz.

Proof Let x ∈ (yi , ys). Using Lemma 2.1 of [26], we find that

G(x) = hr (x) = λi

λi + λs
hr (x) + λs

λi + λs
hr (x)

= λi

λi + λs
(λi + λs)(Rr+λi+λs hr )(x) + λs

λi + λs
(λi + λs)(Rr+λi+λs hr )(x)

= Ex

[
e−r(Ui∧Us )

(
hr (XUi )1{Ui<Us } + hr (XUs )1{Us<Ui }

)

︸ ︷︷ ︸
:=Fr (XUi ,XUs )

]
.

This can be rewritten as

G(x) = Ex

[
Fr (XUi , XUs )1{Ui∧Us<τ(yi ,ys )}

]

+ Ex

[
Fr (XUi , XUs )1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]
(3.4)

+ Ex

[
Fr (XUi , XUs )1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τyi }

]
. (3.5)

Strong Markov property and [26, Lemma 2.1] yields

Ex

[
Fr (XUi , XUs )1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

+ Ex

[
Fr (XUi , XUs )1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τyi }

]

= Ex

[
e−rτysEXτys

[
Fr (XUi , XUs )

]
1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

+ Ex

[
e−rτyi EXτyi

[
Fr (XUi , XUs )

]
1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τyi }

]

= Ex

[
e−rτys hr (Xτys

)1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }
]

(3.6)
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+ Ex

[
e−rτyi hr (Xτyi

)1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τyi }
]
. (3.7)

Consider first the expected value (3.6). On the event {Ui ∧ Us > τ(yi ,ys ) = τys }, we
have, by Strong Markov property and Lemma 2.1 of [26], the following:

e−rτys hr (Xτys
) = e−rτys hr (Xτys

)
(
1{Us<ηys } + 1{ηys<Us }

)

= e−rτys
(
EXτys

[
e−rUs

hr (XUs )
]
1{Us<ηys } + hr (Xτys

)1{ηys<Us }
)

,

where ηys is the first return time to ys . Since hr (Xτys
) = hr (ys) = G(ys), we find that

Ex

[
e−rτys hr (Xτys

)1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }
]

= Ex

[
e−rτysEXτys

[
e−rUs

hr (XUs )
]
1{Us<ηys }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

+ Ex

[
e−rτys G(ys)1{ηys<Us }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]
.

For the equality (3.3) to hold, the equation

Ex

[
e−rτysEXτys

[
e−rUs

hr (XUs )
]
1{Us<ηys }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

+ Ex

[
e−rτys G(ys)1{ηys<Us }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

= Ex

[
e−rUi

Gi
0(XUi )1{Ui<Us }1{Ui∧Us>τ(yi ,ys )}1τ{(yi ,ys )=τys }

]
(3.8)

+ Ex

[
e−rUs

Gs
0(XUs )1{Us<Ui }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

= Ex

[
e−rτysEXτys

[
e−rUs

gs(XUs )
]
1{Us<ηys }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]

+ Ex

[
e−rτys G(ys)1{ηys<Us }1{Ui∧Us>τ(yi ,ys )}1{τ(yi ,ys )=τys }

]
(3.9)

should hold; here, the last equation is obtained by breaking down the expected values
(3.9) and (3.8) similarly to (3.4) and (3.5). This holds, if

EXτys

[
e−rUs

hr (XUs )1{XUs>ys }
]

= EXτys

[
e−rUs

gs(XUs )1{XUs>ys }
]
.

The necessary condition

EXτyi

[
e−rUi

hr (XUi )1{XUi <yi }
]

= EXτyi

[
e−rUi

gi (XUi )1{XUi <yi }
]
.

is obtained by analyzing the expected value (3.7) similarly.
To conclude the claimed integral representation, we find by applying the represen-

tation (2.1) to the function x 
→ hr (x)1{x�ys }, that

EXτys

[
e−rUs

hr (XUs )1{XUs>ys }
]

= B−1
r+λs

ψr+λs (ys)
∫ ∞

ys
ϕr+λs (y)hr (y)m

′(y)dy.
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By treating the other expectations similarly, we obtain the integral representations. ��
We write the necessary conditions given by Lemma 3.2 in a more convenient form.

First, write the harmonic function hr as hr (x) = Cψr (x) + Dϕr (x). Now, since
hr (yi ) = gi (yi ) and hr (ys) = gs(ys), we find by solving a pair of linear equations,
that

hr (x) = ϕr (yi )gs(ys) − ϕr (ys)gi (yi )

ϕr (yi )ψr (ys) − ϕr (ys)ψr (yi )
ψr (x) + gi (yi )ψr (ys) − gs(ys)ψr (yi )

ϕr (yi )ψr (ys) − ϕr (ys)ψr (yi )
ϕr (x).

(3.10)

By substituting (3.10) to the conditions of lemma 3.2 and reorganizing the terms, we
obtain

gs(ys) = Hi (ϕr , gi ; yi )
Hi (ϕr , ψr ; yi )ψr (ys) + Hi (gi , ψr ; yi )

Hi (ϕr , ψr ; yi )ϕr (ys),

gi (yi ) = Hs(gs, ϕr ; ys)
Hs(ψr , ϕr , ys)

ψr (yi ) + Hs(ψr , gs; ys)
Hs(ψr , ϕr ; ys)ϕr (yi ).

(3.11)

We can simplify the denominators of the coefficient terms. Indeed, since (A − (r +
λi ))ξr (x) = −λiξr (x) for r -harmonic ξ , we find using lemma 2.2, that

ξ ′
r (x)ψr+λi (x)

S′(x)
− ξr (x)ψ ′

r+λi
(x)

S′(x)
= −λi (	iξr )(x).

Thus,

Hi (ϕr , ψr ; x) =
(

ϕ′
r (x)ψr (x)

S′(x)
− ψ ′

r (x)ϕr (x)

S′(x)

)

= −Br .

By treating the term ψr (ys)
s(ϕr ; ys) − ϕr (ys)	s(ψr ; ys) similarly, we can rewrite
the necessary conditions (3.11) as

Hi (gi , ψr ; yi ) = Hs(ψr , gs; ys),
Hi (ϕr , gi ; yi ) = Hs(gs, ϕr ; ys). (3.12)

3.2 On Uniqueness of the Solution

The next proposition is our main result on the uniqueness of the solution to the pair
of necessary conditions given in lemma 3.2. To ease the presentation in the following,
we introduce a bit shorter notation

Hi,ϕ(x) = Hi (ϕr , gi ; x), Hi,ψ (x) = Hi (gi , ψr ; x),
Hs,ψ (x) = Hs(ψr , gs; x), Hs,ϕ(x) = Hs(gs, ϕr ; x).
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Proposition 3.3 Let Assumption 2.1 hold and assume that a solution (yi , ys) to the
pair of Lemma 3.2 exists. Then the solution is unique.

Proof Define a function K : (0, x̃i ] → (0, x̃i ]

K (x) = Ȟ−1
i,ϕ (Ĥs,ϕ(Ĥ−1

s,ψ (Ȟi,ψ (x)))), (3.13)

where ·̂ and ·̌ are restrictions to domains [x̃s,∞) and (0, x̃i ] respectively. We notice
that if a solution (yi , ys) to the pair exists, then yi must be fixed point of K . Because
the functions Hi and Hs are monotonic in their domains we get

K ′(x) =Ȟ−1′
i,ϕ (Ĥs,ϕ(Ĥ−1

s,ψ (Ȟi,ψ (x)))) · Ĥ ′
s,ϕ(Ĥ−1

s,ψ (Ȟi,ψ (x)))

·Ĥ−1′
s,ψ (Ȟi,ψ (x)) · Ȟ ′

i,ψ (x) > 0,

and hence K is increasing in its domain (0, x̃i ]. Now using the fixed point property
we have

K ′(yi ) = Ȟ−1′
i,ϕ (Ȟi,ϕ(yi )) · Ĥ ′

s,ϕ(ys) · Ĥ−1′
s,ψ (Ĥs,ψ (ys)) · Ȟ ′

i,ψ (yi )

= Ĥ ′
s,ϕ(ys)

Ĥ ′
s,ψ (ys)

Ȟ ′
i,ψ (yi )

Ȟ ′
i,ϕ(yi )

= (
sϕr )(ys)

(
sψr )(ys)

(	iψr )(yi )

(	iϕr )(yi )
<

ϕr (ys)

ϕr (yi )

ψr (yi )

ψr (ys)
< 1.

This means that whenever K intersects the diagonal of R+, the intersection is from
above. Hence, the uniqueness follows from continuity. ��

3.3 On Existence of the Solution

We proceed by analysing the solvability of the pair (3.12). By item (4) of Assumptions
2.1 and Lemma 2.5, we find that

H ′
i (ϕr , gi ; x) = −λi S′(x)

ψ2
r+λi

(x)
(	iϕr )(x)(	i (A − r)gi )(x) < 0, x < x̃i ,

H ′
i (gi , ψr ; x) = λi S′(x)

ψ2
r+λi

(x)
(	iψr )(x)(	i (A − r)gi )(x) > 0, x < x̃i .

(3.14)

We find similarly that

H ′
s(gs, ϕr ; x) > 0, x > x̃s,

H ′
s(ψr , gs; x) < 0, x > x̃s .

(3.15)

Next, we study the limiting properties of the functions appearing in (3.12). Regarding
the function Hi (ϕr , gi ; ·), by adding and subtracting the term (	i (A−r)gi ) and using
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lemma 2.2, we obtain

λi (	i gi )(x) = (	i (A − r)gi )(x) −
(
g′
i (x)

S′(x)
ψr+λi (x) − ψ ′

r+λi
(x)

S′(x)
gi (x)

)

.

By a similar computation, we find also that

λi (	iϕr )(x) = ψ ′
r+λi

(x)

S′(x)
ϕr (x) − ϕ′

r (x)

S′(x)
ψr+λi (x).

By substituting these expressions to Hi (ϕr , gi ; ·), simplifying, and using lemma 2.2
again, we observe that

Hi (ϕr , gi ; x) = ϕr (x)

ψr+λi (x)
(	i (A − r)gi )(x)

+
(

ϕ′
r (x)

S′(x)
gi (x) − g′

i (x)

S′(x)
ϕr (x)

)

= ϕr (x)

ψr+λi (x)
(	i (A − r)gi )(x) + (
(A − r)gi )(x). (3.16)

Assume that x < zi . Then the intermediate value theorem yields

Hi (ϕr , gi ; x)
= ϕr (x)

ψr+λi (x)

ψr+λi (ξx )

ψr (ξx )
(	(A − r)gi )(x) + (
(A − r)gi )(x)

= 1

ψr (ξx )

(

ψr (ξx )(
(A − r)gi )(x) + ψr+λi (ξx )

ψr+λi (x)
ϕr (x)(	(A − r)gi )(x)

)

,

where ξx ∈ (0, x). By continuity, we find by passing to the limit x → 0+ that

Hi (ϕr , gi ; 0+) = Br
(Rr (A − r)gi )

ψr
(0+) = −Br

gi
ψr

(0+).

By a similar analysis, we find that the limit

Hs(ψr , gs;∞) = −Br
gs
ϕr

(∞).

Consider next the function Hi (gi , ψr ; x). Since

λi (	iψr )(x) = ψ ′
r+λi

(x)

S′(x)
ψr (x) − ψ ′

r (x)

S′(x)
ψr+λi (x),
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we find using the Eq. (3.16) and lemma 2.2 that

Hi (gi , ψr ; x) = ψr (x)

ψr+λi (x)
(	i (A − r)gi )(x) + (	(A − r)gi )(x).

Assume that x < zi . Then the intermediate value theorem yields

ψr (x)

ψr+λi (x)
(	i (A − r)gi )(x) =

ψr+λi (ξx )

ψr+λi (x)

ψr (ξx )
ψr (x)︸ ︷︷ ︸
<1

(	(A − r)gi )(x).

Thus by continuity Hi (gi , ψr ; 0+) = 0. A similar analysis yields the limit
Hs(gs, ϕr ;∞) = 0.

Finally, by using remark 2.3 and the facts that ϕr is r -harmonic and zi < x̃i , we
find using lemma 2.2 that

Hi (ϕr , gi ; x̃i ) = gi (x̃i )(	i (A − qi )ϕr )(x̃i ) − ϕr (x̃i )(	i (A − qi )gi )(x̃i )

ψr+λi (x̃i )

= ψ ′
r (x̃i )

S′(x)
gi (x̃i ) − g′

i (x̃i )

S′(x)
ϕr (x̃i )

=
∫ ∞

x̃i
ϕr (y)(A − r)gi (y)m

′(y)dy < 0,

where qi = r + λi . By a similar analysis, we find that Hs(ψr , gs; x̃s) > 0. We
summarize these findings:

⎧
⎪⎨

⎪⎩

Hi (ϕr , gi ; 0+) = −Br
gi
ψr

(0+),

Hi (ϕr , gi ; x̃i ) < 0,

Hi (gi , ψr ; 0+) = 0,

⎧
⎪⎨

⎪⎩

Hs(ψr , gs;∞) = −Br
gs
ϕr

(∞),

Hs(ψr , gs; x̃s) > 0,

Hs(gs, ϕr ;∞) = 0.

(3.17)

Unfortunately, the assumptions in 2.1 are not enough to guarantee the existence
of a solution to the pair of equations in 3.2 and more analysis is needed. The next
proposition is our main result on the solvability of the necessary conditions.

Proposition 3.4 Under the assumptions 2.1 and 2.4, the pair of necessary conditions
given in Lemma 3.2, has a unique solution.

Proof Define the function K : (0, x̃i ] → (0, x̃i ] as in (3.13). We first observe that the
proven limiting properties (3.17) and monotonicity properties (3.14) together with the
conditions

Hi (gi , ψr ; x̃i ) < Hs(ψr , gs; x̃s),
Hi (ϕr , gi ; x̃i ) < Hs(gs, ϕr ; x̃s) (3.18)
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guarantee that the function K is well-defined. Using the representation (3.16), we see
that

Hi (gi , ψr ; x̃i ) = (	(A − r)gi )(x̃i ),

Hs(ψr , gs; x̃s) = (	(A − r)gs)(x̃s).

After handling the other inequality similarly, we see that the condition (3.18) is
equivalent to

(	(A − r)gi ))(x̃i ) < (	(A − r)gs))(x̃s),

(
(A − r)gi ))(x̃i ) < (
(A − r)gs))(x̃s).
(3.19)

The assumptions in 2.1 guarantee that x̃s < zs , x̃i > zi and zi < zs . Thus, (1)
implies that zi < x̃i < x̃s < zs and consequently by our assumptions

Hi (gi , ψr ; x̃i ) − Hs(ψr , gs; x̃s) =
∫ x̃i

0

[
(A − r)gi (z) − (A − r)gs(z)

]
ψr (z)m

′(z)dz

−
∫ x̃s

x̃i
(A − r)gs(z)ψr (z)m

′(z)dz < 0.

The other inequality in (3.19) is proved similarly.
It follows from above calculations that the function K is well-defined and from

proof of proposition 3.3 that it is increasing. Furthermore, K is a mapping from
interval (0, x̃i ] to its open subset. Thus, K must have a fixed point which we denote by
yi . Then the pair (yi , ys), where ys = H−1

s,ψ (Hi,ψ (yi )), is a solution to the equations
given in lemma 3.2. The uniqueness follows from proposition 3.3. ��

The assumption (1) and (3) in proposition 3.4 are satisfied in most situations and
are easily verified. However, the assumption (2) requires more analysis in most cases.
Fortunately, it is very easy to check it at least numerically in applications, because the
states x̃i , x̃s are known to be unique zeroes of the functions (	i (A − r)gi )(x) and
(
s(A − r)gs)(x).

3.4 On Non-differentiable Payoffs

Although our analysis does not cover non-differentiable payoff functions, its conclu-
sions can be extended fairly easily to some important cases. As an example, assume
that the payoff functions are gi (x) = (x − ci )+ and gs(x) = (x − cs)+, where ci < cs
and let X be a diffusion satisfying the basic assumptions of Sect. 2. This payoff struc-
ture can be viewed as a callable option, see, e.g., [19]. Recall the optimality conditions
(3.12):

Hi (gi , ψr ; yi ) = Hs(ψr , gs; ys),
Hi (ϕr , gi ; yi ) = Hs(gs, ϕr ; ys).
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We observe that the left hand side of both of these equations is zero on (0, ci ).
Assume first that the functions on the right hand side of the conditions (3.12) have

a common zero y0. Then the following must hold

gs(y0)
∫ ∞

y0
ϕr+λs (z)ψr (z)m

′(z)dz = ψr (y0)
∫ ∞

y0
ϕr+λs (z)gs(z)m

′(z)dz

gs(y0)
∫ ∞

y0
ϕr+λs (z)ϕr (z)m

′(z)dz = ϕr (y0)
∫ ∞

y0
ϕr+λs (z)gs(z)m

′(z)dz
(3.20)

First, we observe that if gs(y0) = 0, then

ψr (y0)
∫ ∞

y0
ϕr+λs (z)gs(z)m

′(z)dz = ϕr (y0)
∫ ∞

y0
ϕr+λs (z)gs(z)m

′(z)dz = 0,

which clearly cannot hold. Assume now that gs(y0) > 0. Then by dividing the
conditions (3.20) sidewise, some further manipulations yield

∫ ∞

y0
ϕr+λs (z)ϕr (z)m

′(z)dz = ϕr (y0)

ψr (y0)

∫ ∞

y0
ϕr+λs (z)ψr (z)m

′(z)dz

�
∫ ∞

y0
ϕr+λs (z)

ϕr (z)

ψr (z)
ψr (z)m

′(z)dz

=
∫ ∞

y0
ϕr+λs (z)ϕr (z)m

′(z)dz;

here, we have used the fact that the function ϕr
ψr

is decreasing. Since all functions in

these expressions are positive, we conclude that the ratio ϕr
ψr

must in fact be constant
over the interval (y0,∞), something which is clearly not true. Thus, we can safely
consider the case that the functions on the right hand side of the conditions (3.12) do
not have a common zero. Then neither yi nor ys can be in the interval (0, ci ). Thus
we can restrict the analysis of the optimality conditions to the interval (ci ,∞). It is
straightforward to see that in this case the functions Hi behave as in our main result.
The functions Hs also behave similarly but the turning point is at cs . Thus, our main
result can be applied to solve the problem after locating the points x̃i and cs .

4 The Solution: Sufficient Conditions

The purpose of this section is to prove the following theorem. This is our main results
on the solution of the considered stopping game.
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Theorem 4.1 Let the assumptions 2.1 hold and assume that thresholds yi and ys are
unique solution to

∫ yi

0
ψr+λi (z)gi (z)m

′(z)dz =
∫ yi

0
ψr+λi (z)hr (z)m

′(z)dz,
∫ ∞

ys
ϕr+λs (z)gs(z)m

′(z)dz =
∫ ∞

ys
ϕr+λs (z)hr (z)m

′(z)dz,
(4.1)

where

hr (x) = ϕr (yi )gs(ys) − ϕr (ys)gi (yi )

ϕr (yi )ψr (ys) − ϕr (ys)ψr (yi )
ψr (x) + gi (yi )ψr (ys) − gs(ys)ψr (yi )

ϕr (yi )ψr (ys) − ϕr (ys)ψr (yi )
ϕr (x).

Then the value function (2.2) reads as

V (x) =

⎧
⎪⎪⎨

⎪⎪⎩

λi (Rr+λi gi )(x) + gi (yi )−λi (Rr+λi gi )(yi )
ψr+λi (yi )

ψr+λi (x), x < yi ,

hr (x), x ∈ (yi , ys),

λs(Rr+λs gs)(x) + gs (ys )−λs (Rr+λs gs )(ys )
ϕr+λs (ys )

ϕr+λs (x), x > ys .

Moreover, the game has a Nash equilibrium constituted by the stopping rules

τ ∗ = inf{Tns > 0 : XTns � ys}
σ ∗ = inf{Tni > 0 : XTni

� yi }.

Toprove this result,wefirst introduce somenotation.Define thefiltrations
(Gni

)
ni�0

and (Gns )ns�0 as Gni = FTni
and Gns = FTns , respectively. Moreover, define the sets

of admissible stopping times with respect to the G-filtrations:

N s = {
Ns � 1 : Ns is an (Gns ) − stopping time

}

N i =
{
Ni � 1 : Ni is an(Gni ) − stopping time

}
.

Then the function V defined in (2.2) can be written as

V (x) = sup
Ns∈N s

inf
Ni∈N i

Ex

[
e−r(TNi ∧TNs )R(TNs , TNi )

]
.

We point out that the G-filtrations were defined only for the case where immediate
stopping is not allowed. This is because we do the verification only for the main
problem and not for the auxiliary problems. However, similar techniques could be
employed to do the verification also for functions Gi

0 and Gs
0 defined via (3.1) and

(3.2), where the function G is given by expression for V in the claim of the main
theorem. We omit the details.

The proof of the main theorem requires uniform integrability. This is provided by
the following lemma.
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Lemma 4.2 For any fixed stopping rule TNi , the process

Ss(Ni , ·) : ns 
→ e−r(TNi ∧Tns )
(
gi (XTNi )1{TNi <Tns } + Gs

0(XTns )1{Tns <TNi }
)

, ns = 1, 2, . . . ,

is a uniformly integrable supermartingale with respect to (Gns )ns�0.
For any fixed stopping rule TNs , the process

Si (·, Ns) : ni 
→ e−r(Tni ∧TNs )
(
Gi

0(XTni
)1{Tni <TNs } + gs(XTNs )1{TNs <Tni }

)
, ni = 1, 2, . . . ,

is a uniformly integrable submartingale with respect to
(Gni

)
ni�0.

Proof We prove the claim for Ss , the process Si is treated similarly. Since Gs
0 � G,

Strong Markov property yields

e−r(TNi ∧Tns )
(
gi (XTNi )1{TNi <Tns } + Gs

0(XTns )1{Tns<TNi }
)

� e−r(TNi ∧Tns )
(
gi (XTNi )1{TNi <Tns } + G(XTns )1{Tns<TNi }

)

= e−r(TNi ∧Tns )EXTns

[
e−rUs

Gs
0(XUs )1{Tns+Us<TNi }

]
1{Tns<TNi }

+ e−r(TNi ∧Tns )EXTns

[
e−r(TNi −Tns )gi (XTNi )1{Tns<TNi <Tns+Us }

]
1{Tns<TNi }

+ e−r(TNi ∧Tns )gi (XT i
N
)1{Tns>TNi }

= Ex

[
e−r(TNi ∧Tn+1s )

(
gi (XTNi )1{TNi <Tn+1s } + Gs

0(XTn+1s )1{Tn+1s<TNi }
)]

.

To prove uniform integrability, we show that

sup
ns

Ex [Ss(Ni , ns)] < ∞, and (4.2)

sup
ns

Ex [Ss(Ni , ns)1A] → 0, when Px (A) → 0, (4.3)

for all stopping rules TNi ; these conditions are necessary and sufficient for uniform
integrability. Fix TNi and ns . Define the measure

P
∗(A) = Ex

[
Ls(Ni , ns)1A

]
, A ∈ F , where

Ls(Ni , ns) = e−r(TNi ∧Tns )
ψr (XTNi ∧Tns )

ψr (x)
.
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Let A ∈ F . Since
Gs
0(x)

ψr (x)
� gs (x̂ s )

ψr (x̂ s )
for all x , we find that

Ex [Ss(Ni , ns)1A]
ψr (x)

= Ex

[
gi (XTNi )

ψr (XTNi )
1{TNi <Tns }1AL

s(Ni , ns)

]

+ Ex

[
Gs

0(XTns )

ψr (XTns )
1{TNi <Tns }1AL

s(Ni , ns)

]

� max

(
gi (x̂ i )

ψr (x̂ i )
,
gs(x̂ s)

ψr (x̂ s)

)

P
∗(A) < ∞.

(4.4)

The property (4.2) follows from (4.4) by setting A = 
.We observes thatPx (A) → 0,
whenever P∗

x (A) → 0. Thus the property (4.3) follows from (4.4). ��

Proof of Theorem 4.1 The task is to show that V = G; the claimed Nash equilibrium
follows then from the construction of G. To this end, recall the definition of the value
function V from (2.2). Obviously, V (x) � V (x) for all x . To prove that V = G, it
is sufficient to show that V (x) � G(x) � V (x) for all x ; we prove the first of these
inequalities, the second is proved similarly. Since gs � Gs

0, we find using lemma 4.2
and optional sampling, that

Ex

[
e−r(TNs∧TNi )

(
gi (XTNi )1{TNi <TNs } + gs(XTNs )1{TNs<TNi }

)]

� Ex

[
e−r(TNs∧TNi )

(
gi (XTNi )1{TNi <TNs } + Gs

0(XTNs )1{TNs<TNi }
)]

� Ex

[
e−r(Us∧TNi )

(
gi (XTNi )1{TNi <Us } + Gs

0(XUs )1{Us<TNi }
)]

= λs(Rr+λs G
s
0)(x)Px (U

s < TNi ) + Ex

[
e−rTNi gi (XTNi )1{TNi <Us }

]
,

for arbitrary stopping rules TNi and TNs ; here, Us is an independent Exp(λs)-
distributed (Gns )-stopping time and the last equality follows from the independence
ofUs and the stopping times TNi . The right-hand side is independent of TNs , thus we
obtain

sup
TNs

Ex

[
e−r(TNs∧TNi )

(
gi (XTNi )1{TNi <TNs } + gs(XTNs )1{TNs<TNi }

)]

� λs(Rr+λs G
s
0)(x)Px (U

s < TNi ) + Ex

[
e−rTNi gi (XTNi )1{TNi <Us }

]
,

and, consequently,

V (x) � inf
TNi

(
λs(Rr+λs G

s
0)(x)Px (U

s < TNi ) + Ex

[
e−rTNi gi (XTNi )1{TNi <Us }

])
.

123



35 Page 22 of 32 Applied Mathematics & Optimization (2023) 87 :35

For the inf-player, consider the stopping rule Ñ i ="Stop at the next inf-players Poisson
arrival if the state of X at the time is below the threshold yi . Otherwise, wait". Then

V (x) � Ex

[
e−rUs

Gs
0(XUs )1{Us<TÑi } + e−rTÑi gi (XTÑi )1{Us>TÑi }

]

=
∞∑

k=1

Ex

[
e−rUs

Gs
0(XUs )1{Us<Tk } + e−rTk gi (XTk )1{Us>Tk }

∣
∣
∣Ñ i = k

]
Px (Ñ

i = k).

(4.5)

Since gi (XTk ) = Gi
0(XTk ) conditional to {Ñ i = k}, we find that

Ex

[
e−rUs

Gs
0(XUs )1{Us<Tk } + e−rTk gi (XTk )1{Us>Tk }

∣
∣
∣Ñ i = k

]

= Ex

[
k−1∑

n=1

e−rUs
Gs

0(XUs )1{Tn−1<Us<Tn}
∣
∣
∣Ñ i = k

]

+ Ex

[
e−rTk−1EXTk−1

[
e−r(Ui∧Us )

(
Gi

0(XUi )1{Ui<Us } + Gs
0(XUs )1{Us<Ui }

)]
1{Us>Tk−1} |

Ñ i = k
]

= Ex

[
k−1∑

n=1

e−rUs
Gs

0(XUs )1{Tn−1<Us<Tn}
∣
∣
∣Ñ i = k

]
+ Ex

[
e−rTk−1G(XTk−1 )1{Us>Tk−1} |

Ñ i = k
]
.

Strong Markov property yields

Ex

[
k−1∑

n=1

e−rUs
Gs

0(XUs )1{Tn−1<Us<Tn}
∣
∣
∣Ñ i = k

]

= Ex

[
k−1∑

n=1

e−rTn−1EXTn−1

[
e−rUs

Gs
0(XUs )

]
1{Tn−1<Us<Tn}

∣
∣
∣Ñ i = k

]
.

Finally, since, conditional to {Ñi = k},

e−rTn−1EXTn−1

[
e−rUs

Gs
0(XUs )

]
= e−rTn−1G(XTn−1) = G(x)

on the event {Tn−1 < Us < Tn}, n = 1, . . . , k − 1, and

e−rTk−1G(XTk−1) = G(x)

on the event {Us > Tk−1}, the expression (4.5) can be written as V (x) � G(x). Thus
V (x) = G(x) and the proof is complete. ��
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5 Properties of the Solution

5.1 Asymptotics of �i and �s

A similar stopping game, where both of the players are allowed to stop without any
restrictions is studied in [2]. In that case, we know that under the assumption 2.1
complemented by the assumption gi � gs , the optimal stopping thresholds (xi , xs)
are the unique solution to the pair of equations

(	(A − r)gi )(xi ) = (	(A − r)gs)(xs),

(
(A − r)gi )(xi ) = (
(A − r)gs)(xs).
(5.1)

It seems reasonable this solution should coincide with ours when both of the informa-
tion rates λi and λs tend to infinity as in that case stopping opportunities appear more
frequently for both of the players. We show after some auxiliary calculations that this
is indeed the case.

The pair of equations can be represented as

− ψr (yi )

ψr+λi (yi )
(	i (A − r)gi )(yi ) + (	(A − r)gi )(yi )

= ψr (ys)

ϕr+λs (ys)
(
s(A − r)gs)(ys) + (	(A − r)gs)(ys),

ϕr (yi )

ψr+λi (yi )
(	i (A − r)gi )(yi ) + (
(A − r)gi )(yi )

= − ϕr (ys)

ϕr+λs (ys)
(
s(A − r)gs)(ys) + (
(A − r)gs)(ys).

(5.2)

Furthermore, for all s > 0, we have

Ex [e−sτz | τz < ∞] =

⎧
⎪⎨

⎪⎩

ψs(x)

ψs(z)
, x � z

ϕs(x)

ϕs(z)
, x > z,

(5.3)

where τz = inf{t � 0 | Xt = z}. Therefore, we find that for z < x < y

lim
s→∞

ψs(x)

ψs(z)
= 0, lim

s→∞
ϕs(y)

ϕs(x)
= 0,

and, consequently by monotone convergence, that

(	i (A − r)gi )(yi )

ψr+λi (yi )
=
∫ yi

0

ψr+λi (y)

ψr+λi (yi )
(A − r)gi (y)m

′(y)dy λi→∞−−−−→ 0,

(
i (A − r)gs)(ys)

ϕr+λi (ys)
=
∫ ∞

ys

ϕr+λs (y)

ϕr+λs (ys)
(A − r)gs(y)m

′(y)dy λs→∞−−−−→ 0.
(5.4)
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Table 1 The asymptotics of the optimal thresholds

λs λs → 0 λs → ∞
λi This study − −
λi → 0 Lempa 2012 No interventions Alvarez 2001

λi → ∞ − − Alvarez 2008

We can now prove the following convergence result.

Proposition 5.1 Let Kλ(x) be as in (3.13) and define a function k : (0, zi ] → (0, zi ]
as [see (5.1)]

k(x) = 
−1
(A−r)gi

(
(A−r)gs (	
−1
(A−r)gs

(	(A−r)gi (x)))).

Then the unique fixed point yi of Kλ converges to the unique fixed point xi of k as λ

tends to infinity.

Proof From the representation of the pair of Eqs. (5.2), (5.4) and monotonicity we see
that

lim
λ→∞ Kλ(x)

λ→∞−−−→ k(x).

The claim follows now by noticing that k(x) − x attains both negative and positive
values (this follows essentially from point (1) in Assumption 2.4, see [2]). ��

In the case thatλi → 0, i.e. in the absenceof competition, the threshold y∗
s converges

to the threshold of an stopping problem presented in [26]. And further, if then we let
λs → ∞ the threshold coincides with the threshold in [1], see [26], proposition 2.6.
These asymptotic results are collected in Table 1.

5.2 Consequences of the Asymmetry

Interesting feature of the anti-symmetry is that when one of the rates, for example λs ,
stays fixed, and we increase λi , both of the thresholds decrease. To see this note that
yi ∈ (0, x̃i ) and also that by (5.3) for z < x < y we have

ψr+λ(z)

ψr+λ(x)
� ψr (z)

ψr (x)
,

ϕr+λ(y)

ϕr+λ(x)
� ϕr (y)

ϕr (x)
.

Hence, assuming λ1 < λ2 we have that H2(gi , ψr ; yi ) � H1(gi , ψr ; yi ) and
H2(ϕr , gi ; yi ) � H1(ϕr , gi ; yi ).

We recall the definition of K and write the dependency on λi explicitly

K (x, λi ) = Ȟ−1
i,ϕ (Ĥs,ϕ(Ĥ−1

s,ψ (Ȟi,ψ (x, λi ))), λi ). (5.5)
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Taking the derivative with respect to λi yields

∂K

∂λi
= ∂ Ȟ−1

i,ϕ

∂λi
+ ∂ Ĥs,ϕ

∂ Ĥ−1
s,ψ

∂ Ĥ−1
s,ψ

∂ Ȟi,ψ

∂ Ȟi,ψ

∂λi
< 0.

Hence, K is decreasing in λi . Next, suppose that y1 is a fixed point of K when λi = λ1
and assume that λ1 < λ2. Then

y1 = K (y1, λ1) > K (y1, λ2),

and consequently y1 > y2, as K ′(y1, λ1) < 1 by proof of proposition 3.3. Similarly,
we can show that ys decreases as function of λi .

This observation has an intuitive explanation. If the information rate λi of the inf-
player increases he should wait longer (in the sense that yi decreases) as he gets more
frequent opportunities to stop, and hence, is not affected as much by the uncertainty
of the underlying. On the other hand, as the rate for the inf-player increases, the
sup-player wants to stop sooner (in the sense that ys decreases). This is because the
inf-player is now less likely to miss good opportunities to stop and the sup-player has
to react accordingly.

6 Illustrations

6.1 Geometric BrownianMotion with Smooth Payoff

In this illustration we compare the properties of our general findings with the usual
stopping game where the players are allowed to stop without restrictions. Thus, we
follow [2] and consider a stopping game given by

R(τ, σ ) = ((Rr f )(Xτ ) − cs)1{τ<σ } + ((Rr f )(Xσ ) − ci )1{τ>σ },

where cs > ci > 0 are constant measuring the sunk costs, f (x) = xθ is a profit flow
with 0 < θ < 1, and the underlying diffusion Xt is a geometric Brownian motion.

We remark as in [2] that in this case the buyer always gets the expected cumulative
present value (Rr f )(x), and hence the only factor that depends on the timing of the
decision is the cost which the buyer pays (and the seller receives) at exercise. Thus,
the game can be seen as the valuation of an investment which guarantees the buyer a
permanent flow of revenues from the exercise date up to an arbitrarily distant future
at a cost which is endogenously determined from the game.

Remark 6.1 We point out that by a similar analysis, we could study the linear payoff
structure gi (x) = x − ci and gs(x) = x − cs , where 0 < ci < cs . However, we want
to compare our results to those of [2] and, therefore, present the case of cumulative
payoffs.
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In this framework, the infinitesimal generator of the diffusion Xt reads as

A = 1

2
σ 2x2

d2

dx2
+ μx

d

dx
,

whereμ ∈ R+ and σ ∈ R+ are given constants. We readily verify that the assumption
2.1 are satisfied. Furthermore, the scale density and the density of the speed measure
read as

S′(x) = x− 2μ
σ2 , m′(x) = 2

σ 2 x
2μ
σ2

−2
.

Denote

βλ = 1

2
− μ

σ 2 +
√(

1

2
− μ

σ 2

)2

+ 2(r + λ)

σ 2 > 1,

αλ = 1

2
− μ

σ 2 −
√(

1

2
− μ

σ 2

)2

+ 2(r + λ)

σ 2 > 0.

Then the minimal r -excessive functions for X read as

ψr (x) = xβ0 , ϕr (x) = xα0 , ψr+λ(x) = xβλ, ϕr+λ(x) = xαλ .

It is worth to emphasise that βλ > 1 > θ > 0 > αλ, so that the conclusion in remark
2.3 holds.

The resolvent can be shown to be

(Rr f )(x) = xθ

r − θμ − 1
2σ

2θ(θ − 1)
.

Noting that (β0 − θ)(θ −α0) = 2(r − θμ− 1
2σ

2θ(θ − 1))/σ 2, we find the alternative
representation

(Rr f )(x) = 2

σ 2

xθ

(β0 − θ)(θ − α0)
.

For notional convenience, we do the calculations in the symmetric case λ = λi =
λs . Towrite down the pair of equations (4.1), we first calculate the auxiliary functionals

(	iψr )(x) = 2

σ 2

1

βλ − α0
xβλ−α0 , (	iϕr )(x) = 2

σ 2

1

βλ − β0
xβλ−β0 ,

(
sψr )(x) = − 2

σ 2

1

αλ − α0
xαλ−α0 , (
sϕr )(x) = − 2

σ 2

1

αλ − β0
xαλ−β0 ,
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Moreover,

(	i gi )(x) =
(

2

σ 2

)2 1

(β0 − θ)(θ − α0)(θ − αλ)
xθ−αλ + 2

σ 2

ci
αλ

x−αλ,

(
sgs)(x) = −
(

2

σ 2

)2 1

(β0 − θ)(θ − α0)(θ − βλ)
xθ−βλ − 2

σ 2

cs
βλ

x−βλ .

Noting that αλ −β0 = α0 −βλ and using the above expressions, the pair of equations
(4.1) read as

2

σ 2

xθ−α0

(β0 − θ)(θ − α0)

[
1

βλ − α0
− 1

θ − αλ

]

− x−α0ci

[
1

αλ

+ 1

βλ − α0

]

= 2

σ 2

yθ−α0

(β0 − θ)(θ − α0)

[
1

αλ − α0
− 1

θ − βλ

]

− y−α0cs

[
1

βλ

+ 1

αλ − α0

]

,

2

σ 2

xθ−β0

(β0 − θ)(θ − α0)

[
1

βλ − β0
− 1

θ − αλ

]

− x−β0ci

[
1

αλ

+ 1

βλ − β0

]

= 2

σ 2

yθ−β0

(β0 − θ)(θ − α0)

[
1

αλ − β0
− 1

θ − βλ

]

− y−β0cs

[
1

βλ

+ 1

αλ − β0

]

.

Unfortunately, it seems to be impossible to solve the pair explicitly and thus we
illustrate the results numerically.

Next we analyse the assumptions in 2.4. The item (1) clearly holds and regarding
item (2) we find that

(	i (A − r)gi )(x) = 2

σ 2

∫ x

0
zβλ(ci − zθ )z

2μ
σ2

−2dz = 2

σ 2

(

− rci
αλ

x−αλ − 1

θ − αλ

xθ−αλ

)

,

(
s(A − r)gs)(x) = 2

σ 2

∫ ∞

x
zαλ(ci − zθ )z

2μ
σ2

−2dz = 2

σ 2

(
rci
βλ

x−βλ + 1

θ − βλ

xθ−βλ

)

.

Hence,

x̃θ
i = rci

(

1 − θ

αλ

)

, x̃θ
s = rcs

(

1 − θ

βλ

)

,

and consequently,

x̃i − x̃s < 0 ⇐⇒ (ci − cs) + θ

(
cs
βλ

− ci
αλ

)

< 0.

This demonstrates the interplay between the payoffs and the information rates and also
highlights that our assumptions on the payoff functions are not enough to guarantee
the ordering x̃i < x̃s automatically.

To illustrate the results, we choose the parameters μ = 1/2, σ = 1, r = 9/2, ci =
1, cs = 4/3. Then in the symmetric case we find, as expected, that the optimal
thresholds converge to the ones in the unconstrained case [2], as λ → ∞, see Fig. 1.
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Fig. 1 The optimal stopping thresholds in the symmetric case as functions of λ. The dashed lines are the
thresholds in the unconstrained case [2]

In the non-symmetric case, we find that, if the information rate λs is fixed for the
sup-player, both thresholds decrease as the function of λi , see Fig. 2. Interestingly, at
least in our numeric examples, increasing volatility does not necessarily expand the
continuation region (by increasing ys and decreasing yi ). This is in contrary to the
findings in [2] for the standard stopping game.

Finally, the value function of the game is shown in Fig. 3.

6.2 Mean Reverting Dynamics

To further expand the first example, we consider different diffusion dynamics under
similar payoff structure.We assume that the diffusion X has the infinitesimal generator

A = 1

2
σ 2x2

d2

dx2
+ μx(1 − βx)

d

dx
,

where μ > 0 is a constant, β > 0 is the degree of mean-reversion and σ > 0 is the
volatility coefficient. This process is often called Verhulst-Pearl diffusion. Because
the payoffs are chosen similarly as in the first example to be g j (x) = (Rr f )(x) − c j ,
where j = i, s, ci < cs , and f (x) = x , the assumption 2.1 are again satisfied. The
scale density and the density of the speed measure read as

S′(x) = x− 2μ
σ2 e

2μγ

σ2
x
, m′(x) = 2

σ 2 x
2μ
σ2

−2e− 2μγ

σ2
x
,

and the minimal r -excessive functions are (see [6], p. 202)
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Fig. 2 Non-symmetric case with fixed λs = 100 and λi varying. The dashed lines are the thresholds in the
unconstrained case [2]

Fig. 3 Value function for the constrained game
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Table 2 The optimal stopping
thresholds in the constrained
case for different values of the
intensity parameter. The optimal
thresholds in the unconstrained
case [2] are in this case
xi = 0.36 and xs = 2.80

λ 10 30 80

yi 0.39 0.38 0.37

ys 2.61 2.69 2.73

ϕr (x) = xαU

(

α, 1 + α − β,
2μγ

σ 2 x

)

, ψr (x) = xαL

(

−α, α − β,
2μγ

σ 2 x

)

,

where U is a confluent hypergeometric function, L is the generalized Laguerre
polynomial L(a, b, z) = Lb

a(z) and

β = 1

2
− μ

σ 2 −
√(

1

2
− μ

σ 2

)2

+ 2r

σ 2 ,

α = 1

2
− μ

σ 2 +
√(

1

2
− μ

σ 2

)2

+ 2r

σ 2 .

Due to the complicated nature of theminimal r -excessive functions in this example, the
functionals	h and
h, where h isψr , ϕr or (A−r)g j ( j = i, s), cannot be calculated
explicitly. Consequently, the pair of equations (4.1) for the optimal thresholds cannot
be simplified from their original integral forms in any helpful way, and are thus left
unstated.

Regarding the assumptions in 2.4 the first one is again satisfied. Unfortunately,
again due to the complicated forms of ψr and ϕr , the second assumption has to be
verified numerically in each case. The results are illustrated numerically in Table 2with
the parameters σ = 0.3, r = 0.08, γ = 0.05, ci = 10.0, cs = 20.0 and λ = λi = λs .
These values suggest that the optimal stopping thresholds converge to the thresholds
of the unconstrained case as the the intensity λ increases. This is in line with our
general result.
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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