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Abstract
This paper proposes a distributionally robust multi-period portfolio model with ambi-
guity on asset correlations with fixed individual asset return mean and variance. The
correlation matrix bounds can be quantified via corresponding confidence intervals
based on historical data. We employ a general class of coherent risk measures namely
the spectral riskmeasure,which includes the popularmeasure conditional value-at-risk
(CVaR) as a particular case, as our objective function. Specific choices of spectral risk
measure permit flexibility for capturing risk preferences of different investors. A semi-
analytical solution is derived for our model. The prominent stochastic dual dynamic
programming (SDDP) algorithm adapted with intricate modifications is developed as
a numerical method under the discrete distribution setting. In particular, our new for-
mulation accounts for the unknownworst-case distribution in each iteration.We verify
the convergence property of this algorithm under the setting of finite scenarios. Our
results show that the optimal solution favours a certain degree of anti-diversification
due to dependence ambiguity and exhibits its protection ability during the financial
crisis period.

Keywords Investment analysis · Portfolio optimization · Correlation uncertainty ·
SDDP

Mathematics Subject Classification 91G10 · 90C15 · 62H20

1 Introduction

Markowitz’s [40] portfolio optimization model which advocates the idea of mean-risk
models in modern portfolio theory in 1952 and has received tremendous attention
since its proposal. This neat idea is influential upon which many subsequent and
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more sophisticated models are established, including models that incorporate various
practical constraints. For instance, constraints on transaction costs are imposed to
capture the costs in buying and selling the assets and constraints on maximum holding
proportion for each asset to cover the investor perference on risk diversification. A
summary of portfolio optimization models can be found in [6], for example. The role
of numerical optimization methods to solve these models has also been an active
research area. Instead of considering single-period models, a more realistic class of
multi-period models are studied as they take the complete investment horizon into
consideration with the possibility of adjusting one’s investment position at certain
times regularly. Under some specific settings, the multi-period problem can be solved
analytically (see, for example, [31] and [18]).

Risk measures and related theories have undergone rapid development in recent
years as attempts to incorporate the effect due to risk aversion on investment decision.
This consideration of risk measures has become more crucial after the 2008 financial
crisis, afterwhich investors have developed preference for robust portfolios. In addition
to the prevalent riskmeasure conditional value-at-risk (CVaR) discussed in [52], which
has been widely adopted in financial sector as required in Basel Accord III, a more
general class of riskmeasures, namely, the spectral riskmeasure, is proposed in [1] and
further discussed in [11] and [7] amongst others. This class includes some novel risk
measures in the literature such as second-order superquantile [51] and Gini-shortfall
[17]. Readers may also refer to [46] and [55] for relevant discussion on such risk
measures. In this paper, we focus on this general class of spectral risk measures under
which many different well-known risk measures are covered.

While the mean-variance model is convenient, variance is a symmetric measure of
volatility and it does not provide effective quantification for downside risk. In modern
portfolio theory, rational and prudent investors are cautious about downside losses at
the cost of sacrificing partially the upward potentials of the associated investments.
The use of alternative risk measures for portfolio models has become increasingly
attractive. An extensive amount of research effort has been devoted to construct imple-
mentable risk-averse portfolio models. Fundamental theories for mean-risk model are
developed in [53] and the context under portfolio optimization is discussed in [42].
Consideration of high-order conditional risk measures based upon the scenario gener-
ation method is recently investigated in [24] followed by [2] which extends the scope
to the use of entropic value-at-risk.

With the growing concerns for reliability of parameter estimation, distributionally
robust portfolio models are developed to protect investors from suffering tremendous
losses due to misspecification of model parameters (see [15]). Two types of uncer-
tainty set construction prevail in the literature, namely distance-type uncertainty and
moment-type uncertainty. For the former, it can be constructed using the empirical
distribution as the reference probability measure through specific metrics; a thorough
discussion usingWasserstein distance can be found in [5]. For the latter, moment infor-
mation from the observed data is captured. In this paper, we consider a multi-period
problemwith the objective function being theworst-case spectral riskmeasure, charac-
terized bymoment-type uncertainty. To bemore specific, themoment uncertainty set is
quantified by the estimated individual asset’s mean and variance while the correlation
is quantified by a specific interval, say for instance, a relevant confidence interval so
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as to capture the model uncertainty. Unlike most of the papers on moment uncertainty
set that focus on an ellipsoidal set on the first two moments (see, for example, [9]),
the construction is relatively straight-forward. Ellipsoidal uncertainty set requires the
choice of the scale and shape parameters that are hard to interpret compared to the use
of confidence intervals. A recent discussion on a deliberate construction appears in
[38], which relies on estimates provided by experts. Moreover, the existing ellipsoidal
set cannot capture the correlation uncertainty between assets. A similar multi-period
portfolio problem with ellipsoidal uncertainty sets is investigated in [35] while the
single-period of the problem using CVaR objective is covered in [38]. In this line of
research, related works also include [30, 33, 34] and [36], amongst others.

The motivation of correlation ambiguity emerges from the concern about accuracy
in estimating correlation coefficients. It is inevitable that correlation affects investment
decisions tremendously. It is well known that obtaining accurate estimation of high-
dimensional correlation matrix is especially challenging. Also, through experiments,
[14] observed a lack of confidence in decision making under correlation uncertainty. It
implies that aversion towards correlation uncertainty inheres in the portfolio selection
process without which the resulting strategies tend to be mistakenly optimistic. Thus,
we are interested in the correlation ambiguity in portfolio models. Fouque et al. [16]
studied the situation with two risky assets and one risk-free asset in continuous-time
economy while the multiple-asset case in mean-variance framework is studied in [28].
[25] considered a single-period setting with normally distributed payoffs.

Multi-stage optimization is typically challenging. In the discrete setting, it is obvi-
ous that the number of scenarios grows exponentially as time proceeds. That is, if
we have N scenarios for each period, we would have NT scenarios over these T
periods, which is computationally intractable in general. Under the stagewise inde-
pendence assumption of the randomness, one can circumvent the problem with the
help of stochastic dual dynamic programming (SDDP) method, pioneered in [43].
The method is summarized and analyzed in [54] for the linear case and the risk averse
version is described in [56]. Recently, [23] proposed a variant for linear stochastic
programs with optimality cut selection steps to enhance computational efficiency. For
robust stochastic linear programs, [20] developed a robust version of SDDP, which
involves both upper and lower linear approximations of the recourse function. Time-
dependent variants could be found in [37] and [4]. The convergence proof of the
method for risk neutral and risk averse case in general convex setting appear in [21]
and [22], respectively.

In this paper, we consider a multi-period distributionally robust portfolio optimiza-
tion problemwith the spectral riskmeasure objective under correlation ambiguity. The
use of spectral risk measure permits flexibility on preferences from different investors.
Our numerical method under discrete setting is considered with historical scenarios.
In this area of active research, [26] investigated the risk neutral case with l∞ uncer-
tainty set while [47] studied the one with l2 uncertainty set. Duque et al. [12] discussed
the use of Wasserstein distance ambiguity set in linear stochastic programs with con-
vergence analysis. To the best of our knowledge, multi-period portfolio optimization
problem with moment-type uncertainty set has not been investigated in the literature.
Moment information crucial to investors, such as the mean and variance of random
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returns, can be captured explicitly while it is difficult to capture correlation ambiguity
via distance-type uncertainty set formulations.

The contribution of this paper is three-fold. First, we obtain a semi-analytical solu-
tion for the problem, which exploits the explicit formula of worst-case risk measures
presented in [32]. Different from [35], our model works with general spectral risk
measures and we include the no short-selling constraint in our model. This is a real-
istic assumption since short selling is not always allowed. Moreover, the worst-case
distribution cannot be obtained analytically as in their formulation. Despite all the
complexities, our solution can still be computed efficiently via interior-point meth-
ods. Second, to incorporate the support of return vectors, we apply the scenario-based
approach to our problem and propose a variant of SDDP to solve, which considers
the moment-type uncertainty set in the form of correlation ambiguity. This numerical
method can incorporate lower bounds for the random return vectors via the generated
scenarios. The use of SDDP in distributionally robust optimization using l2 distance
appeared recently in [47] and has been investigated in other contexts. We provide the
convergence proof of our proposed algorithm, which extends the previous works [21]
and [22] to the distributionally robust context. In the numerical experiment, our for-
mulation performs better than the l2 formulation in the 2008 crisis during which the
market experienced structural changes. Our model with correlation uncertainty set can
provide amore secured decision if the correlation structure of the assets changes signif-
icantly. Third, we observe that the use approximation of spectral function introduced
in [57] can be potentially useful under the distributionally robust situation in the sense
that the computational time per iteration would reduce with a reasonable marginal
error in optimal value. It is noteworthy that although formulation is developed under
a portfolio optimization framework, the algorithm and the theoretical results can be
readily extended to a more general setting with linear constraints, which can be read-
ily modified to cover applications such as operation planning problem in [55] and
inventory problem in [3].

The remainder of the paper is organized as follows: Sect. 2 introduces the problem,
including the notion of spectral risk measures and construction of uncertainty set. A
semi-analytic solution is derived in Sect. 3. Section 4 discusses the method to obtain
worst-case distribution under uncertainty based on discrete setting, which would be
used in the numerical SDDPmethod. The convergence of themethodwould be verified
in Sect. 5. Some computational results are demonstrated in Sect. 6 and the paper is
concluded in Sect. 7. All the proofs are provided in the Supplementary material.

2 Multi-stage Portfolio Optimization Problem Formulation

We consider a multi-period problem with finite scenarios and T stages. Assume that
there are n risky assets under investment consideration with individual mean μi and
variance σ 2

i for i = 1, . . . , n. The sample space at time t is given by Ωt = R
n for

t ∈ T = {1, . . . , T }. Stagewise independence of return vectors is assumed. Denote
{Ft } as a filtration accumulated up to time t ∈ T and r t as the random price ratio
vector at time t (i.e., asset price at time t divided by that at time t − 1). For simplicity,
we also call r t as the return vector as in the literature. Let Wt be the wealth at time t
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Fig. 1 Illustration of Portfolio Horizon

and the initial investment amountW0 be, without loss of generality, standardized as 1.
The multi-stage portfolio optimization problem considered is formulated as follows:

minimize
x0,x1,...,xT−1

sup
P1∈P1

ρ1

[
sup

P2∈P2

ρ2 · · ·
{

sup
PT ∈PT

ρT (−WT )

}]

subject to 1ᵀxt = Wt , t = 0, 1, . . . , T − 1,
rᵀ
t+1xt = Wt+1, t = 0, 1, . . . , T − 1,
xt ≥ 0, t = 0, 1, . . . , T − 1,

(1)

where xt is the investment decision at time t ,Pt is the uncertainty set, a subset of prob-
ability measures on (Ωt ,Ft ), and ρt is a chosen coherent risk mapping conditioned
on Ft−1. The first and second constraints describe the investment process: the wealth
obtained from the previous period is invested in the next period. The third constraint
restricts that short selling is not allowed. Figure 1 illustrates the investment process.

Remark 1 In problem (1),we use a recursive (i.e., nested) riskmeasure as our objective.
This facilitates the use of dynamic programming to solve the problem. Note that if a
policy satisfies the associated dynamic equations in (6)–(7), then such a policy is also
time consistent (see [49] and [55] for relevant discussions).

Different risk measures are proposed in the literature to capture the risks involved.
Spectral risk measures is a class of risk measures which covers many of the commonly
used riskmeasures. For a random variable Z , we denote FZ as its distribution function.

Definition 1 Let φ : [0, 1) → R be a non-negative and non-decreasing function
satisfying

∫ 1
0 φ(p)dp = 1. The spectral risk measure based on the spectral function

φ is defined as

ρφ(Z) =
∫ 1

0
φ(p)F−1

Z (p)dp, (2)

where F−1
Z (p) = inf{t ∈ R|FZ (t) ≥ p} is the left-continuous quantile function.

Remark 2 The choice of the space of random variables such that the spectral risk mea-
sure is finite is a complicated issue, which is discussed in [48]. In this paper, we assume
that ‖φ‖2 is finite (see Theorem 1). Together with the second moment finiteness of
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random return vector under our construction of uncertainty set, the finiteness is always
guaranteed. Also, this is guaranteed for the finite number of scenarios considered in
the numerical method.

To see that this general class of risk measures covers many existing choices, consider
φ(p) = (1 − α)−11(p ∈ [α, 1)). The measure specified in (2) gives the conditional
value-at-risk of level α (CVaRα), where 1(A) is the indicator funcion taking value one
on A and zero otherwise. Another equivalent formulation for CVaRα is given as

CVaRα(Z) = inf
t

{
t + 1

1 − α
E
[
(Z − t)+

]}
. (3)

It is well-known that spectral risk measures are coherent risk measures, which satisfy
convexity, monotonicity, translation equivariance and positive homogeneity axioms.

The uncertainty sets Pt are constructed using moment information which are fixed
at time 0. We assume that the first two individual moments are known with partial
information being used for correlation. To avoid notational ambiguity, we remove
the dependence on t and consider the random vector ξ = (ξ1, . . . , ξn). Then, the
uncertainty set is defined as

P =
{
π ∈ D

∣∣∣∣Eπ (ξ) = μ , Varπ (ξi ) = σ 2
i , i = 1, . . . , n ,

Cπ := Corrπ (ξ) � 0 , Cπ ∈ [C,C]} , (4)

where D is the set of all probability distributions and Cπ is a symmetric (positive
semidefinite) correlationmatrix. The two-sided bounds forCπ are interpreted element-
wisely, which capture the correlation ambiguity. The diagonal entries of C and C are,
by default, set to be 1. It is easy to observe that the setP is convex (see Supplementary
material for a proof).

Inspired by [35], due to the recursive nature of the defined risk measure and the
monotonicity analyzed in [59], we can rewrite (1) in terms of dynamic programming
equations. The equivalence of the multi-stage problem and the dynamic programming
formulation is detailed in [49]. First, define the constraint sets

Xt (xt−1, r t ) = {
xt ≥ 0 | 1ᵀxt = Wt , rᵀ

t xt−1 = Wt
}

= {
xt ≥ 0 | 1ᵀxt = rᵀ

t xt−1
}

(5)

for t = 1, . . . , T with X0 = {x0|1ᵀx0 = W0}. Also, we define the cost functions
fT (xT , rT ) = −1ᵀxT and ft ≡ 0 for t = 1, . . . , T − 1. With the stagewise inde-
pendence assumption, the dynamic equations are established recursively as

Qt (xt−1, r t ) = inf
xt∈Xt (xt−1,r t )

{ ft (xt , r t ) + Qt+1 (xt )} with (6)

Qt (xt−1) = sup
Pt∈Pt

ρt (Qt (xt−1, r t )) , (7)

123



Applied Mathematics & Optimization (2022) 86 :8 Page 7 of 29 8

for t = 1, . . . , T , where Q0 = inf x0∈X0 Q1(x0) is the first-stage minimization prob-
lem and QT+1 ≡ 0. It is noteworthy that QT (xT−1, rT ) = −rᵀ

T xT−1 involves no
optimization.

3 Semi-analytical Solution

In this section, we derive a semi-analytical solution for problem (1) with uncertainty
set (4). An explicit solution is difficult to obtain due to the constraint xt ≥ 0. The
problem without such a constraint and with a different construction of the uncertainty
set has been studied by [35]. Their uncertainty set formulation as some ellipsoidal
set is not compatible with the one we consider (see Remark 3). Our formulation
explicitly addresses correlation ambiguity,whichnaturally emerges in decisionmaking
processes. Also, our model incorporates the practical no short-selling constraints.
These complicate the analysis but the solution obtained can be efficiently computed.
To obtain the solution, we first derive the worst-case spectral risk measure formula.

Define σ = diag(σ1, . . . , σn), Var(ξ) = Γ = σᵀCσ and the set C = {C ∈
R
n×n|C � 0 , C ∈ [C,C]}. It is easy to observe that C is convex, bounded and closed

(with respect to norm topology in R
n2 ). Adopting the above notation, for any vector

a ∈ R
n , we have

Var(aᵀξ) = aᵀ Var(ξ)a = (σ a)ᵀC(σ a) .

We can then define v(a) = minC∈C Var(aᵀξ) and v(a) = maxC∈C Var(aᵀξ), where
the existence is guaranteed by the continuity of the variance function in C and the
compactness of C.
Theorem 1 Let a ∈ R

n be a fixed vector. Then, the worst-case spectral risk measure
defined in (2) using spectral function φ with finite ‖φ‖22 can be written as

sup
P∈P

ρφ(−aᵀξ) = −μᵀa + κ
√

v(a) ,

where κ =
√

‖φ‖22 − 1 and ‖φ‖22 = ∫ 1
0 φ(p)2dp.

Remark 3 We can compare the use of ellipsoidal sets in the literature and our choice of
uncertainty set in terms of worst-case distribution. We assume that the mean is known
and Σ0 is some reference covariance matrix. Consider

P1 = {π ∈ D | Eπ (ξ) = μ0, Varπ (ξ) 	 kΣ0}

used in [9, 35]. The worst-case distribution over ρφ(−aᵀξ) will have a covariance
matrix kΣ0. From this, we can see that the correlation structure is indeed fixed by the
input covariance matrix Σ0. In [38], the ellipsoidal uncertainty set is used as

P2 =
{
π ∈ D | Eπ (ξ) = μ0,

S − 1

2

∥∥∥∥Σ− 1
2

0 (Varπ (ξ) − Σ0)Σ
− 1

2
0

∥∥∥∥ ≤ δ2
}

,
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where S is the number of scenarios. The covariance matrix of the worst-case distri-
bution is given by (1+ δ

√
2/(S − 1))Σ0. This also shows that the correlation matrix

remains the same. Neither P1 nor P2 can address our concern over correlation uncer-
tainty. Moreover, the choice of the parameter in the uncertainty set, i.e. k and δ, may
not have a direct interpretation while the use of confidence interval can be understood
easily, especially for portfolio managers.

With the above results, we can make use of the dynamic programming equations to
obtain the expressions for the solution. We first give a lemma, which would be useful
throughout the derivation of the semi-analytical solution. It concerns the following
minimization problem for any κ > 0.

P(γ ) :
Minimize −μᵀx + κ

√
xᵀΣx

subject to xᵀ1 = γ ,

x ≥ 0 .

(8)

Lemma 1 Assume that the problem P(1), namely P(γ ) with γ = 1, has an optimal
solution x∗. Then, γ x∗ is an optimal solution to the problem P(γ ) for any γ > 0.
Moreover, the dual solution λ∗ associated to the constraint x ≥ 0 is the same for any
γ > 0.

We then state the main theorem of this section, which gives an expression for the
solution under uncertainty set of the formP . For simplicity, all the uncertainty setsPt

in (1) are assumed to be the same so that we can omit the subscript t . Otherwise, the
parameters μ, σi and C in the uncertainty set Pt depend on t , which are specified at
time 0, and our formulation is still implementable. For a correlation matrix C , define

At (C, μ) = μᵀ(σCσ )−11 −
√(

μᵀ(σCσ )−11
)2 − 1ᵀ(σCσ )−11

(
μᵀ(σCσ )−1μ − κ

)
1ᵀ(σCσ )−11

and the constant A∗
t (μ) = infC∈C At (C,μ) . It is possible that the constant At (C,μ)

is not real as the expression inside the square root can be negative. In this case,
the value of A∗

t (μ) is set to be positive infinity. Note that we incorporate the non-
negativity constraint on xt in our derivation since short selling of some assets may be
restricted. Instead of having a fully analytical result for each problem in the dynamic
programming equations (see, for example, Corollary 2.2 of [10] and Theorem 2 of
[35]), our formula includes the Lagrangian dual variables. The solution also applies
to the problem without no short-selling constraint by setting all λt = 0 which gives a
simpler formula. Technical details for the proof are provided, followed by the theorem.

Theorem 2 Consider problem (1) with uncertainty set of the form P defined in (4).
Let λ∗

t be the optimal dual variable associated to the constraint xt ≥ 0 in (6). Assume
that for t = 0, . . . , T − 1,

(a) (μ + λ∗
t )

ᵀ(σCσ )−1(μ + λ∗
t ) − κ2 ≥ 0 for all C ∈ C,

123



Applied Mathematics & Optimization (2022) 86 :8 Page 9 of 29 8

(b)
(
(μ + λ∗

t )
ᵀ(σCσ )−11

)2 ≥ 1ᵀ(σCσ )−11
(
(μ + λ∗

t )
ᵀ(σCσ )−1(μ + λ∗

t ) − κ2
)

for some C ∈ C,
(c) the feasible sets Xt defined in (5) are non-empty.

Let Â∗
t = infC∈C At (C,μ + λ∗

t−1) with C∗
t being the minimizer and Σ∗

t =
σC∗

t σ . Then, the optimal value is given by −∏T
t=1 Â

∗
t with optimal solution x∗

0 =
[1ᵀ(Σ∗

1)
−1(μ + λ∗

0 − Â∗
21)]−1(Σ∗

1)
−1(μ + λ∗

0 − Â∗
21).

Remark 4 Assumption (a) secures the recurrent use of minimax theorem and subse-
quent arguments. Indeed, if assumption (a) is violated for some C ∈ C, then Â∗

t would
be negative. For instance, the function in the proof,

Â∗
T

{
−μᵀxT−2 + κ

√
xᵀ
T−2(σCσ )xT−2

}
,

would not be convex in x and convave in C due to the negative constant. Hence, the
minimax theorem fails to apply and the arguments could not follow. For assumption
(b), the violation of it would lead to infeasibility of the infimum problem and hence
the optimal value could be considered as negative infinity. These two assumptions can
be checked via the optimal value of (9) (see Remark 5 and the discussion followed
after it).

Remark 5 We can also make the following observations based on Theorem 2. First,
Lemma 1 ensures that Â∗

t involving λ∗
t−1 could be treated as constant so that it can

be taken out from supremum and infimum operators. Second, we notice that if the
uncertainty sets are the same independent of t , the optimal trading strategy would be
a static strategy, meaning that investors only invest in the beginning and do not adjust
the portfolio throughout the period.

The solution to the corresponding single-period problem can be reformulated as a
semidefinite programming (SDP) problem discussed in [38]. From Theorem 2, we can
obtain the optimal solution and value by solving the reduced single-period problem
as:

minimize
v∈R,x∈Rn ,Λ,Λ+,Λ−∈Sn

κ2v + tr(Λ+Σ) − tr(Λ−Σ) − μᵀx

subject to 1ᵀx = 1 ,[
Λ x/2

xᵀ/2 v

]
� 0 ,

Λ 	 Λ+ − Λ− ,

Λ+ , Λ− ≥ 0 .

(9)

The solution of this optimization problem can be computed efficiently using interior-
point methods.
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4 The Numerical AlgorithmUnder Practical Setting

The solution we obtain from the previous section is based on Ωt = R
n . Although it

is common in the literature (see, for example, [35] and [38]), this may not be realistic
for the following reasons. First, the price ratio vector r t has a natural lower bound of
0. It is natural to impose the constraint of r t ≥ 0 almost surely. In particular, r t = 0
corresponds to a total loss for the investment. Second, it is natural to restrict the support
of the return vector r t on a compact domain. For instance, if r t represents the daily
return, it would be realistic that r t would not deviate a lot from 1. Thus, with a more
confined support, this may avoid over-conservative investment strategy.

However, in the presence of the support information, tractable reformulation of the
worst-case risk measure may not be possible. For instance, in [13], they only provide
an upper bound for a single-period portfolio optimization problem. In particular, for
moment-based ambiguity set, the reformulation of theworst-case expectation typically
results in a semi-infinite program and may require specialized numerical algorithm
such as cutting-plane methods to solve (see, for example, [9, 19, 39] and [41]).

A commonway to handle the situation that we do not have a tractable reformulation,
in distributionally robust optimization literature, is through discrete scenarios and this
has been successfully employed in various applications (see, for example, [8, 27, 44,
47] and [58]). Our work is the first to address the multi-period portfolio optimization
under correlation uncertainty with scenario-based approach and we propose a variant
of SDDP to solve the problem. Specifically, we assume that Ωt = {ω1, . . . , ωNt } and
consider the uncertainty set of the form

Pd=
{
p ∈ R

N

∣∣∣∣∣
N∑
i=1

pi=1,
N∑
i=1

pi r i=μ, Σ ≤
N∑
i=1

pi (r i−μ)(r i−μ)ᵀ≤Σ

}
,

(10)

where Σ = σᵀCσ , Σ = σᵀCσ and r i correspond to the return scenarios for i ∈
{1, . . . , N }.

Although it may not be realistic to consider Ωt = R
n , the semi-analytical solution

derived, which could be obtained efficiently, serves as a valid upper bound when we
have support information. It also provides us a way to verify our numerical method
proposed. In the following two sections, we discuss and analyze a numerical method
that can solve the problem under Pd. In Sect. 4.1, we first discuss our methodology
to obtain the worst-case distribution, which will be useful in a part of the proposed
numerical method in Sect. 4.2.

4.1 Worst-Case Distribution in a Discrete Setting

The numerical method we introduced is based on a finite number of scenarios and
therefore, we are interested in spectral risk measures under discrete distributions;
see [57] for instance. Consider a probability space (Ω,F ,P) and a random variable
Z . Suppose that Z takes finite realizations Z1, . . . , ZN with probabilities p1, . . . , pN

123



Applied Mathematics & Optimization (2022) 86 :8 Page 11 of 29 8

z

FZ(z)

Z1 Z2 Z3
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ZN−1 ZN

p1

p2

pN
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F−1
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Z1

Z2

...

ZN−1

ZN

p1 p2 pN

Fig. 2 Cumulative distribution function and quantile function for discrete distributions

respectively.Without loss of generality, assume that Z1 < Z2 < . . . < ZN . Otherwise,
if Zi = Zi+1 for some index i , we can combine them and consider N − 1 losses only.
As mentioned in Remark 2, ρφ(Z) is finite. We set F−1

Z (0) = ess inf(Z) = Z1

and F−1
Z (1) = ess sup(Z) = ZN . Figure 2 shows the corresponding cumulative

distribution function and quantile function.
Define the points y0 = 0 and yi = ∑i

j=1 p j for i = 1, . . . , N . As the quantile
function is piecewise constant, it is possible to write the spectral risk measure defined
in (2) as

ρφ(Z) =
∫ 1

0
φ(p)F−1

Z (p)dp =
N∑
i=1

Zi

∫ yi

yi−1

φ(p)dp .

Letting φi = ∫ yi
yi−1

φ(p)dp for i = 1, . . . , N , we have ρφ(Z) = ∑n
i=1 φi Zi , where

we suppress the dependence of φi on probabilities {pi }Ni=1. Our next task is to find a
distribution p = (p1, . . . , pN )ᵀ such that the functionρφ ismaximized. The following
lemma shows that the objective function is concave andhence, any convexoptimization
solver can be deployed to obtain the worst-case distribution.

Lemma 2 Define ψ : R
N → R by the spectral risk measure ψ( p) = ρφ(Z) =∑N

i=1 φi ( p)Zi . Then, ψ( p) is concave.

Lemma 2 shows that we can employ conventional convex optimization solvers to
obtain the global maximizer. However, it may be costly if the number of scenarios N
is large. For a special case of spectral risk measure CVaR, the convex problem can be
reduced to a linear programming (LP) problem. Notice that

CVaRα(Z) = sup
ζ∈U(P)

EP(ζ Z) = sup
ζ∈U(P)

N∑
i=1

piζi Zi ,
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whereU(P) =
{
ζ ∈ R

N |∑N
i=1 piζi = 1 , 0 ≤ ζi ≤ 1

1−α
, i = 1, . . . , N

}
is a convex

compact set. Todetermine theworst-case distribution,weneed tomaximize p under the
moment constraints as well, which can be cast into following maximization problem.

maximize
p,ζ∈RN

∑N
i=1 piζi Zi

subject to
∑N

i=1 piζi = 1 ,

0 ≤ ζi ≤ 1
1−α

, i = 1, . . . , N ,

p ∈ Pd,

where we remark that moment constraints on p are linear. To reformulate it into an
LP problem, let ηi = piζi for i = 1, . . . , N .

maximize
p,η∈RN

∑N
i=1 ηi Zi

subject to
∑N

i=1 ηi = 1 ,

0 ≤ ηi ≤ 1
1−α

pi , i = 1, . . . , N ,

p ∈ Pd.

The computational cost can be significantly reduced by transforming the gen-
eral convex program into an LP problem. The mixed-CVaR measure defined as∑K

i=1 λi CVaRαi (Z) for some αi ∈ [0, 1) and λi satisfying
∑K

i=1 λi = 1 could be
argued in a similar way to arrive at an LP problem. This includes the popular risk
measure λE(Z) + (1 − λ)CVaRα(Z) in the literature.

For a more general spectral function φ, we may want to approximate the spectral
function by step functions so that the resulting risk measure becomes the mixed-CVaR
measure. The l2 approximation is discussed and applied in [57]. We will apply the
approximation and examine its performance in this paper on portfolio problem.

Remark 6 It isworthwhile to notice that in Step 3 of the algorithmproposed (Algorithm
4) in [57], the authors suggested using a simple sorting to maintain the order of newly
generated iteration points. However, this involves a delicate choice of step sizes. For
gradient projection method, it can be modified by replacing the sorting component
by a quadratic programming problem. The choice of step sizes would impose less
influence to the optimization as long as a sufficiently large number of iterations are
permitted. The details of the approximation and one particular example is provided in
the Supplementary material (Section B) due to space limitations.

4.2 The Numerical SDDPMethod

In this section, we present a variant of SDDP to solve (1) under finite scenarios. It
should be noted that the algorithm proposed is not restricted to this particular problem.
For instance, the method works for inventory problem or unit commitment problem.
For the return random variables r t , t = 1, . . . , T , we assume that they take Nt

realizations. Without loss of generality and for notational simplicity, we assume that
Nt = N is fixed. Denote r it , i = 1, . . . , N be a particular realization of r t , which
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can be represented using a scenario tree with a total number of NT scenarios. The
SDDP algorithm consists of two crucial operations, namely the forward pass and the
backward pass. The two operations would repeat alternatively until certain termination
criteria are fulfilled.

In the forward pass, a trial solution is obtained, which will be used later in the
backward pass. For the first iteration, this refers to the search of any feasible solutions.
For instance, one could start with the equally-weighted portfolio or the semi-analytical
solution. Assume that we have an approximation Q̂(xt−1) of Qt (xt−1), which is
obtained in the backward pass. We then sample uniformly from all possible scenarios
for a path (r1, r2, . . . , rT ). To obtain a trial point, for t = 0, . . . , T − 1, we solve
forwardly in time for xt via the problem of

minimize
xt

Q̂t+1(xt )

subject to 1ᵀxt = rᵀ
t x̄t−1 ,

xt ≥ 0 ,

(11)

where x̄t−1 is the solution of the problem at t −1 and we let rᵀ
0 x̄−1 = W0. Indeed, the

approximation functions constructed are piecewise linear taking the form Q̂t+1(xt ) =
maxl∈L{αl

t+1 + (βl
t+1)

ᵀxt }, for some index set L. Then, (11) can be recast as

minimize
xt , θ

θ

subject to θ ≥ αl
t+1 + (βl

t+1)
ᵀxt , l ∈ L ,

1ᵀxt = rᵀ
t x̄t−1 ,

xt ≥ 0 , θ ∈ R .

(12)

A trial point is thus, generated and denoted as {x̄1, x̄2, . . . , x̄T−1}.
In the backward pass, we obtain linear approximations of the functions Qt (xt−1)

by proceeding backwardly in time, from t = T to t = 0. The idea is the use of
subgradient inequality at the trial points. Given x̄t−1, we solve, for i = 1, . . . , N ,

minimize
xt

ft (xt , r t ) + Q̂t+1(xt )

subject to xt ∈ Xt (x̄t−1, r it )
(13)

and denote the optimal value as Q̃i
t . Notice that Q̃

i
T = −(r iT )ᵀ x̄T−1. Similar to the

case in forward pass, for t = T − 1, . . . , 1, we can recast (13) as

minimize
xt , θ

θ

subject to θ ≥ αl
t+1 + (βl

t+1)
ᵀxt , l ∈ L ,

1ᵀxt = (r it )
ᵀ x̄t−1 ,

xt ≥ 0 , θ ∈ R .

(14)

Denote (π i
t ,μ

i
t ) be the corresponding optimal dual solutions to the equality and

inequality constraints respectively. More precisely, for t = T − 1, . . . , 1,

123



8 Page 14 of 29 Applied Mathematics & Optimization (2022) 86 :8

(
π i
t , μi

t

)
∈ argmax

π,μ≥0
min

θ, xt≥0

{
θ +

∑
l∈L

μl

(
αl
t+1 + (βl

t+1)
ᵀxt − θ

)

+π
[
1ᵀxt −

(
r it
)ᵀ

x̄t−1

]}
, (15)

and let π i
T = 1 for i = 1, . . . , N . Next, we need to obtain the worst-case distribution

based on the losses {Q̃i
t } as discussed in previous section. Denote the optimal weight

φi associated to Q̃i
t by φ∗

i . Let θ̃t = ∑N
i=1 φ∗

i Q̃
i
t and g̃t = −∑N

i=1 φ∗
i π

i
t r

i
t . The

coefficients for the linear approximation function are computed as

αt = θ̃t − (
g̃t
)ᵀ x̄t−1 and β t = g̃t . (16)

The optimal value of the first stage problem (14) with t = 0 is denoted as zk , where
k is the iteration number. We would verify later in Lemma 6 in Sect. 5 that zk is an
improving lower bound for the problem as k increases. Concerning the termination
criterion of the algorithm, it is well known that maintaining an upper bound for risk
averse problems in each iteration is difficult (see, for instance, [56]). Hence, we resort
to the maximum iteration number and stabilization of the lower bound. To be precise,
we fix K as the maximum number of iterations and ε as the lower bound tolerance.
The complete algorithm is summarized in Algorithm 1.

Algorithm 1: SDDP for distributionally robust problem with moment con-
straints

Initialization: Q0
t (·) ≡ −∞ for all t , Qk

T+1(·) ≡ 0 for all k, ε > 0, k = 1, z0 = −∞
1 while zk − zk−1 ≥ ε and k < K do
2 Sample a scenario {r1, . . . , rT }.
3 for t = 0 to T − 1 do
4 Solve (12) for a feasible policy {x̄1, x̄2, . . . , x̄T−1}.
5 (For k = 1, any feasible policy suffices.)
6 end
7 for t = T to 1 do
8 Solve (14) for Q̃i

t , i = 1, . . . , N and obtain the worst-case distribution φ∗
i .

9 Compute αkt and βk
t using (16).

10 Update Q̂k
t (xt−1) = max{Q̂k−1

t (xt−1), αkt + (βk
t )

ᵀxt−1}.
11 end
12 Update the lower bound zk by solving (14) with t = 0. Set k = k + 1.
13 end

5 Convergence Property

In this section, we verify the convergence property of the algorithm. The analysis is
establishedmainly based on the results of [21] and [22]. One should notice that in [21],
their contribution is establishing the convergence of multistage risk neutral programs
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while [22] extends this to the risk averse setting. However, in [22], the proof is based
on the direct use of dual representation of coherent risk measure, which implies the
existence of a reference probability while for the current problem, such a reference
probability does not exist. Therefore, somemodification is necessary in order to justify
the convergence of the algorithm.

5.1 Recourse Function and Subgradient

To guarantee the convergence of the algorithm,we utilize some fundamental properties
of the recourse function Qt (xt−1) defined in (7). Recall that we have N scenarios in
each future time point and they are positive in value. It follows that for any feasible
policy {x0, . . . , xt−1} and realization of {r1, . . . , r t }, the feasibility setXt (xt−1, r t ) is
nonempty, convex and compact. We suppress the dependence of ρ on φ for simplicity.
Next, define, for t = 1, . . . , T , ct = maxi=1, ..., N

∥∥r it∥∥∞ and Ct = ∏t
j=1 c j with

c0 = C0 = 1. Under finite scenarios, we have ct and CT being finite. The sets
Xt = [0,Ct ]n ⊆ R

n are also nonempty, convex and compact. With initial wealth
W0 = 1, we can restrict feasible sets Xt on Xt .

Lemma 3 The recourse functions Qt (xt−1) for t = 1, . . . , T are finite and convex
on Xt .

Remark 7 For any given decision xi ∈ Xi for i = 1, . . . , t − 1 and random return
vector, the feasibility set Xt is always non-empty. As described in [22], this follows
that Qt (xt−1) is continuous on Xt .

Indeed, SDDP method utilizes the convexity of recourse functions Qt (xt−1) and
constructs lower approximations for them. The principle is similar to the popular
cutting-plane method. The construction of lower approximations is based on subgra-
dient inequality and the following lemma provides a justification for the computation
of the coefficients in (16). The lemma extends Proposition 1 in [47] to the use of risk
measure instead of expectation.

Lemma 4 Define ψ(x) = supP∈P ρφ(Z(x, ω)). Let Z : Rn × Ω → Z be a convex
function in x for fixed ω ∈ Ω and z(x̄, ω) ∈ ∂Z(x̄, ω) for some x̄ ∈ dom(ψ).
Assume that for ρφ(Z(x̄, ω)), φ∗

i is the optimal weight corresponding to the worst-

case distribution P∗ ∈ P (identified as an RN vector). Then, g := ∑N
i=1 φ∗

i z(x̄, ω) is
a subgradient of ψ(x) at x̄.

5.2 Convergence Analysis

In this subsection, we shall verify the theoretical properties of the algorithm, including
the convergence. The two assumptions imposed throughout the analysis are stated
below.

Assumption 1 The randomnesses {r t }t=1, ...,T are stagewise independent and the num-
ber of realizations in each stage is finite with support {r it }i=1, ..., N .
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Assumption 2 Every node has a positive probability of being selected in forward pass,
i.e. P̄(r̄kt = r it ) > 0 for t = 1, . . . , T , i = 1, . . . , N and k ∈ N, where r̄kt is the
random variable representing the selection process. Also, r̄kt is independent of the
previous selection process.

We first give a lemma, followed by a corollary that can reduce significantly the
computational cost in the backward pass. Without further specification, we shall omit
P̄-a.s. in the proof for simplicity. Notice by the fact that the feasibility sets are non-
empty for any implementable policies and realizations, the coefficients αl

t and βl
t are

finite. Recall the dual problem of (14).

maximize
μ, π

∑
l∈L μlα

l
t+1 − π x̄ᵀ

t−1r
i
t

subject to
∑

l∈L μl = 1 ,∑
l∈L μlβ

l
t+1 + π1 ≥ 0 ,

μ ≥ 0 , π ∈ R .

Lemma 5 With P̄-almost surely, for t = 1, . . . , T , αl
t = 0 and βl

t ≤ 0 for all l ∈ N.

Corollary 1 With P̄-almost surely, the dual optimal solutions are the same within each
time step, i.e. π i

t = π
j
t for t = 1, . . . , T − 1 and i, j = 1, . . . , N.

Making use of Lemma 5 and Corollary 1, we do not need to compute the coefficient
α as it is always equal to zero. Moreover, instead of solving N problems to obtain Q̃i

t
and π i

t , we need to solve only one program. By rescaling, we obtain all other Q̃i
t while

the dual solutions are the same. By doing so, the computational cost in backward pass
can be substantially reduced.

As a final step, we now justify the convergence of the algorithm: The lower approx-
imation property is going to be verified and the a.s. convergence is established at the
end. Throughout the algorithm, we introduce the following two functions at iteration
k, namely

Q̂k
t (xt−1) = max

l=1,...,k

{
αl
t +

(
βl
t

)ᵀ
xt−1

}
, t = 1, . . . , T , and (17)

Q̃k
t (xt−1, rt ) = inf

xt∈Xt (xt−1,rt )

{
ft (xt , r t ) + Q̂k

t+1(xt )
}

, t = 0, . . . , T . (18)

Function (17) is the constructed approximation function of the original recourse func-
tions Qt (xt−1) while function (18) is the optimization problem in each stage by
replacing the unknown recourse function Qt (xt−1) by its current approximation. We
emphasize that the notation Q̃i

t (see description above (14)) should not be confused
with the function defined in (18). Precisely, Q̃i

t = Q̃k
t (xt−1, r it ) at iteration k. We may

denote the value of ρ under distribution P as ρP where necessary. Lemma 6 shows that
the algorithm constructs lower approximation to the recourse function and Lemma 7 is
a technical lemma which helps develop a crucial inequality in the convergence proof.

Lemma 6 The algorithm generates lower approximations, i.e. P̄-almost surely,
Qt (·) ≥ Q̂k

t (·) for all k ∈ N on Xt for t = 1, . . . , T .
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Lemma 7 For t = 1, . . . , T , Q̂k
t (x̄

k
t−1) = supPt∈Pt

ρt
(
Q̃k

t (x̄
k
t−1, r t )

) = θ̃kt P̄-almost
surely for all k ∈ N.

With the help of previous two lemmas, we can develop the convergence property
of the proposed algorithm, which demonstrates the point-wise convergence of the
approximation function (17) to the true recourse function and hence, the convergence
to the optimal solution.

Theorem 3 Consider Algorithm 1. The following two statements hold P̄-almost surely:

(a) For t = 1, . . . , T + 1, limk→∞[Qt (xkt−1) − Q̂k
t (x

k
t−1)] = 0, where xkt−1 is any

possible feasible solution at time t − 1 and iteration k.
(b) Denote z∗ as the optimal solution and xk0 be the optimal solution to (13) at t = 0.

Then, limk→∞ zk = z∗ and any accumulation point of {xk0}k∈N is an optimal
solution for the first stage problem.

6 Computational Results

In this section, we first demonstrate the use of approximation and the semi-analytical
solutions. Next, we compare problem (1) with the one without correlation ambiguity
under simulation. That is, we assume that the first twomoments are known completely
and the same algorithm can be applied to solve by equating the lower and upper
correlation bounds. Finally, we apply the model to a real data set. The distributional
robust model, as expected, performs better under shocks. All the computations are
performed using MATLAB in a computer using 3.60 GHz Intel Core i7 with 16 GB
RAM and the time is presented in second.

6.1 Convergence and Approximation

To visualize the convergence, we consider a case with small numbers of stages. In
particular, we consider T = 1 and T = 2, where the upper bound can be computed by
evaluating the objective function directly using the trial solution xk1 in each iteration.
Interior-point methods are used to solve LP problems with the termination criterion
being the stabilization of the gap between lower and upper bound. The gap tolerance
is set to be 10−6. We use 45 stocks from the Hang Seng Index (HSI) with relatively
longer data history in Hong Kong with the daily historical data obtained from either
26/03/2008 or 27/05/2017 to 27/05/2019. The data is obtained from Yahoo! Finance
through theMATLAB function hist_stock_data developed by [50]. The returns
are computed using closing prices. The individual asset mean and variance are esti-
mated using sample quantities while the correlation bounds are quantified by 95%
confidence intervals.

The spectral risk measure adopted in this example is the exponential type, which
is proposed in [11] and followed by [7]. The spectral function of this type is defined
as φ(p) = h(1 − e−h)−1e−h(1−p) for h > 0. A larger value of h corresponds to a
higher degree of risk aversion. Figure 3 shows the convergence of the case h = 2 with
N = 2739 return scenarios and T = 1 while the graphs of other testing cases are
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Fig. 3 Convergence plot using h = 2 for the exact case (left) and approximation case (right)

similar. To examine the solution quality between the one using spectral risk measure
and the one using the approximation, the solution obtained via approximation is used
to perform the full evaluation of the objective in spectral risk measure. Relative error is
used as a criterion for measuring the performance, which is computed as the absolute
difference between the two obtained objective function values divided by the true
value. Table 1 summarizes the results under different settings identified as a triple
(T , h, N ).

We observe that in all the testing cases, convergence is achieved after a relatively
small number of iterations. This corroborates the convergence result discussed in
Theorem 3. For the computational time, as expected, the use of approximation can
remarkably reduce the computational effort by around 6 to 10 times. This can be
elucidated by the use of LP solver for CVaR measures while the general spectral risk
measure resorts to convex optimization solver. By exploiting the linear structure, LP
solver could perform better in time. Though the computational time is much reduced,
the solution remains reasonably accurate, with relative errors staying in the order of
10−5. We also remark that the resulting solutions exhibit sparsity. The solutions in all
the cases contain less than 20 non-zero weights and in most cases, the number of non-
zeroweights is around 10. The under-diversification result agreeswith recent literature,
for example, [45]. Conventionally, robust portfolios are thought to be conservativewith
a large degree of diversification. Indeed, uncertainty in individual asset performance
usually leads to a well diversified portfolio as a result of our confident view towards
the estimated correlation structure. However, when we consider the risk associated
to the unknown correlation structure, anti-diversification would be counter-intuitively
more desirable since the assets, in the worst-case scenario, may fluctuate in a similar
fashion. Focusing on a few assets appears to be a more robust choice. In other words,
ignoring ambiguity in the correlation matrix concerned may oftentimes result in a
misleading conclusion that a more diversified portfolio is robust and risk averse.

As we could expect, by increasing the number of scenarios, it would lead to an
increment in the objective value. In the Supplementary material, we conduct a simula-
tion study, based on the same data set, to study the effect of number of scenarios. We
also examine the convergence under various choices of the initial guess (with results
provided in the Supplementary material). We observe that our algorithm is relatively
insensitive to the choice of initial guess. Finally, note that the semi-analytical solution
provides an upper bound to the discretized problem. Indeed, in this experiment, we
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also observe that the optimal value from the numerical scheme is always less than
the one given by the semi-analytical solution. We further investigate the difference
between the semi-analytical solution and the numerical scheme if we have extra sup-
port information on the return vector in Sect. 6.2.

6.2 Use of Support Information

In order to compare the semi-analytical solution and the solution obtained from the
numerical method, we conduct a simulation study to examine the effect of support
information. We assume that there are 5 assets with mean 1, standard deviations
{0.1, 0.05, 0.09, 0.1, 0.08} and correlation matrix

C =

⎛
⎜⎜⎜⎜⎝

1 0.3 −0.3 0.4 0.2
0.1 1 0.1 −0.1 0.2

−0.3 0.1 1 0.15 0.3
0.4 −0.1 0.15 1 0.05
0.2 0.2 0.3 0.05 1

⎞
⎟⎟⎟⎟⎠ .

The lower (upper) correlation bounds are constructed by subtracting (adding) 0.1 from
(to) the correlation matrix C .

In the experiment, we first generate N1 scenarios from uniform distribution on
(1 − δ1, 1 + δ1) entry-wisely. We use uniform distribution to confine the support of
the return vector on a bounded region. Next, we add additional N2 − N1 scenarios
generated from uniform distribution on (1 − δ2, 1 + δ2) for some δ2 > δ1. That is,
we enlarge the scenario set and the support of the scenarios. We repeat this process to
generate 4 sets of scenarios with N1 = 1000, N2 = 2000, N3 = 4000, N4 = 8000,
δ1 = 0.12, δ2 = 0.15, δ3 = 0.2 and δ4 = 0.3.We solve the resulting problem using the
4 generated sets of scenarios by our proposed numerical methodwith T ∈ {1, 2, 5} and
we use the approximation of exponential type spectral risk measure with h ∈ {2, 10}
as the objective. We record the results after 200 iterations, where we observe the lower
bound is already stabilized.

Table 2 presents the results of the simulation study. Each column presents one
generated scenario set with total number of scenarios N and support (1 − δ, 1 + δ).
The last column shows the optimal value from the semi-analytical solution via the
SDP reformulation. For each pair of (T , h), we present the terminal value from the
algorithm and compute the l1 norm difference between the solution obtained from
the algorithm and the one by the semi-analytical solution. We observe that when we
enlarge the support (i.e., increase δ), the optimal value, as well as the optimal solution,
approach the one obtained from the semi-analytical solution. Also, the optimal value
from the semi-analytical solution always serves as an upper bound. We notice that if
there exists support information (i.e., δ is small), the optimal solution could behave
differently from the one from the semi-analytical solution.
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Table 2 Optimal value and the l1 norm difference in optimal solution between semi-analytical solution and
numerical solution

δ 0.12 0.15 0.2 0.3 SDP

N 1000 2000 4000 8000

T = 1, h = 2 Opt. val. −0.9806 −0.9791 −0.9791 −0.9791 −0.9759

l1 diff in opt sol. 0.1084 0.0488 0.0753 0.0647 NA

T = 1, h = 10 Opt. val. −0.9440 −0.9359 −0.9236 −0.9233 −0.9138

l1 diff in opt sol. 0.8114 1.0981 0.0800 0.0159 NA

T = 2, h = 2 Opt. val. −0.9616 −0.9586 −0.9586 −0.9585 −0.9524

l1 diff in opt sol. 0.1116 0.0922 0.0492 0.0462 NA

T = 2, h = 10 Opt. val. −0.8912 −0.8760 −0.8529 −0.8525 −0.8351

l1 diff in opt sol. 0.8114 1.0979 0.0559 0.0345 NA

T = 5, h = 2 Opt. val. −0.9066 −0.8997 −0.8996 −0.8996 −0.8852

l1 diff in opt sol. 0.1111 0.0474 0.1246 0.0551 NA

T = 5, h = 10 Opt. val. −0.7497 −0.7182 −0.6718 −0.6710 −0.6373

l1 diff in opt sol. 0.8110 1.0978 0.0755 0.0161 NA

6.3 Use of Correlation Ambiguity

In order to examine the importance of correlation ambiguity, we perform a simulation
study on three different models: (a) model (1) which excludes correlation ambiguity
(complete knowledge in second moments), (b) model (1) which includes correlation
ambiguity and (c) a simple single-period globalminimumvariancemodel using sample
estimates. In this study, we usemultivariate normal distribution for scenario generation
under Setting I, which is provided in the Supplementary material. First batch of 2000
scenarios based on the settings are generated, which are considered as historical data
and they are used to obtain the investment decision. Afterwards, second batch of
10,000 future scenarios are generated and the terminal wealth under three different
decisions are compared to investigate the performance. The second batch of scenarios
is generated using the worst-case correlation matrix obtained when solving problem
(1).

For the model setting, we consider T = 21 as a monthly trading exercise such
that the period is long enough to observe the alteration in correlation structure. The
obtained portfolio weight is adopted throughout the whole period. We employ the
approximation of exponential type spectral risk measure with h = 10, which is given
by 0.3546E(Z) + 0.6454CVaR0.884(Z). The histogram of the simulated terminal
wealth is provided in Fig. 4. For other values of h, similar patterns are observed.

We observe that the terminal wealth using the model with correlation ambiguity
result in a right shift of the empirical terminal wealth distribution when compared
with the other two models. This demonstrates the superiority of the model using
correlation ambiguity in terms of protection under change in correlation structure.
Similar observations can also be found under other settings and the corresponding
results are summarized in the Supplementary material. If the period T is not long
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Fig. 4 Simulation study under setting I

enough, the advantage of our proposal tends to become less noticeable, which is
reasonable as the model aims at protecting investors from changes in the underlying
correlation structure amongst individual assets. To summarize, this study indicates the
importance of correlation ambiguity in portfolio optimization model.

6.4 Real Data Application

This section presents a real data study with reference to that presented in [29]. We use
historical data of six major indices representing different parts of the world, namely
Nikkei225, FTSE100, Nasdaq, DAX30, Sensex and Bovespa, from 01/11/1998 to
16/06/2019. The indices are normalized to 1 on 01/07/2003. Figure 5 displays the
historical paths of the selected six indices. We compare the following three models:
the proposed one with correlation ambiguity, single-period global minimum variance
model and distributionally robust model with the expectation objective under l2 norm
in [47] with the parameter r = 0.05 indicating the maximum l2 distance from nomial
probability. The parameter is chosen with reference to the three choices (0.033, 0.066,
0.133) in [47]. We also test for some other choices of r and the results are presented
in the Supplementary material.

First, we compare the overall performance of the proposed model under different
values of parameter h. To examine the protective effect under a shock in financial
market, prices prior to 04/01/2007 are used for training purpose and the trading ends
on 31/12/2013. We also perform another analysis using a longer period, which is from
01/07/2003 to 16/06/2019 and the results are demonstrated in the Supplementary
material. The approximation of exponential type spectral risk measure with three
different parameters h = 2, 10, 15 are employed, which are given in Table 3. The
numerical result is based on the monthly rebalancing portfolio management strategy.
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Fig. 5 Historical data for the six indices

At the first day of each month, a T period problem (1) is solved with correlation
ambiguity using all previously observed data with T being the number of calendar
days. Number of calendar days is used instead of trading days since the non-trading
days vary with each index.

The result is shown in Fig. 6. The upper panel indicates the wealth process with
unit initial wealth while the lower panel gives the difference between the reference
model h = 15 and the other two choices. We observe that the three models perform
similarly with profits at the end of the testing period. However, it could be noticed that
h = 15 eventually outperforms the other two models, which is reasonable since this is
the most risk-averse one when compared with the other two. The difference between
h = 10 and h = 15 is not significantly distinguishable mainly due to the similarity of
the approximated risk measures. For the model with h = 2, it is natural that, under
a huge market downturn, as a result of a smaller degree of risk aversion, the model
ends up with the poorest performance among the three, while it is surprising that the
difference is more distinct at the end of testing period, where an upward trend starts.
In particular, we examine the portfolios starting from 2013 for the three models. We
notice that from Fig. 7, the weight on BOVESPA for that model is larger than the other
two models most of the time. Indeed, the arithmetic return over the whole period of
the last index is the largest among all indices while it performs the poorest in terms of
index value normalized at the beginning of 2013. This could be served as one possible
explanation for such a deviation.

The out-of-sample performance statistics are summarized in Table 3. We observe
that the overall mean using model h = 15 is the largest the variance is the lowest
among the three. Also, the mean-to-standard deviation (SD) ratio outperforms the
other two models. Another possible measure for out-of-sample performance is the
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Fig. 6 Wealth process and difference for different values of h: solid blue line for h = 15, dash-dot orange
line for h = 10 and dashed yellow line for h = 2 in the upper panel

Fig. 7 The weights distribution in each period for different choices of h

drawdown over the period, which is defined as the current value subtracting the his-
torical high and normalized by the historical high. The normalization is used to ensure
fair comparison in relative sense. This can measure how shocks may adversely affect
the wealth performance. The colored regions indicate that model using h = 15 has
the smallest drawdown in Fig. 8. It is observable that the shaded region covers the
financial crisis and the concomitant recovery period, which indicates that the model
has a strong protective power against shocks.

Finally, we compare our proposed models with the aforementioned two models.
The single-period global minimum variance portfolio is computed at the beginning
of each month while the multi-period model with the same value of T in [47] is
employed. Figure 9 shows the computational result. The upper panel demonstrates the
wealth process while the lower panel gives the differences. Each column represents
a choice of h described previously: h = 15 for the left-most column, followed by
h = 10 and h = 2. As expected, both risk-averse model h = 10 and h = 15
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Table 3 Out-of-sample daily return statistics

h Risk measure Mean (×10−4) Variance (×10−4) Mean-to-SD

2 0.6549E(Z) + 0.3541CVaR0.654(Z) 1.7467 1.1270 0.01645

10 0.3546E(Z) + 0.6454CVaR0.884(Z) 2.0333 1.1041 0.01935

15 0.3274E(Z) + 0.6726CVaR0.920(Z) 2.0545 1.0852 0.01972

Fig. 8 Drawdown of the model with three choices of h (Colored regions indicate that the model using
h = 15 has the smallest drawdown)

outperform the other two models. In particular, a larger deviation can be observed
in the comparison with single-period global minimum variance model, implying the
importance of robustness. The advantage of our proposed model over the one in [47]
using l2 norm could be explained by the change in dependence structure during the
period, which coincides with our intention for proposing the model. More importantly,
their model uses expectation in the objective function while we use a risk measure.
The greater level of risk averseness could also account for the edge. On the right-
most column, we observe that the model with h = 2 underperforms all the other two
models. The global minimum variance model appears to be a less aggressive model
which contributes to this result. For the second one, it performs better since they do
not have a moment constraint. In our construction of uncertainty set, the means of
the returns are fixed while in their construction, moment constraints are not required.
Therefore, the flexibility in moment offered from their model yields a better result.
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Fig. 9 Starting from the left panel, our model with h = 15, h = 10 and h = 2 are compared with the other
twomodels. Upper panel shows the wealth process in the following order: our prposedmodel, l2 uncertainty
model (DRO Exp) and the global minimum variance portfolio (GMVP). Lower panel shows the difference
between our model and the remaining two models in percentage with respect to initial unit investment in the
following order: out-performance of our model compared with DRO Exp and that compared with GMVP

7 Conclusion

Distributionally robust portfolio optimization originates from the uncertainty in the
correlation structure amongst different assets, hence the return distributions. Such kind
ofmodels is of surging interest due to their protection against unfavorable outcomes. In
this paper, we study the multi-period portfolio problem under correlation uncertainty.
While previous works focus mainly on mean-variance or utility objective, we incor-
porate the use of spectral risk measure in our model so that investors can incorporate
their risk preference in the portfolio optimization exercise.

To achieve the goal, we first extend the work [35] by considering the moment-
type uncertainty set instead of ellipsoidal set. The use of the existing ellipsoidal sets
cannot capture explicitly the correlation ambiguity, which is the key concern in this
paper.Also, our semi-analytical solution is derived for spectral risk measure objective,
which includes their mean-CVaR objective as a special case. Second, we discuss a
numerical SDDP method to solve the problem under the discrete distribution setting.
The method relies on convex optimization subproblems and can be applied to a more
general distributionally robust problem with moment constraints with the almost sure
convergence of the algorithm being guaranteed. Our work extends previous literature
in the convergence of SDDP method to a distributionally robust setting.

In numerical exercises, we demonstrate that the approximation of spectral risk
measure is feasible, which can significantly reduce the computational burden of the
algorithm. We also illustrate the importance and usefulness of correlation ambiguity
in our model. Specifically, consideration of such ambiguity leads to a higher terminal
wealth as demonstrated in both the simulation study and the real data analysis. We
also observe the robustness of the model during the period of financial shocks through
the drawdown plot, which highlights the purpose of our proposed model.
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While the almost sure convergence of the proposed algorithm is guaranteed, it is
noteworthy that historical data is employed in the numerical setting and this may not
be able to fully evaluate the worst-case spectral riskmeasures. Possible future research
directions include the convergence of the solution under the discrete grid to the true
solution and the possibility of using generated scenarios instead of historical data.
The quantification of such a convergence may improve the efficiency of the numerical
procedure by reducing the computational burden.
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