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Abstract
In various biomedical applications, precise focusing of nonlinear ultrasonic waves
is crucial for efficiency and safety of the involved procedures. This work analyzes
a class of shape optimization problems constrained by general quasi-linear acoustic
wave equations that arise in high-intensity focused ultrasound (HIFU) applications.
Within our theoretical framework, the Westervelt and Kuznetsov equations of non-
linear acoustics are obtained as particular cases. The quadratic gradient nonlinearity,
specific to the Kuznetsov equation, requires special attention throughout. To prove
the existence of the Eulerian shape derivative, we successively study the local well-
posedness and regularity of the forward problem, uniformly with respect to shape
variations, and prove that it does not degenerate under the hypothesis of small initial
and boundary data. Additionally, we prove Hölder-continuity of the acoustic potential
with respect to domain deformations. We then derive and analyze the correspond-
ing adjoint problems for several different cost functionals of practical interest and
conclude with the expressions of well-defined shape derivatives.
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1 Introduction

In 1848, Stokes published an article on a difficulty in the theory of sound, namely the
difficulty to apprehend the nonlinear behavior of acoustic waves [1]. Nonlinear wave
phenomena still pose challenging questions to this day. In various biomedical appli-
cations [2–6], understanding and manipulating nonlinear ultrasonic waves is essential
in ensuring the efficiency and safety of the involved procedures. Among such pro-
cedures, High-Intensity Focused Ultrasound (HIFU) is emerging as one of the most
promising non-invasive tools in treatments of various solid cancers [4, 7, 8]. However,
its wide-scale use hinges on the ability to guarantee the desired sound behavior in the
focal region. Other applications of HIFU include, among others, lithotripsy [6] and
stroke treatments [9].

HIFU waves are commonly excited by one or several piezoelectric transducers
arranged on a spherical surface [9–11]. Changes in their shape directly affect the
propagation and focusing of sound waves. Depending on the application, the require-
ments for the pressure levels and wave distortion at the focal region differ. Designing
the transducer arrangement for a given set of requirement gives rise to a practically
relevant optimization problems.

Motivated by this, in the present work we conduct the analysis of a class of shape
optimization problems subject to the following model of ultrasound propagation:

(1 − 2kψ̇)ψ̈ − c2 �ψ − b�ψ̇ − 2σ∇ψ̇ · ∇ψ = 0, (1)

on a bounded smooth domain �, assuming nonhomogeneous Neumann boundary
excitation. The particular choice of the parameters k and σ allows us to cover the
strongly damped linear wave equation as well as the classical Westervelt [12] and
Kuznetsov [13] equations of nonlinear acoustics (in potential form)within our analysis.
We refer to Sect. 2 below for a more detailed discussion of the studied model.

The well-posedness and regularity of nonlinear acoustic waves on fixed domains
have been by now widely studied in the literature; see, e.g., [14–22]. Shape differ-
entiability of acoustic wave equations and related optimization problems have been
mostly examined subject to linear evolution; see, e.g., [23–25] and the references given
therein. The few results [19, 26–28] available in shape optimization with quasilinear
acoustic models focus on the less involved Westervelt equation in pressure form.

In this paper, we enrich the existing literature with the study of a quasilinear model
(1) with general quadratic nonlinearities (i.e., the terms ψ̇ψ̈ and ∇ψ̇ · ∇ψ). The
presence of these terms necessitates the use of higher-order energies in the analysis
of the state problem compared to [19, 27]. In turn, new arguments need to be devised
in the study of Hölder-continuity with respect to shape variations. Furthermore, the
quadratic gradient nonlinearity leads to adjoint problems with boundary conditions in
the form:

c2
∂ p

∂n
− b

∂ ṗ

∂n
+ 2σ

∂ψ

∂n
ṗ = 0,
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where p is the adjoint variable. When σ �= 0, such a boundary condition requires
special attention in the well-posedness analysis.

Besides, we not only treat the classical L2(L2)-tracking problem on D = DS ×
(t0, t1), where the acoustic velocity potential ψ should match a desired output on
a given spatial focal region DS� � within a certain time interval (t0, t1), we also
consider in this work an L2-matching objective at final time:

JT (ψ,�) = 1

2

∫
�

(
ψ(T ) − ψDS

)2
χDS dx . (2)

Additionally, we study an L2(L2)-tracking functional on ψ̇ , corresponding (up to a
multiplicative constant) to tracking the sound pressure. We denote by fD the desired
pressure on D. The cost functional is then given by

Jp(ψ,�) = 1

2

∫ T

0

∫
�

(
ψ̇ − fD

)2
χD dxds; (3)

see Fig. 1 for an illustration of the optimization setup.
The shape analysis is carried out by adopting the adjoint-based variational frame-

work developed in [29], which avoids the need to study the shape sensitivity of the
state variable. Insteadwe rely on the aforementionedHölder continuity of the potential
with respect to domain perturbations in a suitable norm.We show that with appropriate
(different) adjoint problems, these objectives have the same final derivative expression
which is of the form required by the Delfour–Hadamard–Zolésio structure theorem;
see [30, Theorem 3.6]. The well-posedness analysis of the state and adjoint problems
ensures the well-definedness of the expression.

The paper is organized throughmultiple sections, each dealing with questions relat-
ing to the existence and well-definedness of the derivative. In Sect. 2, we discuss the
well-posedness of the forward problem under Neumann boundary conditions and the
regularity of its solution, also uniformly with respect to shape deformations. In Sect. 3,
we prove the Hölder continuity of the velocity potential with respect to domain per-
turbations. We then study the well-posedness and regularity of the adjoint problem for
the L2(L2)-tracking objective. In Sect. 5, we rigorously derive the shape derivative
in the direction of any sufficiently smooth vector field deformation. Additionally, we
give a brief analysis of the L2-matching objective at final time (2) and of the pressure
cost functional (3) and give their shape derivative expression.

Notation

We shall frequently use the notation x � y which stands for x ≤ Cy, where C is a
generic constant that depends only on the reference domain � and, possibly, the final
time T . We will denote by C�,4 the embedding constant of H1(�) into L4(�) and
by Ctr,∂� the norm of the trace operator tr∂� : H1(�) → H1/2(∂�). We denote by
ẋ , ẍ and

...
x the first, second and third, respectively, derivative of the quantity x with

respect to time. Given two Banach spaces X and Y , we shall refer to the continuous
(resp. compact) embedding of X into Y by X ↪→ Y (resp. X ↪→

↪→ Y ).
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Ω

DS∂Ω

hold-all domain U

Propagating
wave

Fig. 1 The optimization setup, where D = DS × (t0, t1)

2 Analysis of the State Problem

In this section, we discuss the well-posedness of (1) as well as of its more general
counterpart with variable smooth coefficients; see (25) below.

Throughout this work we assume that � is a C2,1-regular, bounded domain in Rl

with l ∈ {2, 3}. In (1), ψ denotes the acoustic velocity potential. It is related to the
acoustic pressure p via

p = ρψ̇,

where ρ is the mass density of the medium. The constant c > 0 denotes the speed
of sound and b > 0 is the so-called sound diffusivity. Note that the presence of the
strong damping (b > 0) in the equation contributes to its parabolic-like character;
see, e.g, [15, 20]. The constant k is a function of the coefficient of nonlinearity of the
medium βa and of the speed of propagation c.

Equation (1) can be seen as the Westervelt or Kuznetsov equation of nonlinear
acoustics, depending on the choice of parameters k and σ . Indeed,

(k, σ ) =
⎧⎨
⎩

(
βa
c2

, 0
)

for the Westervelt equation [12],(
βa−1
c2

, 1
)
for the Kuznetsov equation [13].

The choice between these two models depends on whether one can assume that cumu-
lative nonlinear effects dominate local nonlinear effects; see the discussion in [31,
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Ch. 3, Sect. 6]. We refer to [32] for a survey of models in nonlinear acoustics. Going
forward, we assume that k, σ ∈ R.

We couple (1) with an excitation modeled by Neumann boundary conditions as
well as the initial data and study the following problem:

(
1 − 2kψ̇

)
ψ̈ − c2 �ψ − b�ψ̇ − 2σ∇ψ̇ · ∇ψ = 0 on Q,

∂ψ
∂n = g on
,

ψ(0) = ψ0, ψ̇(0) = ψ1 on�,

(4)

where we have denoted Q = �×(0, T ) and
 = ∂�×(0, T ). Mathematical analysis
of the Kuznetsov equation with homogeneous Dirichlet data can be found in [20]. The
Kuznetsov equation in pressure form with nonhomogeneous Neumann data is studied
in [15]. The analysis of (4) follows along similar lines with main differences in the
energy arguments, which we present here. For the sake of readability, we first study
the well-posedness of (4) and then generalize the argument to the case of variable
coefficients resulting from domain perturbations; see Theorem 3 below.

Assumption 1 Wemake the following assumptions on the regularity and compatibility
of data in (4):

• ψ0 ∈ H3(�) and ψ1 ∈ H2(�);
• g ∈ H2(0, T ; H−1/2(∂�)) ∩ H1(0, T ; H3/2(∂�)),

ġ ∈ L∞(0, T ; H1/2(∂�));

• ∂ψ0

∂n
= g(0),

∂ψ1

∂n
= ġ(0).

Auxiliary Inequality We recall that the following embeddings hold: H1(�) ↪→
↪→

L4(�) ↪→ L2(�); see [33, Theorem 1.3.2]. Let u ∈ H1(�). Then by Ehrling’s
Lemma [34, Theorem 7.30] and Young’s inequality, for all ε > 0, there exists a
constant CE,�(ε), such that

‖u‖2L4(�)
≤ CE,�(ε)‖u‖2L2(�)

+ ε‖∇u‖2L2(�)
. (5)

This result will be used throughout the analysis to avoid relying on ‖u‖2
L4(�)

≤
C2

�,4‖u‖2
H1(�)

when critical. This small change allows us to avoid imposing addi-

tional assumptions on the smallness of ψ̈ below (as done, for example, on ẏ in [19,
Theorem 1], where the Westervelt equation in pressure form is analyzed).

Linearized Equation Following the general approach of, e.g., [15, 19], we first
consider a linearized problem with a variable coefficient a and a source term f :

a(t)ξ̈ − c2 �ξ − b�ξ̇ = f on Q,
∂ξ
∂n = g on
,

ξ(0) = ψ0, ξ̇(0) = ψ1 on�,

(6)

supplemented by the same initial and boundary conditions as in (4). To study such a
problem, we need suitable assumptions on the non-degeneracy and smallness of a.
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Assumption 2 We make the following additional assumptions on the source term and
the variable coefficient in (6):

• a ∈ L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)), ȧ ∈ L∞(0, T ; L2(�)). Furthermore,
let there exist a, a > 0 such that

a < a(t) < a almost everywhere on � for almost every t ∈ [0, T ];

• f ∈ L2(0, T ; H1(�)) ∩ W 1,1(0, T ; L2(�)).

Proposition 1 Let Assumptions 1, 2 hold. Then initial boundary-value problem for (6)
admits a unique solution in

W = {ξ ∈ L∞(0, T , H3(�)) : ξ̇ ∈ L∞(0, T , H2(�)) ∩ L2(0, T , H3(�)),

ξ̈ ∈ L∞(0, T , L2(�)) ∩ L2(0, T , H1(�))}. (7)

Furthermore, the solution satisfies the energy estimate

‖ξ‖2W � ‖ψ0‖2H3(�)
+ ‖ψ1‖2H2(�)

+ ‖ f ‖2L2(H1(�))
+ ‖ ḟ ‖2L1(L2(�))

+ ‖g‖2H1(H3/2(∂�))
+ ‖g‖2H2(H−1/2(∂�))

+ ‖ġ‖2L∞(H1/2(∂�))
.

(8)

Remark 1 The regularity of ξ ∈ W implies that ξ is continuous from [0, T ] into H3(�)

and ξ̇ is weakly continuous from [0, T ] into H2(�) [35, Lemma 3.3]. Note that the
hidden constant in (8) depends on a and tends to +∞ as T → +∞.

Proof The proof can be conducted rigorously through a Galerkin approximation of
the weak form of the PDE by restriction to appropriate finite dimensional subspaces of
H3(�); see, for example, [36, Chapter 7] and [37, Chapter XVIII]. We focus here on
the derivation of a uniform energy estimate, which differs from the related results in the
literature (cf. [19, Theorem 1]) and will enable the upcoming fixed-point argument.
For notational simplicity, we omit the index indicating the Galerkin approximation
below.

Lower-Order Energy Estimate To obtain the desired energy estimate, we test the
semi-discrete problem by ξ̇ and integrate in time over (0, t) to obtain

∫ t
0

[
(a(s)ξ̈, ξ̇ ) + c2(∇ξ,∇ ξ̇ ) + b(∇ ξ̇ ,∇ ξ̇ )

]
ds

= ∫ t
0 ( f (s), ξ̇ ) ds + ∫ t

0

∫
∂�

(c2g + bġ)ξ̇ dγ ds,

which, after using the relation

aξ̈ ξ̇ = 1

2

d

dt
(aξ̇2) − 1

2
(ȧξ̇2), (9)
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yields the energy identity

1

2
‖√a(t)ξ̇(t)‖2L2(�)

+ c2

2
‖∇ξ(t)‖2L2(�)

+ b
∫ t

0
‖∇ ξ̇‖2L2(�)

ds

= 1

2

∫ t

0
(ȧξ̇ , ξ̇ ) ds + 1

2
‖√a(0)ξ1‖2L2(�)

+ c2

2
‖∇ξ0‖2L2(�)

+
∫ t

0
( f (s), ξ̇ ) ds

+
∫ t

0

∫
∂�

(c2g + bġ)ξ̇ dγ ds.

We can estimate the first term on the right using Ehrling’s inequality (5) as follows:

(ȧξ̇ , ξ̇ ) ≤ ‖ȧ‖L2(�)‖ξ̇‖2L4(�)
≤ ‖ȧ‖L2(�)

(
CE,�(ε)‖ξ̇‖2L2(�)

+ ε‖∇ ξ̇‖2L2(�)

)
.

We then proceed to estimating the source term

∫ t

0
( f , ξ̇ ) ds ≤

∫ t

0

[
1

2
‖ f ‖2L2(�)

+ 1

2
‖ξ̇‖2L2(�)

]
ds,

and the boundary term

∫ t

0

∫
∂�

(c2g + bġ)ξ̇ dγ ds ≤ ‖c2g + bġ‖L2(H−1/2(∂�))

(∫ t

0
‖ξ̇‖2H1/2(∂�)

ds

)1/2

≤ 1

4ε
‖c2g + bġ‖2L2(H−1/2(∂�))

+ εC2
tr,∂�

∫ t

0
‖ξ̇‖2H1(�)

ds.

Using Assumptions 2, we then have

a

2
‖ξ̇(t)‖2L2(�)

+ c2

2
‖∇ξ(t)‖2L2(�)

+
(
b − ε

‖ȧ‖L∞(L2(�)) + 2C2
tr,∂�

2

) ∫ t

0
‖∇ ξ̇‖2L2(�)

ds

≤ CE,�(ε)‖ȧ‖L∞(L2(�)) + 1 + 2εC2
tr,∂�

2

∫ t

0
‖ξ̇‖2L2(�)

ds + a

2
‖ξ̇(0)‖2L2(�)

+ c2

2
‖∇ξ(0)‖2L2(�)

+ 1

2

∫ t

0
‖ f ‖2L2(�)

ds + 1

4ε
‖c2g + bġ‖2L2(H−1/2(∂�))

,

(10)

where ε > 0 is chosen small enough so that

b − ε
‖ȧ‖L∞(L2(�)) + 2C2

tr,∂�

2
> 0. (11)

To get the next component of the desired energy estimate, we differentiate the semi-
discrete problem with respect to time and test with ξ̈ , which, after integration by parts
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in space, yields

∫ t

0

[
(a(s)

...
ξ, ξ̈ ) + c2(∇ ξ̇ ,∇ ξ̈ ) + b(∇ ξ̈ ,∇ ξ̈ )

]
ds

= −
∫ t

0
(ȧ(s)ξ̈, ξ̈ ) ds +

∫ t

0
( ḟ (s), ξ̈ ) ds +

∫ t

0

∫
∂�

(c2 ġ + bg̈)ξ̈ dγ ds.

We estimate the source term, for any ε0 > 0, as

∫ t

0
( ḟ (s), ξ̈ ) ds ≤ 1

4ε0

(∫ t

0
‖ ḟ (s)‖L2(�) ds

)2

+ ε0 sup
τ∈(0,t)

‖ξ̈(τ )‖2L2(�)
,

We can then infer the following inequality:

a

2
‖ξ̈(t)‖2L2(�)

+ c2

2
‖∇ ξ̇(t)‖2L2(�)

+ b
∫ t

0
‖∇ ξ̈‖2L2(�)

ds

≤ a

2
‖ξ̈(0)‖2L2(�)

+ c2

2
‖∇ ξ̇(0)‖2L2(�)

− 1

2

∫ t

0
(ȧ(s)ξ̈, ξ̈ ) ds

+ 1

4ε0

(∫ t

0
‖ ḟ (s)‖L2(�) ds

)2

+ ε0 sup
τ∈(0,t)

‖ξ̈(τ )‖2L2(�)
+

∫ t

0

∫
∂�

(c2 ġ + bg̈)ξ̈ dγ ds,

where ξ̈(0) can be estimated by testing (6) by ξ̈ at t = 0:

1

2
‖ξ̈(0)‖L2(�) ≤ c2‖�ξ(0)‖L2(�) + b‖�ξ̇(0)‖L2(�) + ‖ f (0)‖L2(�). (12)

Notice that due to the embedding W 1,1(0, T ) ↪→ C[0, T ] (see [38, Ch. 8, p. 214]),
the term ‖ f (0)‖L2(�) can be estimated with ‖ f ‖W 1,1(L2(�)).

We develop the rest of the estimates analogously to before and obtain

a

2
‖ξ̈(t)‖2L2(�)

+ c2

2
‖∇ ξ̇(t)‖2L2(�)

+
(
b − ε

‖ȧ‖L∞(L2(�)) + 2C2
tr,∂�

2

) ∫ t

0
‖∇ ξ̈‖2L2(�)

ds

≤ CE,�(ε)‖ȧ‖L∞(L2(�)) + 2εC2
tr,∂�

2

∫ t

0
‖ξ̈‖2L2(�)

ds + a

2
‖ξ̈(0)‖2L2(�)

+ c2

2
‖∇ ξ̇(0)‖2L2(�)

+ 1

4ε0

(∫ t

0
‖ ḟ (s)‖L2(�) ds

)2

+ ε0 sup
τ∈(0,t)

‖ξ̈(τ )‖2L2(�)

+ 1

4ε
‖c2 ġ + bg̈‖2L2(H−1/2(∂�))

,

(13)

with ε > 0 chosen again so that (11) holds.
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We can then combine (10) and (13), taking the supremum over t ∈ (0, t̃) for some
0 < t̃ ≤ T which allows us to absorb the ε0 term and then use Gronwall’s inequality
to eliminate the energy terms form the right-hand side. Together with estimate (12)
and the fact that

‖ξ(t̃)‖L2(�) = ‖ξ(0) +
∫ t̃

0
ξ̇(s) ds‖L2(�) ≤ ‖ξ0‖L2(�) + t̃‖ξ̇‖L∞(L2(�)),

we obtain the following bound on the energy norm:

‖ξ(t̃)‖2H1(�)
+ ‖ξ̇(t̃)‖2H1(�)

+ ‖ξ̈(t̃)‖2L2(�)
+

∫ t̃

0
‖∇ ξ̈(s)‖2L2(�)

ds

� ‖ψ0‖2H2(�)
+ ‖ψ1‖2H2(�)

+ ‖ f ‖2L1(L2(�))
+ ‖ ḟ ‖2L1(L2(�))

+ ‖g‖2H2(H−1/2(∂�))
,

(14)

a.e. in time, where the hidden constant is given by

C1(1 + t̃) exp
(
C2(1 + ‖ȧ‖L∞(L2(�)))t̃

)
, (15)

where C1 and C2 are two positive constants.
Bootstrap Argument Inspired by the approach of, e.g., [39, Lemmas 3.1 and 3.2],

we demonstrate, through a bootstrap argument, that a higher regularity is achieved.
To do so, we rewrite (6) as

−� (
c2ξ + bξ̇

) + c2ξ + bξ̇ = f − a(t)ξ̈ + c2ξ + bξ̇ on Q,

c2 ∂ξ
∂n + b ∂ξ̇

∂n = c2g + bġ on
,

ξ(0) = ξ0, ξ̇(0) = ξ1 on�.

Let � = c2ξ(t) + bξ̇(t) and f̃ = f (t) − a(t)ξ̈(t) + c2ξ(t) + bξ̇(t). Then � solves

−�� + � = f̃ on�,
∂�
∂n = c2g + bġ on ∂�.

By estimate (14) and Assumptions 2, we infer that f̃ ∈ L2(0, T ; H1). Recalling that
� is of class C2,1, elliptic regularity yields

‖�‖H3(�) � ‖ f̃ ‖H1(�) + ‖c2g + bġ‖H3/2(∂�);

see [40, Theorem 2.5.1.1]. Since we know that ξ solves the ODE

ξ̇ + c2

b
ξ = �

b
,
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we have

ξ = e−c2t/b
(

ξ0 +
∫ t

0
ec

2s/b 1

b
�(s) ds

)

and subsequently

‖ξ‖L∞(H3(�)) � ‖ξ0‖H3(�) + ‖�‖L2(H3(�))

� ‖ξ0‖H3(�) + ‖ f̃ ‖L2(H1(�)) + ‖c2g + bġ‖L2(H3/2(∂�)).

Furthermore,

‖ξ̇‖L2(H3(�)) = 1

b
‖� − c2ξ‖L2(H3(�))

� ‖ξ0‖H3(�) + ‖ f̃ ‖L2(H1(�)) + ‖c2g + bġ‖L2(H3/2(∂�)),

and similarly,

‖ξ̇‖L∞(H2(�)) = 1

b
‖� − c2ξ‖L∞(H2(�))

� ‖ξ0‖H2(�) + ‖ f̃ ‖L∞(L2(�)) + ‖c2g + bġ‖L∞(H1/2(∂�)).

Together, these estimates yield ξ ∈ W and

‖ξ‖2W � ‖ψ0‖2H3(�)
+ ‖ψ1‖2H2(�)

+ ‖ f ‖2L2(H1(�))
+ ‖ ḟ ‖2L1(L2(�))

+‖g‖2H1(H3/2(∂�))
+ ‖g‖2H2(H−1/2(∂�))

+ ‖ġ‖L∞(H1/2(∂�)).

With this uniform bound in hand, standard compactness arguments allow us to extract
weakly convergent subsequences that verify the PDE and its initial conditions; see
e.g., [36, 41]. We omit the details here. ��

We next move on to the analysis of the Kuznetsov equation where we show that the
aforementioned regularity and well-posedness results hold for the nonlinear equation,
provided smallness of data, using a fixed-point argument. To this end, we define the
operator

A[·] : W  y �→ ψ, (16)

where ψ is the solution of the initial boundary value problem

(1 − 2k ẏ)ψ̈ − c2 �ψ − b�ψ̇ = 2σ∇ ẏ · ∇ y on Q,
∂ψ
∂n = g on
,

ψ(0) = ψ0, ψ̇(0) = ψ1 on�,

123
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and the ball W is defined by

W =
{
y ∈ W : ‖ẏ‖L∞(L∞(�)) ≤ 1

4|k| , ‖∇ y‖L∞(H2(�)) ≤ r ,

‖∇ ẏ‖L∞(H1(�)) ≤ r , ‖ÿ‖L2(H1(�)) ≤ r ,

‖ÿ‖L∞(L2(�)) ≤ r , ‖∇ ẏ‖L2(L∞(�)) ≤ r

}
,

(17)

for some r > 0; recall that the space W is defined in (7). The choice of r > 0 will be
made below. Note that the setW is nonempty as 0 ∈ W .

Theorem 2 Let T > 0. Under Assumptions 1, there exists r20 = r20 (�, T ), such that if

‖ψ0‖2H3(�)
+ ‖ψ1‖2H2(�)

+ ‖g‖2H1(H3/2(∂�))
+ ‖g‖2H2(H−1/2(∂�))

+‖ġ‖2L∞(H1/2(∂�))
≤ r20 ,

then the initial-boundary value problem (4) for the Kuznetsov equation has a unique
solution ψ ∈ W. Furthermore, this solution satisfies

‖ψ‖2W � ‖ψ0‖2H3(�)
+ ‖ψ1‖2H2(�)

+ ‖g‖2H1(H3/2(∂�))
+ ‖g‖2H2(H−1/2(∂�))

+ ‖ġ‖2L∞(H1/2(∂�))
.

Proof The proof follows by employing theBanachfixed-point theoremon themapping
A[·]. We can use the existence and uniqueness result of Proposition 1 to conclude that
A[·] is well defined by setting

y ∈ W , f = 2σ∇ ẏ · ∇ y, a(t) = 1 − 2k ẏ.

We see that ∇a ∈ L2(0, T ; H1(�)) and ȧ ∈ L2(0, T ; H1(�)) ∩ L∞(0, T ; L2(�)).
Moreover, with the choice of the ball W , a ≤ a(t) ≤ a is verified with a = 1

2 and
a = 3

2 . We next verify the regularity assumption on f in Proposition 1. Denote by
H(·) the Hessian matrix operator of a scalar field. Then

∫ t

0
‖ f ‖2H1(�)

ds

= 4σ 2
∫ t

0
‖∇ ẏ · ∇ y‖2L2(�)

ds + 4σ 2
∫ t

0
‖∇(∇ ẏ · ∇ y)‖2L2(�)

ds

� ‖∇ ẏ‖2L∞(H1(�))
‖∇ y‖2L2(H1(�))

+ ‖∇ y‖2L2(L∞(�))
‖H(ẏ)‖2L∞(L2(�))

+ ‖∇ ẏ‖2L∞(H1(�))
‖H(y)‖2L2(H1(�))

.

(18)

Similarly, we have

‖ ḟ ‖2L1(L2(�))
� ‖∇ ẏ‖4L2(H1(�))

+ ‖∇ ÿ‖2L2(L2(�))
‖∇ y‖2L2(L∞(�))

. (19)
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Therefore, there exists C = C(t) > 0, such that

∫ t

0
‖ f (s)‖2H1(�)

ds +
(∫ t

0
‖ ḟ (s)‖L2(�) ds

)2

≤ Cr4. (20)

Thus, (16) is well defined, provided ‖ẏ‖L∞(L∞(�)) ≤ 1
4|k| . Next we demonstrate that

W is invariant under a smallness condition on the problem data. By the energy bound
(8), there exists C3 = C3(r) > 0, such that

‖A[y]‖2W ≤ C3

(
‖ψ0‖2H3(�)

+ ‖ψ1‖2H2(�)
+ ‖ f (s)‖2L2(H1(�))

+ ‖ ḟ (s)‖2L1(L2(�))

+‖g‖2H1(H3/2(∂�))
+ ‖g‖2H2(H−1/2(∂�))

+ ‖ġ‖2L∞(H1/2(∂�))

)
.

We can estimate the norm terms involving f as in (20). Together, this yields that

‖A[y]‖2W � r20 + r4.

On account of the embedding H2(�) ↪→ L∞(�), the semi-norm | · |W defining the
ballW , is weaker than the norm ‖ · ‖W . Therefore, there exists C4(r) > 0 depending
continuously on r (cf. (15)), such that

|A[y]|2W ≤ C4(r)(r
2
0 + r4).

Since C4(r) > 0 depends continuously on r , for r small enough, we have

0 <
1

2
C4(0) < C4(r) <

3

2
C4(0).

It can then be readily shown that the set W is invariant under A[·] for r0 sufficiently
small if we impose additionally

r2 <
2

3C4(0)
.

Indeed, for r0 ≤
√

2r2
3C4(0)

− r4, we have 3
2C4(0)

(
r20 + r4

)
< r2.

Next we prove the strict contractivity of the operator A[·] in

X̂ = H2(0, T ; L2(�)) ∩ W 1,∞(0, T ; H1(�));

that is, in a weaker topology compared to the one of the solution space. Let y, ỹ ∈ W
and let ψ = A[y] and ψ̃ = A[ỹ]. We define z = ψ − ψ̃ , which verifies

a(t)z̈ − c2 �z − b�ż = f − f̃ − (a − ã)
¨̃
ψ on Q,

∂z
∂n = 0 on
,

z(0) = 0, ż(0) = 0 on�.

(21)
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We test (21) with ż and integrate in time over (0, t) to obtain, analogously to estimate
(10),

‖ż(t)‖2L2(�)
+ ‖∇z(t)‖2L2(�)

+
∫ t

0
‖∇ ż‖2L2(�)

ds

≤ C5(r)
(
‖ f − f̃ ‖2L2(L2(�))

+ ‖(a − ã)
¨̃
ψ‖2L2(L2(�))

)
. (22)

Next we test (21) with z̈ and integrate by parts in time and space to obtain

∫ t
0 [(a(s)z̈, z̈) + b(∇ ż,∇ z̈)] ds = c2

∫ t
0 ‖∇ ż‖2

L2(�)
ds − c2(∇z(t),∇ ż(t))

+ ∫ t
0 ( f − f̃ − (a − ã)

¨̃
ψ, z̈) ds.

We estimate the term

c2|(∇z(t),∇ ż(t))| ≤ 1

4ε
‖∇z(t)‖2L2(�)

+ ε‖∇ ż(t)‖2L2(�)
, (23)

and the term
∫ t

0
|( f − f̃ − (a − ã)

¨̃
ψ, z̈)| ds ≤ 1

4ε
‖ f − f̃ ‖2L2(L2(�))

+ 1

4ε
‖(a − ã)

¨̃
ψ‖2L2(L2(�))

+ ε

∫ t

0
‖z̈‖2L2(�)

ds

The terms
∫ t
0 ‖∇ ż‖2

L2(�)
ds and ‖∇z(t)‖2

L2(�)
are directly estimated by (22). We

choose ε as small as needed to absorb the terms ‖∇ ż(t)‖2
L2(�)

and
∫ t
0 ‖z̈‖2

L2(�)
ds

by the left-hand side. Using the fact that

‖z(t)‖2L2(�)
≤ t2‖ż‖2L∞(L2(�))

, t ∈ [0, T ],

we combine the resulting estimate with (22) to conclude that there existC6 = C6(r) >

0, such that

‖z‖2
X̂

≤ C6

(
‖ f − f̃ ‖2L2(L2(�))

+ ‖(a − ã)
¨̃
ψ‖2L2(L2(�))

)
.

We know that

‖(a − ã)
¨̃
ψ‖2L2(L2(�))

≤4k2C2
�,4‖ẏ − ˙̃y‖2L∞(H1(�))

‖ ¨̃
ψ‖2L2(H1(�))

,

and that

‖ f − f̃ ‖2L2(L2(�))
= 4σ 2‖∇(y − ỹ) · ∇ ẏ + ∇(ẏ − ˙̃y) · ∇ ỹ‖2L2(L2(�))

≤ 8σ 2‖∇(y − ỹ)‖2L∞(L2(�))
‖∇ ẏ‖2L2(L∞(�))

+ 8σ 2‖∇(ẏ − ˙̃y)‖2L2(L2(�))
‖∇ ỹ‖2L∞(L∞(�)).
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Together, this gives us that

‖A[y] − A[ỹ]‖2
X̂

�
(
‖ ¨̃
ψ‖2L2(H1(�))

+ ‖∇ ẏ‖2L2(L∞(�))
+ ‖∇ ỹ‖2L∞(L∞(�))

)
‖y − ỹ‖2

X̂
.

Since ψ̃ ∈ W , we have ‖ ¨̃
ψ‖2

L2(H1(�))
≤ r2, and we conclude that there exists C̃ =

C̃(r) > 0 (we deal with the dependence on r , similarly to how we did earlier in this
proof for C4(r))

‖A[y] − A[ỹ]‖2
X̂

≤ C̃r2‖y − ỹ‖2
X̂
,

which shows that A[·] is a strict contraction if C̃r2 < 1.
Following a similar argument to [19, Theorem 2], it can be shown that the setW is

closed in X̂ . Banach’s fixed-point theorem then ensures the existence and uniqueness
of a solutionψ ∈ W of (4). The energy estimate is obtained by using the linear estimate
(8), the estimates (18) and (19) for the source term f , and Gronwall’s inequality. In a
similar manner, the uniqueness in W follows. ��

2.1 Shape Deformations and UniformWell-Posedness

We next introduce a family of admissible perturbations {�d} of the reference domain
� ∈ C2,1 such that � ⊂ U , where U is a fixed bounded hold-all domain in Rl with
l ∈ {2, 3}; see Fig. 1. To this end, we employ the approach of [42], and perturb the
identity mapping with a vector field

h ∈ D =
{
h ∈ C2,1

(
U , Rl

)
h|∂U = 0

}
.

For h ∈ D and d ∈ R, such that |d| is sufficiently small, we define

Fd = id + dh.

Then there exists δ > 0, such that Fd(U ) = U and that Fd is a diffeomorphism for
|d| < δ. The perturbed domains and boundary are defined as

�d = Fd(�), ∂�d = Fd(∂�).

We next employ the method of mappings to transform the perturbed state constraint
to the reference domain �. We use the notation

ϕd : �d → R

for quantities defined on the perturbed domain. Furthermore, we denote

ϕd = ϕd ◦ Fd : � → R.
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If ψd is the solution of problem (4) on a deformed domain �d , then

ψd = ψd ◦ Fd : � → R,

satisfies an initial-boundary value problem on the reference domain �. To state the
weak form solved by ψd , we introduce the short-hand notation

Id = det DFd = det(I + d ∇hT ), Ad = (DFd)−T ,

wd = Id |Adn|, Md = Id AT
d Ad ,

where DFd is the Jacobian of Fd and n denotes the outer normal unit vector to �.
Furthermore, we denote:

(Md)
′ (0) = M = I div h − ∇h − (∇h)T , (24)

where (·)′ stands for the derivative with respect to the shape deformation variable
d. The limits that define the derivative at d = 0 exist uniformly in U ; see [43].
For the upcoming analysis, we require certain known regularity properties of the
transformation Fd and the transformation of integral formulas. We collect these in
Appendix 1 for convenience of the reader.

With the above notation, using the transformation of integrals, we find that the
function ψd = ψd ◦ Fd solves

∫
�

Id(1 − 2kψ̇d)ψ̈dφ dx

+
∫

�

(
c2Md∇ψd · ∇φ + bMd∇ψ̇d · ∇φ − 2σ(Md∇ψ̇d · ∇ψd)φ

)
dx

=
∫

∂�

wd

(
c2gd + bġd

)
φ dγ

(25)

for all φ ∈ H1(�) a.e. in time, with initial conditions ψd(0) = ψd
0 , ψ̇

d(0) = ψd
1 . By

generalizing the arguments of Theorems 1 and 2, we can prove that this problem has
a unique solution as well, which remains uniformly bounded in ‖ · ‖W .

Theorem 3 Given T > 0, let Assumptions 1 hold and let |d| be small enough. There
exists r21 = r21 (�, T ), independent of d, such that if

‖ψd
0 ‖2H3(�)

+ ‖ψd
1 ‖2H2(�)

+ ‖gd‖2H1(H3/2(∂�))

+‖gd‖2H2(H−1/2(∂�))
+ ‖ġd‖2L∞(H1/2(∂�))

≤ r21 ,

then problem (25) has a unique solution ψd ∈ W. Furthermore, the solution verifies
the estimate

∥∥∥ψd
∥∥∥2
W

≤C∗(�, T , r1),
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where the constant C∗ = C∗(�, T , r1) is independent of d.

Proof We can express (25) in strong form as follows:

Id
(
1 − 2kψ̇d

)
ψ̈d − ∇ · (

Md(c2∇ψd + b∇ψ̇d)
) − 2σMd∇ψ̇d · ∇ψd = 0 on Q,

Md
(
c2∇ψd + b∇ψ̇d

) · n = wd(c2gd + bġd) on
,

ψd(0) = ψd
0 , ψ̇d(0) = ψd

1 on�,

so we can exploit the results of [42, Chapter 6], where a steady-state counterpart of
this problem is considered.

Note that Md(x) is uniformly positive for x ∈ � according to, e.g, [43] and [44,
Proposition 2.12]. Further, ‖Md‖C1,1(�) and ‖wd‖C1,1(∂�) are uniformly bounded for
|d| small enough thanks to the smoothness properties of the transformation Fd ; see
Appendix 1. Thus, one can readily show that the energy estimates for the above
problem (that can be established analogously to those in Proposition 1) can be made
independent of d for |d| small enough.

By generalizing the linear and fixed-point arguments of Sect. 2 (noting that elliptic
regularity [40, Theorem 2.5.1.1] can again be used thanks to the aforementioned
regularity of the shape deformation quantities), one can show that (25) has a unique
solution in W under a smallness bound on r1, which is independent of d. ��

3 Hölder-Continuity with Respect to Shape

In this section, we establish Hölder-continuity of the solution to the nonlinear state
problem with respect to shape deformations. This result is crucial in the rigorous
justification of the shape derivatives.

Theorem 4 Let T > 0 and assumeψd
0 ,ψ

d
1 and gd verify the assumptions of Theorem 3

uniformly in d for |d| small enough. Furthermore, assume Hölder-continuity of data
with respect to d in the following sense:

(i) Initial data

lim
d→0

1

d
‖ψd

0 − ψ0‖2H1(�)
= 0, lim

d→0

1

d
‖ψd

1 − ψ1‖2L2(�)
= 0;

(ii) Boundary data

lim
d→0

1

d
‖gd − g‖2H1(H−1/2(∂�))

= 0.

Then the solution of the Kuznetsov problem (4) is Hölder-continuous with respect to
shape deformations in the sense of

lim
d→0

1

d

∥∥∥ψd − ψ

∥∥∥2
X

= 0,

where X = W 1,∞(0, T ; L2(�) ∩ H1(0, T ; H1(�)).
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Proof Let zd stand for the difference quotient:

zd = 1√
d

(ψd − ψ0) = 1√
d

(ψd − ψ).

We recall that ψ and ψd satisfy (25). By subtracting their respective weak forms, we
obtain the following equation for zd :

(
(1 − 2kψ̇)z̈d , φ

)
+

(
c2∇zd + b∇ żd ,∇φ

)

=
(
2kψ̈d żd , φ

)
− Id − 1√

d

(
(1 − 2kψ̇d)ψ̈d , φ

)

−
(
Md − I√

d
(c2∇ψd + b∇ψ̇d),∇φ

)
+ 2σ

(
Md − I√

d
∇ψ̇d · ∇ψd , φ

)

− 2σ(∇ψ̇ · ∇zd , φ) + 2σ(∇ψ · ∇ żd , φ) +
∫

∂�

wd − 1√
d

(
c2gd + bġd

)
φ dγ

+
∫

∂�

(
c2

gd − g√
d

+ b
ġd − ġ√

d

)
φ dγ,

with initial conditions

zd(0) = 1√
d

(ψd
0 − ψ0), żd(0) = 1√

d
(ψd

1 − ψ1).

We next test this difference equation with φ = żd ∈ L2(0, T ; H1(�)) and integrate
over (0, t). We again use the notation a = 1 − 2kψ̇ (which implies ȧ = −2kψ̈), and
relation (9), we then have after rearranging the terms

1

4
‖żd(t)‖2L2(�)

+ c2

2
‖∇zd(t)‖2L2(�)

+ b
∫ t

0
‖∇ żd‖2L2(�)

ds

≤ 3

4
‖żd(0)‖2L2(�)

+ c2

2
‖∇zd(0)‖2L2(�)

− 1

2

∫ t

0
(ȧżd , żd) ds

−
∫ t

0

(
Id − 1√

d
ad ψ̈d , żd

)
ds −

∫ t

0

[(
Md − I√

d
(c2∇ψ + b∇ψ̇),∇ żd

)

+ 2σ

(
Md − I√

d
∇ψ̇d · ∇ψd , żd

)]
ds − 2σ

∫ t

0
(∇ψ̇ · ∇zd , żd) ds

+ 2σ
∫ t

0
(∇ψ · ∇ żd , żd) ds +

∫ t

0

∫
∂�

wd − 1√
d

(c2gd + bġd)żd dγ ds

+
∫ t

0

∫
∂�

(
c2

gd − g√
d

+ b
ġd − ġ√

d

)
żd dγ ds.

(26)
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By relying on Hölder’s inequality and Ehrling’s inequality (5), we obtain

∫ t

0
|(ȧżd , żd)| ds ≤ ‖ȧ‖L∞(L2(�))

∫ t

0
‖żd‖2L4(�)

ds

≤ ‖ȧ‖L∞(L2(�))

∫ t

0

(
CE,�(ε1)‖żd‖2L2(�)

+ ε1‖∇ żd‖2L2(�)

)
ds

for all ε1 > 0. Furthermore, we have

∫ t

0

(
Id − 1√

d
ad ψ̈d , żd

)
ds ≤ 1

2

‖Id − 1‖2L∞(�)

d
‖ad‖2L∞(L∞(�))

∫ t

0
‖ψ̈d‖2L2(�)

ds

+1

2

∫ t

0
‖żd‖2L2(�)

ds.

We next use the differentiability of the shape deformation Fd and of the quantities Id ,
Md and wd (see Appendix 1), as well as the uniform boundedness of ψd in the norm
‖ · ‖W to further simplify the expression as:

∫ t

0

(
Id − 1√

d
ad ψ̈d , żd

)
ds ≤ 1

2

∫ t

0
‖żd‖2L2(�)

ds + O(|d|).

We treat similarly the other volume terms and estimate them as follows

∫ t

0

(
Md − I√

d
(c2∇ψ + b∇ψ̇) ,∇ żd

)
ds ≤ ε1

2

∫ t

0
‖∇ żd‖2L2(�)

ds + O(|d|),

while,

∫ t

0

(
Md − I√

d
∇ψ̇d · ∇ψd , żd

)
ds ≤ 1

2

∫ t

0
‖żd‖2L2(�)

ds + O(|d|),

because ψd and ψ̇d are uniformly bounded in W thanks to Theorem 3. We also get

∫ t

0

(
∇ψd · ∇ żd , żd

)
ds

≤ 1

2
‖∇ψd‖L∞(L∞(�))

∫ t

0

(
ε1‖∇ żd‖2L2(�)

+ 1

ε1
‖żd‖2L2(�)

)
ds.

Finally, we have, for all ε > 0

∫ t

0

(
∇ψ̇d · ∇zd , żd

)
ds

≤ ε

2
sup

s∈(0,t)
‖∇zd(s)‖2L2(�)

+ 1

2ε
‖∇ψ̇d‖2L2(L∞(�))

∫ t

0
‖żd‖2L2(�)

ds.
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We estimate the boundary terms as follows:

∫ t

0

∫
∂�

wd − 1√
d

(c2g + bġ)żd dγ ds ≤ ε1C
2
tr,∂�

∫ t

0
‖żd‖2H1(�)

ds + O(|d|),

where O(|d|) term arises from the shape differentiability of wd . Similarly,

∫ t

0

∫
∂�

(
c2

gd − g√
d

+ b
ġd − ġ√

d

)
żd dγ ds

≤ 1

4ε1
max (c4, b2)

‖gd − g‖2
H1(H−1/2(∂�))

d
+ ε1C

2
tr,∂�

∫ t

0
‖żd‖2H1(�)

ds.

We can then choose ε1 small enough so that

ε1

(
C2
tr,∂� + 1

2
+ 1

2
‖∇ψ̇‖L∞(L∞(�)) + ‖ȧ‖L∞(L2(�))

)
< b

and the termswith
∫ t
0 ‖∇ żd‖2

L2(�)
ds on the right-hand side can be absorbed by the left-

hand side in (26). We notice also that the terms with initial conditions and boundary
data are O(1) (i.e, they tend to 0 when d → 0 ). We then infer that

‖żd(t)‖2L2(�)
+ ‖∇zd(t)‖2L2(�)

+
∫ t

0
‖∇ żd‖2L2(�)

ds

�
∫ t

0
‖żd‖2L2(�)

ds +
∫ t

0
‖∇zd‖2L2(�)

ds + ε sup
s∈(0,t)

‖∇zd(s)‖2L2(�)
+ O(|d|) + O(1).

Noticing that each of the terms on the left-hand side is bounded by the right-hand side
independently, we take the supremum for τ ∈ (0, t) to get the following bound:

sup
τ∈(0,t)

‖żd(τ )‖2L2(�)
+ sup

τ∈(0,t)
‖∇zd(τ )‖2L2(�)

+
∫ t

0
‖∇ żd‖2L2(�)

ds

�
∫ t

0
‖żd‖2L2(�)

ds +
∫ t

0
‖∇zd‖2L2(�)

ds + ε sup
s∈(0,t)

‖∇zd(s)‖2L2(�)
+ O(1).

We then fix ε > 0 sufficiently small and use that

‖zd(t)‖L2(�) = ‖zd(0) +
∫ t

0
żd(s) ds‖L2(�) ≤ t sup

τ∈(0,t)
‖żd(τ )‖L2(�),

together with Gronwall’s inequality to get

‖zd(t)‖2L2(�)
+ ‖żd(t)‖2L2(�)

+ ‖∇zd(t)‖2L2(�)
+

∫ t

0
‖∇ żd‖2L2(�)

ds � O(1).

This final inequality concludes our proof. ��
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4 Analysis of a General Adjoint Problem

Different cost functions are of practical interest for the optimization problem at
hand. As announced, we first consider an L2(L2) tracking-type objective. That is,
we wish the solution ψ of the state problem to match a desired potential field
ψD ∈ L2(0, T ; L2(�)) in the focal region DS within a certain time interval (t0, t1).
Such a cost functional can be expressed by

J (�) = 1

2

∫ T

0

∫
�

(ψ − ψD)2 χD dxds =
∫ T

0

∫
�

j(ψ) dxds, (27)

where χD is the indicator function of D = DS × (t0, t1). The adjoint problem is then
formally given by

∂
∂t

(
(1 − 2kψ̇) ṗ

) − c2 �p + b� ṗ − 2σ∇ · ( ṗ∇ψ) = (ψ − ψD)χD on Q,

c2 ∂ p
∂n − b ∂ ṗ

∂n + 2σ g ṗ = 0 on
,

p(T ) = ṗ(T ) = 0 on�,

(28)

which in weak form yields

∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇) ṗ

)
φ dx ds

+
∫ T

0

∫
�

(c2∇ p − b∇ ṗ + 2σ ṗ∇ψ) · ∇φ dx ds =
∫ T

0

∫
�

f φ dx ds,

(29)

for all φ ∈ L2(0, T ; H1(�)) with p(T ) = ṗ(T ) = 0 and f = (ψ − ψD)χD .
For the sake of considering other objective functionals, we analyze the adjoint

problem in a more general setting, where we allow for non-zero data at final time:

p(T ) = p0, ṗ(T ) = p1

and a general right-hand side f ∈ L2(0, T ; L2(�)).

Theorem 5 Under the assumptions of Theorem 2 and given f ∈ L2(0, T ; L2(�)), the
adjoint problem (28) has a unique solution p in

P =
{
p ∈ L∞(0, T ; H2(�)) : ṗ ∈ L2(0, T ; H2(�)) ∩ L∞(0, T ; H1(�)),

p̈ ∈ L2(0, T , L2(�))
}

.
(30)

Furthermore, the solution satisfies the estimate

‖p‖2P � ‖p0‖2H2(�)
+ ‖p1‖2H1(�)

+ ‖g‖2L2(H3/2(∂�))
+

∫ T

0
‖ f ‖2L2(�)

ds.
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Proof To facilitate the analysis, we first reverse the time direction. We then see that
p̃(t) = p(T − t) satisfies

∫ T

0

∫
�

∂

∂t

(
(1 + 2k ˙̃

ψ) ˙̃p
)

φ dx ds

+
∫ T

0

∫
�

(c2∇ p̃ + b∇ ˙̃p − σ ˙̃p∇ψ̃) · ∇φ dx ds =
∫ T

0

∫
�

f̃ φ dx ds, (31)

for all φ ∈ L2(0, T ; H1(�)) with p̃(0) = p0, ˙̃p(0) = p1 and f̃ = (ψ̃ − ψ̃D)χD ∈
L2(0, T ; L2(�)).

The existence of weak solutions can be obtained rigorously using standard Galerkin
approximations. As before, we will only present the derivation of an a priori estimate
here. We derive the energy estimate by testing the (semi-discrete) weak form (31)
with ˙̃p and ¨̃p. We then combine it with an elliptic regularity argument to enhance the
regularity of the solution.

Lower-Order Energy Estimate We test (31) with ˙̃p
∫ t

0

(
(1 + 2k ˙̃

ψ) ¨̃p + 2k ¨̃
ψ ˙̃p, ˙̃p

)
ds +

∫ t

0
(c2∇ p̃ + b∇ ˙̃p − σ ˙̃p∇ψ̃,∇ ˙̃p) ds =

∫ t

0
( f̃ , ˙̃p) ds.

We denote by ã = 1 + 2k ˙̃
ψ . ψ ∈ W implies that ψ̃ ∈ W; we therefore have that

1
2 < ã < 3

2 almost everywhere on � for all t ∈ [0, T ]. Knowing that

ã ¨̃p ˙̃p = 1

2

d

dt
(ã ˙̃p2) − 1

2
( ˙̃a ˙̃p2),

we infer

1

4
‖ ˙̃p(t)‖2L2(�)

+ c2

2
‖∇ p̃(t)‖2L2(�)

+ b
∫ t

0
‖∇ ˙̃p‖2L2(�)

ds

≤ 3

4
‖ ˙̃p(0)‖2L2(�)

+ c2

2
‖∇ p̃(0)‖2L2(�)

+ σ

∫ t

0

∫
�

˙̃p∇ψ · ∇ ˙̃p dx ds

−1

2

∫ t

0
( ˜̇a ˙̃p, ˙̃p) ds + 1

2
‖ f̃ ‖2L2(L2(�))

+ 1

2

∫ t

0
‖ ˙̃p‖2L2(�)

ds.

We estimate the term
∫ t

0

∫
�

˙̃p∇ψ · ∇ ˙̃p dx ds ≤‖∇ψ̃‖2L∞(L∞(�))

1

4ε

∫ t

0
‖ ˙̃p‖2L2(�)

ds

+ ε

∫ t

0
‖∇ ˙̃p‖2L2(�)

ds.

Using Ehrling’s inequality (5), we estimate, for some arbitrary ε > 0, the term

∫ t

0
|( ˙̃a ˙̃p, ˙̃p)| ds ≤ ‖˙̃a‖L∞(L2(�))

∫ t

0

(
CE,�(ε)‖ ˙̃p‖2L2(�)

+ ε‖∇ ˙̃p‖2L2(�)

)
ds.

123



39 Page 22 of 35 Applied Mathematics & Optimization (2022) 86 :39

For ε small enough this yields the following estimate:

‖ ˙̃p(t)‖2
L2(�)

+ ‖∇ p̃(t)‖2
L2(�)

+ ∫ t
0 ‖∇ ˙̃p‖2

L2(�)
ds

� ‖ ˙̃p(0)‖2
L2(�)

+ ‖∇ p̃(0)‖2
L2(�)

+ ‖ f̃ ‖2
L2(L2(�))

. (32)

Next we test with ¨̃p
∫ t

0

(
ã ¨̃p + ˙̃a ˙̃p, ¨̃p

)
ds +

∫ t

0
(c2∇ p̃ + b∇ ˙̃p,∇ ¨̃p) ds − 2σ

∫ t

0
( ˙̃p∇ p̃si,∇ ¨̃p) ds

=
∫ t

0
( f̃ , ¨̃p) ds.

(33)

We integrate by parts in time the terms

c2
∫ t

0
(∇ p̃,∇ ¨̃p) ds = −c2

∫ t

0
(∇ ˙̃p,∇ ˙̃p) ds + c2

(
∇ p̃(t),∇ ˙̃p(t)

)
− 2σ

∫ t

0
( ˙̃p∇ψ̃,∇ ¨̃p) ds

= 2σ
∫ t

0
( ¨̃p∇ψ̃ + ˙̃p∇ ˙̃

ψ,∇ ˙̃p) ds − 2σ
( ˙̃p(t)∇ψ̃(t),∇ ˙̃p(t)

)
.

With this, we can rewrite (33) as

∫ t

0

(
ã ¨̃p, ¨̃p

)
ds + b

∫ t

0
(∇ ˙̃p,∇ ¨̃p) ds = −

∫ t

0
( ˙̃a ˙̃p, ¨̃p) ds + c2

∫ t

0
(∇ ˙̃p,∇ ˙̃p) ds

− c2
(
∇ p̃(t),∇ ˙̃p(t)

)
+ 2σ

∫ t

0
( ¨̃p∇ψ̃ + ˙̃p∇ ˙̃

ψ,∇ ˙̃p) ds

+ 2σ
( ˙̃p(t)∇ψ̃(t),∇ ˙̃p(t)

)
+

∫ t

0
( f̃ , ¨̃p) ds.

Next we estimate the right-hand side terms starting with the term

∫ t

0
|( ˙̃a ˙̃p, ¨̃p)| ds ≤C�,4‖ ˙̃a‖L2(H1(�)) sup

τ∈(0,t)
‖ ˙̃p(τ )‖L4(�)

(∫ t

0
‖ ¨̃p‖2L2(�)

ds

)1/2

≤C2
�,4

4ε1
‖ ˙̃a‖2L2(H1(�))

sup
τ∈(0,t)

‖ ˙̃p(τ )‖2L4(�)
+ ε1

∫ t

0
‖ ¨̃p‖2L2(�)

ds.

Using Ehrling’s inequality (5), we obtain for all ε2 > 0

‖ ˙̃p(τ )‖2L4(�)
≤ CE,�(ε2)‖ ˙̃p(τ )‖2L2(�)

+ ε2‖∇ ˙̃p(τ )‖2L2(�)
,

we can first choose ε1 small enough to absorb the term
∫ t
0 ‖ ¨̃p‖2

L2(�)
ds, then ε2 =

ε2(ε1) > 0 afterwards small enough to absorb the term ‖∇ ˙̃p(τ )‖2
L2(�)

.
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Usual computations then lead to the bound

∫ t

0
‖ ¨̃p‖2L2(�)

ds + ‖∇ ˙̃p(t)‖2L2(�)
� ‖∇ ˙̃p(0)‖2L2(�)

+ sup
τ∈(0,t)

‖ ˙̃p(τ )‖2L2(�)

+ sup
τ∈(0,t)

‖∇ p̃(t)‖2L2(�)
+ ‖ f̃ ‖2L2(L2(�))

. (34)

Estimates (32) and (34) yield

‖ ˙̃p(t)‖2L2(�)
+ ‖∇ p̃(t)‖2L2(�)

+ ‖∇ ˙̃p(t)‖2L2(�)
+

∫ t

0
‖ ¨̃p‖2L2(�)

ds

� ‖∇ ˙̃p(0)‖2L2(�)
+ ‖ ˙̃p(0)‖2L2(�)

+ ‖∇ p̃(0)‖2L2(�)
+ ‖ f̃ ‖2L2(L2(�))

.

Bootstrap Argument From the above-analysis we can infer that

p̃ ∈ W 1,∞(0, T ; H1(�)) ∩ H2(0, T , L2(�)).

We present the next arguments for l = 3; the case l = 2 can be treated analogously.
We introduce the new variable

≈
p = c2 p̃ + b ˙̃p, which verifies

−� ≈
p + ≈

p = − ∂
∂t

(
(1 + 2k ˙̃

ψ) ˙̃p
)

− 2σ∇ ·
( ˙̃p∇ψ

)
+ f̃ + ≈

p on Q,

∂
≈
p

∂n = 2σ g ˙̃p on
.

It is easy to see that −� ≈
p + ≈

p ∈ L2(�) a.e. in time. Additionally, if � is a bounded
subset of R3, then ∂� is a compact 2-manifold. One can use properties of pointwise
multiplication on fractional Sobolev spaces on n-manifolds to show that since g ∈
H3/2(∂�) and ˙̃p ∈ H1/2(∂�) a.e. in time, then 2σ g ˙̃p ∈ H1/2(∂�) a.e. in time; see
[45,Corollary 3].We then use elliptic regularity to conclude that

≈
p ∈ L2(0, T ; H2(�))

(as done in [18, Theorem 4.3], for example).
Knowing that p̃ solves the ODE:

≈
p = c2 p̃ + b ˙̃p, one may write

p̃ = e−c2t/b
(
p0 +

∫ t

0
ec

2s/b 1

b
≈
p(s) ds

)
. (35)

Analogously to the proof of Proposition 1, it then follows that p̃ ∈ L∞(0, T , H2(�))

and subsequently that ˙̃p ∈ L2(0, T , H2(�)). The energy estimate follows from (35)
and the elliptic regularity estimate for

≈
p. ��

5 Shape Derivative

Given cost functional J , we consider the following shape optimization problem

{
min

(ψ,�)∈W×Oad

J (ψ,�),

s.t. ψ solves (4) on �
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with W defined in (7), and Oad is the set of admissible domains:

Oad ⊂ {� is a domain such that � ∈ C2,1, � ⊂ U }.

Our previous analysis allows us to now focus on deriving the shape sensitivity dJ (�)h
of a cost functional J in the direction of a smooth enough vector field h ∈ D. We
recall that the Eulerian derivative of J in the direction of the vector field h is defined
as

dJ (�)h = lim
d→0

1

d
(J (ψd ,�d) − (J (ψ,�)) , (36)

where ψ and ψd satisfy the PDE on the original and on the perturbed domain, respec-
tively. The difficulty ensuing from the difference quotient in (36) involving functions
defined on different domains is overcome by using the method of mappings, discussed
in Sect. 2.

The first cost functional of interest, given in (27), can be written on a deformed
domain

J (�d) = 1

2

∫ T

0

∫
�d

(ψd − ψDd )
2χDd dxds = 1

2

∫ T

0

∫
�

(ψd − ψd
D)2χd

D Id dxds.

Motivated by application purposes and to simplify the analysis, we assume that the
focal region is compactly contained in�; i.e, DS � �. Thuswe impose supp h∩DS =
∅ �⇒ χd

D = χD , and have

J (�d) = 1

2

∫ T

0

∫
�

(ψd − ψd
D)2χD Id dx .

To simplify the presentation and in agreement with HIFU applications, we assume
going forward that the potential field is at rest at t = 0 for all small deformations; that
is, ψd(0) = ψ̇d(0) = 0, for all |d| small.

We generalize in what follows a useful identity [19, Lemma 6] to accommodate the
term ∇ψ · ∇ψ̇ which will be needed in the computation of the shape derivative.

Lemma 1 For a ∈ H1(�) and u, v ∈ H2(�) the following identity holds:

∫
�

aM∇u · ∇v

=
∫

�

(∇ · (a∇u)(h · ∇v) + ∇ · (a∇v)(h · ∇u) − (∇u · ∇v)(h · ∇a))

−
∫

∂�

a

(
∂u

∂n
(h · ∇v) + ∂v

∂n
(h · ∇u)

)
+

∫
∂�

a∇u · ∇v(h · n),

where M = I div h − (∇h)T − (∇h), as defined in (24).
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Proof The proof in the case a = 1 follows by [46, Lemma 5]. The general case
a ∈ H1(�) follows by a straightforward extension of the arguments there. ��

We now have all the tools to rigorously compute the shape derivative.

Theorem 6 Let the assumptions made in Theorem 3, Theorem 4 hold and let ψ and
p be the solutions of the state (4) and adjoint (28) problems, respectively. Further, let
the assumptions made in this section hold. Then the shape derivative for cost function
J , defined in (27), exists in the direction of any h ∈ D and is given by

dJ (�)h =
∫ T

0

∫
∂�

(
∂

∂n
((c2g + bġ)p) + (c2g + bġ)pκ)(h · n) dγ ds

−
∫ T

0

∫
∂�

(
(1 − 2kψ̇)ψ̈ p + c2∇ p · ∇ψ + b∇ p · ∇ψ̇ − 2σ p∇ψ · ∇ψ̇

)
(h · n) dγ ds,

(37)

where κ stands for the mean curvature of ∂�.

Proof Inspired by the rearrangement technique of [19, 29], we write:

J (�d) − J (�) = 1

2

∫ T

0

∫
�

(Id(ψ
d − ψd

D)2χD − (ψ − ψD)2χD) dxds

= 1

2

∫ T

0

∫
�

(
(Id − 1)(ψd − ψd

D)2 + (ψd − ψ)2 + �����
(ψ − ψD)2

+ (ψD − ψd
D)2 − �����

(ψ − ψD)2 + 2(ψd − ψ)(ψ − ψD)

+2(ψd − ψ)(ψD − ψd
D) + 2(ψ − ψD)(ψD − ψd

D)
)

χD dxds.

We use Theorem 4 together with the fact that d �→ ψd
D is differentiable at d = 0 to

arrive at

dJ (�)h =
∫ T

0

∫
�

(
j(ψ) div h − j ′(ψ)∇ψD · h)

χD dx ds

+ lim
d→0

1

d

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dx ds,

with j ′(ψ) = (ψ − ψD)χD . However, since supp h ∩ DS = ∅, it reduces to

dJ (�)h = lim
d→0

1

d

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dx ds.
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We notice that the integral above resembles the right-hand side of the adjoint problem
(29). Thus testing the adjoint problem with ψd − ψ ∈ L2(0, T ; H1(�)) yields

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dxds =
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇) ṗ

)
(ψd − ψ) dxds

+
∫ T

0

∫
�

(c2∇ p − b∇ ṗ + 2σ ṗ∇ψ) · ∇(ψd − ψ) dxds.

Integrating twice by parts in the first term on the right yields

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dx ds =
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇)(ψ̇d − ψ̇)

)
p dx ds

+
∫ T

0

∫
�

(c2∇ p − b∇ ṗ + 2σ ṗ∇ψ) · ∇(ψd − ψ) dx ds.

(38)

We note that the following equality holds:

∫ T

0

∫
�

ṗ∇ψ · ∇(ψd − ψ) dx = −
∫ T

0

∫
�

p
(
∇ψ̇ · ∇(ψd − ψ) + ∇ψ · ∇(ψ̇d − ψ̇)

)
dx,

and we can rely on the following identities to deal with the nonlinear terms in (38):

∂

∂t

(
(1 − 2kψ̇)(ψ̇d − ψ̇)

)
= (1 − 2kψ̇d )ψ̈d − (1 − 2kψ̇)ψ̈ + k

∂

∂t
(ψ̇d − ψ̇)2,

∇ψ̇ · ∇(ψd − ψ) + ∇ψ · ∇(ψ̇d − ψ̇) = ∇ψ̇d · ∇ψd − ∇ψ̇ · ∇ψ − 1

2

∂

∂t
|∇(ψd − ψ)|2.

Using these identities we infer

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dx ds

=
∫ T

0

∫
�

{
(1 − Id )(1 − 2kψ̇d )ψ̈d p − k(ψ̇d − ψ̇)2 ṗ − σ |∇(ψd − ψ)|2 ṗ

+c2(I − Md )∇ p · ∇ψd + b(I − Md )∇ p · ∇ψ̇d − 2σ(I − Md )(∇ψ̇d · ∇ψd )p
}
dx ds

+
∫ T

0

∫
�

{
Id (1 − 2kψ̇d )ψ̈d p

+
(
c2Md∇ p · ∇ψd + bMd∇ p · ∇ψ̇d − 2σ(Md∇ψ̇d · ∇ψd )p

)}
dx ds

−
∫ T

0

∫
�

{
(1 − 2kψ̇)ψ̈ p −

(
c2∇ p · ∇ψ + b∇ p · ∇ψ̇ − 2σ(∇ψ̇ · ∇ψ)p

)}
dx ds.

If we use the weak form (25) satisfied byψd with φ = p as the test function to replace
the last three lines and further employ Theorem 4 for the 1

2 -Hölder continuity of ψ̇
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and ∇ψ , we obtain

lim
d→0

1

d

∫ T

0

∫
�

j ′(ψ)(ψd − ψ) dx ds

= −
∫ T

0

∫
�

(
div h(1 − 2kψ̇)ψ̈ p

)
dx ds

−
∫ T

0

∫
�

(
c2M∇ p · ∇ψ + bM∇ p · ∇ψ̇ − 2σ(M∇ψ̇ · ∇ψ)p

)
dx ds

+ lim
d→0

1

d

{∫ T

0

∫
∂�

wd

(
c2gd + bġd

)
p dγ ds −

∫ T

0

∫
∂�

(
c2g + bġ

)
p dγ ds

}
.

= I + I I + I I I ,

where M is defined in (24). Note that this passage to the limit is made possible by

the uniform boundedness in d of ψd and ψ̇d given by Theorem 3. This expression
would correspond to the volume representation of the shape derivative. To arrive at
the boundary representation predicted by the Delfour–Hadamard–Zolésio structure
theorem, we integrate by parts the first term with respect to space

I =
∫ T

0

∫
�

(1 − 2kψ̇)ψ̈∇ p · h dx ds +
∫ T

0

∫
�

p∇((1 − 2kψ̇)ψ̈) · h dx ds

−
∫ T

0

∫
∂�

(1 − 2kψ̇)ψ̈ p(h · n) dx ds.

We note that

∇ (
(1 − 2kψ̇)ψ̈

) = −2kψ̈∇ψ̇ + (1 − 2kψ̇)∇ψ̈ = ∂

∂t

(
(1 − 2kψ̇)∇ψ̇

)
.

We then have after integration by parts (h invariant with time):

∫ T

0

∫
�

p∇((1 − 2kψ̇)ψ̈) · h dx ds =
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇) ṗ

)∇ψ · h dx ds,

which yields

I =
∫ T

0

∫
�

(1 − 2kψ̇)ψ̈∇ p · h dx ds +
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇) ṗ

) ∇ψ · h dx ds

−
∫ T

0

∫
∂�

(1 − 2kψ̇)ψ̈ p(h · n) dx ds.
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Next wewish to transform I I . By applying Lemma 1 to the term
∫
�
(M∇ψ̇ ·∇ψ)p dx,

and integrating by part in time, we find that

∫ T

0

∫
�

(M∇ψ̇ · ∇ψ)p dx ds

= −
∫ T

0

∫
�

(∇ · ( ṗ∇ψ)(h · ∇ψ) + (∇ψ · ∇ψ̇)(h · ∇ p)
)
dx ds

+
∫ T

0

∫
∂�

ṗ
∂ψ

∂n
(h · ∇ψ) dγ ds +

∫ T

0

∫
∂�

p∇ψ · ∇ψ̇(h · n) dγ ds,

Similarly, we use Lemma 1 to infer

−
∫ T

0

∫
�

(c2M∇ p · ∇ψ + bM∇ p · ∇ψ̇) dx ds

= −
∫ T

0

∫
�

(c2 �ψ + b�ψ̇)(h · ∇ p) dx ds −
∫ T

0

∫
�

(c2 �p − b� ṗ)(h · ∇ψ) dx ds

+
∫ T

0

∫
∂�

(c2
∂ψ

∂n
+ b

∂ψ̇

∂n
)(h · ∇ p) dγ ds +

∫ T

0

∫
∂�

(c2
∂ p

∂n
− b

∂ ṗ

∂n
)(h · ∇ψ) dγ ds

−
∫ T

0

∫
∂�

(c2∇ p · ∇ψ + b∇ p · ∇ψ̇)(h · n) dγ ds.

Altogether and using the Neumann data for ψ , this gives us that

I I = −
∫ T

0

∫
�

(c2 �ψ + b�ψ̇ + 2σ∇ψ · ∇ψ̇)(h · ∇ p) dx ds

−
∫ T

0

∫
�

(c2 �p − b� ṗ + 2σ∇ · ( ṗ∇ψ))(h · ∇ψ) dx ds

+
∫ T

0

∫
∂�

(c2g + bġ)(h · ∇ p) dγ ds

−
∫ T

0

∫
∂�

(c2∇ p · ∇ψ + b∇ p · ∇ψ̇ − 2σ p∇ψ · ∇ψ̇)(h · n) dγ ds.

We use the rules of differentiation of mapped functions (see Appendix 1) to find

I I I = lim
d→0

1

d

{∫ T

0

∫
∂�

wd

(
c2gd + bġd

)
p dγ ds −

∫ T

0

∫
∂�

(
c2g + bġ

)
p dγ ds

}

=
(∫ T

0

∫
∂�d

(
c2gd + bġd

)
p ◦ F−1

d dγ ds

)′
(0)

=
∫ T

0

∫
∂�

(
c2g + bġ

)
(−∇ p · h) dγ ds

+
∫ T

0

∫
∂�

(
∂

∂n
((c2g + bġ)p) + (c2g + bġ)pκ)(h · n) dγ ds.
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Finally, calculating I + I I + I I I , we conclude that

dJ (�)h

=
∫ T

0

∫
�

(
(1 − 2kψ̇)ψ̈ − c2 �ψ − b�ψ̇ − 2σ∇ψ · ∇ψ̇

)
∇ p · h dx ds

+
∫ T

0

∫
�

(
∂

∂t

(
(1 − 2kψ̇) ṗ

) − c2 �p + b� ṗ − 2σ∇ · ( ṗ∇ψ)

)
∇ψ · h dx ds

+
∫ T

0

∫
∂�

(
∂

∂n
((c2g + bġ)p) + (c2g + bġ)pκ)(h · n) dγ ds

−
∫ T

0

∫
∂�

(
(1 − 2kψ̇)ψ̈ p + (c2∇ p · ∇ψ + b∇ p · ∇ψ̇ − 2σ p∇ψ · ∇ψ̇)

)
(h · n) dγ ds.

The second line above vanishes due to the fact that ψ solves the wave equation (1).
The third line vanishes by using (28) and then the fact that supp h ∩ DS = ∅. Thus we
arrive at (37), as claimed.

Since� isC2,1, themean curvature κ iswell defined almost everywhere and belongs
to L∞(∂�) [46, p. 165]. Note that due to the established regularities of ψ in Theorem
2 and p in Theorem 5, the Eulerian shape derivative is well defined.Moreover dJ (�)h
is linear and continuous with respect to h. J is, therefore, shape differentiable. ��

5.1 Other Relevant Objectives

In what follows, we discuss how the previous analysis can be easily adapted to accom-
modate other practically relevant objectives.

Tracking the Potential at Final Time In practice, we might want to impose a
desired ultrasound output at a target time-stamp tT ∈ [0, T ], usually final time T . In
such cases, the cost function has the form

JT (�) = 1

2

∫
�

(
ψ(T ) − ψDS

)2
χDS dx =

∫
�

jT (ψ) dx, (39)

where we recall that DS ⊂ � is the ultrasound focal region. Similarly to before, we
can assume supp h ∩ DS = ∅.

With cost functional JT , it can be shown that the strong form of the adjoint problem
is formally given by

∂
∂t

(
(1 − 2kψ̇) ṗ

) − c2 �p + b� ṗ − 2σ∇ · ( ṗ∇ψ) = 0 on Q,

c2 ∂ p
∂n − b ∂ ṗ

∂n + 2σ g ṗ = 0 on
,

p(T ) = 0 on�,

ṗ(T ) = −
(
ψ(T )−ψDS

)
χDS

1−2kψ̇(T )
on�.

(40)

This initial-boundary value problem fits into the general theoretical framework of
Theorem 5. Since the new source term is conveniently zero, all that needs to be shown
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is that

ṗ(T ) = −
(
ψ(T ) − ψDS

)
χDS

1 − 2kψ̇(T )
∈ H1(�).

This is the case ifψDS ∈ H1(�). We can see that ṗ(T ) ∈ L2(�). Writing the gradient
of ṗ(T ) and noticing that 1−2kψ̇(T ) ∈ L∞(�) is bounded away from zero (ψ ∈ W
defined in (17)), one can readily prove the desired regularity. And subsequently, due to
Theorem 5, initial boundary value problem (40) has a unique solution p in the space
P , which is defined in (30).

Using the same rearrangement technique as before, we write the difference and
using Theorem 4 (with the embedding H1(H1) ↪→ C0(H1)) together with the differ-
entiability of ψd

DS
at d = 0 and the fact that supp h ∩ DS = ∅, we infer that

dJT (�)h = lim
d→0

1

d

∫
�

j ′T (ψ)(ψd(T ) − ψ(T )) dx .

Testing the weak form (40) of the adjoint problem with ψd −ψ ∈ H1(0, T ; H1(�)),
we obtain

∫
�

j ′T (ψ)(ψd(T ) − ψ(T )) dx = −
∫ T

0

∫
�

(
(1 − 2kψ̇) ṗ

)
(ψ̇d − ψ̇) dxds

+
∫ T

0

∫
�

(c2∇ p − b∇ ṗ + σ ṗ∇ψ) · ∇(ψd − ψ) dxds. (41)

We further use the fact that p(T ) = ψ̇d(0) = ψ̇(0) = 0 to integrate once in time the
first term

−
∫ T

0

∫
�

(1 − 2kψ̇) ṗ(ψ̇d − ψ̇) dxds =
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇)(ψ̇d − ψ̇)

)
p dxds.

With this, the right-hand side of (41) is the same as the one obtained in (38). From
there we can continue the computations done in Theorem 6. We find that the shape
derivative has again the form (37).

Tracking the Pressure In ultrasound applications, it might be desirable to impose
that the pressure match a desired value on D; i.e,

p = pD onD ⇐⇒ ρψ̇ = pD ⇐⇒ ψ̇ = pD
ρ

⇐⇒ ψ̇ = fD, where fD = pD
ρ

.

Here ρ is themass density at each point of themediumon the horizon [0, T ] or, alterna-
tively,ρ : [0, T ]×� → R>0.We assume fD ∈ H1(0, T ; L2(�))∩L∞(0, T ; H1(�))
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and consider

Jp(ψ,�) = 1

2

∫ T

0

∫
�

(
ψ̇ − fD

)2
χD dxds =

∫ T

0

∫
�

jp(ψ) dxds.

For Jp, the strong form of the adjoint problem is given by

∂
∂t

(
(1 − 2kψ̇) ṗ

) − c2 �p + b� ṗ − 2∇ · ( ṗ∇ψ) = −(ψ̈ − ḟD)χD on Q,

c2 ∂ p
∂n − b ∂ ṗ

∂n + 2g ṗ = 0 on
,

p(T ) = 0 on�,

ṗ(T ) = − (ψ̇(T )− fD(T ))χDS
1−2kψ̇(T )

on�.

(42)

One can readily show that (42) verifies the assumptions of Theorem 5. Similarly to
before, we compare the functional Jp on a reference and a deformed domain, rely on
the Hölder continuity of ψ̇ , together with the fact thatψd

DS
= ψd

DS
(d) is differentiable

at d = 0 to infer that

dJp(�)h = lim
d→0

1

d

∫ T

0

∫
�

j ′p(ψ)(ψ̇d − ψ̇) dx ds.

We test (42) by ψd − ψ ∈ H1(0, T ; H1(�)) and use the fact that p(T ) = ψ̇d(0) =
ψ̇(0) = 0 to integrate once in time the first term to get

∫ T

0

∫
�

j ′p(ψ)(ψ̇d − ψ̇) dx ds =
∫ T

0

∫
�

∂

∂t

(
(1 − 2kψ̇)(ψ̇d − ψ̇)

)
p dxds

+
∫ T

0

∫
�

(c2∇ p − b∇ ṗ + 2σ ṗ∇ψ) · ∇(ψd − ψ) dxds. (43)

The right-hand side of (43) is the same as the one obtained in (38). From there, we can
continue the computations as done in Theorem 6. We find, similarly, that the shape
derivative is of the form (37). The established regularities of ψ in Theorem 2 and p
in Theorem 5, imply that the shape derivative is well defined.

Conclusion and Outlook

In this work, we have analyzed shape optimization problems governed by general
wave equations that model nonlinear ultrasound propagation and, as such, arise in
HIFU applications. In particular, we have established sufficient conditions for the
well-posedness and regularity of the underlying wave models with nonhomogeneous
Neumann boundary conditions, uniformly with respect to shape deformations, as well
as theHölder continuity of the solutions. Furthermore,we have studied the correspond-
ing adjoint problems and rigorously computed shape derivatives for several objectives
of practical interest.
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Our results provide a sound basis for the analysis and implementation of suitable
numerical algorithms for shape optimization of HIFU waves. Indeed, Theorem 6 pro-
vides a derivative expression which can be used in a gradient-descent algorithm to
find, e.g., the optimal arrangement of piezoelectric trandsucers in a HIFU device. Cal-
culating the shape derivative necessitates the solving of only two PDEs (a nonlinear
state problem and a linear adjoint problem). A simple integral formula gives then the
derivative for any vector field. This makes designing HIFU devices using the estab-
lished formulas for shape sensitivities particularly attractive. Future work will also be
concerned with generalizing the presented theoretical framework to allow for sound
propagation through media with different relaxation mechanisms.
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Appendix: A. Properties of the Perturbation of Identity Mapping

In this appendix, we collect certain helpful properties of the perturbation of identity
mapping. We refer to [42, Lemmas 2.4, 4.2, 4.3 & 4.8], [30, Section 2.3.2], and [47,
Proposition 6.6.2] for the following results.

Let I = [0, δ0] with δ0 > 0 sufficiently small. Then the following properties hold:

F0 = id, I0 = 1,
d → Fd ∈ C(I,C2,1(U , Rl)), d → F−1

d ∈ C(I,C2,1(U , Rl)),

d → Ad ∈ C1(I,C1,1(U , Rl×l)), d → Id ∈ C1(I,C1,1(U )),

d → wd ∈ C(I,C1,1(∂�)) ∩ C1(I,C(∂�)),

(Fd)′ (0) = h,
(
F−1
d

)′
(0) = −h

(DFd)′ (0) = ∇h
(
DF−1

d

)′
(0) = (

AT
d

)′
(0) = −∇h

(Id)′ (0) = div h (wd)
′ (0) = div∂� h = div h|∂� − ∇hn · n,
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where, again, (·)′ stands for the derivative the deformation mappings with respect to
d.

We also recall here some rules of differentiation and integration of the mapped
functions; see, for example, Propositions 2.29, 2.47, and 2.50 in [48, Chapter 2], and
Theorem 4.3 in [30, Chapter 9] for their proofs.

• Let ϕd ∈ L1(�d), then ϕd ◦ Fd ∈ L1(�d):

∫
�d

ϕd dxd =
∫

�

ϕd ◦ Fd det DFd dx =
∫

�

Idϕ
d dx

• Let ϕd ∈ L1(∂�d), then ϕd ∈ L1(∂�):

∫
∂�d

ϕd dγd =
∫

∂�

wdϕ
d dγ,

• φd ∈ H1(�d) if and only if φd ∈ H1(�):

(∇ϕd) ◦ Fd = Ad∇ϕd .

• Assume that f ∈ C((−δ0, δ0),W 2,1(U )) and fd(0) exists in W 1,1(U ). Then

(∫
∂�d

f (d, γ ) dγ

)′
(0)

=
∫

∂�

{
( f (d, γ ))′ (0) +

(
∂

∂n
f (0, γ ) + κ f (0, γ )

)
(h · n)

}
dγ,

where κ stands for the mean curvature of ∂�.
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