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Abstract
The purpose of this paper is to provide a systematic discussion of a generalized
barycenter based on a variant of unbalanced optimal transport (UOT) that defines
a distance between general non-negative, finitely supported measures by allowing for
mass creation and destruction modeled by some cost parameter. They are denoted
as Kantorovich–Rubinstein (KR) barycenter and distance. In particular, we detail the
influence of the cost parameter to structural properties of the KR barycenter and the
KR distance. For the latter we highlight a closed form solution on ultra-metric trees.
The support of such KR barycenters of finitely supported measures turns out to be
finite in general and its structure to be explicitly specified by the support of the input
measures. Additionally, we prove the existence of sparse KR barycenters and discuss
potential computational approaches. The performance of the KR barycenter is com-
pared to the OT barycenter on a multitude of synthetic datasets. We also consider
barycenters based on the recently introduced Gaussian Hellinger–Kantorovich and
Wasserstein–Fisher–Rao distances.
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1 Introduction

Over the past decade, optimal transport (OT) based concepts for data analysis (for a
thorough treatment of the mathematical foundations of optimal transport see e.g. [59,
60, 72]) have seen increasing popularity. This is mainly due to the fact that OT based
methods respect important features of the data’s geometric structure. Furthermore,
noteworthy advances have been achieved in various areas, such as optimisation [7,
32, 74], machine learning [24, 56, 75], computer vision [25, 66, 69] and statistical
inference [34, 54, 67], among others. This methodological and computational progress
recently also paved the way to novel areas of applications including genetics [20, 62]
and cell biology [29, 39, 70, 73], to cite but a few. Of particular importance from a data
analysis point of view are extensions to compare more than twomeasures, a prominent
proposal being the Fréchet mean [22], in the present context known as Wasserstein
barycenter [1]. Wasserstein barycenters allow for a notion of average on the space of
probability measures, which is well-adapted to the geometry of the data [3, 4]. With
recent progress on their computation [9, 12, 19, 28, 36, 41] they establish themselves
even further as a promising tool in many fields of data analysis, such as texture mixing
[58], distributional clustering [76], histogram regression [10], domain adaptation [51]
and unsupervised learning [63], among others.

However, a well known drawback of the Wasserstein distance and its barycen-
ters in various applications is their limitation to measures with equal total mass. In
fact, in many real world instances the difference in total mass intensity is of crucial
importance. Employing vanilla Wasserstein based tools on general positive measures
necessitates the usage of a normalisation procedure to enforce mass equality between
the measures. This approach is, by design, oblivious to the mass differences between
the original measures and can limit its use in applications. Exemplary, we mention
that normalisation destroys stoichiometric features in the analysis of protein inter-
action and pathways as pointed out in Tameling et al [70]. Overall, this might lead
to incorrect conclusions on specific applications. An illustrative example is given in
Fig. 1.

1.1 PriorWork

The limitation of OT based concepts dealing only with measures of equal total mass
has opened a wealth of approaches to account for more general measures. As an early
proposal of this idea, the partial OT formulation [11, 21] suggests to fix the total
mass of the OT plan in advance, while relaxing the marginal constraints. Comparably
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Fig. 1 (Unbalanced)OTbetween twomeasures (support in blue and brown, respectively)withweights equal
to one at each support point. Top-Left: OT plan (red) between normalised versions of the twomeasures. Rest:
UOT plans (red/purple) between non-normalised measures. From top-left to bottom-right C is decreasing.
The edges, which have been removed most recently due to the reduction of C , are shown in green. Edges
which have been added to the UOT graph due to the most recent reduction of C are marked in purple (Color
figure online)

more recent are entropy transport formulations1. This general framework removes the
marginal constraints and instead uses a divergence functional to measure the devia-
tion between the transport marginals and the input measures. The entropy transport
framework encompasses the Hellinger–Kantorovich distance [15, 45], also known as
Wasserstein–Fisher–Rao distance [14] and the Gaussian Hellinger–Kantorovich dis-
tance [45]. Inherent to all of these models is their dependency on parameters whose
exact influence on the models’ properties is generally not well understood. An alter-
native idea is based on extending the well-studied dynamic formulation of OT [5]
to measures with different total masses. With a focus on its geodesic properties, this
approach has been studied in several works [14, 16, 26].

In this paper, we rely on a simple and intuitive idea based on the seminal work of
Kantorovich and Rubinstein [37]. This accounts for mass construction and deletion at
a costmodeled by some prespecified parameter (for details see also [33, 35]). It leads to
theKantorovich–Rubinstein distance (KRD)which curiously has been revisited several
times under different names by various authors. For p = 1, it has been referred to
as Earth Mover’s Distance [55], and generalized Wasserstein distance [57], while for
general p ≥ 1 common terminology includes Kantorovich distance [31], generalized
KRD [61], transport-transform metric [53] and robust optimal transport distance [52].

1 Critically, this is not be confused with entropy regularized optimal transport, which is a popular com-
putational approach adding an entropy penalty term to the OT problem to allow for efficient, approximate
computations [6, 13, 18]
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1.2 Contributions

In this work, we define barycenters with respect to the KRD and investigate their
fundamental properties from a data analysis point of view. This extends the popular
notion ofWasserstein barycenters to unbalanced barycenters (UBCs), i.e., barycenters
of measures of different total masses. Similary, UBCs have been considered explicitly
for the Hellinger–Kantorovich distance [17, 23] and for the partial OT distance for
absolutely continuous measures [38]. Notably, the well-known approach of matrix
scaling algorithms has been shown to provide a general framework to approximate
any UBC based on entropy optimal transport [15] of finitely supported measures.
Closely related to our approach is the work byMüller et al [53] approximating the KR
barycenter in the special case of point patterns.

The KR distance: Let (X , d) be a finite metric space, where X = {x1, . . . , xN }
and

M+(X ):=
{
μ ∈ R

|X | | μ(x) ≥ 0 ∀x ∈ X
}

is the set of non-negative measures2 on X . For a measure μ ∈ M+(X ) its
total mass is defined as M(μ):= ∑

x∈X μ(x) and the subset of non-negative mea-
sures with total mass equal to one is the set of probability measures P(X ). If
π ∈ M+(X ×X ) is a measure on the product space X ×X its marginals are defined
as π(x,X ):= ∑

x ′∈X π(x, x ′) and π(X , x ′):= ∑
x∈X π(x, x ′), respectively. For two

measures μ, ν ∈ M+(X ) we define the set of non-negative sub-couplings as

�≤(μ, ν):={π ∈ M+(X × X ) | π(x,X ) ≤ μ(x),

π(X , x ′) ≤ ν(x ′)∀ x, x ′ ∈ X }. (1)

Similarly, we denote the set of couplings between μ and ν as �=(μ, ν), where the
inequality constraints in (1) are replaced by equalities. For p ≥ 1 and a parameter
C > 0, unbalanced optimal transport (UOT) between two measures μ, ν ∈ M+(X )

is defined as

UOTp,C (μ, ν):= min
π∈�≤(μ,ν)

∑
x,x ′∈X

d p(x, x ′)π(x, x ′)

+ C p
(
M(μ) + M(ν)

2
− M(π)

)
.

(2)

Notably, UOTp,C (μ, ν) is finite for all measures μ, ν ∈ M+(X ) with possibly
different total masses and a solution of (2) always exists. Here, the parameter C
penalizes deviation of mass from the marginals of π with respect to the input measures
μ, ν ∈ M+(X ). In particular and unlike the (balanced) OT problem

2 A non-negative measure on a finite space X is uniquely characterized by the values it assigns to each
singleton {x}. To ease notation we write μ(x) instead of μ({x}). The corresponding σ -field is always to be
understood as the powerset of X .
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OTp(μ, ν):= min
�=(μ,ν)

∑
x,x ′∈X

d p(x, x ′)π(x, x ′)

defined only for measures μ, ν ∈ M+(X ) with equal total mass M(μ) = M(ν),
UOT in (2) relaxes the marginal constraint and allows optimal solutions to have more
flexible marginals. Based upon UOTwe define the p-th order Kantorovich-Rubinstein
distance between two measures μ, ν ∈ M+(X ) as

KRp,C (μ, ν):= (
UOTp,C (μ, ν)

)1/p
. (3)

For any p ≥ 1, it defines a distance on the space of non-negative mea-
sures M+(X ) and it is an extension of the well-known p-Wasserstein distance
Wp(μ, ν):= (

OTp(μ, ν)
)1/p defined only for measures of equal total mass. Indeed,

the KRD is shown to interpolate in-between OT on small scales and point-wise com-
parisons on large scales (Theorem 2.2) relative to the parameter C . This allows for
an intuitive interpretation of the KRD. More precisely, in Lemma 2.1, we detail a
clear geometrical connection between the value of C and the structure of the UOT.
In particular, this contrasts the closely related partial OT problem [21] mentioned
above. Employing Lagrange multipliers one can see that for any choice of C , there
exists a fixed mass m of the partial OT problem, such that these two problems are
equivalent. However, finding this value of m requires to solve the UOT problem. We
stress that the influence of m on the resulting transport is in general hard to determine,
while the impact of C is intuitively clear. Thus, this perspective seems better suited
to many applications. For the specific case of measures supported on ultrametric trees
(Sect. 2.1.1)we prove (Theorem2.3) an analogue of thewell-known closed formula for
the p-Wasserstein distance [40]. Additionally, the computation of the KRD is known
to be equivalent to solving a related balanced OT problem [33], allowing to apply any
state-of-the-art solver with minimal modifications to compute the KRD and plan.

The KR barycenter: The KRD also lends itself to define a notion of a barycenter
for a collection ofmeasures as a generalization of the p-Wasserstein barycenter defined
for probability measures μ1, . . . , μJ ∈ P(X ) as

μ̃ ∈ argmin
μ∈P(Y)

1

J

J∑
i=1

W p
p (μ,μi ). (4)

Here, (X , d) is assumed to be embedded in some ambient space (Y, d), e.g., an
Euclidean space with X ⊂ Y . The distance d on X is understood to be the distance
on Y restricted to X . For μ1, . . . , μJ ∈ M+(X ), any measure

μ� ∈ argmin
μ∈M+(Y)

Fp,C (μ):= 1

J

J∑
i=1

KRp
p,C (μi , μ) (5)
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is said to be a (p, C)-Kantorovich–Rubinstein barycenter or (p, C)-barycenter for
short3. We refer to the objective functional Fp,C as (unbalanced) (p, C)-Fréchet func-
tional. Notably, (p, C)-barycenters’ support is not restricted to the finite space X
which raises fundamental questions on its structural properties. In the following, we
establish that there exists a finite set containing the support of any (p, C)-barycenter
(Sect. 2.2). Indeed, this set can be explicitly constructed from the support of the indi-
vidual μi ’s, but its size grows exponentially in the number of individual measures.
However, we prove that there always exists a sparse (p, C)-barycenter whose support
size is at most linear in the number of measures (Theorem 2.5). We note that these
properties are analogs of well-known properties of Wasserstein barycenters [4], that
we re-establish for the unbalanced setting.

Comparably, employingmore general entropy transport distances, we are not aware
of any similar structural description of their barycenters in terms of the input measures
and the parameter. Notably, the entropy optimal transport barycenter of diracmeasures
is not necessarily finitely supported itself (for an example see [23]). In contrast, our
explicit structural description of the support of KR barycenters provides an immediate
understanding of its properties for a given choice of C . This clear link between C
and the (p, C)-barycenter also allows to incorporate previous knowledge of the mea-
sures or the ground space into the choice C . The (p, C)-barycenter can be tuned to be
more flexible and provide superior performance compared to its p-Wasserstein coun-
terpart by avoiding to normalise each measure. An illustrative example is included in
Fig. 2, where the (p, C)-barycenter detects all clusters correctly, while theWasserstein
barycenter does not provide any structural information on the underlying measures.
This showcases potentially superior robustness and flexibility of the (p, C)-barycenter
compared to the Wasserstein barycenter. We study this comparison in more detail on
multiple synthetic data sets in Sect. 4. Here, the computational results4 are based on
the fact that, due to our structural analysis of the support of the (p, C)-barycenter,
it is straightforward to modify any given state-of-the-art solver for the Wasserstein
barycenter problem to solve the (p, C)-barycenter problem (Sect. 4.1).

2 Kantorovich–Rubinstein Distance and (p,C)-Barycenter

In this section, we provide some theoretical analysis of the structural properties inher-
ent in the UOT in (2) and as a consequence to the KRD in (3). We also focus on the
variational formulation defining the (p, C)-barycenter in (5).

2.1 KR Distance

In this subsection, we focus on structural properties of minimizers for UOT in (2) and
their consequences for the KRD.Notably, one can equivalently restate the penalization
of total mass in (2) as

3 For the sake of readability, the weights in this definition are fixed to 1/J , though it is easy to adapt all
instances of their occurrence in this work to arbitrary positive weights λ1, . . . , λJ , summing to 1.
4 An implementation can be found in the R package WSGeometry on CRAN.
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Fig. 2 Upper two rows: An excerpt of eight instances of a dataset of N = 100 nested ellipses at up to
5 different clusters in [0, 1]2. The number of ellipses in each cluster follows a Poisson distribution. For
the cluster in the center the intensity is 2 and for the four outer clusters the intensity is 1. Each ellipse is
discretized into 50 points with mass 1 at each location. For details on the computational methods refer to
Sect. 4. Bottom-Left: The Wasserstein barycenter of the normalized versions of these measures (runtime
about 15 hours). Bottom-Right: The (2, 0.2)-barycenter of these measures (runtime about 30 minutes). The
(2, C)-barycenter for different values of C can be seen in Fig. 8

C

(
M(μ) + M(ν)

2
− M(π)

)

= C

2

(∑
x∈X

(μ(x) − π(x,X )) +
∑

x ′∈X

(
ν(x ′) − π(X , x ′)

))
.

(6)

While in (2) the parameter C > 0 controls the deviation of the total mass of π ,
the alternative representation (6) demonstrates its marginal characterization. Indeed,
the parameter C specifies the maximal distance (scale) for which transportation is
cheaper than creation or destruction of mass. More precisely, each optimal solution
πC for (2) induces a directed transportation graph G(πC ) between the support points
of μ (source points) and the support points of ν (sink points). By definition, the graph
G(πC ) contains a directed edge (x, x ′) if and only ifπC (x, x ′) > 0. For a directed path
P = (xi1 , . . . , xik ) inG(πC ) its path length is defined asL(P) = ∑k−1

j=1 d p(xi j , xi j−1).
The parameter C > 0 determines the maximal path length for any path in G(πC ) as
the following statement demonstrates.
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Lemma 2.1 For p ≥ 1, parameter C > 0 and measures μ, ν ∈ M+(X ) consider
the UOT (2) with an optimal solution πC . The length of any directed path P from the
corresponding transport graph G(πC ) is bounded by

L(P) ≤ C p.

In particular, if d(x, x ′) > C then for any optimal solution of 2 it holds πC (x, x ′) = 0.

A proof is included in Appendix A.2. Lemma 2.1 shows that the underlying trans-
portation graph has maximal path length C p which limits the interaction between
source and sink points. It will be of crucial importance for closed formulas on ultra-
metric trees in the following subsection. As an immediate consequence we obtain
some important statements on the KRD in (3) along with its metric property.

Theorem 2.2 For any p ≥ 1 and parameter C > 0 the following statements hold:

(i) The p-th order KRD in (3) defines a metric on the space of non-negative measures
M+(X ).

(ii) If C ≤ minx �=x ′ d(x, x ′), then it holds that

KRp
p,C (μ, ν) = C p

2
TV(μ, ν),

where T V (μ, ν):=1/2
∑

x∈X |μ(x) − ν(x)| is the total variation distance. The
same equality holds for all C > 0 if μ(x) ≥ ν(x) for all x ∈ X or if μ(x) ≤ ν(x)

for all x ∈ X .
(iii) If C ≥ maxx,x ′ d(x, x ′) and M(μ) = M(ν), then it holds that

KRp
p,C (μ, ν) = W p

p (μ, ν).

(iv) If C1 ≤ C2, then it holds

KRp
p,C1

(μ, ν) ≤ KRp
p,C2

(μ, ν).

We stress that the metric property of the KRD in Theorem 2.2 (i) has already
been established in specific instances, e.g., for p = 1 [57]. Our proof follows that of
Theorem 2 in Müller et al [53] for uniform measures on point patterns with minor
modifications.

Theorem 2.2 demonstrates how two measures μ, ν ∈ M+(X ) are compared with
respect to KRD. Depending on the parameter C > 0 the optimal value interpolates
between p-th order Wasserstein distance on small scales and total variation on larger
scales with respect toC . Equivalently, these properties can be shown by considerations
of the dual program for UOT in (2) given by

UOTp,C (μ, ν) = max
f ,g : X→R

f ≤C p/2, g≤C p/2

∑
x∈X

f (x)μ(x) +
∑

x ′∈X
g(x ′)ν(x ′) (DUOTp,C )
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s.t. f (x) + g(x ′) ≤ d p(x, x ′), ∀x, x ′ ∈ X ,

where the equality holds due to strong duality. For p = 1 this can be further specified
to

UOT1,C (μ, ν) = max
f : X→R

f 1−Lipschitz
‖ f ‖∞≤C/2

∑
x∈X

f (x)(μ(x) − ν(x))

which reveals its relation to the flat metric [8] as observed in Lellmann et al [44];
Schmitzer and Wirth [65]. As in general M(μ) �= M(ν), the bound f , g ≤ C p/2 on
dual feasible solutions f , g is necessary for the dual to be finite. However, if the mea-
suresμ, ν ∈ M+(X ) have equal total massM(μ) = M(ν) andC ≥ maxx,x ′ d(x, x ′),
then the bound on dual feasible solutions is redundant and we obtain the dual of the
usual OT problem

OTp(μ, ν) = max
f ,g : X→R

∑
x∈X

f (x) μ(x) +
∑

x ′∈X
g(x ′)ν(x ′) (DOTp)

s.t. f (x) + g(x ′) ≤ d p(x, x ′), ∀x, x ′ ∈ X .

2.1.1 KR Distance on Ultrametric Trees

For OT, the approximations of the underlying distance by a tree metric are common
tools for theoretical and practical purposes. The former is usually employed for rates
of convergence for the expectation of empirical OT costs [68] while in the latter tree
approximations serve to reduce the computational complexity inherent in OT [42]. OT
on ultramatric trees is also applied for the analysis of phylogenetic trees [27]. For an
efficient computational implementation of UOT on tree metrics we refer to Sato et al
[61]. Notably, while OT with tree metric costs has a closed form solution, this fails
to hold for its UOT counterpart. An exception is given in terms of ultrametric trees
for which not only OT [40] but also UOT admits a closed form solution, which we
establish in this subsection.

To this end, consider a tree T with nodes V , edges E attached with (non-negative)
weights w(e) for e ∈ E and a designated root r. Two nodes v,w ∈ V are connected
by a unique path denoted P(v,w) either represented by a sequence of nodes or as a
sequence of edges. The distance dT (v,w) is equal to the sum of the weights of those
edges contained in P(v,w). A leaf of T is any node such that its degree (number of
edges attached to the node) is equal to one and the set of all leaf nodes is denoted
as L ⊂ V . A node v� is termed parent of node v denoted by par(v) = v� if both
are connected by a single edge but v� is closer to the root than v. The parent of the
root node is set to par(r) = r. For a node v its children are the elements of the set
C(v) = {w ∈ V | v ∈ P(w, r)}. Notice that with this definition v is a child of itself
(Fig. 3a for an illustration).

A tree T is termed ultrametric tree if all its leaf nodes are at the same distance to the
root. Equivalently, there exists a height function h : V → R+ that is monotonically
decreasing meaning that h(par(v)) ≥ h(v) and such that h(v) = 0 for v ∈ L . The
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Fig. 3 General Tree Structures: aA tree graphT with root r (orange), internal nodes (black) and leaf nodes L
(green). By definition par(v5) = par(v6) = v2 and the children of v1 are equal C(v1) = {v1, v3, v4, v7, v8}.
The distance from each leaf node to the root may vary. b An ultrametric tree T with height function h (red)
such that 0 = h43 < h3 < h2 < h1 < h0. Edge weights are defined by the the difference of consecutive
height values, e.g. w(e1) = h0 − h1. Each leaf node (green) is at the same distance to the root r (orange)
(Color figure online)

distance is set to dT (v, par(v)) = |h(v) − h(par(v))| and extended on the full tree
(Fig. 3b for an illustration).

Consider an ultrametric tree T with height function h and measures μL , νL sup-
ported on the leaf nodes L ⊂ V . We prove that the p-th order KRD admits a closed
formula for such a setting. Intuitively, the parameter C restricts transportation of mass
up to a certain threshold allowing to decompose T into subtrees. Mass transporta-
tion is restricted solely within each subtree whereas mass abundance or deficiency is
penalized with parameter C for each particular subtree (Fig. 4 for an illustration). We
define the set

R(C):=
{
v ∈ V | h(v) ≤ C

2
< h(par(v))

}
(7)

with the convention that R(C) = {r} if C/2 ≥ h(r) and for a node v ∈ V set

μL(C(v)):=
∑

w∈C(v)∩L

μL(w).

Theorem 2.3 (KR on ultrametric trees)Consider an ultrametric tree T with leaf nodes
L and height function h : V → R+ inducing the tree metric dT . For any p ≥ 1 and
two measures μL , νL ∈ M+(L) supported on the leaf nodes of T it holds that

KRp
p,C

(
μL , νL

)

=
∑

v∈R(C)

(
2p−1

∑
w∈C(v)\{v}

( (
h(par(w))p − h(w)p) ∣∣∣μL(C(w)) − νL(C(w))

∣∣∣
)
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Fig. 4 Closed formula for the KRD on ultrametric trees: a Depending on the regularization C > 0 and
the underlying height function h the ultrametric tree T introduced in Fig. 3b is decomposed into two
subtrees. Each node in the set R(C) = {v1, v2} (orange) serves as a new root and corresponding subtrees
T (v1):=C(v1) and T (v2):=C(v2) are equal their respective set of children with corresponding edges. b
The p-th height transformation Tp(v1) and Tp(v2) of the induced subtrees T (v1) and T (v2), respectively.
Each subtree is extended by a new root (blue) with an edge (lightblue) whose distance is equal the difference
of regularization C p/2 and the p-th height transformed value of the former root

+
(

C p

2
− 2p−1h(v)p

) ∣∣∣μL(C(v)) − νL(C(v))
∣∣∣
)

.

The closed formula in Theorem 2.3 decomposes the underlyingUOT into two tasks.
While summing over subtrees carried out by the outer sum, the inner sum consists of
two terms. The first considers OT within each subtree whereas the second accounts
for mass deviation on that particular subtree.

The proof of this formula is given in Appendix A.2.1.

2.2 (p, C)-Barycenters

In the finite setting considered in this work a (p, C)-barycenter as defined in (5)
always exists, but is not necessarily unique. Moreover, the location and structure of the
support of the (p, C)-barycenter are not fixed and hence unknown. For theWasserstein
barycenter there exists a finitely supported, sparse barycenter in this context [4, 43].
We establish analog properties of the (p, C)-barycenter.

Definition 2.4 Let (Y, d) be a metric space, p ≥ 1 and J ∈ N. A Borel barycenter
application T J ,p associates to any points (y1, . . . , yJ ) ∈ Y J a minimum y� ∈ Y of∑J

i=1 d p(yi , y), i.e.,

T J ,p(y1, . . . , yJ ) ∈ argmin
y∈Y

J∑
i=1

d p(yi , y).

ABorel barycenter application is in general not a function since the minimum does
not need to be unique. In particular, y = T J ,p(y1, . . . , yJ ) only means that y is one of
the minima of the average distance function. As the measures μ1, . . . , μJ are defined
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Fig. 5 Centroid sets and barycenters: The support points of three (J = 3)measures (yellow, brown and blue
dots)with unitmass at each position. Top:Different centroid setsCK R(3, 2, C) (red squares)with increasing
value of C from left to right. Bottom-Left: The centroid set CW (3, 2) (dark green squares) corresponding
to the 2-Wasserstein barycenter. Bottom-Center: Circles corresponding to C p (for two different choices of
C) balls around the support points. The grey colouring indicates that there is no overlap of at least two
circles in this area and thus no (2, C)-barycenter can have mass in this area. Conversely, the green colouring
indicates overlap and thus the potential support area of the barycenter. Bottom-Right: The (2, C)-barycenter
(red squares) for a specific choice of C and the 2-Wasserstein barycenter (dark green squares) (Color figure
online)

on X we usually restrict the Borel barycenter application to inputs from the space
X ⊂ Y . We define the full centroid set of the measures μ1, . . . , μJ ∈ M+(X ) as

CK R(J , p) =
{

y ∈ Y | ∃L ≥ �J/2�, ∃(i1, . . . , iL) ⊂ {1, . . . , J },
x1, . . . , xL : xl ∈ supp(μil )

∀l = 1, . . . , L : y = T L,p(x1, . . . , xL)
}
,

(8)

and the restricted centroid set

CK R(J , p, C) =
{

y = T L,p(x1, . . . , xL) ∈ CK R(J , p) | ∀1 ≤ l ≤ L :

d p(xl , y) ≤ C p;
L∑

i=1

d p(xl , y) ≤ C p(2L − J )

2

}
.

(9)

We stress that for each L-tupel (x1, . . . , xL) one fixed representative of T L,p

(x1, . . . , xL) is chosen for the construction of the centroid set CK R(J , p, C). To
streamline the presentation any statement concerning CK R(J , p, C) in the follow-
ing theorem is to be understood in the sense that there exists a choice of CK R(J , p, C)

such that the statement holds true.
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Theorem 2.5 Let μ1, . . . , μJ ∈ M+(X ) be a collection of non-negative measures on
the finite discrete space X ⊂ Y . For any C > 0 it holds that

(i)

inf
μ∈M+(Y)

Fp,C (μ) = inf
μ∈M+(Y)

supp(μ)⊆CK R(J ,p,C)

Fp,C (μ).

Moreover, any (p, C)-barycenter μ� satisfies supp(μ�) ⊆ CK R(J , p, C) and its
total mass is bounded by

0 ≤ M(μ�) ≤ 2

J

J∑
i=1

M(μi ).

(ii) For any (p, C)-barycenter μ∗ and any point y ∈ supp(μ∗), there exist UOT plans
πi between μ∗ and μi for i = 1, . . . , J , respectively, such that if πi (y, x) > 0,
then there exists L ≥ �J/2�, xl ∈ supp(μil ) for l = 2, . . . , L, (i2, . . . , iL) ⊂
{1, . . . , J } and il �= i for l = 2, . . . , L with y = T L,p(x, xi2 , . . . , xiL ),
π j (y, x j ) > 0 if j ∈ {i2, . . . , iL}.
Additionally, if for any (x1, . . . , xL) ∈ YL it holds that

T L,p(x1, . . . , xL) = T L,p(y1, x2, . . . , xL) ⇔ x1 = y1, (10)

then πi (y, x) ∈ {0, μ∗(y)} for i = 1, . . . , J .
(iii) If Mi :=|supp(μi )| for 1 ≤ i ≤ J then there exists a (p, C)-barycenter μ� such

that

|supp(μ�)| ≤ min

{
|CK R(J , p, C)|,

J∑
i=1

Mi

}
.

(iv) If C1 ≤ C2, then it holds

inf
μ∈M+(Y)

Fp,C1(μ) ≤ inf
μ∈M+(Y)

Fp,C2(μ).

(v) Furthermore, set Z:= ⋃J
i=1 supp(μi ) ∪ CK R(J , p) and define

d ′
min:= min

x∈Z\CK R(J ,p), y∈CK R(J ,p)
d(x, y).

If C ≤ d ′
min, then the (p, C)-barycenter μ� is given by

μ� =
∑
x∈X

med(μ1(x), . . . , μJ (x))δx .

(vi) Let C > J 1/pdiam(Z) and let μ1, . . . , μJ be ordered such that M(μi ) ≤ M(μ j )

for i ≤ j . Suppose that J is odd or there there exists no point y ∈ Y contained
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in at least J/2 different support sets. Then, for any (p, C)-barycenter μ� it holds
that M(μ�) = M

(
μ�J/2�

)
. Else, there exists at least one (p, C)-barycenter with

this total mass.

The proof is based on the fact that finding a (p, C)-barycenter can be proven to be
equivalent to solving a multi-marginal optimal transport problem (Sect. 3.2). State-
ment (i) provides insights into the structure of the support of any (p, C)-barycenter
and its dependencywith respect to themagnitude ofC . The definition of CK R(J , p, C)

can be understood as a joint restriction on
∑L

i=1 d p(xi , y) combinedwith an individual
restriction on each d p(xi , y) of the original centroid points of CK R(J , p). The joint
restriction ensures that simply deleting any mass at a given centroid point (and thus
reducing the total mass of the measure) does not improve the objective value. This
is a minimal feasibility assumption on the considered centroid point, as otherwise no
measure containing this point can be optimal. The second restriction concerns each
point individually. If a point xi has a distance larger than C p from a point y, then, by
Lemma 2.1, there is no transport between y and xi . Thus, centroids which have have a
larger distance to one of the points x1, . . . , xL they are constructed from can not be in
the support of any (p, C)-barycenter. This also gives rise to some helpful intuition for
the support structure of any (p, C)-barycenter. Considering all C p-neighbourhoods
around any of the support points of the μi , then a (p, C)-barycenter can only have
support in regions where at least balls from �J/2� different measures intersect. A
visual representation of this is given in the center of bottom row of Fig. 5. By defini-
tion, the sets CK R(J , p, C) are equipped with a natural ordering in the sense that if
C1 ≤ C2 then CK R(J , p, C1) ⊆ CK R(J , p, C2). Moreover, if C is large enough then
CK R(J , p, C) = CK R(J , p). We illustrate these sets in the top row Fig. 5. We observe
that the cardinality of the restricted centroid set in (9) decreases with decreasing C .
In the extremes for large C the restricted centroid sets coincides with the full centroid
sets in (8) that is independent of C . For small C , if there is no point which is contained
in the support of at least J/2 measures, the restricted centroid set is empty. For an
illustration we refer to the top row of Fig. 5.

Property (i i) is an analogue to a well-known characterization [4] of the p-
Wasserstein barycenter on R

d with Euclidean distance d2, where the transport from
the barycenter to the underlying measures is characterized by a transport map. The
corresponding statement for the (p, C)-barycenter holds true as well in this context.
Indeed, on (Rd , d2) condition (10), which can be understood as an injectivity-
type assumption on the barycentric application, is satisfied due to the fact that
T L(x1, . . . , xL) = 1

L

∑L
l=1 xl . However, for (Rd , d1) this assertion does not hold.

Consider x1 < x2 < x3 < x4 ∈ R and measures μ1 = δx1 + δx2 , μ2 = δx3 + δx4 ,
then any measure of the form μ∗ = 2δy for any y ∈ [x2, x3] is a (p, C)-barycenter
for C > 2|x1 − x4|. Thus, there only exist mass-splitting UOT plans between μ∗ and
μ1, μ2 and the transport is not characterized by a transport map. On more general
spaces such as a tree T rooted at r , three leaves x1, x2, x3 and positive edge weights
e1, . . . , e3 ∈ (0, 1) the barycenter on T of any two leafs xi �= x j , is the root r . In
particular, in this example, or in fact in any tree T = (V , E)which has a vertex y with
degree of at least three5 condition (10) fails. The unique (2, 2)-barycenter of two mea-

5 The degree of a vertex in a graph is the number of vertices which are adjacent to it.
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sures μ1 = δx1 + δx2 and μ2 = δx2 + δx3 is given by μ∗ = 2δr . Thus, there are again
only mass-splitting UOT plans between μ∗ and μ1 and μ2. However, for the unit cir-
cle S1 equipped with its natural arc-length distance property (10) does hold. Assume
a0 = T L(x1, . . . , xL) = T L,p(y1, . . . , xL), a1 = T L−1,p(x2, . . . , xL) and for each
x ∈ S1 denote Hr (x) and Hl(x) as the halfcircle right and left of x , respectively. It is
straightforward to see by contraposition that if it holds a1 ∈ Hr (a0), then this implies
x1, y1 ∈ Hl(a1) and x1, y1 ∈ Hl(a0). However, it also holds d(x1, a0) = d(y1, a0),
and thus 〈x1 − y1, a0〉 = 0. In particular, this implies that either x1 ∈ Hl(a0) and
y1 ∈ Hr (a0) or vice versa and hence x1 = y1. The case a1 ∈ Hl(a0) is analog and the
case a0 = a1 clear.

Property (i i i) guarantees the existence of sparse (p, C)-barycenters. For large
C the size CK R(J , p, C) scales as

∏J
i=1 Mi , growing essentially exponentially in J .

However, herewe see that there always exists a (p, C)-barycenter supportedon a sparse
subset of CK R(J , p, C) which has cardinality growing only linearly in J . Part (iv)

simply extends the montonicity of the (p, C)-KRD to the (p, C)-Fréchet functional.
Statement (v) yields a critical point after which decreasing C does no longer change
the resulting (p, C)-barycenter and provides a closed form characterisation of the
(p, C)-barycenter in this context. Finally, statement (vi) enables control on the total
mass of the (p, C)-barycenter for large values ofC . In particular, since the totalmass is
close to the median of the total masses of theμi , we point out that the total mass of the
(p, C)-barycenter in this setting is robust against outliers. A small amount of measures
with unreasonably high mass has no impact on the total mass of the (p, C)-barycenter.

Naturally, we compare the (p, C)-barycenter to its popular Wasserstein analogue
in (4). As proven in Le Gouic and Loubes [43] (and initially for p = 2 for Rd by [4])
the support of any p-Wasserstein barycenter is contained in

CW (J , p) =
{

y ∈ Y | y = T J ,p(x1, . . . , xJ ), xi ∈ supp(μi )
}

. (11)

Compared to the p-Wasserstein barycenter of the probability measures μ1, . . . , μJ

the restricted centroid set CK R(J , p, C) allows more flexibility for specific cases and
can provide a more reasonable representation of the data. We illustrate this in Fig. 5
(bottom-left/right) where the (2, C)-barycenter clearly represents all clusters while
the 2-Wasserstein barycenter fails to capture them. Nevertheless, if C is large enough
and all measures have equal total mass both barycenters coincide.

Corollary 2.6 If C > 2
1
p diam(Z) and M(μ1) = M(μ2) = · · · = M(μJ ), then any

p-Wasserstein barycenter is also a (p, C)-barycenter and vice versa.

While this shows that the (p, C)-barycenter is a strict generalisation of the usual
p-Wasserstein barycenter as the solutions coincide for large C , for smaller values of
C there can be significant differences. One such striking difference between the p-
Wasserstein barycenter and the (p, C)-barycenter comes in the form of a localization
property. Let B1, . . . , BR ⊂ Y such that supp(μi ) ⊂ ∪R

r=1Br with diam(Br ) ≤ C for
all r = 1, . . . , R and d(Bk, Bl) > 21/pC for all k �= l. Here, the (p, C)−barycenter
tends to place mass between the clusters B1, . . . , BR . However, a (p, C)-barycenter
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is obtained by combining R barycenters of the measures restricted to the B1, . . . , BR ,
respectively.

Lemma 2.7 Let μ1, . . . , μJ ∈ M+(X ) such that for all i = 1, . . . , J it holds
supp(μi ) ⊂ ∪R

r=1Br for some B1, . . . , BR ⊂ Y with diam(Br ) ≤ C for all
r = 1, . . . , R and d(Bk, Bl) > 21/pC for all k �= l. For r = 1, . . . , R, let

μ∗
r ∈ argmin

μ∈M+(conv(Br ))

1

J

J∑
i=1

KRp
p,C (μ,μi |Br

),

where conv(Br ) is the convex hull of Br for r = 1, . . . , R. Then, the measure
R∑

r=1
μ∗

r

is a (p, C)-barycenter of μ1, . . . , μJ .

In particular, Lemma 2.7 implies that the (p, C)-barycenter respects the cluster
structure within the supports of the measures if the clustered are sufficiently separated
and C is adapted according to the cluster size. Examples of this setting can be seen in
Fig. 2 and Fig. 5.

3 A Lift to Optimal Transport, Wasserstein Barycenters and
Multi-marginal Optimal Transport

In this section, we provide the necessary tools and framework to establish our results
in the previous section. Following the ideas of Guittet [33] we state UOT in (2) as
an equivalent balanced OT problem. We extend this idea to the (p, C)-barycenter,
showing it to be equivalent to a specific Wasserstein barycenter problem as well as a
balanced multi-marginal optimal transport problem.

3.1 A Lift to Optimal Transport

We fix a parameter C > 0, introduce an additional dummy point d and define the
augmented space X̃ :=X ∪ {d} with metric cost

d̃ p
C (x, x ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d p(x, x ′) ∧ C p, x, x ′ ∈ X ,
C p

2 , x ∈ X , x ′ = d,
C p

2 , x = d, x ′ ∈ X ,

0, x = x ′ = d.

(12)

Notably, d̃C : X̃ × X̃ → R+ defines a metric on X̃ [53, Lemma A1]. Consider
the subsetMB+(X ):= {μ ∈ M+(X ) | M(μ) ≤ B} ⊂ M+(X ) of non-negative mea-
sures whose total mass is bounded by B. Setting μ̃:=μ+ (B −M(μ))δd, any measure
μ ∈ MB+(X ) defines an augmented measure μ̃ on X̃ such that M(μ̃) = B. Hence,
for two measures μ, ν ∈ MB+(X ) we can define the OT problem on X̃ between their
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augmented measures ÕTd̃ p
C
(μ̃, ν̃). In fact, it holds that

UOTp,C (μ, ν) = UOTd p∧C p,C (μ, ν) = ÕTd̃ p
C
(μ̃, ν̃),

where the first equality follows by Lemma 2.1 as for any optimal solution πC it holds
πC (x, x ′) = 0 if d p(x, x ′) > C p and the second follows by [33, Lemma 3.1]. The
same equalities remain valid replacing B by an arbitrarily large constant as summarized
by the following lemma.

Lemma 3.1 Consider μ, ν ∈ MB+(X ) with extended versions μ̃, ν̃. Then for any a > 0
it holds that

ÕTd̃ p
C
(μ̃, ν̃) = ÕTd̃ p

C
(μ̃ + aδd, ν̃ + aδd).

Proof For p = 1, the result is trivial since by duality ÕTd̃C
(μ̃, ν̃) only depends on the

difference of the measures. For p > 1 we invoke d̃C -cyclical monotonicity [72, Thm.
5.10] of any OT plan π and use the property that d̃ p

C (x, d) = C p/2. This yields that
(d, d) ∈ supp(π) which leads to the desired conclusion. ��

3.2 A Lift toWasserstein Barycenters

Wecan also lift the optimization problem defining a (p, C)-barycenter to an equivalent
p-Wasserstein barycenter formulation (4). Augmentation of the underlying measures,
however, is not straightforward as the total mass of the (p, C)-barycenter is unknown.
A first crude upper bound on its total mass leads to a feasible approach.

Lemma 3.2 Consider μ1, . . . , μJ ∈ M+(X ) and let Fp,C be their associated unbal-
anced Fréchet functional. Then it holds that

argmin
μ∈M+(Y)

Fp,C (μ) = argmin
μ∈M+(Y)

M(μ)≤∑J
i=1 M(μi )

Fp,C (μ).

More precisely, any (p, C)-barycenter μ� of μ1, . . . , μJ satisfies M(μ�) ≤∑J
i=1M(μi ).

Proof Assume first that there exists a measure μ ∈ M+(Y) such that μ = ν1 + ν2
where no transport between ν2 and any μi occurs in the optimal solution of
UOTp,C (μ,μi ) for 1 ≤ i ≤ J and it holds M(ν2) > 0. Thus it holds

Fp,C (μ) = Fp,C (ν1 + ν2) = Fp,C (ν1) + (C p/2)M(ν2) > Fp,C (ν1)

and we improve the objective value of μ by removing ν2. Hence, let μ ∈ M+(Y) be
any measure such that ν2 ≡ 0. Consider πi the optimal solution for UOTp,C (μ,μi )

for each 1 ≤ i ≤ J . Decompose the measure μ = ∑J
i=1 τi , where τi is the mass of μ
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transported to μi according to πi and which is not yet included in any τ j for j < i .
Clearly, M(μ) = ∑J

i=1M(τi ) ≤ ∑J
i=1M(μi ) and we conclude that

min
μ∈M+(Y)

Fp,C (μ) = min
μ∈M+(Y)

M(μ)≤∑J
i=1 M(μi )

Fp,C (μ).

By our first considerations the claim follows. ��
Given the upper bound on the total mass of any (p, C)-barycenter at our disposal

we can formulate a lift of the (p, C)-barycenter problem to a related p-Wasserstein
barycenter problem. For this, let Ỹ :=Y ∪ {d} endowed with the metric d̃C in (12)
(replace X by Y and recall that X ⊂ Y) and augment the measures μ1, . . . , μJ

to μ̃1, . . . , μ̃J where μ̃i = μi + ∑
j �=i M(μ j )δd for 1 ≤ i ≤ J . In particular,

M(μ̃i ) = ∑J
j=1M(μ j ) and we can define the augmented p-Fréchet functional

F̃p,C (μ) := 1

J

J∑
i=1

ÕT
p

d̃ p
C
(μ̃i , μ),

where by definition F̃p,C is restricted to measuresμwith massM(μ) = ∑J
i=1M(μi ).

Lemma 3.3 For 1 ≤ i ≤ J consider measures μi ∈ M+(X ) and their augmented
versions μ̃i :=μi + ∑

j �=i M(μ j )δd, respectively. Then it holds that

Fp,C (μ) = F̃p,C

(
μ +

(
J∑

i=1

M(μi ) − M(μ)

)
δd

)

for all μ ∈ M+(Y) such that M(μ) ≤ ∑J
i=1M(μi ) and in particular

min
μ∈M+(Y)

Fp,C (μ) = min
μ∈M+(Ỹ)

M(μ)=∑J
i=1 M(μi )

F̃p,C (μ).

The proof of this Lemma is given in Appendix A.1.

Remark 3.4 (Optimal (p, C)-barycenters) Lemma 3.3 states that the optimal objec-
tive value for the (p, C)-barycenter is equal the related p-Wasserstein barycenter
problem on the augmented space. In particular, the proof also reveals that if
μ̃� is a p-Wasserstein barycenter for the augmented measures μ̃1, . . . , μ̃J then
μ�:=μ̃� − μ̃�(d)δd is a (p, C)-barycenter for the measures μ1, . . . , μJ . Vice
versa, if μ� is a (p, C)-barycenter for the measures μ1, . . . , μJ then μ̃�:=μ� +(∑J

i=1M(μi ) − M(μ�)
)

δd is a p-Wasserstein barycenter for the augmented mea-

sures μ̃1, . . . , μ̃J .
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3.3 A Lift to Multi-Marginal Optimal Transport

On the augmented space Ỹ :=Y ∪ {d} equipped with metric d̃C in (12), we define for
p ≥ 1 and J ∈ N a Borel barycenter application T̃ J ,p

C : Ỹ J → Ỹ that takes as input
(y1, . . . , yJ ) ∈ Ỹ and outputs any minimizer y ∈ Ỹ of the function

f (y) =
J∑

i=1

d̃ p
C (yi , y).

Of particular interest to us is the barycentric application restricted to inputs from X̃ .
However, we collect some of its key properties for general input (y1, . . . , yJ ) ∈ Ỹ J .
For this, we define the index set

B(y1, . . . , yJ ):= {i | yi = d, 1 ≤ i ≤ J } .

If clear from the context, then the dependence on y1, . . . , yJ is suppressed and the set
is simply denoted as B.

Lemma 3.5 Fix some parameter C > 0 and consider the space Ỹ with metric d̃C as
defined in (12). For points (y1, . . . , yJ ) ∈ Ỹ J it holds that

(i) T̃ J ,p
C (y1, . . . , yJ ) = d if and only if

∑
i /∈B

d̃ p
C (yi , y) ≥ (J − 2|B|)C p/2 for any

y ∈ Ỹ . In particular, if strict inequality holds then T̃ J ,p
C (y1, . . . , yJ ) = d is

unique.
(ii) If 2|B| ≥ J then it holds T̃ J ,p(y1, . . . , yJ ) = d with uniqueness if 2|B| > J .
(iii) If T̃ J ,p(y1, . . . , yJ ) �= d then it holds

T̃ J ,p
C (y1, . . . , yJ ) = argmin

y∈Y

∑
i /∈B

d̃ p
C (yi , y).

(iv) If C > 2
1
p diam(Y), then for any points y1, . . . , yJ ∈ Y with |B| = 0 it holds that

T̃ J ,p
C (y1, . . . , yJ ) = T J ,p(y1, . . . , yJ ) where the latter one is defined with respect

to the usual metric d p on Y .

Aproof of this result is provided inAppendixA.1. Lemma3.5 allows to characterize
the centroid sets of the augmented measures μ̃1, . . . , μ̃J defined as

C̃K R(J , p, C) :=
{

y ∈ Ỹ | y = T̃ J ,p
C (x1, . . . , xJ ), xi ∈ supp(μ̃i );

d p(y, xi ) ≤ C p ∀ xi �= d
}
.

(13)

Remark 3.6 We point out that computing T̃ J ,p
C is in general a difficult optimisation

problem. While for squared euclidean distance, computing the barycentric applica-
tion simply amounts to taking the mean of the xi , even on the non-augmented space,
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there are no closed form solutions available for most choices of distances and values
of p. This problem is exacerbated by the truncation of the distance d̃ at C p (as also
pointed out in [53]), since it implies that disregarding a certain subset of points and
just computing the barycenter with respect to the remaining xi might in fact be opti-
mal. However, initially it is not clear which xi to choose, turning this into a difficult
combinatorial problem.

Recall that for any measure μ its support is contained in X a subset of Y . The
augmented measure μ̃ is extended by an additional support point at {d}. In particular,
while the centroid set is a subset of Ỹ it only depends on the support of the measures
μ̃i contained in X̃ :=X ∪ {d}.
Corollary 3.7 For the centroid sets of the augmented measures μ̃i ∈ M+(X̃ ) with
1 ≤ i ≤ J it holds

C̃K R(J , p, C) ⊂ CK R(J , p, C) ∪ {d} ⊂ CK R(J , p) ∪ {d}.

Proof The first inclusion follows by statements (i) and (iii) in Lemma 3.5 and the
observation that |B| = J − L . The second by applying CK R(J , p, C) ⊂ CK R(J , p).

��
Remark 3.8 One could define CK R(J , p, C) in terms of d̃C instead of d to obtain
equality in the first inclusion. Replacing T L,p by T̃ L,p

C in the definition of the centroid
set would not alter any of the related proofs and yield slightly sharper control on the
support of (p, C)-barycenter. However, as we consider the given definition to be more
intuitive, we omit this improvement in the statement of the theorem.

Let �(μ̃1, . . . , μ̃J ) be the set of measures on Ỹ × . . . × Ỹ whose i-th marginal is
equal to μ̃i for all 1 ≤ i ≤ J . We refer to the elements of this set as multi-couplings
of μ̃1, . . . , μ̃J . For p ≥ 1 define the augmented multi-marginal transport problem as

min
π∈�(μ̃1,...,μ̃J )

∫

Ỹ J
cp,C (y1, . . . , yJ )π(dy1, . . . , dyJ ), (14)

where

cp,C (y1, . . . , yJ ):= 1

J

J∑
i=1

d̃ p
C

(
yi , T̃ J ,p

C (y1, . . . , yJ )
)

.

The relation between the augmented multi-marginal transport formulation (14) and
the (p, C)-barycenter is as follows.

Proposition 3.9 Letμ1, . . . , μJ ∈ M+(X )and μ̃1, . . . , μ̃J be their augmented coun-
terparts. If π ∈ �(μ̃1, . . . , μ̃J ) is a solution to the augmented multi-marginal problem
(14), then the measure μ�:=(T̃ J ,p

C #π)|Y ∈ M+(Y) is a (p, C)-barycenter of the mea-

sures μ1, . . . , μJ , where T̃ J ,p
C #π denotes the pushforward of π under T̃ J ,p

C . Moreover,
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for every (p, C)-barycenter μ�, there exists a solution π to the augmented multi-
marginal transport problem, such that

μ� +
(

J∑
i=1

M(μi ) − M(μ�)

)
δd = T̃ J ,p

C #π.

In particular, it holds that

min
π∈�(μ̃1,...,μ̃J )

∫

Ỹ J
cp,C (y1, . . . , yJ )π(dy1, . . . , dyJ ) = inf

μ∈M+(Y)
Fp,C (μ).

The proof follows straightforwardly along the lines of related statements for the
multi-marginal optimal transport problem (43, Theorem 8; 49, Lemma 8 or 54, Propo-
sition 3.1.2). This correspondence between the (p, C)-barycenter problem and a
balanced multi-marginal optimal transport serves as one of the key components in
the proof of Theorem 2.5.

4 Computational Issues and Numerical Experiments

We present approaches to compute the (p, C)-barycenter problem by solving related
OT problems. Based on this, we investigate the performance of the Wasserstein
and (p, C)-barycenters on multiple synthetic datasets. For reference, we also report
on results for two related concepts of unbalanced barycenters (UBCs), namely the
Gaussian-Hellinger–Kantorovich and Wasserstein–Fisher–Rao barycenter.

4.1 Algorithms

Theorem 2.5 and Proposition 3.9 both allow to pose the augmented problem (recall
Sect. 3) as a linear program and using Lemma 3.3 one can obtain a solution to the
original problem by solving the augmented one. Using any linear program solver this
enables the direct computation of an exact solution of this problem. However, the
number of variables in this approach scales as the size of CK R(J , p, C) and hence
it turns out to be infeasible already for relatively small instance sizes. To compute
(p, C)-barycenters at larger scales we revisit iterative methods to solve the (balanced)
Wasserstein barycenter problem and give instructions how to use modifications of
them to compute (p, C)-barycenters. In particular, we detail a multi-scale method
which solves successive fixed-support (p, C)-barycenter LPs on increasingly refined
support sets. This provides a meta-framework to adjust state-of-the-art solvers for the
Wasserstein barycenter for (p, C)-barycenter computations.

To construct the augmented problem we add the dummy point d to the support of
the μi ’s, while setting its distance to all other locations to be C p/2. Note, that by
Lemma 2.1 and Lemma 3.1 the truncation of d̃ at C p can be omitted if M(μ̃i ) >
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3maxi=1,...,J M(μi ). If this is not the case, we can enforce it by adding additional
mass at d in all augmented measures without changing the optimal value.

4.1.1 LP-Formulation for the (p, C)-Barycenter

Using property (i) fromTheorem 2.5, we can rewrite the augmented (p, C)-barycenter
problem as a linear program similarly to the usual p-Wasserstein barycenter problem
(4).However, compared to the latter one,we replace the standard centroid setCW (J , p)

from (11), by the centroid set C̃K R(J , p, C) of the augmented measures from (13).
This yields

min
π(1),...,π(J ),a

1

J

J∑
i=1

|C̃K R(J ,p,C)|∑
j=1

Mi∑
k=1

π
(i)
jk ci

jk

s.t.
Mi∑

k=1

π
(i)
jk = a j , ∀ i = 1, . . . , J ,∀ j = 1, . . . , |C̃K R(J , p, C)|,

|C̃K R(J ,p,C)|∑
j=1

π
(i)
jk = bi

k, ∀ i = 1, . . . , J ,∀k = 1, . . . , Mi ,

π
(i)
jk ≥ 0 ∀i = 1, . . . , J ,∀ j = 1, . . . , |C̃K R(J , p, C)|,

∀k = 1, . . . , Mi ,

where Mi = |X̃i | is the cardinality of the support of the augmented measure μ̃i .
Here, ci

jk denotes the distance between the j-th point of |C̃K R(J , p, C)| and the k-

th point in the support of m̃ui , while bi is the vector of masses corresponding to
μ̃i . For practical purposes it may be advantageous to solve the multi-marginal prob-
lem instead of the (p, C)-barycenter problem. This changes the number of variables
from |C̃K R(J , p, C)|(1 + ∑J

i=1 Mi ) to
∏J

i=1 Mi and the number of constraints from
J |C̃K R(J , p, C)| + ∑J

i=1 Mi to
∑J

i=1 Mi . Depending on the value of C , and hence
the cardinality of C̃K R(J , p, C), it is possible to pick the problem with the smaller
complexity.

While this formulation is appealing for proving theoretical statements as provided
in Theorem 2.5, it quickly becomes computationally infeasible even for small scale
problems as the number of variables in the LP grows potentially as

∏
Mi . However, it

still enables exact computations of (p, C)-barycenters for small scale examples, which
is currently impossible for general UBCs. Though, while there has been some recent
advancement for the 2-Wasserstein barycenter in special cases [2] these LP-based
algorithms ultimately do not scale to large instance sizes.
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Fig. 6 An illustration of the multi-scale approach on two different datasets. The fixed-support solutions are
shown on grids of the sizes 8×8, 16×16, 32×32, 64×64 and 128×128 increasing from left to right. The
corresponding run-times on a single core of an Intel Core i7 12700K in the first/second row were 2.5/5
seconds, 14/16 seconds, 145/42 seconds, 13/3 minutes and 143/22 minutes. Top: The dataset of nested
ellipses from Fig. 7. Bottom: The dataset of ellipses with clustered support structure from Fig. 2

4.2 Iterative Algorithms and theMulti-scale Approach

For theWasserstein barycenter, iterative methods computing approximate barycen-
ters, with a per iterations complexity only linear in the number ofmeasures, enjoy great
popularity. Most well known is the fixed-support Wasserstein barycenter [28, 46, 75]
approach, aiming to find the best approximation of the barycenter on a pre-specified
support set, for which a variety of methods is available. We utilise this fixed-support
approach for the augmented (p, C)-barycenter problem by adding the dummy point d
to the given support and constructing the cost as described above. This yields a meta-
framework which allows to employ fixed-support Wasserstein barycenter algorithms
for fixed-support (p, C)-barycenter computation. One can also modify more gen-
eral free support methods [19, 28, 48], which usually alternate between updating the
support set of the barycenter and its weights on this set, to provide approximate (p, C)-
barycenters. However, the necessary position updates usually explicitly or implicitly
rely on being able to compute the barycentric application T̃ J ,p efficiently. Recalling
Remark 3.6, this is in general not tractable for the augmented problem, which severely
hinders the use of these approaches. Thus, it is tempting to avoid these issues by
approximating Y with a large finite space, i.e., by taking a grid of high-resolution,
and solving the fixed support (p, C)-barycenter problem on this set. However, solv-
ing the fixed-support problem on this large space requires significant computational
effort. We advovate an alternative by adapting the ideas of multi-scale methods for the
Wasserstein distance/barycenter [30, 50, 64] to the (p, C)-barycenter setting. The idea
of this approach is to start with a coarse version of the problem and then successively
solve refined problems, while using the knowledge of the coarse solution to reduce
the complexity of the finer ones.

Thus, we initialise the support set of the barycenter as a fixed grid of size K1×· · ·×
Kd inRd . In the j-th step of the algorithm, after solving the fixed-support problem, we
remove the grid pointswhich have zeromass and replace the remaining oneswith its 2d

closest points in a refined version of the original grid of size 2 j K1 ×· · ·× 2 j Kd . This

123



4 Page 24 of 45 Applied Mathematics & Optimization (2023) 87 :4

can be understood as solving the fixed-support problem on successively finer grids,
while incorporating information provided by having already solved a coarser solution
of the problem. We terminate the method once a pre-specified resolution has been
reached. This allows to obtain fixed-support approximation of the (p, C)-barycenter
on fine grids without having to optimise over the full support set.

We point out that this approach, while inspired by multi-scale approaches is more
closely related to the formerly mentioned free-support methods. As such it does in
general not yield a globally optimal fixed-support (p, C)-barycenter at the finest res-
olution. Instead it converges to a local minimum of the unbalanced Fréchet functional
depending on the resolution of the initial grid. This is a common problem among alter-
nating procedures for the free-support barycenter problem and can be attributed to the
fact that the Fréchet functional is non-convex in the support locations of the measures.
However, we stress that with this approach we observe reasonable approximations
of the (p, C)-barycenter while avoiding the inherent problems of generalising usual
position update procedures discussed above. In particular, we do not have to solve

the
˜

T J ,p
C barycenter problem at any point. Additionally, we note that the initial grid

size should be chosen at least fine enough that the distance between two adjacent grid
points is smaller than C . Otherwise it is possible that support points lying between
two grid points, having distance larger C to both, are not accounted for. For a visual
illustration of the algorithm we refer to Fig. 6.

4.3 Synthetic Data Simulations

Wetest the performance of the (p, C)-barycenter as a data analytic tool compared to the
usual p-Wasserstein barycenter on a multitude of datasets. We base our computations
on the MAAIPM method [28], which allows for high-precision approximations of
barycenters up to moderate data sizes. The algorithm has been deployed to solve the
fixed-support (p, C)-barycenter problems arising in the multi-scale method detailed
above. For all experiments, the initial grid size as been set to 16×16 and the refinement
is terminated at a gridsize of 128 × 128. Values below 10−5 have been considered as
zero for the purposes of grid refinement. All experiments have been carried out on
a single core of an Intel Core i7 12700K . Implementations of our used method and
some alternatives can be found as part of the R-package WSGeometry (on CRAN).

Mismatched Shapes

This first set of examples mainly serves as starting point to illustrate improved per-
formance of the (p, C)-barycenter compared to the p-Wasserstein barycenter. A
prototypical benchmark for the p-Wasserstein barycenter are two nested ellipses as
popularized in Cuturi and Doucet [19]. For our example of nested ellipses, we assume
that the support of each measure consists of nested ellipses, but the number of ellipses
varies between the individual underlying measures. Specifically, we assume that for
each μi the number of ellipses is uniformly random in {1, 2, 3} and that each ellipse
is discretised onto M support points with unit mass, respectively. This can be seen
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Fig. 7 An excerpt of a dataset of N = 100 discretized ellipses. Each measure contains between 1 and 3
ellipses with equal probability. Each ellipse consists of 50 points with mass 1 in [0, 1]2. Left: In darkgreen
the 2-Wasserstein barycenter, where all measures are normalized to be probability measures (runtime about
8 hours). Right: In red, the (2, 1.5)-barycenter (runtime about 30 minutes) (Color figure online)

in Fig. 7. We observe that while the p-Wasserstein barycenter recovers the elliptic
shape of the underlying measures, it fails to produce distinct ellipses and instead pro-
duces something akin to a ring. In contrast, the (p, C)-barycenter yields two distinct
ellipses, which coincides with the expected number of ellipses in one of the mea-
sures. This aligns well with intuition that the (p, C)-barycenter will simply disregard
any additional structures which are not present in a sufficient amount of underlying
measures. In contrast, the p-Wasserstein barycenter does not allow for this flexibility
which enforces additional support points.

Local Scale Cluster Detection

Recall the setting of Fig. 2. In the following class of examples, we are interested
in datasets which possesses a natural cluster structure. Let B1, . . . , BR ⊂ R

D be
convex, disjoint sets and assume that supp(μi ) ⊂ ∪R

r=1Br for all i = 1, . . . , J . If the
diameter of all Br is bounded from above by C and that the distance between each
two Br , Bs is at least 21/pC , then Lemma 2.7 guarentees that the (p, C)-barycenter
detects all of the R clusters in which at least J/2 measures have positive mass. In
particular, by Theorem 2.5 (v) the (p, C)-barycenter will have mass in all of those
clusters. Intuitively, this setting is reasonable if, for instance, it is already known that
any interactions between support points of different measures are limited to scales
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Fig. 8 The (2, C)-barycenters for the measures in Fig. 2 for different values of C . From top-left to bottom-
right the values of C/runtime in minutes are equal to 0.1/28, 0.15/28, 0.2/26, 0.25/28, 0.275/27, 0.3/33,
0.35/59, 0.4/132, 0.45/156, 0.5/160, 0.55/160, 0.6/155, respectively

below a certain threshold, which should then be chosen as C . The lower bound on the
inter-cluster distance ensures that any pair of two clusters is well-separated, ensuring
that it is always possible to distinguish between two different clusters, as they can not
be arbitrarily close to each other.

In Fig. 2 the p-Wasserstein barycenter completely fails to capture the geometric data
structure. Most of its mass is between the clusters and the outer clusters have nearly
no mass. Moreover, the elliptic structure within each cluster is clearly not captured.
In contrast, the (p, C)-barycenter not only captures all clusters, it also distinguishes
between the difference in intensity (expected number of ellipses) in the clusters,match-
ing the theoretical guarantees of Lemma 2.7.We stress that for this example the choice
of C is of particular importance. If we choose C too large, the (p, C)-barycenter will
fail to recover the data’s support structure (for an illustration of the (p, C)-barycenter
in this example over a range of values of C see Fig. 8). Consequently, it is crucial to
choose C appropriately. In this example, the barycenter appears to be stable and detect
all clusters for C ∈ [0.1, 0.275]. Notably, if the locations of the clusters are already
known, this setting also allows for parallel computations of the (p, C)-barycenter,
where the problems are solved separately on each cluster and recombined at the end
(Lemma 2.7).
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Randomly DistortedMeasures

In a statistical context it is important to investigate the stability of the (p, C)-barycenter
under random distortions. We fix a reference measure μ0 on Rd and generate a set of
measures by randommodifications ofμ0.We then attempt to recoverμ0 by computing
the p-Wasserstein and (p, C)-barycenter of these measures, respectively.

In the following, let B(p) denote a Bernoulli random variable with mean p, Poi(λ)

a Poisson distribution with mean λ and U [a, b] a uniform distribution on [a, b]. We
generate μ1, . . . , μJ as follows:

For i = 1, . . . , J initialise μi = μ0, then succesively modify μi based on the four
following steps.

(i) Point Deletion: Fix pdel ∈ [0, 1] and λdel ∈ R+. We draw a Ber(pdel) ran-
dom variable. If it takes the value 1, then we draw D ∼ Poi(λdel) and select
min(D, |supp(μ0)|) points in the support of μ0 uniformly by drawing without
replacement. These points (and their mass) are not contained in μi , since they
have been deleted.

(ii) Point Addition: We fix parameters padd ∈ [0, 1], λadd ∈ R+, madd ∈
R
2, σadd ∈ R

2×2, u0, u1 ∈ R. Draw a Ber(padd ) random variable. If it takes
the value 1, draw a Poi(λadd ) random variable α. Then, generate α random vari-
ables following a normal distribution with mean madd and covariance matrix
σadd . Add these support points to μi , where the weight of each of these points
is determined by independent U [u0, u1] random variables.

(iii) Position Change: Fix parameters a1, a2, b1, b2 ∈ R with a1 ≤ b1 and a2 ≤ b2.
For each x0 in the support of μi , we draw a U ([a1, b1] × [a2, b2]) random
variable and shift the position of x0 by it.

(iv) Weight Change: Fix parameters l, u ∈ R with l ≤ u. For each support point
x0 of μ0 with weight w0, we draw a U [l, u] random variable U and change the
weight of x0 in μi to be w0 + U .

An example of this setting can be seen in Fig. 9. Comparing the two barycenters
displayed there to the original measure reveals that, while the rough shape of the
2-Wasserstein barycenter is correct, its mass is spread out over a larger area and it
has a significantly larger number of support points. Since all measures have been
normalised, we have also lost all information on the mass of μ0. Contrary to that, the
(p, C)-barycenter retrieves the original measures recovering the location and number
of the of support points closely. Additionally, it also has a mass which only deviates
from the original mass by about 0.23%. If one is only interested in recovering the
general shape of the data, both approaches provide comparable performance.However,
if the measures total mass and more detailed support structure are of importance the
(p, C)-barycenter appears to be preferable.

Total Mass Intensity

While the p-Wasserstein barycenter of J probability measures has mass one, the
mass of the (p, C)-barycenter depends on C as well as the geometry of the measures
μ1, . . . , μJ ∈ M+(X ). Exact values for the mass of a (p, C)-barycenter without
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Fig. 9 An excerpt from a dataset of N = 100 noisy nested ellipses supported in [0, 1]2. The parameters
are pdel = 1/3, λdel = 75, padd = 1/3, λadd = 25, madd = (0.5, 0.5)T , σadd = 0.15I2, u0 = 0.9,
u1 = 1.1, a1 = a2 = −0.025, b1 = b2 = 0.025, l = u = 0.1. Left: The 2-Wasserstein barycenter in dark
green (runtime about 4 hours). Center: The original measure μ0 (black). Right: The (2, 1.5)-barycenter in
red (runtime about 20 min) (Color figure online)

Fig. 10 The mass of a (p, C)-barycenter for three sets of measures relative to the median of the total mass
intensities of these measures. The green line corresponds to J = 25 measures from the same class as
considered in Fig. 2. The red line corresponds to the same measures where the four outer clusters have
been moved closer to the central one, such that their distance has been halved. The blue line corresponds
to J = 5 measures with the same cluster structure as in Fig. 2, where the total number of ellipses in all
clusters is fixed to be equal to four for all J measures (Color figure online)

detailed computations, are only available in the limiting scenarioswhereC is extremely
small or large relative to the other distances in X . For the former, we know by The-
orem 2.5 (v) that the barycenter has mass zero for disjoint measures and for the
latter, Theorem 2.5 (vi) yields that there exists a (p, C)-barycenter with total mass
intensity equal to the median of M(μ1), . . . ,M(μJ ). For intermediate values of C ,
Theorem 2.5 (i) yields the upper bound by 2J−1 ∑J

i=1M(μi ). To highlight some
possible behaviours of the total mass intensity of (p, C)-barycenter we consider three
specific examples in Fig. 10. We note that in all three cases at about C = 0.6 the mass
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of the barycenters is at the median of their respective μ1, . . . , μJ and does no longer
change with increasing C . This is significantly smaller than the requirement in Theo-
rem 2.5 (vi), which underlines the fact that while in the worst case, this lower bound is
sharp, inmany examples the totalmass of the (p, C)-barycenter stabilises significantly
earlier. Moreover, none of the three curves is monotone. Instead the total mass of the
barycenter is increasing up to a certain point, afterwhich it decreases until it reaches the
median of the masses. This makes intuitive sense, as the measures are disjoint, thus for
small C the barycenter is empty and starts to grow in mass quickly as the points within
the clusters can be matched. In particular, the differences in intensity between clusters
might lead to a total mass over the medianM(μ1), . . . ,M(μJ ), as by Lemma 2.7 the
total mass intensity of the (p, C)-barycenter is

∑R
r=1 med(M(μ1|Br

), . . . ,M(μJ|Br
),

where B1, . . . , B5 denote the respective cluster locations. For larger C these clusters
start to merge and support points between the clusters reduce the total mass. In par-
ticular, these points can be seen clearly in the plot. Up until about C = 0.1, which
is the cluster size, the mass of the barycenters rises sharply, before stabilising until
the intercluster distance is reached. This is about 0.3 for the green and blue lines and
about 0.15 for the red line (since themeasures in this example are generated by halving
the intercluster distance from the green one). This behaviour highlights the sensitivity
of the mass of the (p, C)-barycenter to the geometry of the measures. It is therefore
impossible to infer the total mass of the (p, C)-barycenter from the magnitude of C
alone without accounting for the specific measures. However, analysing the structural
properties of the support sets of the measures might provide a good indication at what
values of C changes in drastic behaviour of the total mass are to be expected.

4.4 Comparison with Related Unbalanced Barycenter Concepts

We compare the (p, C)-barycenter with two alternative UBC approaches.
TheGaussian-Hellinger–KantorovichBarycenter:This example falls in the gen-

eral framework of optimal entropy transport problems. Measuring deviation between
a feasible solution and the input marginals is carried out via the Kullback-Leibler
divergence defined for μ � ν 6 as

K L(μ, ν) =
∑
x∈X

μ(x) log

(
μ(x)

ν(x)

)
.

If μ �� ν the value of K L is set to be +∞. For a parameter λ > 0, the Gaussian-
Hellinger–Kantorovich Distance [45] is defined as

G H Kλ(μ, ν) = min
π∈M+(X×X )

∑
x,x ′∈X

d2(x, x ′)π(x, x ′) + λK L(μ, π1) + λK L(ν, π2),

6 A measure μ ∈ M+(X ) is said to be absolutely continuous (denoted μ � ν) with respect to another
measure ν ∈ M+(X ) if ν(A) = 0 implies μ(A) = 0 for any measurable set A.
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Fig. 11 Comparison of the three unbalanced barycenters when varying their parameter. All measures are
supported on an equidistant 64 × 64 grid in [0, 1]2. First row: The four underlying measures. Second
row: The Gaussian-Hellinger–Kantorovich barycenter for λ = 0.01, 0.15, . . . , 1.83, 1.97. Third row: The
Hellinger–Kantorovich barycenter for σ = 0.01, 0.08, . . . , 0.64, 0.71. Fourth row: The KR barycenter for
C = 0.01, 0.08, . . . , 0.64, 0.71

where π1 and π2 denote the respective marginals of π . The G H Kλ barycenter is
defined as

argmin
μ∈M+(Y)

N∑
i=1

G H Kλ(μi , μ).

The Hellinger–Kantorovich Barycenter: The Hellinger–Kantorovich distance, also
known asWasserstein–Fisher–Rao distance [14, 45], is closely related to theGaussian-
Hellinger–Kantorovich distance. For fixed parameter σ ∈ (0, π/2], referred to as the
cut-locus, it is defined as

H Kσ (μ, ν) = min
π∈M+(X×X )

∑
x,x ′∈X

(− log(cos2σ (d(x, y)))π(x, x ′)

+ K L(μ, π1) + K L(ν, π2),

where cosσ : z �→ cos(min(z, σ )). For a fixed cut-off locus σ , the H Kσ barycenter
is defined as

argmin
μ∈M+(Y)

N∑
i=1

H Kσ (μi , μ).

Comparing the barycenters: As the resulting barycenters vary significantly in all
three cases, depending on the parameters C, λ, σ , we compare their behaviour upon
change of parameter.

As a simple example, we consider four measures supported on subsets of a grid on
[0, 1]2, displayed in Fig. 11. To ensure fair comparison, we deploy the same method
based on the general scaling method [15] to approximate the UBC in all three cases.
However, we point out that this implies disregarding the ambient space and instead
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Fig. 12 Images displaying the underlying measures used for barycenter computation in Fig. 13. Each row
corresponds to a dataset of ten elements of the classical MNIST dataset which have been randomly rescaled
and shifted within a 50 × 50 grid in [0, 1]2. Their total mass intensities have not been normalised

taking the minimum over all positive measures supported on a prespecified grid in
[0, 1]2.

For high parameter values all three approaches yield similar results. This is, of
course, to be expected, since these distances interpolate between p-Wasserstein dis-
tance and total variation/Kullback-Leibler distance and large parameters correspond
to a setting being close to the Wasserstein distance. The KR barycenter has mass zero
for small choice of C by Theorem 2.5 (iv), since the four measures have disjoint sup-
port. After reaching a threshold of C ≈ 0.1, the mass in the (2, C)-barycenter starts
to increase as mass is added in the center of the unit square until at C ≈ 0.3 the mass
of an individual data measure is reached.

For small λ the G H Kλ barycenter has small mass and its support is close to that
of a linear mean of the four measures, though the total mass intensity is significantly
lower than for the original measures. With increasing λ the mass starts to increase and
to smear into the middle of the unit square, until a large square, encompassing all four
data supports, is formed. After this point increasing λ causes the square to contract
while its mass increases. Finally, we approach a single square at roughly the same size
as the squares in the underlying measures for large λ.

The H Kσ barycenter is close to a linear mean of the four measures for small
cut-off. Increasing σ initially reduces the mass at each of the square locations. At
a threshold of σ ≈ 0.34, we observe a change, where part of the mass is moved
vertically or horizontally to the mid points between the squares in a rectangular shape.
Until σ ≈ 0.43 all mass is shifted to these "middle-rectangles", at which point a
second shift occurs, where the mass from these rectangles starts to move towards a
square in the center. At σ ≈ 0.6, all mass has been shifted towards a square in the
center and there is no further change in the HK barycenter, when increasing σ .

Additionally, we consider Figs. 12 and 13, where the three unbalanced barycenter
models are compared on three exemplary classes based on the MNIST dataset. Here,
the original 28× 28 images have been rescaled to sizes between 14× 14 and 42× 42
and embedded in a random subgrid of a 50×50 image. In this setting, there is a notable
distinction between the GHK barycenter and the KR and HK barycenters. While for
the former, the overall shape is recovered even for small parameter values, the latter
two barycenters produce unstructured results for small parameters. The GHK distance
is not constructed to have a maximal transport distance comparable to the impact of
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Fig. 13 Comparison of the three unbalanced barycenters when varying their parameter. The set of under-
lying measures for a is the first row of Fig. 12. For b it is the second for c the third. For each
class of examples the three different UOT barycenter models are considered in different rows: First
row: The Gaussian-Hellinger–Kantorovich barycenter for λ = 0.01, 0.12, 0.23, . . . , 1. Second row: The
Hellinger–Kantorovich barycenter for σ = 0.01, 0.08, . . . , 0.64. Third row: The KR barycenter for
C = 0.1, 0.2, . . . , 1

C or σ in the other two cases, which allows to transport across larger distance and
recover the correct shape for smaller values of λ. However, the mass of the GHK
barycenter is significantly smaller than that of the original measures for small values
of λ and only increases to the correct magnitude for larger penalty values. The HK
and KR barycenters consist of fragments of the final shape which move towards a
joint location for increasing parameters. For large penalties all three models are nearly
identical and display the corresponding number correctly. This makes sense, as in this
setting the minimisation in any individual term of the (p, C)-Fréchet functional is
driven by minimising an OT term. We point out that for the (p, C)-barycenter this

123



Applied Mathematics & Optimization (2023) 87 :4 Page 33 of 45 4

regime is guaranteed to be reached by choosing C larger than the diameter of the
space, while for the other two models the suitable parameter choice for this example
is ambiguous without actually computing the result for specific values.

Overall, for large parameter values all considered UBCs perform similarly. In small
parameter regimes we observe significant differences. This difference in behavior is
to be expected as the dependence of the UOT models on their parameters varies
significantly. One key advantage of the KR barycenter is that its connection between
the choice ofC and the properties of the resulting barycenter is immediate and intuitive.
While the cut-off locus σ for the HK barycenter fulfils a similar role, imposing control
at the maximum scale at which transport does occur, the consequences of changing
σ from one value to another are far less immediate due to the involved structure of
the cost functional in this setting. Similarly to the KR barycenter, it is worth noticing
that the HK barycenter does allow for mass at locations given by centroids of support
points of L < N measures. Though, while for the KRD a feature of the underlying
measures is only contained in the barycenter if it is present in more than L = N/2
measures, the HK barycenter also allows for mass at locations constructed from less
support points. Thus, the HK barycenter is prone to being more susceptible to errors
due to noise within the data. Compared to the other two choices, the parameter λ of the
GHKbarycenter does appear to have less interpretation, with the only clear connection
being that increasing λ increases the mass of the GHK barycenter. There does also not
appear to be any well-founded method how to approach the choice of λ for a given
dataset.
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A Proofs

A.1 Proofs of Section 3

Proof of Lemma 3.3 Let μ ∈ M+(Y) be such that M(μ) ≤ ∑J
i=1M(μi ). Then

Fp,C (μ)
(i)= 1

J

J∑
i=1

ÕT
p

d̃ p
C

(μ + M(μi )δd, μi + M(μ)δd)

(i i)= 1

J

J∑
i=1

ÕT
p

d̃ p
C

(
μ +

(
J∑

i=1

M(μi ) − M(μ)

)
δd, μ̃i

)

=F̃p,C

(
μ +

(
J∑

i=1

M(μi ) − M(μ)

)
δd

)
,

where (i) follows from the lift to an OT problem (Sect. 3.1) and (i i) follows from
Lemma 3.1 by adding mass

∑
j �=i M(μ j ) − M(μ) at d. We then have that

min
μ∈M+(Y)

M(μ)≤∑J
i=1 M(μi )

Fp,C (μ) = min
μ∈M+(Y)

M(μ)≤∑J
i=1 M(μi )

F̃p,C

(
μ +

(
J∑

i=1

M(μi ) − M(μ)

)
δd

)

≥ min
μ∈M+(Ỹ)

M(μ)=∑J
i=1 M(μi )

F̃p,C (μ)

and

min
μ∈M+(Ỹ)

M(μ)=∑J
i=1 M(μi )

F̃p,C (μ) = min
μ∈M+(Ỹ)

M(μ)=∑J
i=1 M(μi )

Fp,C (μ|Y ) ≥ min
μ∈M+(Y)

M(μ)≤∑J
i=1 M(μi )

Fp,C (μ).

Combining both inequalities and using Lemma 3.2 then finishes the proof.

Proof of Lemma 3.5 (i) By definition, the objective value for T̃ J ,p
C (y1, . . . , yJ ) at d is

equal to (J − |B|)C p/2. Thus, T̃ J ,p
C outputs d if and only if for any y ∈ Y it holds

J∑
i=1

d̃ p
C (yi , y) ≥ (J − |B|)C p/2

which is equivalent to

∑
i /∈B

d̃ p
C (yi , y) ≥ (J − 2|B|)C p/2.
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In particular, if all inequalities are strict d is the unique output for T̃ J ,p
C (y1, . . . , yJ ).

Statement (ii) is a direct consequence of (i). For statement (iii) we again use that by
definition d̃ p

C (y, d) = C p/2 for any y ∈ Y and hence

min
y∈Y

J∑
i=1

d̃ p
C (yi , y) = |B|C p

2
+ min

y∈Y
∑
i /∈B

d̃ p
C (yi , y).

Proving (iv), let C > 21/pdiam(Y), pick points y1, . . . , yJ ∈ Y and observe that for
any y ∈ Y it holds that

J∑
i=1

d̃ p
C (yi , d) = J

C p

2
> Jdiam(Y)p ≥

J∑
i=1

d p(yi , y).

Thus, T̃ J ,p
C (x1, . . . , xJ ) �= d and since |B| = 0, the claim follows from (iii). ��

A.2 Proofs of Section 2

Proof for Lemma 2.1 Suppose that πC is optimal but its induced graph G(πC ) contains
a path P = (xi1 , . . . , xik ) such that L(P) > C p. By definition of G(πC ) it holds that
πC (xi j , xi j+1) > 0 for all 1 ≤ j ≤ k − 1. We define a new transport plan with
augmented transport along the path P . For this, define ε:=min1≤ j≤k−1 πC (xi j , xi j+1)

and construct the new plan

π̃C (x, x ′) =
{

πC (x, x ′) − ε, if ∃ 1 ≤ j ≤ k − 1, x = xi j , x ′ = xi j+1

πC (x, x ′), else.

Compared toπC the transportation cost for π̃C is reduced by εL(P)while themarginal
deviation is increased by εC p. In particular, it holds that

∑
x,x ′

d p(x, x ′)π̃C (x, x ′) + C p

2

(∑
x

μ(x) − π̃C (x,X ) +
∑

x ′
ν(x ′) − π̃C (X , x ′)

)

=
∑
x,x ′

d p(x, x ′)πC (x, x ′) + C p

2

(∑
x

μ(x) − πC (x,X ) +
∑

x ′
ν(x ′) − πC (X , x ′)

)

+ ε
(
C p − L(P)

)
.

As ε > 0 and L(P) > C p this contradicts the optimality for πC . Consequently,
any path P in the induced graph G(πC ) necessarily has path length at most C p. If
d(x, x ′) > C this implies that d p(x, x ′) > C p and hence by the statement on induced
graphs that πC (x, x ′) = 0. ��
Proof for Theorem 2.2 We first establish the metric properties (i). It is straightforward
to show KRp,C (μ, ν) = 0 if and only if μ = ν and that KRp,C is symmetric. For the
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triangle inequality let μ, ν, τ ∈ M+(X ) and choose B ≥ max{M(μ),M(ν),M(τ )}.
Then by augmenting the measures accordingly (Sect. 3.1) we find that

KRp,C (μ, ν) =
(
ÕTd̃ p

C
(μ̃, ν̃)

)1/p

≤
(
ÕTd̃ p

C
(μ̃, τ̃ )

)1/p +
(
ÕTd̃ p

C
(τ̃ , ν̃)

)1/p = KRp,C (μ, τ) + KRp,C (τ, ν)

where the inequality follows by the triangle inequality for theWasserstein distance [71,
Theorem7.3]. Statement (ii) follows fromLemma2.1 by noting that there exists at least
one optimal solution πC equal to zero except on the diagonal for which πC (x, x) =
μ(x)∧ν(x). Plugging into the objective of (2) yields the claim. Additionally, suppose
that w.l.o.g. μ(x) ≥ ν(x) for all x ∈ X . Then independent to the choice of C > 0 and
p ≥ 1 the unique optimal solution is to remain all shared mass at its common place
and to delete surplus material which is exactly the solution πC (x, x) = μ(x) ∧ ν(x)

described before. Statement (iii) follows by noting that for C ≥ maxx,x ′ d(x, x ′) the
dual formulation in (DUOTp,C ) and in (DOTp) coincide.

Finally, for statement (iv) we note that by construction it holds d̃ p
C1

(x, y) ≤
d̃ p

C2
(x, y) for all x, y ∈ Ỹ . Hence, for any coupling π of the augmented measures

μ̃, ν̃ it holds

∑

x,x ′∈Ỹ
d̃ p

C1
(x, x ′)π(x, x ′) ≤

∑

x,x ′∈Ỹ
d̃ p

C2
(x, x ′)π(x, x ′).

Taking the minimum over all couplings of μ̃ and ν̃ on both sides completes the
proof. ��

A.2.1 Proof for Theorem 2.3

Using the lift to the OT problem, we can now start to prove the closed formula on ultra-
metric trees. For this, consider an ultrametric tree T with height function h : V → R+
and define its p-height transformed tree denoted Tp:=T as the same tree but with
height function h p(v) = 2p−1h(v)p. An illustration is given in Fig. 4. Notice that by
monotonicity Tp is again an ultrametric tree.

Lemma A.1 Let T be an ultrametric tree with height function h : V → R+ and con-
sider its p-height transformed tree Tp. Then it holds that

d p
T (v,w) = dTp (v,w)

for all leaf nodes v,w ∈ L ⊂ V .

Proof Let v,w ∈ L be two leaf nodes in the ultrametric tree T with height function h
and let a be their common ancestor7. Since paths between any two vertices are unique

7 If v,w ∈ L are leaf nodes their common ancestor is defined as the node included in the path from v to w
closest to the root.
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and all leaf nodes have the same distance to the root, it holds that

dT (v, a) − dT (w, a) = dT (v, a) + dT (a, r) − dT (a, r) − dT (w, a)

= dT (v, r) − dT (w, r) = 0.

Hence,

(dT (v,w))p = (dT (v, a) + dT (w, a))p = 2p(h(a) − h(v))p = 2ph(a)p,

where we use that h(v) = 0. Repeating the argument for the ultrametric tree Tp we
conclude that dTp (v,w) = 2dTp (v, a) = 2ph(a)p.

Equipped with this result we are now able to prove the closed formula from Theo-
rem 2.3.

Proof for Theorem 2.3 Let KRp
p,C (μ, ν) = UOTp,C (μ, ν) refer to UOT w.r.t. the

distance on T , which only depends on the distance between individual leaf nodes.
Considering the p-th height transformed tree Tp and applying Lemma A.1 we con-
clude that

KRp
p,C (μL , νL) = min

π∈M+(L×L)

∑
v,v′∈L

dTp (v, v
′)π(v, v′)

+ C p

2

(∑
v∈L

(
μL(v) − π(v, L)

)
+

∑
v′∈L

(
νL(v′) − π(L, v′)

))

s.t. π(v, L) ≤ μL(v) , ∀ v ∈ L,

π(L, v′) ≤ νL(v′) , ∀ v′ ∈ L.

The linear optimization problem can be decomposed on several subtrees. For this
recall that by Lemma 2.1 (i) there exists an optimal solution such that mass transporta-
tion is only considered on metric scales between two leaf nodes v, v′ ∈ L such that
dTp (v, v

′) ≤ C p. If v0 is the common ancestor of v, v′ then by the ultrametric tree
properties of T (see also the proof of Lemma A.1) the inequality dTp (v, v

′) ≤ C p is

equivalent to the height function h(v0) ≤ C
2 . Consider the set R(C) in (7) and for

each v ∈ R(C) define subtrees C(v) consisting of the children of v and the subset of
corresponding edges. By construction if vi , v j ∈ R(C)with vi �= v j then the subtrees
are disjoint C(vi ) ∩ C(v j ) = ∅ (Fig. 4a for an illustration). In particular, the linear
optimization problem KRp

p,C (μL , νL) is decomposed on each individual subtree C(v)
for each v ∈ R(C). The distance on individual subtrees is set to be the p-th height
transformed tree distance dTp which exactly captures the pairwise p-th power dis-
tance between leaf nodes belonging to the same subtree (Lemma A.1). For an element
v ∈ R(C) consider its subtree C(v) with distance dTp . By definition the maximal
distance between its leaf nodes is bounded by C p/2. We augment the subtree C(v) with
a dummy node ṽ and introduce an edge e = (v, ṽ) with edge weight C p

2 − 2p−1h(v)p

(Fig. 4b for an illustration). Denote the augmented tree by C̃(v). Considering the mea-
suresμL , νL restricted to C(v)we augmentμL adding mass

(
μL(C(v)) − νL(C(v))

)
+
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at ṽ and vice versa augment νL adding mass
(
νL(C(v)) − μL(C(v))

)
+ at ṽ. This con-

struction defines an equivalent OT problem on C̃(v) [33]. Hence, applying the closed
formula for OT on general metric trees [20, p.575] yields

2p−1
∑

w∈C(v)\{v}

( (
h(par(w))p − h(w)p) ∣∣∣μL(C(w)) − νL(C(w))

∣∣∣
)

+
(

C p

2
− h(v)

) ∣∣∣μL(C(v)) − νL(C(v))
∣∣∣ .

Summing over all subtrees indexed by the set R(C) finishes the proof. ��

Proofs for the Barycenter

Proof of Theorem 2.5 (ii) Let μ be a (p, C)-barycenter and μ̃ its augmented counter-
part. Then, by Proposition 3.9 there exists an optimal multi-coupling π , such that it
holds μ = μ̃|Y = (T̃ J ,p

C #π)|Y . Hence, for each y ∈ supp(μ̃) there exists Ky ≥ 1 and
Ky J -tupels (x1y,1, . . . , x J

y,1), . . . , (x1y,Ky
, . . . , x J

y,Ky
) such that for k = 1, . . . , Ky it

holds

y = T̃ J ,p
C (x1y,k, . . . , x J

y,k)

and μ(y) = ∑Ky
k=1 ay

k , where ay
k = π(x1y,k, . . . , x J

y,k). For i = 1, . . . , J define π̃i ∈
M+(Y × Y) by π̃i (y, xi

y,k) = ay
k for all y ∈ supp(μ̃), i = 1, . . . , J and k =

1, . . . , Ky . Set π̃i to be zero everywhere else for i = 1, . . . , J . By construction, π̃i

defines an OT plan between μ̃ and μ̃i for i = 1, . . . , J . It holds

1

J

J∑
i=1

ÕT d̃ p
C
(μ̃, μ̃i ) =

∑
x∈supp(π)

cp,C (x)π(x)

=
∑

x∈supp(π)

1

J

J∑
i=1

d̃ p
C

(
xi , T̃ J ,p

C (x)
)

π(x)

= 1

J

∑
y∈supp(μ̃)

J∑
i=1

Ky∑
k=1

d̃ p
C (xi

y,k, y)ay
k

= 1

J

J∑
i=1

∑
y∈supp(μ̃)

Ky∑
k=1

d̃ p
C (xi

y,k, y)π̃ i (y, xi
y,k),

where the first equality follows from Proposition 3.9 and the third and fourth by
construction. Since π̃i is an OT plan between μ̃ and μ̃i it holds for all i = 1, . . . , J
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that

∑
y∈supp(μ̃)

Ky∑
k=1

d̃ p
C (xi

y,k, y)π̃i (y, xi
y,k) ≥ ÕT

p
p,C (μ̃, μ̃i ).

Thus, it follows together with the previous equations that

ÕT
p
p,C (μ̃, μ̃i ) =

∑
y∈supp(μ̃)

Ky∑
k=1

d̃ p
C (xi

y,k, y)π̃i (y, xi
y,k),

i.e. π̃i is optimal. Lemma 3.5 now yields the first part of the statement.
For the second part assume that for any (x1, . . . , xL) ∈ YL it holds that

T L,p(x1, . . . , xL) = T L,p(y1, x2, . . . , xL) is equivalent to x1 = y1. Let y ∈ supp(μ̃)

and consider OT plans π̃1, . . . , π̃ J between μ̃ and μ̃i , respectively. For i = 1, . . . , J
consider xi such that π̃i (y, xi ) = ai > 0. Assume that it holds y �= T̃ J ,p

C (x1, . . . , xJ ).
Denote the minimum of the ai as a0 = mini=1,...,J ai . By construction, it follows that

F̃p,C (μ̃ − a0δy + a0δT̃ J ,p
C (x1,...,xJ )

) < Fp,C (μ̃),

which is a contradiction to μ̃ being a barycenter of μ̃1, . . . , μ̃J . Thus, it holds y =
T̃ J ,p

C (x1, . . . , xJ ). Now, assume w.l.o.g. there exists x1, z1 ∈ Y , such that it holds
π1(y, x1) > 0 and π1(y, z1) > 0. However, by the previous argument this implies

T̃ J ,p
C (x1, . . . , xJ ) = y = T̃ J ,p

C (z1, . . . , xJ ).

By assumption this is equivalent to x1 = z1, thus it holds for all x, y ∈ Y and
i = 1, . . . , J that π i (y, x) ∈ {0, μ(y)}.

(i)ByProposition 3.9 the objective value of the balancedmulti-marginal and (p, C)-
barycenter problem coincide and a (p, C)-barycenter is obtained as the push-forward
of an optimal balanced multi-coupling under the map T̃ J ,p

C restricted to Y . By con-
struction and Corollary 3.7 any such measure is supported in CKR(J , p, C). Thus,
there always exists a (p, C)-barycenter whose support is restricted to CKR(J , p, C)

and the minimum over Y and CKR(J , p, C) coincide.
The second part is similar and we let μ̃ be any p-Wasserstein barycenter. Then by

Proposition 3.9, there exists a multi-coupling of μ̃1, . . . , μ̃J , such that μ̃ = T̃ J ,p
C #π̃ .

Since any such push-forward measure can only have support in CKR(J , p, C)∪ {d}, it
holds for μ = μ̃|Y that supp(μ) ⊂ CKR(J , p, C). It remains to show the upper bound
on the total mass. By the equivalence to themulti-marginal problem and by Lemma 3.5
(ii) any (p, C)-barycenter μ cannot have mass on a point which is constructed from a
set of points (x1, . . . , xJ ) for which 2|B(x1, . . . , xJ )| ≥ J . Additionally, by part (i i)
we know that there exists UOT plans, such that the mass of each (p, C)-barycenter
support point is fully transported to points it is constructed from. Let (a1, . . . , aK ) be
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the weight vector of the support points of the (p, C)-barycenter, then it holds that

J∑
i=1

M(μi ) − �J/2�
K∑

k=1

ak ≥ 0,

since by the previous argument and Lemma 3.5, any (p, C)-barycenter support point
xk reduces the maximum available mass by at least �J/2�ak and by Lemma 3.2, the
total mass of the (p, C)-barycenter is bounded by the sum of the total masses of the
μi . Therefore it holds that

M(μ) =
K∑

k=1

ak ≤ �J/2�−1
J∑

i=1

M(μi ) ≤ 2

J

J∑
i=1

M(μi ).

(iii) The multi-marginal problem between μ̃1, . . . , μ̃J is a balanced problem, thus we
can pose this as a linear program with a total of

∏J
i=1 Mi variables and

∑N
i=1 Mi + J

constraints. As all measures have the same total mass, we can drop one arbitrary
marginal constraint for each measure besides the first. Thus, the rank of the constraint
matrix in the corresponding constraint is bounded by

∑N
i=1 Mi +1. Hence, each basic

feasible solution of the linear program has at most
∑N

i=1 Mi + 1 non-zero entries (see

[47] for details). Letπ be such a solution. By Proposition 3.9 themeasure μ̃ = T̃ J ,p
C #π

is a p-Wasserstein barycenter and by construction it has at most
∑N

i=1 Mi +1 support
points. Due to the upper bound on the total mass of the (p, C)-barycenter in property
(i), we can guarantee that there is non-zero mass at d for J > 2, hence in this case,
restricting the measure to Y reduces the support size by one. For J = 2, we note that
the multi-marginal problem is just the augmented UOT problem. By construction we
either have a point x in the support of one of the two measures, such that there is
transport between x and d or both measures have equal mass at d and it is optimal to
leave this mass in place. In the first case, we have mass at T̃ J ,p

C (x, d) = d, thus the
support size can be reduced by one and in the second the problem is equivalent to the
OT problem and thus the barycenter has at most M1 + M2 − 1 support points. Finally,
by property (i) the support of any (p, C)-barycenter is contained in CK R(J , p, C),
thus the cardinality of this set also provides a trivial upper bound on the support size
of any (p, C)-barycenter. Taking the minimum over both quantities, we conclude

|supp(μ)| ≤ min

{
|CK R(J , p, C)|,

J∑
i=1

Mi

}
.

(iv) For any μ ∈ M+(Y), it holds

F p
p,C1

(μ) = 1

J

J∑
i=1

KRp
p,C1

(μ,μi ) ≤ 1

J

J∑
i=1

KRp
p,C2

(μ,μi ) = F p
p,C2

(μ),
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where the inequality follows from Theorem 2.2 (iv). Taking the infimum over all
measures inM+(Y) on both sides completes the proof.

(v) Let C ≤ d ′
min, then by Theorem 2.2 (ii) it holds

argmin
μ∈M+(Y)

Fp,C (μ) = argmin
μ∈M+(Y)

C p

2J

J∑
i=1

T V (μ,μi )

= argmin
a∈RK+

C p

2J

J∑
i=1

K∑
k=1

|ak − ai
k |

= argmin
a∈RK+

C p

2J

K∑
k=1

J∑
i=1

|ak − ai
k |,

where the change in the argmin in the second line follows from the fact that the total
variation can only increase if we place mass outside of the support of the measures.
Thus it suffices to consider measures supported on the union of the supports. Now, we
note that the K summands are independent to each other, thus we can minimise them
separately. Hence, for the k-th entry of a it holds that

ak ∈ argmin
a∈R+

N∑
i=1

|ak − ai
k | = med(a1

k , . . . , a J
k )

which yields the claim.
(vi) Let Mi = M(μi ) for i = 1, . . . , J and set M0 = 0. Assume that J is odd.

Let μ be a (p, C)-barycenter of μ1, . . . , μJ with μ(Y) ∈ [Mk−1,Mk]. In particular,
μ fulfills the non-mass-splitting property in (ii). Let a ∈ (0,Mk − M(μ)] and μ̃ the
augmentedmeasure forμ. By construction, we can find support points xk, . . . , xJ �= d
of the augmented measures μ̃k, . . . , μ̃J from which w.l.o.g. mass a is transported to d
in μ. If one of the points has mass smaller a, we can just replace a with the minimum
of the masses of the points and repeat the argument until we have considered a total
mass of a. Set x0 = T̃ J ,p

C (d, . . . , d, xk, . . . , xJ ) and notice that if x0 = d, we do not
change the objective function in the augmented problem (Lemma 3.1) by adding this
point which means w.l.o.g. x0 �= d. In this case, we have

x0 = argmin
x∈Y

J∑
i=k

d̃ p
C (xi , x).

Now, the objective cost of not having mass a at x0 is aC p(J − k)/2, while the cost of
adding aδx0 to μ is equal to a(kC p/2 + ∑J

i=k d̃ p
C (xi , x0)). Hence, adding the point

improves the value of the Fréchet functional, if

J∑
i=k

d̃ p
C (xi , x0) ≤ C p(J − 2k)/2.
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For 2k > J , the right hand side will always be negative, so we can not improve. Thus,

we assume 2k < J . By assumption it holds C ≥ J
1
p diam(Z). Hence,

C p

2
≥ J

2
diam(Z)p

⇔ C p

2diam(Z)p
≥ J

2
≥ J − k

J − 2k

⇔ C p(J − 2k)/2 ≥ diam(Z)p(J − k) ≥
J∑

i=k

d̃ p
C (xi , x0).

Therefore, for 2k < J the objective value of μ can always be improved by increasing
its mass by a, as long as k < �J/2�. Thus, since μ is a barycenter it holds M(μ) ≥
Mμ�J/2�.

An analog, converse argument yields that if k > J/2, we can always improve the
objective value of μ, since removing and then re-adding any mass to μ increases the
objective value by the previous argument. Hence, it holds M(μ) = Mμ�J/2�.

Now, assume J is even. For 2k �= J nothing in the previous argument changes.
However, for 2k = J (note that this can only hold now that J is even), the right hand
side is zero, however, if all the xi for i = k, . . . , J , are identical to x0 (in particular,
there exists a point contained in the support of at least half of the measures), then
the left hand side will also be zero. In this case, the presence of this point does not
change the objective value and there are (p, C)-barycenters of different total masses.
However, we can still always choose to not place mass in such cases, to obtain a
(p, C)-barycenter of the desired total mass.

Proof for Lemma 2.7 It suffices to show that there is no centroid point, which is con-
structed from points from two or more different sets Br . Assume there is a point
y0 ∈ CK R(J , p, C), such that y0 is constructed, among others, from x1 ∈ Br and
x2 ∈ Bs for r �= s. We distinguish two cases. Assume y0 ∈ Br , then it holds
d p(x1, y0) > 2p−1C p ≥ C p and y0 would not be in the restricted centroid set.
The analogue argument holds for y0 ∈ Bs . Now, assume y0 is neither in Br nor BS .
Since d(Br , BS) > 21/pC , it holds either d p(Br , y0) > C p or d p(Bs, y0) > C p.
Thus, we obtain another contradiction to y0 ∈ CK R(J , p, C). Hence, CK R(J , p, C)

only contains centroids constructed from points within one Br and by convexity of the
Br , any centroid point constructed from points within Br is again in Br . Theorem 2.5
(ii) yields that there will always be an optimal solution which only transports within
each Br , thus the R problems are in fact independent andwe can separate themwithout
changing the objective value. ��
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