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Abstract
An abstract framework guaranteeing the local continuous differentiability of the value
function associated with optimal stabilization problems subject to abstract semilin-
ear parabolic equations subject to a norm constraint on the controls is established. It
guarantees that the value function satisfies the associated Hamilton–Jacobi–Bellman
equation in the classical sense. The applicability of the developed framework is demon-
strated for specific semilinear parabolic equations.

Keywords Value Function · Infinite horizon optimal control ·
Hamilton-Jacobi-Bellman equation · Differentiability · Semi-linear parabolic
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1 Introduction

Continuous differentiability of the value function with respect to the initial datum is
an important problem in optimal feedback control theory. Indeed, if the value function
is C1 then it is the solution of a Hamilton Jacobi Bellman (HJB) equation and its
negative gradient can be used to define on optimal state feedback law. The subject
matter of this paper addresses local continuous differentiability of the value function
V for infinite horizon optimal control problems subject to semilinear parabolic control
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problems and norm constraints on the control. Such problems are intimately related to
stabilization problems which are often cast as infinite horizon optimal control prob-
lems. Investigating infinite horizon problems constitutes one of the specificities of
this paper. Another one is the fact that we focus on the differentiability of V on (sub-
sets of) L2(�). Thus we need to consider the semilinear equations with initial data
y0 ∈ L2(�). As a consequence the solutions of the semilinear equations only enjoy
low Sobolev-space regularity. This restricts the class of nonlinearities, compared to
those which are admissible if the states are in L∞((0,∞) × �), which is the situa-
tion typically addressed in the literature on optimal control [8] and [25]. The latter
necessitates to take the initial conditions in spaces strictly smaller than L2(�). Here
we consider L2(�), first due to intrinsic interest, secondly because ultimately the HJB
equation should be solved numerically, which is easier in an L2(�) setting than in
other topologies, like H1(�). Let us also recall that one of the approaches to solve the
HJB equation is given by the policy iteration. It assumes that the value function is C1.

The underlying analysis demands stability and sensitivity analysis of infinite dimen-
sional optimal control problems subject to nonlinear equations. For this purpose we
utilize the theory of generalized equations as established by [10] and [23]. It involves
first order approximations of the state and adjoint equations, which lead to restric-
tions on the class of nonlinearities which can be admitted. We refer to the section on
examples in this respect.

The current investigations are to some degree a continuation of work the first
author’s work on optimal feedback control for infinite dimensional systems. In [4–6]
Taylor approximations of the value function for problems with a concrete structure,
namely, bilinear control systems, and the Navier Stokes equations were investigated
and differentiability of the value function was obtained as a by product. In these inves-
tigations norm constraints were not considered. Here we admit norm constraints and
we focus on semilinear equations. Let us also notice that the systems investigated in
[4–6] share the property that the second derivatives with respect to the state variable
of the nonlinearity in the state equation do not depend on the state itself anymore.

Let us also compare our work to the developments in the field of parametric sensi-
tivity analysis of semilinear parabolic equations under control constraints. There are
many papers focusing on stability and sensitivity analysis of finite time horizon prob-
lems along with pointwise control constraints, see e.g. [2, 13–15, 18, 19, 26, 27], and
the literature there. First, of these papers, except for [14], consider the case with initial
data in L2(�). In [14] again the third derivative of the nonlinearity is zero. Secondly,
all of them consider the finite horizon case. Sincewe treat infinite horizon problemswe
have to guarantee stabilizability (for small initial data) under control constraints. Then
we use a fixed point argument to obtain well-posedness of the system.Well-posedness
and stability with respect to parameters of the adjoint equation is significantly more
involved for infinite horizon problems than for finite horizon problems. It requires
techniques, differently from those used in the finite horizon case. Another aspect is
the proper characterization of the adjoint state at t = ∞.

In the finite dimensional case, there is, of course a tremendous amount of work on
the treatment of the value function if it is not C1. Fewer papers concentrate on the
case where the value function enjoys smoothness properties. We mention [12] and [7]
in this respect.
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In order to achieve the goal we desire, we lay out the following setup. In Sect. 2, we
consider an abstract parametric optimization problem with an equality constraint and
another convex constraint. Existence of an optimal solution, of a multiplier associate
to the equality constraint, and Lipschitz stability of the component of the state variable
which lies in the complement of the kernel of the linearized constraint will be estab-
lished. This result is necessary but not sufficient for the further developments, since
stability is obtained in a norm which is too weak and since the stability estimate does
not involve the component in the kernel of the linearized constraint and the multiplier,
i.e. the adjoint states, yet. At the level of Sect. 2 this remains as Assumption (H7). In
Sect. 3 we specify the concrete optimal stabilization problem and a set of conditions,
most importantly on the nonlinearity of the state equation, under which Assumption
(H7) can be established, for initial data y0 ∈ L2(�). Section 3 also contains a sum-
mary of the main results of this paper. They are stated as theorems with a little stronger
assumptions than eventually necessary, for the saker of easing the presentation. Sec-
tion 4 is dedicated to the proof of verifying the assumptions of the general setup of
Sect. 2 for the concrete optimal control problem stated in Sect. 3. As conclusion we
obtain the Lipschitz continuity in the appropriate norms of the all variables appearing
in the optimality system with respect to the parameter of interest, which is the initial
condition y0, in our case. Since our analysis is a local one involving second order
optimality conditions, solutions to the optimality system are related to local solutions
to the optimal control problem. As a corollary to these results we obtain that the local
value function is Fréchet differentiable. In Sect. 5, we show that in the neighborhood
of global solutions the value function V satisfies the Hamilton–Jacobi–Bellman (HJB)
equation in the strong sense. Finally, Sect. 6 is devoted to demonstrating that the devel-
oped framework is applicable for some concrete examples, namely for linear systems,
Fisher’s equations, and parabolic equations with global Lipschitz nonlinearities. All
our results require a smallness assumption on the initial conditions y0. Two aspects
need to be taken into consideration in this respect. First y0 has to be sufficiently small
so that the controlled system is stable. Secondly a second order optimality condition is
needed. For this to hold a sufficient condition is provided by smallness of the adjoint
state, which in turn can be implied by smallness of y0. We stress that these two issues
are of related, but independent nature.

2 Lipschitz Stability for an Abstract Optimization Problem

Here we present a stability result for an abstract, infinite dimensional optimization
problem which will be the building block for the results below. This result is geared
towards exploiting the specific nature of optimization problem with differential equa-
tions as constraints. First existence of a dual variable will result from a regular point
condition. Subsequently the Lipschitz stability result is obtained in two steps. In the
first one, we rely on the relationship between the linearized optimality conditions and
an associated linear-quadratic optimal optimization problem, with an extra convex
constraint. This approach is useful since it provides the existence of solutions to the
linearized system on the basis of variational techniques. However it dictates a certain
norms for the involved quantities. These norms are too weak for our goal of obtaining
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Lipschitz continuity of the adjoint variables in such a manner that differentiability of
the cost with respect to the initial conditions can be argued. Therefore, in a second
step we exploit the specific structure of the optimality systems, using the fact that it
is related to a parabolic optimal control problem, to obtain the Lipschitz continuity in
the stronger norms. This two step approach is also present in some of the earlier work
on stability and sensitivity analysis which was quoted in the introduction. But due to
that fact these papers considered finite horizon problems it came as a byproduct which
improved the regularity of the adjoints. In our work it is essential to reach our goal.
This is why we decided to formalize this two step approach which was not done in
earlier work.
Concretely, we consider the optimization problem

{
min f (x)

e(x, q) = 0, x ∈ C .
(Pq )

with a parameter dependent equality constraint, and a general constraint described
by x ∈ C , where C is a closed convex subset of a real Hilbert space X . Further, W is
a real Hilbert space and P is a normed linear space. In the application that we have
in mind, the parameter q will appear as the initial condition in the dynamical system.
The following Assumption (H1) is assumed to hold throughout.

Assumption H1 q0 ∈ P is a nominal reference parameter,
x0 is a local solution (Pq0 ),
f : X −→ R

+ is twice continuously differentiable in a neighborhood of x0,
e : X × P −→ W is continuous, and twice continuously differentiable w.r.t. x , with
first and second derivative Lipschitz continuous in a neighborhood of (x0, q0).

The derivatives with respect to x will be denoted by primes and the derivatives w.r.t.
y and u later on, are denoted by subscripts. They are all considered in the sense of
Lebesgue derivatives.
We introduce the Lagrangian L : X × P × W ∗ −→ R associated to (Pq ) by

L(x, q, λ) = f (x) + 〈λ, e(x, q)〉W ∗,W . (2.1)

Next further relevant assumptions are introduced:

Assumption H2 (regular point condition)

0 ∈ int e′(x0, q0)(C − x0),

where int denotes the interior in the W topology. This regularity condition implies
the existence of a Lagrange multiplier λ0 ∈ W ∗, see e.g. [20] such that the following
first order condition holds:{

〈L′(x0, q0, λ0), c − x0〉X∗,X ≥ 0, ∀c ∈ C,

e(x0, q0) = 0.
(2.2)
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It is equivalent to

{
0 ∈ L′(x0, q0, λ0) + ∂IC (x0), in X∗,
e(x0, q0) = 0, in W ,

(2.3)

where ∂IC (x) denotes the subdifferential of the indicator function of the set C at
x ∈ X .
Let A ∈ L(X , X∗) denote the operator representation of L′′(x0, q0, λ0), i.e.

〈Ax1, x2〉X∗,X = L′′(x0, q0, λ0)(x1, x2) (2.4)

and define

E = e′(x0, q0) ∈ L(X , W ). (2.5)

We further require

Assumption H3 (positive definiteness)

∃κ > 0 : 〈Ax, x〉X∗,X ≥ κ ‖x‖2X , ∀x ∈ ker E .

Condition (H3) is a bit stronger than a second order sufficient optimality condition,
since it does not take into consideration the activity or inactivity of the constraints.
Such weaker second order conditions typically allow to derive quadratic positive defi-
nite lower bounds on the cost and Hölder continuity with respect to perturbations. For
Lipschitz continuity and differentiability stronger assumptions, such as (H3) are typi-
cally assumed.We refer exemplarily to [13–15, 27], and [16,Sect. 2.3]. The constraints
in these references, however, are not identical with those of the present paper.

The stability result of (x0, λ0)with respect to perturbation of q at q0 will be based on
Robinson’s strong regularity condition which involves the following linearized form
of the optimality condition,

{
0 ∈ L′(x0, q0, λ0) + A(x − x0) + E∗(λ − λ0) + ∂IC (x) in X∗,
0 = e(x0, q0) + E(x − x0) in W .

(2.6)

We define a multivalued operator T : X × W ∗ −→ X∗ × W by

T
(

x
λ

)
=

(
A E∗
E 0

)(
x
λ

)
+

(
f ′(x0) − Ax0

−Ex0

)
+

(
∂IC (x)

0

)
, (2.7)

and observe that (2.6) is equivalent to

0 ∈ T
(

x
λ

)
.
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Here it is understood that T is evaluated at (x0, q0, λ0) ∈ X × P × W ∗. But T is not
yet the mapping for which we need to verify the Robinson–Dontchev strong regularity
condition in our context. It relates to the fact that we must to treat the multiplier λ in
smaller space than W ∗. Before we can properly specify this condition some additional
preparation is necessary. We first introduce Banach spaces:

X ⊂ X , W ∗ ⊂ W ∗, X∗ ⊂ X∗, (2.8)

with continuous injections. We emphasize that X∗ should not be confused with (X)∗.
A restriction of T will be defined as multivalued operator T : X × W ∗ → X∗ × W .
Indeed, in applications to optimal control problems extra regularity of multipliers
can be obtained by investigating the solutions (2.3), see e.g. Sect. 3. In the context
of optimal stabilization problems this structural property will become transparent in
Propositions 1 and 2, see also [6,Proposition 15]. It will turn out to be essential for
our purposes. But this situation where the multiplier has extra regularity is also of
abstract interest. When studying stability in this setting this means that the second
coordinate of the domain of T needs to be changed from W ∗ to W ∗. This entails that
the range space of T has to be modified appropriately, in order to obtain stability of
the λ coordinate. For this purpose we introduce X∗ ⊂ X∗. The reason for further
restricting X to X will become evident in the proof of Proposition 2. It is related to
the fact that we consider infinite horizon problems. A concrete use of these space is
elaborated in detailed in Sect. 3.2.2.
Now we adapt the conditions on f and e to the choice of the spaces in (2.8).

Assumption H4 There exists a neighborhood Ũ1 × Ũ2 ⊂ X × P of (x0, q0) such that

(i) the restriction of x �→ f ′(x) to X defines a mapping f ′(x) from Ũ1 ⊂ X to X∗,
(ii) the restriction e′(x, q)∗ ∈ L(W ∗, X∗) to W ∗ defines operators e′(x, q)∗ ∈

L(W ∗, X∗) for every (x, q) ∈ Ũ1 × Ũ2.

With these assumption holding we define the restricted linearized Lagrangian

L′ : Ũ1 × Ũ2 × W ∗ ⊂ X × P × W ∗

−→ X∗ by L′(x, q, λ) = f ′(x) + e′(x, q)∗λ. (2.9)

Next we adapt ∂IC ⊂ X∗ to the situation of (2.8) and define for x ∈ X the set valued
mapping

∂IC (x) = {
y ∈ X∗ : 〈y, v − x〉X∗,X ≤ 0, ∀v ∈ C ∩ X

} ⊂ X∗. (2.10)

We henceforth assume that (x0, λ0) ∈ X × W ∗, it will also follow as a special case
of (H7). The following assumption will guarantee that the restriction T of T is well-
defined as operator from X × W ∗ to X∗ × W , and the one beyond is needed for
Lipschitz continuous dependence of local solutions to (Pq ) with respect to q.

Assumption H5 L′ : Ũ1 × Ũ2 × W ∗ ⊂ X × P × W ∗ −→ X∗ is Fréchet differentiable
with respect to x , and (L′)′, as a mapping (x, q, λ) �→ (L′)′(x, q, λ), is continuous at
(x0, q0, λ0) ∈ X × P × W ∗.
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Assumption H6 There exists ν > 0 such that:

‖e(x, q1)−e(x, q2)‖W ≤ ν ‖q1 − q2‖P ,∀(x, q1) and (x, q2)∈Ũ1×Ũ2,

(2.11a)∥∥∥e′(x, q1)
∗ − e′(x, q2)

∗
∥∥∥L(W ∗,X∗)

≤ν ‖q1 − q2‖P ,∀(x, q1) and (x, q2)∈Ũ1×Ũ2.

(2.11b)

Let us further set

E∗ = e′(x0, q0)
∗ ∈ L(W ∗, X∗) and A = (L′(x0, q0, λ0))

′ ∈ L(X , X∗).

With Assumptions (H1)–(H5) holding (2.3) can be expressed as

{
0 ∈ L′(x0, q0, λ0) + ∂IC (x0), in X∗,
e(x0, q0) = 0, in W .

(2.12)

Moreover (2.6) restricted to X × X∗ result in:

0 ∈
{
L′(x0, q0, λ0) + A(x − x0) + E∗(λ − λ0) + ∂IC (x) in X∗,
e(x0, q0) + E(x − x0) in W ,

(2.13)

and the multivalued operator T : X × W ∗ −→ X∗ × W related to (2.7) is defined as

T
(

x
λ

)
=

(
A E∗
E 0

)(
x
λ

)
+

(
f ′(x0) − Ax0

−Ex0

)
+

(
∂IC (x)

0

)
. (2.14)

Observe that (2.13) is equivalent to

0 ∈ T
(

x
λ

)
.

Existence and Lipschitz continuity of solutions in a neighborhood (x0, q0, λ0) will
follow from the strong regularity assumption which requires us to show that there
exist neighborhoods V̂ ⊂ X∗ × W of 0 and Û = Û1 × Û2 ⊂ X × W ∗ of (x0, q0) such
that T −1 has the properties that T −1(V̂ ) ∩ Û is single-valued and that it is Lipschitz
continuous from V̂ to Û , see [10], (and also [23], [16,Definition 2.2, p. 31], in case
X = X , W ∗ = W ∗, X∗ = X∗). We approach the strong regularity assumption in two
steps. In the first onewe argue invertibility ofT andLipschitz continuity of the variable
x in X . For this purpose we exploit the symmetry of T and consider an associated
variational problem. In our specific situation the inverse of T —and consequently of
T —is single-valued and thus the restriction to the neighborhood Û is not needed.
Existence and Lipschitz continuity of λ as well as Lipschitz continuity of x in the
small space X × W ∗ remains an assumption in the generality of problem (Pq ). It will
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be verified in a second step for the optimal stabilization problems in the following
sections.

Assumption H7 For (β1, β2) ∈ V̂ ⊂ X∗ × W , the solution
(
x(β1,β2), λ(β1,β2)

)
to

T
(

x
λ

)
=

(
β1
β2

)
lies in X × W ∗. Moreover there exists a constant k > 0 such that

∥∥∥x(β1,β2) − x
(β̂1,β̂2)

∥∥∥
X

+
∥∥∥λ(β1,β2) − λ

(β̂1,β̂2)

∥∥∥
W ∗

≤ k

[∥∥∥(β1, β2) − (β̂1, β̂2)

∥∥∥
X∗×W

+
∥∥∥x(β1,β2) − x

(β̂1,β̂2)

∥∥∥
X

]

for all (β1, β2) ∈ V̂ , (β̂1, β̂2) ∈ V̂ .

This condition is used after the existence of xβ = x(β1,β2) was already established.
Note that for (β1, β2)

T = 0 we have (x(0,0), λ(0,0)) = (x0, λ0) and hence (H7) in
particular implies that (x0, λ0) ∈ X × W ∗.
We arrive at the announced stability result.

Theorem 2.1 Assume that (H1)–(H7) hold at a local solution x0 of (Pq0 ). Then there
exist a neighborhood U = U (x0, λ0) ⊂ X × W ∗, a neighborhood N = N (q0) ⊂ P,
and a constant μ such that for all q ∈ N there exists a unique (x(q), λ(q)) ∈ U
satisfying

0 ∈
{
L′(x(q), q, λ(q)) + ∂IC (x(q)), in X∗,
e(x(q), q), in W ,

(2.15)

and

‖(x(q1), λ(q1))−(x(q2), λ(q2))‖X×W ∗ ≤μ ‖q1 − q2‖P , ∀q1, q2 ∈ N . (2.16)

In addition there exists a nontrivial neighborhood Ñ ⊂ N of q0 such that x(q) is a
local solution of (Pq) for q ∈ Ñ .

For the proof we shall employ the following lemma in which A ∈ L(X , X∗) and
E ∈ L(X , W ) denote generic operators. For the sake of completeness we also include
its proof.

Lemma 2.2 Let (ã, b̃) ∈ X∗ × W , assume that A ∈ L(X , X∗) is self-adjoint and
satisfies (H3), and that the set S(b̃) = {x ∈ C : Ex = b̃} is nonempty. Then the
problem {

minx∈C J̃ (x) = minx∈C
1
2 〈Ax, x〉X∗,X + 〈ã, x〉X∗,X ,

Ex = b̃,
(2.17)

admits a unique solution x = x(ã, b̃) satisfying

〈Ax + ã, v − x〉X∗,X ≥ 0, for all v ∈ S(b̃). (2.18)
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If moreover the regular point condition 0 ∈ int E(C − x(ã, b̃)) holds, then there exists
λ = λ(ã, b̃) ∈ W ∗ such that

0 ∈
{(

A E∗

E 0

)(
x

λ

)
+

(
ã

−b̃

)
+

(
∂IC (x)

0

)
. (2.19)

Proof Since C is a closed and convex, S(b̃) is closed and convex. By assumption S(b̃)

is nonempty. Hence there exists an x ∈ C such that Ex = b̃. Note that each such x
can be uniquely decomposed as x = w+ y, with y ∈ kerE, w ∈ kerE⊥ and Ew = b̃.
By (H3) the functional J̃ is bounded from below and coercive on S(b̃). Hence there
exists a minimizing sequence {xn} in S(b̃) such that lim

n→∞ J̃ (xn) = inf
x∈S(b̃)

J̃ (x). Each

xn can be decomposed as xn = w + yn , with yn ∈ kerE . By (H3) the sequences
{yn}∞n=1 and hence {xn}∞n=1 are bounded. Thus there exists a subsequence {xnk } with
weak limit x = x(ã, b̃) in S(b̃). Since J̃ weakly lower semi-continuous, we have
that J̃ (x) ≤ lim inf

k→∞ J̃ (xnk ) and x minimizes J̃ over S(b̃). This further implies that

〈Ax + ã, v − x〉X∗,X ≥ 0 for all v ∈ S(b̃). Uniqueness of x follows from (H3).
The regular point condition implies the existence of a multiplier λ = λ(ã, b̃) ∈ W ∗
such that (2.19) holds. See e.g. [16,Theorem 1.6] ��
Proof of the Theorem 2.1 (i) The proof of the first assertion of the Theorem 2.1 is

based on the implicit function theorem of Dontchev for generalized equations, see
[10,Theorem 2.4, Remark 2.5]. We introduce the mapping F : X × P × W ∗ −→
X∗ × W given by

F(x, q, λ) =
(
L′(x, q, λ)

e(x, q)

)
,

and observe that Assumption (H6) implies that for all (x, q1, λ), and (x, q2, λ) ∈
Ũ1 × Ũ2 × W ∗

∥∥F(x, q1, λ) − F(x, q2, λ)
∥∥

X∗×W ≤ ν
(
1 + ‖λ‖W ∗

) ‖q1 − q2‖P . (2.20)

By (H1) and (H5), and using the integral mean value theorem it can be argued that

(
x
λ

)
→

(
A E∗
E 0

)(
x
λ

)
+

(
f ′(x0) − Ax0

−Ex0

)

strongly approximatesF at (x0, q0, λ0), in the sense of Dontchev [10]. In the next
two steps the strong regularity condition for T will be verified.

(ii) (Existence). Let, at first, (β1, β2) ∈ X∗ × W and consider T
(

x
λ

)
=

(
β1
β2

)
which

is equivalent to,

0 ∈
(

a
−b

)
+

(
A E∗
E 0

)(
x
λ

)
+

(
∂IC (x)

0

)
, (2.21)
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with a = f ′(x0) − Ax0 − β1, b = Ex0 + β2, and A, E defined in (2.4), (2.5). To
solve (2.21) we consider,{

minx∈C
1
2 〈Ax, x〉X∗,X + 〈a, x〉X∗,X ,

Ex = b.
(2.22)

This corresponds to (2.17) with ã = a, b̃ = b and feasible set S(β2) = {x ∈ C :
Ex = b}. Clearly x0 ∈ S(0) = {x ∈ C : Ex = Ex0}. By (H2) and [16,Theorem
I.2.8], there exists a neighborhood of the origin Ṽ ⊂ X∗ × W such that S(β2) is
not empty for all (β1, β2) ∈ Ṽ . Thus by Lemma 2.2 there exists a unique solution
x = x(β1, β2) to (2.22) for each (β1, β2) ∈ Ṽ . By [16,Theorem I.2.11, I.2.12,
I.2.15], possibly after reducing Ṽ , these solutions depend Hölder continuously on
(β1, β2) ∈ Ṽ ⊂ X∗ × W , with exponent 1

2 . The regular point condition for the
solution x(β1, β2) is

0 ∈ int E(C − x(β1, β2)) = int E(C − x0) − β2,

which is satisfied due to (H2), possibly after again shrinking Ṽ . Hence there exists
a Lagrange multiplier λ = λ(β1, β2) associated to Ex = b, and (2.21) admits a
unique solution (x(β1, β2), λ(β1, β2)) since it is the first order optimality condition
for (2.17).

(iii) (Uniqueness and Lipschitz continuity) Let (β1, β2) ∈ Ṽ and (β̂1, β̂2) ∈ Ṽ with
corresponding solutions (x, λ) ∈ X × W ∗ and (x̂, λ̂) ∈ X × W ∗. This implies
that {

〈a + Ax + E∗λ, c − x〉X∗,X ≥ 0, ∀c ∈ C,

Ex = b, with a = f ′(x0) − Ax0 − β1, b = Ex0 + β2,
(2.23)

and {
〈â + Ax̂ + E∗λ̂, c − x̂〉X∗,X ≥ 0, ∀c ∈ C,

Ex̂ = b̂,with â = f ′(x0) − Ax0 − β̂1, b̂ = Ex0 + β̂2.
(2.24)

By the first equations in (2.23) and (2.24) we obtain that

〈a + Ax + E∗λ, x̂ − x〉X∗,X ≥ 0, 〈â + Ax̂ + E∗λ̂, x − x̂〉X∗,X ≥ 0, x, x̂ ∈ C .

(2.25)

Combining these inequalities, we have that

〈a − â + A(x − x̂) + E∗(λ − λ̂), x − x̂〉X∗,X ≤ 0. (2.26)

The second equalities in (2.23) and (2.24) imply that

E(x − x̂) = b − b̂. (2.27)

123



Applied Mathematics & Optimization (2022) 85 :10 Page 11 of 48 10

Let us set

δx = x̂ − x, δλ = λ̂ − λ, δa = â − a, δb = b̂ − b.

Then δβ1 = −(β̂1 − β1) and δβ2 = β̂2 − β2, and (2.26), (2.27) result in

〈δx, Aδx〉X ,X∗ + 〈δλ, Eδx〉W ∗,W − 〈δβ1, δx〉X∗,X ≤ 0, (2.28)

and

Eδx = δb. (2.29)

By (H2) the operator E is surjective. Hence by the closed range theorem express-
ing δx = δv + δw ∈ ker E + range E∗ implies that Eδx = Eδw = δβ2. Again
by the closed range theorem there exists k1 > 0:

‖δw‖X ≤ k1 ‖δβ2‖W . (2.30)

From the first equation in (2.21) we have

Ax + E∗λ − Ax0 + f ′(x0) − β1 ∈ −∂IC (x).

Next we restrict the perturbation parameters to satisfy (β1, β2) ∈ (X∗ × W )∩ Ṽ .
Due to Assumptions (H4) and (H7) we have (x, λ) ∈ X × W ∗,

Ax + E∗λ − Ax0 + f ′(x0) − β1 ∈ X∗

and hence

Ax + E∗λ − Ax0 + f ′(x0) − β1 ∈ −∂IC (x).

The analogous equation holds with (x, λ, β1) replaced by (x̂, λ̂, β̂1).
By (H3), (2.28) and Assumption (H7) we find

κ ‖δv‖2
≤ 〈δv, Aδv〉X ,X∗ = 〈δx, Aδx〉X ,X∗ − 2〈δv, Aδw〉X ,X∗ − 〈δw, Aδw〉X ,X∗

≤ −〈δλ, Eδx〉W ∗,W + 〈δβ1, δx〉X ,X∗ − 2〈δv, Aδw〉X ,X∗ − 〈δw, Aδw〉X ,X∗

≤ k̃ ‖δλ‖W ∗ ‖δβ2‖W + ‖δβ1‖X∗ ‖δx‖X + ‖A‖ ‖δw‖X (2 ‖δv‖X + ‖δw‖X )

≤ k̃k(‖δw‖X + ‖δv‖X + ‖δβ‖X∗×W ) ‖δβ2‖W

+ (‖δβ1‖X∗ + 2 ‖A‖ ‖δw‖X )(‖δv‖X + ‖δw‖X ), (2.31)

where k̃ denotes the embedding constant of W ∗ into W ∗. Using (2.30) and rear-
ranging terms there exists a constant k2 > 0 such that

‖δv‖X ≤ k2
(‖δβ1‖X∗ + ‖δβ2‖W

)
. (2.32)
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Applying (2.30) again this implies the existence of k3 such that

‖δx‖X ≤ k3
(‖δβ1‖X∗ + ‖δβ2‖W

)
for all (β1, β2) ∈ (X∗ × W ) ∩ Ṽ . (2.33)

Another application of (H7) and (2.33) imply the existence of a constant k4 and a
neighborhood V̂ of the origin in X∗ × W such that the desired Lipschitz stability
estimate for (T )−1

‖δx‖X + ‖δλ‖W ∗ ≤ k4
(‖δβ1‖X∗ + ‖δβ2‖W

)
for all (β1, β2) ∈ V̂ ⊂ X∗ × W

(2.34)

holds.
(iv) As a consequence of the previous two steps T is strongly regular at (x0, q0, λ0).

Together with step (i), Dontchev’s theorem is applicable [10,Theorem 2.4,
Remark 2.5], and (2.15), and (2.16) follow.

(v) (Local solution to (Pq )) Now we show that there exists a neighborhood Ñ of q0
such that for q ∈ Ñ the second order sufficient optimality condition is satisfied
at x(q), so that x(q) is a local solution of (Pq ) by e.g. [16,Theorem 2.12, p. 42].
Due to (H3) and regularity of f , e we obtain

L′′(x(q), q, λ(q))(h, h) ≥ κ

2
‖h‖2 , for all h ∈ ker E, if q ∈ N (q0). (2.35)

Let us define Eq = (ey(x(q), q)) for q ∈ N (q0). By the surjectivity of Eq0 and
regularity of e there exists a neighborhood Ñ ⊂ N (q0) such that Eq is surjective
for all q ∈ Ñ . Here we also use continuity of q �→ ey(x(q), q) from P → W at
q0, which follows from (H1) and the continuity of q → x(q) at q0. Consequently
exist δ0, γ > 0 such that

L′′(x(q), q, λ(q))(h + z, h + z) ≥ δ0 ‖h + z‖2 , for all h ∈ ker E, z ∈ X
(2.36)

satisfying ‖z‖ ≤ γ ‖h‖ by [16,Lemma 2.13, p. 43]. Let us define the orthogonal
projection onto ker Eq given by Pker Eq = I − E∗

q (Eq E∗
q )−1Eq . We choose Ñ

so that ∥∥∥E∗
q (Eq E∗

q )−1Eq − E∗
q0(Eq0 E∗

q0)
−1Eq0

∥∥∥ ≤ γ

1 + γ

for all q ∈ Ñ . For x ∈ ker Eq , we have x = h + z for h ∈ ker E, z ∈ (ker E)⊥
and ‖x‖2 = ‖h‖2 + ‖z‖2. Thus,

‖z‖ ≤
∥∥∥E∗

q (Eq E∗
q )−1Eq x − E∗

q0(Eq0 E∗
q0)

−1Eq0x
∥∥∥ ≤ γ

1 + γ

( ‖h‖ + ‖z‖ )
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and hence ‖z‖ ≤ γ ‖h‖. From (2.35) this implies

L′′(x(q), q, λ(q)) ≥ δ0 ‖x‖2 , for all x ∈ ker E .

This concludes the proof. ��

3 Differentiability of Value Function for Optimal Stabilization Subject
to Semi-linear Parabolic Equations

Here we describe the optimal control problems which we shall analyze and state the
main results.

3.1 Notation

Let� be an open connected bounded subset ofRd with a Lipschitz continuous bound-
ary 
. The associated space-time cylinder is denoted by Q = � × (0,∞) and the
associated lateral boundary by � = 
 × (0,∞). We define the Hilbert spaces

Y = L2(�), V = H1
0 (�), and U = L2(0,∞; U),

where U is a Hilbert space which will be identified with its dual. Observe that the
embedding V ⊂ Y is dense and compact. Further V ⊂ Y ⊂ V ∗, is a Gelfand triple.
Here V ∗ denotes the topological dual of V with respect to the pivot space Y . For any
T ∈ (0,∞) we define the space

W (0, T ) =
{

y ∈ L2(0, T ; V ); dy

dt
∈ L2(0, T ; V ∗)

}
,

endowed with the norm

‖y‖W (0,T ) =
(

‖y‖2L2(0,T ;V )
+

∥∥∥∥dy

dt

∥∥∥∥
2

L2(0,T ;V ∗)

)1/2

.

For T = ∞, we write W∞ and I = (0,∞). We further set W 0∞ = {y ∈ W∞ : y(0) =
0}. We also set

W (T ,∞) =
{

y ∈ L2(T ,∞; V ); dy

dt
∈ L2(T ,∞; V ∗)

}
.

We shall frequently use that W∞ embeds continuously into C([0,∞), Y ), see e.g.
[17,Theorem 4.2] and that lim

t→∞ y(t) = 0, for y ∈ W∞, see e.g. [9]. The set of

admissible controls Uad is chosen to be

Uad ⊂ {u ∈ U : ‖u(t)‖U ≤ η, for a.e. t > 0} (3.1)
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where η is a positive constant. We further set Uad = {v ∈ U : ‖v‖U ≤ η} and
denote by PUad the projection of U on Uad . For this choice of admissible controls the
dynamical system can be stabilized for all sufficiently small initial conditions in Y ,
see Corollary 4.3 and Remark 4.1.
For δ > 0 and ȳ ∈ Y , we define the open neighborhoods BY (δ)={

y ∈Y : ‖y‖Y <δ
}
,

and BY (ȳ, δ) = {
y ∈ Y : ‖y − ȳ‖Y < δ

}
.

3.2 Problem Formulation and Assumptions

We focus on the stabilization problem for an abstract semi-linear parabolic equation
formulated as infinite horizon optimal control problem under control constraints:

(P) V(y0) = min
(y,u)∈W∞×Uad

J (y, u) = min
(y,u)∈W∞×Uad

1

2

∫ ∞

0
‖y(t)‖2Y dt

+ α

2

∫ ∞

0
‖u(t)‖2U dt, (3.2a)

subject to the semilinear parabolic equation

yt = Ay + F(y) + Bu in L2(I ; V ∗) (3.2b)

y(x, 0) = y0 in Y . (3.2c)

Throughout F is the substitution operator associated to a mapping f : R → R so that
(F y)(t) = f(y(t)). Sufficient conditions which guarantee the existence of solutions to
(3.2b), (3.2c), as well as solutions (ȳ, ū) to (P), for y0 ∈ Y sufficiently small, will be
given below. We shall also make use of the adjoint equation associated to an optimal
state ȳ, given by

− pt − A∗ p − F ′(ȳ)∗ p = −ȳ in L2(I ; V ∗). (3.2d)

Its adjoint state p which will be considered in L2(I ; V ) or in W∞. The following
assumption will be essential.

3.2.1 Assumptions A

A1 The operator A with domain D(A) ⊂ Y and range in Y , generates a strongly
continuous analytic semigroup eAt on Y and can be extended to A ∈ L(V , V ∗).

A2 B ∈ L(U , Y ) and there exists a stabilizing feedback operator K ∈ L(Y ,U) such
that the semigroup e(A−BK )t is exponentially stable on Y .

A3 The nonlinearity F : W∞ → L2(I ; V ∗) is twice continuously Fréchet differen-
tiable, with second Fréchet derivative F ′′ bounded on bounded subsets of W∞,
and F(0) = 0.

A4 F : W (0, T ) → L1(0, T ;H∗) is weak-to-weak continuous for every T > 0, for
some Hilbert space H which embeds densely in V .
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Note that
(

L1(0, T ;H∗)
)∗ = L∞(0, T ;H), see [11,Theorem 7.1.23(iv), p. 164].

Moreover, L∞(0, T ;H) is dense in L2(0, T ; V ), see [21,Lemma A.1, p. 2231].
A5 F ′(ȳ) ∈ L(L2(I ; V ), L2(I ; V ∗)).

Remark 3.1 The requirement that F(0) = 0 in (A2) is consistent with the fact that we
focus on the stabilization problem with 0 as steady state for (3.2b). Without loss of
generality we further assume that

F ′(0) = 0, (3.3)

which can always be achieved by making F ′(0) to be perturbation of A.

Remark 3.2 Let us assume that (A3) holds. Then in view of the fact that F is a substi-
tution operator we have [F ′(y)v](t) = f′(y(t))v(t) for y and v in W∞, and F ′(y) ∈
L(W∞, L2(I ; V ∗)). Its adjoint [F ′(y)∗v](t) = f′(y(t))v(t), for v ∈ L2(I ; V ),
satisfying F ′(y)∗ ∈ L(L2(I ; V ), W ∗∞). It has a natural restriction to an operator
F ′(y)∗ ∈ L(W∞, L2(I ; V ∗)). With (A3) holding it is differentiable and [F ′(y)

∗]′ is
a bilinear form on W∞ × W∞ with values in L2(I ; V ∗). - For examples of functions
F which satisfy A4 we refer to see Sect. 6.

3.2.2 Abstract Setup

Here we relate problem (P) to the abstract problem (Pq ), which is used with the
following spaces:

X = W∞ × U , W = L2(I ; V ∗) × Y , P = Y ,

C = Uad , X∗ = W ∗∞ × U , W ∗ = L2(I ; V ) × Y ,

X = W∞ × (U ∩ C( Ī ;U)), X∗ = L2(I ; V ∗) × (U ∩ C( Ī ;U)), W ∗ = W̃∞,

(3.4)

where I = (0,∞), and W̃ = {(ϕ, ϕ(0)) : ϕ ∈ W∞}, endowed with the norm of
W∞. At times we identify W̃ with W∞. We recall that the dual space of W∞ =
L2(I ; V ) ∩ W 1,2(I ; V ∗) is W ∗∞ = L2(I ; V ∗) + (W 1,2(I ; V ∗))∗, endowed with the
norm ‖z‖W ∗∞ = inf

z=z1+z2
‖z1‖L2(I ;V ∗) + ‖z2‖W 1,2(I ;V ∗)∗ , where z1 ∈ L2(I ; V ∗), z2 ∈

(W 1,2(I ; V ∗))∗.
To express (Pq ) for the present case, we set x = (y, u) ∈ W∞ ×U , and the parameter
q becomes the initial condition y0 ∈ Y . Further f : W∞ × U −→ R is given by

f (y, u) = 1

2

∫ ∞

0
‖y(t)‖2Y dt + α

2

∫ ∞

0
‖u(t)‖2U dt, (3.5)

and e(x, q) = e(y, u, y0) is

e(y, u, y0) =
(

yt − Ay − F(y) − Bu
y(0) − y0

)
: W∞ × U × Y −→ L2(I ; V ∗) × Y (3.6)
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By (A3) the mapping e is Fréchet differentiable with respect to x = (y, u) ∈ W∞ ×U
and thus for (y, u, y0) ∈ W∞ × U × Y we have

e′(y, u, y0)(v,w)=
(

vt −Av−F ′(y)v − Bw

v(0, ·)
)

: W∞×U −→ L2(I ; V ∗)×Y .

(3.7)

The Lagrange functional L : W∞ × U × Y × L2(I ; V ) × Y −→ R corresponding to
our optimal control problem is given by

L(y, u, y0, p, p1) = J (y, u) +
∫ ∞

0
〈p, yt − Ay − F(y) − Bu〉V ,V ∗ dt + (p1, y(0) − y0)Y ,

where (p, p1) ∈ L2(I ; V ) × Y corresponds to the abstract Lagrange multiplier λ ∈
W ∗.
In the remainder of this subsection we specify the mappings T and T for problem
(P). This will facilitate the proofs of the main results further below.
At first we take a closer look to the adjoint Ẽ∗ := e′(y, u, y0)

∗ ∈ L(L2(I ; V ) ×
Y , W ∗∞ × U ) at a generic element (y, u, y0) ∈ W∞ × U × Y . It is characterized by
the property that for all (v,w) ∈ W∞ × U , (p, p1) ∈ L2(I ; V ) × Y we have

〈Ẽ(v,w), (p, p1)〉L2(I ;V ∗)×Y ,L2(I ;V )×Y = 〈v, Ẽ∗
1 (p, p1)〉W∞,W ∗∞ + (w, Ẽ∗

2 (p, p1))U

where

〈v, Ẽ∗
1 (p, p1)〉W∞,W ∗∞ = 〈vt − Av − F ′(y)v, p〉L2(I ;V ∗),L2(I ;V ) + (v(0), p1)Y ,

and

(w, Ẽ∗
2 (p, p0))U = −(w, B∗ p)U .

If for some β̃1 ∈ L2(I ; V ∗) the pair (p, p1) ∈ L2(I ; V ) × Y is a solution to
Ẽ∗
1 (p, p1) = β̃1 then for all v ∈ W∞:

〈vt − Av − F ′(y)v, p〉L2(V ∗),L2(V ) + (v(0), p1)Y − (w, B∗ p)U

= 〈β̃1, v〉L2(I ;V ∗),L2(I ;V ). (3.8)

Nowwe assume thatF ′(y) is not only an element ofL(W∞, L2(I ; V ∗)) but rather that
it can be extended to an operatorF ′(y) ∈ L(L2(I ; V ), L2(I ; V ∗)). This is guaranteed
by (A5) at minimizers ȳ. Then (3.8) implies that p ∈ W∞, and hence p1 ∈ C(I ; Y )

and p1 = p(0), see Proposition 1. In particular (p, p1) = (p, p(0)) ∈ W̃∞, and (3.8)
can equivalently be expressed as

〈v, Ẽ∗
1 (p, p1)〉L2(I ;V ),L2(I ;V ∗) = 〈vt − Av − F ′(y)v, p〉L2(I ;V ∗),L2(I ;V )

= 〈v, β̃1〉L2(I ;V ),L2(I ;V ∗), (3.9)
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for all v ∈ L2(I ; V ), where we assumed that β̃1 ∈ L2(I ; V ∗). Conversely, of course,
if p ∈ W̃∞, then Ẽ∗

1 (p, p(0)) = −pt − A∗ p − F ′(y)∗ p ∈ L2(I ; V ∗).
From now on, let q0 = ȳ0 denote a reference (or nominal) parameter with associated
solution x0 = (ȳ, ū). In Proposition 1 we shall argue that the regular point condition
Assumption (H2) is satisfied and that consequently there exists a Lagrange multiplier
( p̄, p̄1) such that the pair (x0, λ0) = (ȳ, ū, p̄, p̄1) satisfies (2.3). Moreover, it will
turn out that p̄ ∈ W∞, p̄1 = p(0), and that ū ∈ U ∩ C(I ;U). For convenience let us
present (2.3) for the present case

0 ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ȳ + E∗
1 ( p̄, p̄(0)),

αū − B∗ p̄ + ∂IUad (ū),

ȳt − Aȳ − F(ȳ) − Bū,

ȳ(0) − y0,

(3.10)

where E =
(

E1
E2

)
= e′(ȳ, ū, ȳ0). We stress that while the Lagrange multiplier

p̄ belongs to W∞, the operator E∗
1 in (3.9) is still considered as an element of

L(L2(I ; V ) × Y , W ∗∞).
We are now prepared to specify the multivalued operators

T :W∞ × U ×L2(I ; V )×Y −→ W ∗∞ × U × L2(I ; V ∗)×Y , and (3.11)

T :W∞ × (U ∩ C(I ;U))×W̃∞ −→ L2(I ; V ∗)×(U ∩ C(I ;U)) × L2(I ; V ∗)×Y
(3.12)

corresponding to (2.7) and (2.14) by

T

⎛
⎜⎜⎝

y
u
p
p1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

E∗
1 (p, p1) + y − [F ′(ȳ)∗ p]′(y − ȳ)

αu − B∗ p
yt − Ay − Bu − F ′(ȳ)(y − ȳ) − F(ȳ)

y(0) − ȳ0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
∂IUad (u)

0
0

⎞
⎟⎟⎠ , (3.13)

and

T

⎛
⎜⎜⎝

y
u
p

p(0)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−p
t
− A∗ p − F ′(ȳ)∗ p + y − [F ′(ȳ)∗ p̄]′(y − ȳ)

αu − B∗ p
yt − Ay − Bu − F ′(ȳ)(y − ȳ) − F(ȳ)

y(0) − ȳ0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0
∂IUad (u)

0
0

⎞
⎟⎟⎠ . (3.14)
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where

∂IUad (u)={
ũ ∈U ∩C(I ;U) : (̃u(t), v − u(t))U ≤0,∀t ∈ I , v∈ Bη(0)

}
, (3.15)

with Bη(0) = {v ∈ U; ‖v‖U ≤ η}. In (3.14), we underline the elements which are
taken from different domains when compared to (3.13). The range of the first two
coordinates of T is smaller than that of T . Accordingly we can make use of (3.9)
when moving from the first row of (3.13) to the first row of (3.14).
For convenience for the subsequent work we recall that the strong regularity condition
introduced below (2.14) requires us to find neighborhoods of 0 and (ȳ, ū, p̄, p̄(0)) of
the form V̂ ⊂ L2(I ; V ∗) × (U ∩ C(I ;U)) × L2(I ; V ∗) × Y and Û ⊂ W∞ × (U ∩
C(I ;U)) × W̃∞, such that for all β = (β1, β2, β3, β4) ∈ V̂ the equation

T
(

y, u, p, p(0)
)T = (β1, β2, β3, β4)

T (3.16)

admits a unique solution (y, u, p, p(0)) ∈ Û depending Lipschitz-continuously on β.

Remark 3.3 We observe that as a consequence of (A3) and Remark 3.2 the operator
T is continuous.

Subsequently we shall frequently refrain from the underline-notation since the mean-
ing should be clear from the context.

3.3 Main Theorems

In this subsection, we present themain theorems of this paper. The first theorem asserts
local continuous differentiability of the value functionV w.r.t. y0,with y0 small enough.
The second theorem establishes thatV satisfies the HJB equation in the classical sense.
The proof of the first theorem is based on Theorem 2.1. It will be given in Sect. 4. For
this purpose it will be shown that assumptions A imply (H1)–(H7). Moreover we need
to assert the underlying assumption that problem (P) is well-posed. This will lead to a
smallness assumption on the initial states y0. Consequently it would suffice to assume
that (A3) and (A4) only hold locally in the neighborhood of the origin. Concerning
(A5) observe that it is not implied by (A3). It is vacuously satisfied for ȳ = 0, which
is the case for y0 = 0, since then F ′(0) = 0, see (3.3).
We invoke Theorem 2.1 to assert the Lipschitz continuity of the state, the adjoint state,
and the control with respect to the initial condition y0 ∈ Y in the neighborhood of a
locally optimal solution (ȳ, ū) corresponding to a sufficiently small reference initial
state ȳ0. This will imply the differentiability of the value function associated to local
minima. We shall refer to the value function associated to local minima as ’local value
function’.

Theorem 3.1 Let the assumptions (A) hold. Then associated to each local solution
(ȳ(y0), ū(y0)) of (P) there exists a neighborhood of U (y0) such that the local value
function V : U (y0) ⊂ Y → R is continuously differentiable, provided that y0 is
sufficiently close to the origin in Y .
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To obtain a HJB equation we require additionally that t → (F(ȳ))(t) is continuous
with values in Y for global solutions (ȳ, ū) to (P), with y0 ∈ D(A). In view of the
fact that for y0 ∈ V we can typically expect that the solutions of semilinear parabolic
equations satisfy y ∈ L2(I ;D(A)) ∩ W 1,2(I ; Y ) ⊂ C([0,∞), V ) this is not a
restrictive assumption beyond that what is already assumed in (A3).

Theorem 3.2 Let the assumptions (A) hold, and let (ȳ(y0), ū(y0)) denote a global
solution of (P), for y0 ∈ D(A) with sufficiently small norm in Y . Assume that there
exists Ty0 > 0 such thatF(ȳ) ∈ C([0, Ty0); Y ). Then the following Hamilton–Jacobi–
Bellman equation holds at y0:

V ′(y)(Ay + F(y)) + 1

2
‖y‖2Y + α

2

∥∥∥∥PUad

(
− 1

α
B∗V ′(y)

)∥∥∥∥
2

Y

+
〈

B∗V ′(y),PUad

(
− 1

α
B∗V ′(y)

)〉
Y

= 0. (3.17)

Moreover the optimal feedback law is given by

ū(0) = PUad

(
− 1

α
B∗V ′(ȳ(0))

)
. (3.18)

The condition on the smallness of y0 will be discussed in Remark 4.2. Roughly it
involves well-posedness of the optimality system and second order sufficient optimal-
ity at local solutions. A more detailed, respectively stronger statement of Theorem 3.1
and Theorem 3.2, will be given in Theorems 4.10 and 5.1. The regularity assumptions
F(ȳ) ∈ C([0, Ty0); Y ) of Theorem 3.2 will be addressed in Sect. 6.

4 Proof of Theorem 3.1

In this sectionwegive theproof forTheorem3.1.Manyof the technical difficulties arise
from the fact that we are working with an infinite horizon optimal control problem.
In this respect we can profit from techniques which were developed in [6], which,
however, do not include the case of constraints on the norm. Throughout we assume
that assumptions (A1) - (A4) hold.

4.1 Well-posedness of Problem (P)

Here we prove well-posedness for (P) with small initial data. First, we recall two
consequences of the assumption that A is the generator of an analytic semigroup.

Consequence 1 Since A generates a strongly continuous analytic semigroup on Y ,
there exist ρ ≥ 0 and θ > 0 such that

〈(ρ I − A)v, v〉V ∗,V ≥ θ ‖v‖2V
See [1,Part II, Chaptor 1, p. 115], [22,Theorem 4.2, p. 14].
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Consequence 2 For all y0 ∈ Y , f ∈ L2(0, T ; V ∗), and T > 0, there exists a unique
solution y ∈ W (0, T ) to

ẏ = Ay + f , y(0) = y0. (4.1)

Furthermore, y satisfies

‖y‖W (0,T ) ≤ c(T )
(

‖y0‖Y + ‖ f ‖L2(0,T ;V ∗)
)

(4.2)

for a continuous function c. Assuming that y ∈ L2(0,∞; Y ), consider the equation

ẏ = (A − ρ I )y︸ ︷︷ ︸
Aρ

+ ρy + f︸ ︷︷ ︸
fρ

, y(0) = y0,

where fρ ∈ L2(I ; V ∗). Then the operatorAρ generates a strongly continuous analytic
semigroup on Y which is exponentially stable, see [1,p 115, Theorem II.1.2.12]. It
follows that y ∈ W∞, that there exists Mρ such that

‖y‖W∞ ≤ Mρ

(
‖y0‖Y + ∥∥ fρ

∥∥
L2(I ;V ∗)

)
, (4.3)

and that y is the unique solution to (4.1) in W∞, see [6,Sect. 2.2] .

Lemma 4.1 There exists a constant C > 0, such that for all δ < (0, 1] and for all y1
and y2 in W∞ with ‖y1‖W∞ ≤ δ and ‖y2‖W∞ ≤ δ, it holds that

‖F(y1) − F(y2)‖L2(I ;V ∗) ≤ δC ‖y1 − y2‖W∞ . (4.4)

Proof Let y1, y2 be as in the statement of the lemma. Using A3 and Remark 3.1 we
obtain the estimate

‖F(y1) − F(y2)‖L2(I ,V ∗)

≤
∫ 1

0

∥∥F ′(y1 + t(y2 − y1))F ′(0)
∥∥L(W∞,L2(I ,V ∗)) dt ‖y2 − y1‖W∞

≤
∫ 1

0

∫ 1

0

∥∥F ′′(s(y1 + t(y2 − y1)))(t y2 + (1 − t)y1)
∥∥L(W∞,L2(I ,V ∗))

dsdt ‖y2 − y1‖W∞ .

Now the claim follows by assumption (A3). ��
Lemma 4.2 Let As be the generator of an exponentially stable analytic semigroup
eAs t on Y . Let C denote the constant from Lemma 4.1. Then there exists a constant
Ms such that for all y0 ∈ Y and f ∈ L2(I ; V ∗) with

γ̃ = ‖y0‖Y + ‖ f ‖L2(I ;V ∗) ≤ 1

4C M2
s
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the system

yt = As y + F(y) + f , y(0) = y0 (4.5)

has a unique solution y ∈ W∞, which satisfies

‖y‖W∞ ≤ 2Ms γ̃ .

With Lemma 4.1 holding, this lemma can be verified in the samemanner as [6,Lemma
5, p. 6]. In the following corollarywe shall use Lemma 4.2withAs = A−BK , and the
constant corresponding to Ms will be denoted by MK . Further ‖I‖ denotes the norm
of the embedding constant of W∞ into C(I ; Y ), ‖i‖ is the norm of the embedding V
into Y , and we recall the constant η from (3.1).

Corollary 4.3 For all y0 ∈ Y with

‖y0‖Y ≤ min

{
1

4C M2
K

,
η

2MK ‖K‖L(Y ) ‖I‖

}

there exists a control u ∈ Uad such that the system

yt = Ay + F(y) + Bu, y(0) = y0 (4.6)

has a unique solution y ∈ W∞ satisfying

‖y‖W∞ ≤ 2MK ‖y0‖Y and ‖u‖U ≤ ‖K‖L(Y ,U)‖I‖‖y‖W∞
≤ 2MK ‖y0‖Y ‖K‖L(Y ,U)‖I‖. (4.7)

Proof By Assumption (A2), there exists K such that A− BK generates an exponen-
tially stable analytic semigroup on Y . Taking u = −K y, equation (4.6) becomes

yt = (A − BK )y + F(y), y(0) = y0. (4.8)

Then by Lemma 4.2 with γ̃ = ‖y0‖Y there exists MK such that (4.8) has a solution
y ∈ W∞ satisfying

‖y‖W∞ ≤ 2MK ‖y0‖Y ,

and thus the first inequality in (4.7) holds. For every t ∈ I we have

‖u‖U = ‖K y‖U ≤ ‖K‖L(Y ,U)‖y‖Y ≤ ‖K‖L(Y ,U)‖I‖‖y‖W∞
≤ 2MK ‖y0‖Y ‖K‖L(Y ,U)‖I‖, (4.9)

and thus the second inequality in (4.7) holds.We still need to assert that u ∈ Uad . This
follows from the second smallness condition on ‖y0‖Y and (4.9). ��
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Remark 4.1 In the above proof stabilization was achieved by the feedback control
u = −K y. For this u to be admissible it is needed that Uad has nonempty interior.
The upper bound η could be allowed to be time dependent as long as it satisfies
inf
t≥0

|η(t)| > 0.

Corollary 4.4 Let y0 ∈ Y and let u ∈ Uad be such that the system

yt = Ay + F(y) + Bu, y(0) = y0 (4.10)

has a unique solution y ∈ L2(I ; Y ). If

γ := ‖y0‖Y + ‖ρy + Bu‖L2(I ;V ∗) ≤ min

{
1

4C M2
ρ

,
η

2Mρ ‖K‖L(Y ) ‖I‖

}
,

then y ∈ W∞ and it holds that

‖y‖W∞ ≤ 2Mργ.

Proof Since y ∈ L2(I ; Y ), we can apply Lemma 4.2 to the equivalent system

yt = (A − ρ I )y + F(y) + f̃ ,

where f̃ = ρy + Bu. This proves the assertion. ��
Lemma 4.5 There exists δ1 > 0 such that for all y0 ∈ BY (δ1), problem (P) possesses
a solution (ȳ, ū) ∈ W∞ × Uad. Moreover, there exists a constant M > 0 independent
of y0 such that

max
{ ‖ȳ‖W∞ , ‖ū‖U

} ≤ M ‖y0‖Y (4.11)

Proof The proof of this lemma follows with analogous argumentation as provided

in [6,Lemma 8]. Let us choose, δ1 ≤ min

{
1

4C M2
K
,

η
2MK ‖K‖L(Y )‖I‖

}
, where C as in

Lemma 4.1 and MK denotes the constant from the Corollary 4.3. We obtain that for
each y0 ∈ BY (δ1), there exists a control u ∈ Uad with associated state y satisfying

max
{ ‖u‖U , ‖y‖W∞

} ≤ M̃ ‖y0‖Y , (4.12)

where M̃ = 2MK max
(
1, ‖i‖ ‖K‖L(Y ,U)

)
. We can thus consider a minimizing

sequence (yn, un)n∈N ∈ W∞ × Uad with J (yn, un) ≤ 1

2
M2 ‖y0‖2Y (1 + α). For

all n ∈ N that

‖yn‖L2(I ;Y ) ≤ M̃ ‖y0‖Y

√
1 + α and ‖un‖L2(I ;U) ≤ M̃ ‖y0‖Y

√
1 + α

α
.

(4.13)
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We set η(α, M̃) =
[
1 + M̃‖i‖ √

(1 + α)
(
ρ + ‖B‖L(U ,Y )√

α

)]
. Then we have ‖y0‖ +

‖ρyn + Bun‖L2(I ;V ∗) ≤ η(α, M̃) ‖y0‖Y . After further reduction of δ1, we obtain with
Mρ from Corollary 4.4:

‖y0‖ + ‖ρyn + Bun‖L2(I ;V ∗) ≤ 1

4C M2
ρ

.

It follows from this corollary that the sequence {yn}n∈N is bounded in W∞ with

sup
n∈N

‖yn‖W∞ ≤ 2Mρ(1 + η(α, M̃)) ‖y0‖Y . (4.14)

Extracting if necessary a subsequence, there exists (ȳ, ū) ∈ W∞ × U such that
(yn, un)⇀(ȳ, ū) ∈ W∞ × U , and (ȳ, ū) satisfies (4.12).
Let us prove that (ȳ, ū) is feasible and optimal. Since Uad is weakly sequentially
closed and un ∈ Uad , we find ū ∈ Uad . For each fixed T > 0 and arbitrary z ∈
L∞(0; T ;H) ⊂ L2(0, T ; V ), see (A4), we have for all n ∈ N that

∫ T

0
〈ẏn(t), z(t)〉V ∗,V dt =

∫ T

0
〈Ayn(t) + F(yn(t)) + Bun(t), z(t)〉V ∗,V dt .

(4.15)

Since ẏn⇀ẏ in L2(0, T ; V ∗), we can pass to the limit in the l.h.s. of the above equality.
Moreover, since Ayn⇀Ay in L2(0, T ; V ∗),

∫ T

0
〈Ayn(t), z(t)〉V ∗,V dt −−−→

n→∞

∫ T

0
〈Aȳ(t), z(t)〉V ∗,V dt .

Analogously, we obtain that

∫ T

0
〈Bun(t), z(t)〉V ∗,V dt −−−→

n→∞

∫ T

0
〈Bū(t), z(t)〉V ∗,V dt .

If moreover z ∈ L∞(0, T ;H) ⊂ L2(0, T ; V ), we use (A4) to assert

∫ T

0
〈F(yn(t)) − F(ȳ(t)), z(t)〉V ∗,V dt =

∫ T

0
〈F(yn(t)) − F(ȳ(t)), z(t)〉H∗,Hdt −−−→

n→∞ 0.

Thus we have for all z ∈ L∞(0, T ;H)

∫ T

0
〈ẏ(t) − Ay(t) − Bu(t), z(t)〉V ∗,V dt =

∫ T

0
〈F(y(t)), z(t)〉V ∗,V dt . (4.16)
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Since ẏ − Ay − Bu ∈ L2(0, T ; V ∗) and L∞(0, T ;H) is dense in L2(0, T ; V ) we
conclude that (4.16) holds for all z ∈ L2(0, T ; V ) and T > 0. This yields e(ȳ, ū) =
(0, 0), and thus (ȳ, ū) is feasible. By weak lower semicontinuity of norms it follows
that J (ȳ, ū) ≤ lim inf

n→∞ J (ȳn, ūn), which proves the optimality of (ȳ, ū), and (4.11)

follows from (4.13). ��

For the derivation of the optimality system for (P), we need the following lemma
which is taken from [5,Lemma 2.5].

Lemma 4.6 Let G ∈ L(W∞, L2(I ; V ∗)) such that ‖G‖ <
1

MK
, where ‖G‖ denotes

the operator norm of G. Then for all f ∈ L2(I ; V ∗) and y0 ∈ Y , there exists a unique
solution to the problem:

yt = (A − BK )y(t) + (Gy)(t) + f (t), y = y0.

Moreover,

‖y‖W∞ ≤ MK

1 − MK ‖G‖
(‖ f ‖L2(I ;V ∗) + ‖y0‖Y

)
.

We close this section by deriving the optimality conditions for (P).

Proposition 1 Let the assumptions (A1) - (A4) hold. Then there exists δ2 ∈ (0, δ1]
such that each local solution (ȳ, ū) with y0 ∈ BY (δ2) is a regular point, i.e. (2.3) is
satisfied, and there exists an adjoint state ( p̄, p̄1) ∈ L2(I ; V ) × Y satisfying

〈vt − Av − F ′(ȳ)v, p̄〉L2(I ;V ∗),L2(I ;V ) + (v(0), p̄1)Y + (ȳ, p̄)L2(I ;V ) = 0,

for all v ∈ W∞, (4.17)

〈αū − B∗ p̄, u − ū〉U ≥ 0, for all u ∈ Uad . (4.18)

If the assumption (A5) is satisfied, then

− p̄t − A∗ p̄ − F ′(ȳ)∗ p̄ = −ȳ in L2(I ; V ∗),

and hence p̄ ∈ W∞ and

lim
t→∞ p̄(t) = 0. (4.19)

Moreover, there exists M̃ > 0, independent of y0 ∈ BY (δ2), such that

‖ p̄‖W∞ ≤ M̃ ‖y0‖Y , and u ∈ C(I ,U). (4.20)
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Proof To verify the regular point condition, we evaluate e defined in (3.6) at (ȳ, ū, y0).
To check the claim on the range of e′(ȳ, ū, y0) we consider for arbitrary (r , s) ∈
L2(I , V ∗) × Y the equation

zt − Az − F ′(ȳ)z − B(w − ū) = r , z(0) = s, (4.21)

for unknowns (z, w) ∈ W∞ × Uad . By taking w = −K z ∈ U we obtain

zt − (A − BK )z − F ′(ȳ)z + Bū = r , z(0) = s.

We apply Lemma 4.6 to this equation with G = −F ′(ȳ) and f = r − Bū.
By Lemma 4.5 and (3.3) in Remark 3.1 there exists δ2 ∈ (0, δ1] such that
‖F ′(ȳ)‖L(W∞,L2(I ;V ∗)) ≤ 1

2 MK . Consequently by Lemma 4.6 there exists M̃ such
that

‖z‖W∞ ≤ M̃
( ‖r‖L2(I ;V ∗) + ‖s‖Y + ‖B‖L(U ,Y ) ‖ū‖U

)
≤ M̃

( ‖r‖L2(I ;V ∗) + ‖s‖Y + ‖B‖L(U ,Y ) M ‖y0‖Y
)
, (4.22)

with M as in (4.11). We shall need to check whether w = −K z is feasible, which will
be the case if w(t) ≤ η for a.e. t ∈ I . Indeed we have

‖w(t)‖Y ≤ ‖K‖L(Y ,U) ‖z(t)‖Y

≤ ‖K‖L(Y ,U) ‖I‖ M̃
( ‖r‖L2(I ;V ∗) + ‖s‖Y + ‖B‖L(U ,Y ) M ‖y0‖Y

)
.

Consequently, possibly after further reducing δ2, and choosing δ̃ > 0 sufficiently small
we have

‖w‖L∞(I ;Y ) ≤ η for all y0 ∈ BY (δ2) and all (r , s) satisfying ‖(r , s)‖L2(I ;V ∗)×Y ≤ δ̃.

(4.23)

Consequently the regular point condition is satisfied. Hence there exists a multiplier
λ = (p, p1) ∈ L2(I ; V ) × Y satisfying,

〈Ly(ȳ, ū, y0, p̄, p̄1), v〉L2(I ;V ∗),L2(I ;V ) = 0,

〈Lu(ȳ, ū, y0, p̄, p̄1), u − ū〉U ≥ 0, ∀u ∈ Uad (4.24)

where

L(y, u, y0, p, p1) = J (y, u) +
∫ ∞

0
〈p, yt − Ay − F(y) − Bu〉V ,V ∗ dt + 〈p1, y(0) − y0〉Y .

This implies that (4.17) holds.
Now, if we impose the additional assumption (A5), we have F ′(ȳ)∗ p̄ ∈ L2(I ; V ∗).
Thus −A∗ p̄ − F ′(ȳ)∗ p̄ + ȳ ∈ L2(I ; V ∗) and the previous identity implies that
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p̄ ∈ W∞. Thus we derive

− p̄t − A∗ p̄ − F ′(ȳ)∗ p̄ = −ȳ in L2(I ; V ∗) and lim
t→∞ p̄(t) = 0,

and (4.17)-(4.19). Testing the first identity in (4.24) with v ∈ L2(I ; V ) we also have
p̄1 = p̄(0), which is well-defined since p̄ ∈ W∞ ⊂ C(I ; Y ). The second identity in
(4.24) gives (4.18). It remains to estimate p̄ ∈ W∞.
Let r ∈ L2(I ; V ∗) with ‖r‖L2(I ;V ∗) ≤ δ̃ and consider

zt − Az − F ′(ȳ)z − B(w − ū) = −r , z(0) = 0. (4.25)

Arguing as in (4.21)-(4.22) there exists a solution to (4.25) with w = −K z such that

‖z‖W∞ ≤ M̃
(
δ̃ + ‖B‖L(U ,Y ) M ‖y0‖Y

) ≤ M̃
(
δ̃ + ‖B‖L(U ,Y ) Mδ2

) =: C1.

(4.26)

From (4.23) we have that ‖w‖L∞(I ,U) ≤ η. Let us now observe that

〈 p̄, r〉L2(I ,V ),L2(I ,V ∗)
= 〈 p̄,−zt + Az + F ′(ȳ)z〉L2(I ,V ),L2(I ,V ∗) + 〈 p̄, B(w − ū)〉L2(I ;Y )

= 〈 p̄t + A∗ p̄ + F ′(ȳ)∗ p̄, z〉 + 〈B∗ p̄, w − ū〉U ,

where we have used that z(0) = 0 and lim
t→∞ p̄(t) = 0, since p̄ ∈ W∞. We next

estimate using (4.17), (4.19) and (4.26)

〈 p̄, r〉L2(I ,V ),L2(I ,V ∗) ≤ ‖ȳ‖L2(I ,V ∗) ‖z‖L2(I ,V ) + α〈ū, w − ū〉U

≤ (‖ȳ‖L2(I ,V ∗) + α ‖ū‖U
)
(C1 + η + ‖ū‖U ) .

By (4.11), this implies the existence of a constant C2 such that

sup
‖r‖L2(I ,V ∗)

≤δ̃

〈 p̄, r〉L2(I ,V ),L2(I ,V ∗) ≤ C2 ‖y0‖Y

and thus

‖ p̄‖L2(I ,V ) ≤ C2

δ̃
‖y0‖Y , for all y0 ∈ BY (δ2). (4.27)

Now we estimate, again using (A5)

‖ p̄t‖L2(I ;V ∗) ≤ ∥∥A∗ p̄ + F ′(ȳ)∗ p̄ − ȳ
∥∥

L2(I ;V ∗)
≤ C3 ‖ p̄‖L2(I ,V ) + C4 ‖ p̄‖L2(I ,V ) + ‖ȳ‖L2(I ;V ∗) .
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By (4.11) and (4.27) we obtain ‖ p̄t‖L2(I ;V ∗) ≤ C5 ‖y0‖Y . Combining this estimate

with (4.27) yields (4.20). Finally, by (4.18) we find ū(t) = PUad

(
1

α
B∗ p̄(t)

)
. Since

p̄ ∈ C( Ī ; Y ) and B∗ ∈ L(Y , U ) this implies that u ∈ C( Ī ;U). ��

4.2 Verification of (H1)–(H6)

In this section we specialize the previously proved abstract results in Sect. 2 to the
semilinear parabolic setting. We start with the following lemma which shows that
assumptions A imply (H1)-(H6).

Lemma 4.7 Consider problem (P) with assumptions (A1)-(A4) holding. Then (H1)–
(H4), (H6) are satisfied for (P) uniformly for all y0 ∈ BY (̃δ2) for some δ̃2 ∈ (0, δ2].
If moreover, (A5) holds, then (H5) holds as well.

Proof Throughout y0 ∈ BY (δ2), (ȳ, ū) denotes a local solution to (P), and (p, p1) ∈
L2(I ; V ∗) × Y the associated Lagrange multiplier.

(i) Verification of (H1): The initial condition y0 is our nominal reference parameter
q. Lemma 4.5 guarantees the existence of a local solution (ȳ, ū) ∼ x0 to (P)∼
(Pq0 ). Clearly f defined in (3.5) satisfies the required regularity assumptions.
Moreover e satisfies the regularity assumptions as a consequence of (A3).

(ii) Verification of (H2): Proposition 1 implies that (ȳ, ū) is a regular point.
(iii) Verification of (H3): The second derivative of e is given by

e′′(ȳ, ū, y0)((v1, w1), (v2, w2))

=
(
F ′′(ȳ)(v1, v2)

0

)
, ∀ v1, v2 ∈ W∞, ∀w1, w2 ∈ U . (4.28)

For the second derivative of L w.r.t. (y, u), we find

L′′(ȳ, ū, y0, p̄, p̄1)((v1, w1), (v2, w2))

=
∫ ∞

0
(v1, v2)Y dt + α

∫ ∞

0
(w1, w2)Y dt

+
∫ ∞

0
〈 p̄,F ′′(ȳ)(v1, v2)〉V ,V ∗dt . (4.29)

By (A3) for F ′′ and Lemma 4.5 , there exists M̃1 such that∫ ∞

0
〈 p̄,F ′′(ȳ)(v, v)〉V ,V ∗dt ≤ M̃1‖ p̄‖L2(I ;V ) ‖v‖2W∞ , ∀ v ∈ W∞, (4.30)
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for each solution (ȳ, ū) of (P) with y0 ∈ BY (δ2). Then we obtain

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w))

≥
∫ ∞

0
‖v‖2Y dt

+ α

∫ ∞

0
‖w‖2U dt − M̃1‖ p̄‖L2(I ;V ) ‖v‖2W∞ . (4.31)

Now let 0 �= (v,w) ∈ ker E ⊂ W∞ × Uad , where E as defined in (3.7) is
evaluated at (ȳ, ū). Then,

vt − Av − F ′(ȳ)v − Bw = 0, v(0) = 0.

Next choose ρ > 0, such that the semigroup generated by (A−ρ I ) is exponen-
tially stable. This is possible due to (A1). We equivalently write the system in
the previous equation as,

vt − (A − ρ I )v − F ′(ȳ)v − ρv − Bw = 0, v(0) = 0.

Now, we invoke Lemma 4.6 withA− BK replaced byA−ρ I , G = F ′(ȳ), and
f (t) = ρv(t)+ Bw(t), and the role of the constant MK will now be assumed by
a parameter Mρ . By selecting δ̃2 ∈ (0, δ2] such that ‖ȳ‖W∞ sufficiently small,
we can guarantee that

∥∥F ′(ȳ)
∥∥L(W∞;L2(I ;V ∗)) ≤ 1/2Mρ , see (4.11) and (3.3) in

Remark 3.1. Then the following estimate holds,

‖v‖W∞ ≤ 2Mρ ‖v + Bw‖L2(I ;V ∗) .

This implies that

‖v‖2W∞ ≤ M̃2(‖v‖2L2(I ;Y )
+ ‖w‖2L2(I ;Y )

). (4.32)

for a constant M̃2 depending on Mρ, ‖B‖, and the embedding of Y into V ∗.
These preliminaries allow the following lower bound on L′′:

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w))

≥
∫ ∞

0
‖v‖2Y dt + α

∫ ∞

0
‖w‖2Y dt − M̃1‖ p̄‖L2(I ;V ) ‖v‖2W∞

by (4.32) ≥
∫ ∞

0
‖v‖2Y

+ α

∫ ∞

0
‖w‖2Y − M̃1M̃2‖ p̄‖L2(I ;V )

[
‖v‖2L2(I ;Y )

+ ‖w‖2L2(I ;Y )

]
= (

1 − M̃1M̃2 ‖ p̄‖L2(I ;V )

) ‖v‖2L2(I ;Y )
+ (

α − M̃1M̃2‖ p̄‖L2(I ;V )

) ‖w‖2L2(I ;Y )

≥ γ̃
[
‖v‖2L2(I ;Y )

+ ‖w‖2L2(I ;Y )

]
(4.33)
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where γ̃ = min
{
1 − M̃1M̃2‖ p̄‖L2(I ;V ), α − M̃1M̃2‖ p̄‖L2(I ;V )

}
. By possible

further reduction of δ̃2 it can be guaranteed that γ̃ > 0, see (4.27). Then by
(4.32), we obtain,

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w))

≥ γ̃

2

[
‖v‖2L2(I ;Y )

+ ‖w‖2L2(I ;Y )

]
+ γ̃

2M̃2
‖v‖2W∞ ,

≥ γ̃

2M̃2
‖v‖2W∞ + γ̃

2
‖w‖2L2(I ;Y )

.

By selecting γ̄ = min

{
γ̃

2M̃2
,
γ̃

2

}
, we obtain the positive definiteness of L′′,

i.e.

L′′(ȳ, ū, y0, p̄, p̄1)((v,w), (v,w))

≥ γ̄ ‖(v,w)‖2W∞×U , y0 ∈ BY (̃δ2), (v,w) ∈ ker E . (4.34)

Thus (H3) is satisfied.
(iv) Verification of (H4): It can easily be checked that f ′(y, u) can be extended to an

element in X∗ = L2(I ; V ∗) × (U ∩ C( Ī ;U)) for each (y, u) ∈ X = W∞ × U .
We refer to Remark 3.2 to show that the restriction of e′(y, u, y0)∗ to W ∗ satisfies
e′(y, u, y0)∗ ∈ L(W ∗, X∗) = L(W∞ × Y , L2(I ; V ∗) × (U ∩ C( Ī ;U))).

(v) Verification of (H6): This is trivially satisfied. Thus we have proved that assump-
tions (A1)-(A4) imply (H1)-(H4), and (H6) for all y0 ∈ BY (̃δ2).

(vi) Verification of (H5): Here we use (A5) and have (p, p1) = (p, p(0)) ∈ W̃∞.
Observe thatL′ : W∞×(U ∩C( Ī ;U))×Y ×W∞ → L2(I ; V ∗)×(U ∩C( Ī ;U))

evaluated at (ȳ, ū, y0, p) is given by

L′(ȳ, ū, y0, p̄) =
(

ȳ + e′(ȳ, ū, y0)∗ p̄
αū − B∗ p̄

)
=

(
ȳ − p̄t − A∗ p̄ − F ′(ȳ)∗ p̄

αū − B∗ p̄

)
.

Further for (v.w) ∈ W∞ × U we have

(L′)′(ȳ, ū, y0, p̄)(v,w)

=
(

v − [F ′(ȳ)∗]′( p̄, v)

αw

)
∈ L2(I ; V ∗) × (U ∩ C( Ī ;U)).

By (A3) and Remark 3.2 we have that L′ and (L′)′ are continuous as mappings
from W∞×(U ∩C( Ī ;U))×Y ×W∞ to L2(I ; V ∗)×(U ∩C( Ī ;U)), respectively
to L(W∞ × (U ∩ C( Ī ;U)); L2(I ; V ∗) × (U ∩ C( Ī ;U))).

This proves the lemma. ��
Remark 4.2 Let us summarize our findings so far. There exists δ̃2 such that for each
y0 ∈ BY (δ̃2) problem (P) possesses a solution (ȳ, ū) ∈ W∞ × (U ∩C( Ī ;U)), with an
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adjoint p̄ ∈ W̃∞. Further (A1)-(A5) imply (H1)-(H6) for (P) with y0 ∈ BY (δ̃2). As a
consequence for each y0 ∈ BY (δ̃2) and each associated local solution (ȳ, ū) there exists
a neighborhood V̂ of the origin in Y := L2(I ; V ∗)× (U ∩C( Ī ;U))× L2(I ; V ∗)×Y
such that for each β ∈ V̂ there exists a unique solution

(
y(β), u(β), p(β), p1(β)

) ∈
W∞ ×U × L2(I ; V )×Y to T (y, u, p, p1) = β, see step (ii) of the proof of Theorem
2.1. – To verify the remaining assumption (H7) we need to argue that

(
u(β), p(β)

) ∈
(U ∩ C( Ī ;U)) × W∞ and that β �→ (

y(β), u(β), p(β)

)
is Lipschitz continuous from

V̂ ⊂ Y to W∞ × (U ∩ C( Ī ;U)) × W∞ .

Remark 4.3 Here we remark on the smallness assumption on y0 expressed by δ2,
respectively δ̃2. The condition y0 ∈ BY (δ2) guarantees the well-posedness of (P),
existence and boundedness of adjoint states as expressed in Proposition 1. The addi-
tional condition y0 ∈ BY (δ̃2) implies that the second order optimality condition (H3)
is satisfied, for each local solution associated to an initial condition y0 ∈ BY (δ2). In the
following we formulate the results for all y0 ∈ BY (δ̃2). Alternatively we could narrow
down the claims to neighborhoods of single local solutions (ȳ, ū) with y0 ∈ BY (δ2)

and additionally assuming that the second order condition is satisfies at (ȳ, ū). Con-
cerning the second order condition itself, in some publications, see e.g. [13], it is
required to hold only for elements x = (y, u) ∈ kerE and u = u1 − u2, with u1, u2
in Uad . By a scaling argument it can easily be seen that this condition is equivalent to
the one we use.

4.3 Verification of (H7) and Lipschitz Stability of the Linearized Problem

Throughout the remainder, we assume that (A1)-(A5) are satisfied and that y0 ∈
BY (δ̃2) so that Proposition 1 and Lemma 4.7 are applicable. In the following, the
triple (y, u, p) refers to the solution T (y, u, p, p1) = β. Throughout without loss of
generality, we also assume that V̂ is bounded.

Lemma 4.8 Let assumptions (A) hold and let (ȳ, ū), and p̄ denote a local solution and
associated adjoint state to (P) corresponding to an initial datum y0 ∈ BY (δ̃2). Then
the mapping β �→ p(β) is continuous from V̂ to W∞.

Proof Step 1 : For β ∈ V̂ , with V̂ as in Remark 4.2, let (y(β), u(β), p(β), p1(β)) be
the solution to T (y, u, p, p1) = β. As a consequence of (A5) it is also a solution to
T (y, u, p, p(0)) = β with p ∈ W∞. Thus the first two equations of this latter equality
can be expressed as

−pt − A∗ p − F ′(ȳ)∗ p + y − [F ′(ȳ)∗ p̄]′(y − ȳ) = β1 in L2(I ; V ∗), (4.35a)

〈αu − B∗ p − β2, w − u〉U ≥ 0 for all w ∈ Uad , (4.35b)

where we dropped the dependence of
(
y(β), u(β), p(β)

)
on β. Since p ∈ W̃∞ ⊂

C( Ī ; Y ) inequality (4.35b) implies that u ∈ C( Ī ;U).
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Step 2 : (Boundedness of{p(β) : β ∈ V̂ }). Since V̂ is assumed to be bounded, the dis-
cussion in Remark 4.2 shows that there exists a constant M > 0 such that

∥∥y(β)

∥∥
W∞ + ∥∥u(β)

∥∥
U ≤ M for all β ∈ V̂ .

To argue the boundedness of p(β), we use similar techniques as in the proof of Propo-
sition 1. In the following δ̃, z and C1 are taken as in the proof of that proposition.

For arbitrary r ∈ R =
{

r ∈ L2(I ; V ∗) : ‖r‖L2(I ;V ∗) ≤ δ̃
}
, z denotes the solution to

zt − Az − F ′(ȳ)z − B(w − u) = −r , z(0) = 0, w = −K z. (4.36)

We know that ‖z‖W∞ ≤ C1 and ‖w‖L∞(I ;U) ≤ η independently of r ∈ R. Due to
(4.35a), we have

〈p, r〉L2(I ;V ),L2(I ;V ∗) = 〈p,−zt + Az + F ′(ȳ)z〉L2(I ;V ),L2(I ;V ∗) + 〈B∗ p, w − u〉U ,

= 〈y − [F ′(ȳ)∗ p̄]′(y − ȳ) − β1, z〉L2(I ;V ∗),L2(I ;V )

+ 〈αu − β2, w − u〉U , (4.37)

where we used (4.35b) and the feasibility of w ∈ Uad . Consequently

〈p, r〉L2(I ;V ),L2(I ;V ∗) ≤ ‖z‖L2(I ;V )

(‖y‖L2(I ;V ∗)

+‖β1‖L2(I ;V ∗) + ∥∥[F ′(ȳ)∗ p̄]′(y − ȳ)
∥∥

L2(I ;V ∗)

)
+ (

α ‖u‖U + ‖β2‖U
) ‖w − u‖U .

The right hand side is uniformly bounded for β in the bounded set V̂ and w.r.t. r ∈ R.

Hence taking the supremum w.r.t. r ∈ R we verified that
{∥∥p(β)

∥∥
L2(I ;V ∗) : β ∈ V̂

}
is bounded. Boundedness of

{∥∥p(β)

∥∥
W∞ : β ∈ V̂

}
follows from (4.35a).

Step 3 : (Continuity of p(β)inW∞).Let {βn} be a convergent sequence in V̂ with limit

β. Since
{∥∥p(β)

∥∥
W∞ : n ∈ N

}
is bounded, there exists a subsequence {βnk

} such that
p(βnk

)⇀ p̃ weakly in W∞ and strongly L2(I ; Y ). Here we need the compactness of

W∞ in L2(I ; Y ), see e.g. [11,Satz 8.1.12, p. 213]. Passing to the limit in the variational
form of

−∂t p(βnk
) − A∗ p(βnk

) − F ′(ȳ)∗ p(βnk
) + y − [F ′(ȳ)∗ p̄]′

(
y(βnk

) − ȳ
)

= (βnk
)1,

we obtain

− ∂t p̃ − A∗ p̃ − F ′(ȳ)∗ p̃ + y(β) − [F ′(ȳ)∗ p̄]′ (y(β) − ȳ
) = (β)1. (4.38)

Since the solution to this equation is unique we have p(βn)⇀p(β) weakly in W∞. To
obtain strong convergencewe set δβ = βn −β, δ p = p(βn)− p(β), δy = y(βn)−y(β).
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From (4.35a) we derive that

− ∂t (δ p) − A∗(δ p) − F ′(ȳ)∗(δ p) + (I − [F ′(ȳ)∗ p̄)]′(δy) = (δβ)1. (4.39)

Consider again (4.36) with r ∈ R. Then we obtain

〈δ p, r〉L2(I ;V ),L2(I ;V ∗) = 〈(I − [F ′(ȳ)∗ p̄]′)(δy)

−(δβ)1, z〉L2(I ;V ∗),L2(I ;V ) + 〈δ p, BK z − ū〉U .

This implies that for some C2 > 0,

sup
r∈R

〈δ p, r〉L2(I ;V ),L2(I ;V ∗)

≤ C2
(‖δy‖W∞ + ‖δ p‖L2(I ;Y ) + ‖(δβ)1‖L2(I ;V ∗)

)
. (4.40)

Since ‖δy‖W∞ → 0, ‖δ p‖L2(I ;Y ) → 0, ‖(δβ)1‖L2(I ;V ∗) → 0 for n → 0 this implies
that ‖δ p‖L2(I ;V ) → 0. Together with (4.39) this implies that lim

n→∞ ‖δ p‖W∞ = 0. ��

Proposition 2 Let assumptions (A) hold and let (ȳ, ū), and p̄ denote a local solution
and associated adjoint state state to (P) corresponding to an initial condition ȳ0 ∈
BY (δ̃2). Then there exists ε > 0 and C > 0 such that for all β̂ and β ∈ V̂ ∩ BY (ε)

∥∥∥ŷ
(β̂)

− y(β)

∥∥∥
W∞

+
∥∥∥ p̂

(β̂)
− p(β)

∥∥∥
W∞

+
∥∥∥u

(β̂)
− u(β)

∥∥∥
C( Ī ;U)

≤ C

(∥∥∥ŷ
(β̂)

− y(β)

∥∥∥
W∞

+
∥∥∥u

(β̂)
− u(β)

∥∥∥
U

+
∥∥∥β̂ − β

∥∥∥Y
)

(4.41)

holds.

Proof Since p̄ ∈ W∞ and lim
t→∞ p̄(t) = 0 in Y , there exists T > 0 such that

1

α

∥∥B∗ p̄(t)
∥∥

Y ≤ η

2
, ∀t > T .

Since p(0) = p̄ and since by Lemma 4.8, β ∈ Y �→ p(β) ∈ W∞ ⊂ C( Ī ; Y ) is
continuous, there exists ε > 0 such that

1

α

∥∥B∗ p(β)(t) + β2(t)
∥∥

Y ≤ η

4
, ∀t ≥ T , ∀β ∈ V̂ ∩ BY (ε).

Consequently the constraints are inactive for these parameter values, i.e. we have

u(β)(t) = 1

α

[
B∗ p(β)(t) + β2(t)

]
,
∥∥u(β)(t)

∥∥
Y ≤ η, ∀t ≥ T , ∀β ∈ V̂ ∩ BY (ε).

(4.42)
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Wenext treat separately the cases [0, T ) and [T ,∞).We consider first the case [T ,∞)

and set (y, u, p) = (
y(β), u(β), p(β)

)
, and

(
ŷ, û, p̂

) =
(

ŷ
(β̂)

, û
(β̂)

, p̂
(β̂)

)
. We shall

use that

∥∥ p̂ − p
∥∥

L2(T ,∞;V )
= sup

‖r‖L2(T ,∞;V ∗)
≤1

∫ ∞

T
〈 p̂(t) − p(t), r(t)〉V ,V ∗dt .

Let z ∈ W (T ,∞) be such that,

zt − (A − BK )z − F ′(ȳ)z = r , z(T ) = 0,

From Lemma 4.6, see also the proof of Proposition 1, we know that there exists a
constant C1 > 0 such that ‖z‖W (T ,∞) ≤ C1 ‖r‖L2(T ,∞;V ∗). Then we can estimate

∥∥ p̂ − p
∥∥

L2(T ,∞;V )

= sup
‖r‖L2(T ,∞;V ∗)

≤1

∫ ∞

T
〈 p̂ − p, r〉V ,V ∗dt

≤ sup
‖r‖≤1

∫ ∞

T
−〈( p̂t − pt ) + A∗( p̂ − p) + F ′(ȳ)∗( p̂ − p), z〉V ∗,V dt

+ sup
‖r‖≤1

∫ ∞

T
〈B∗( p̂ − p), K z〉V ,V ∗dt .

In the following, Ci denote constants independent of β̂ and β ∈ V̂ ∩ BY (ε). From
(4.35a) and (4.42) we obtain, for C2 > 0,

∥∥ p̂ − p
∥∥

L2(T ,∞;V )

≤ C2 sup
‖r‖≤1

∫ ∞

T

[∥∥ŷ − y
∥∥

V ∗ + ∥∥[F ′(ȳ)∗ p̄]′(ŷ − y)
∥∥

V ∗ +
∥∥∥β̂1 − β1

∥∥∥
V ∗

+
∥∥∥β̂2 − β2

∥∥∥
U∩C(I ;U)

+ α
∥∥B∗∥∥ ‖K‖ ∥∥û − u

∥∥] ‖z‖V dt .

From (A3) recall that
∥∥[F ′(ȳ)∗ p̄]′(ŷ − y)

∥∥
L2(I ;V ∗) ≤ C3

∥∥ŷ − y
∥∥

W∞ . This gives the
following estimate for C4 > 0,

∥∥ p̂ − p
∥∥

L2(T ,∞;V )
≤ C4

(∥∥ŷ − y
∥∥

W∞ + ∥∥û − u
∥∥

U +
∥∥∥β̂ − β

∥∥∥Y
)

. (4.43)

By (4.35a) we have
(

p̂t − pt
) ∈ L2(T ,∞; V ∗). Then we obtain p̂ − p ∈ W (T ,∞).

Then there exists C5 > 0 independent of β̂ and β ∈ V̂ ∩ BY (ε) such that,

∥∥ p̂ − p
∥∥

W (T ,∞)
≤ C5

(∥∥ŷ − y
∥∥

W∞ + ∥∥û − u
∥∥

U +
∥∥∥β̂ − β

∥∥∥Y
)

. (4.44)
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By the embedding W (T ,∞) ⊂ C(T ,∞; Y ), there exists a constant C6 > 0:

∥∥ p̂ − p
∥∥

C([T ,∞);Y )
≤ C6

(∥∥ŷ − y
∥∥

W∞ + ∥∥û − u
∥∥

U +
∥∥∥β̂ − β

∥∥∥Y
)

. (4.45)

Similarly, we estimate on [0, T ]:

∥∥ p̂ − p
∥∥

L2(0,T ;V )
= sup

‖r‖L2(0,T ;V ∗)
≤1

∫ T

0
〈 p̂ − p, r〉V ,V ∗dt . (4.46)

Choose z as

zt − (
Az + F ′(ȳ)z

) = r , z(0) = 0,

Then there exists C7 > 0 such that ‖z‖W (0,T ) ≤ C7 ‖r‖L2(0,T ;V ∗) by Lemma 4.6.
Note that C7 depends on T , but T is fixed. We obtain the following estimate,

∥∥ p̂ − p
∥∥

L2(0,T ;V )

≤ sup
‖r‖≤1

∫ T

0
−〈( p̂t − pt ) + A∗( p̂ − p) + F ′(ȳ)∗( p̂ − p), z〉V ∗,V dt

+ ∥∥ p̂(T ) − p(T )
∥∥

Y ‖z(T )‖Y .

Then by a similar computation to that for the t ∈ [T ,∞) case, we obtain,

∥∥ p̂ − p
∥∥

L2(0,T ;V )
≤ C8

(∥∥ŷ − y
∥∥

W∞ +
∥∥∥β̂1 − β1

∥∥∥
L2(I ;V ∗)

)
+ ∥∥ p̂(T ) − p(T )

∥∥
Y ‖z(T )‖Y . (4.47)

By (4.45) with ‖z(T )‖Y ≤ C9, we obtain

∥∥ p̂(T ) − p(T )
∥∥

Y ‖z(T )‖Y ≤ C7C9

(∥∥ŷ − y
∥∥

W∞ + ∥∥û − u
∥∥

U +
∥∥∥β̂ − β

∥∥∥Y
)

.

Combining this estimate with (4.43) and (4.47), we obtain for some C10 > 0

∥∥∥ p̂
(β̂)

− p(β)

∥∥∥
W∞

≤ C10

(∥∥∥ŷ
(β̂)

− y(β)

∥∥∥
W∞

+
∥∥∥û

(β̂)
− u(β)

∥∥∥
U

+
∥∥∥β̂ − β

∥∥∥Y
)

.

(4.48)

We also have

u(β) = PUad

[
− 1

α

(
B∗ p(β) + β2

)] ∈ U ∩ C( Ī ;U),
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and thus∥∥∥û
(β̂)

(t) − u(β)(t)
∥∥∥U

≤
∥∥∥∥PUad

[
− 1

α

(
B∗ p̂

(β̂)
(t) + β̂2(t)

)]
− PUad

[
− 1

α

(
B∗ p(t)(β) + β2(t)

)]∥∥∥∥U
≤ 1

α

(∥∥B∗∥∥ ∥∥∥ p̂
(β̂)

(t) − p(t)(β)

∥∥∥
Y

+
∥∥∥β̂2(t) − β2(t)

∥∥∥U
)

.

This yields

∥∥∥û
(β̂)

− u(β)

∥∥∥
C( Ī ;U)

≤ C11

(∥∥∥ p̂
(β̂)

− p(β)

∥∥∥
W∞

+
∥∥∥β̂2 − β2

∥∥∥
C( Ī ;U)

)
, (4.49)

and (4.41) follows. Combining Remark 4.2 and (4.41) there exists a constant L such
that∥∥∥ŷ

(β̂)
− y(β)

∥∥∥
W∞

+
∥∥∥ p̂

(β̂)
− p(β)

∥∥∥
W∞

+
∥∥∥û

(β̂)
− u(β)

∥∥∥
U∩C( Ī ;Y )

≤ L
∥∥∥β̂ − β

∥∥∥Y
(4.50)

for all β̂ and β ∈ V̂ ∩ BY (ε). Here and in the following the p1 coordinate of the
adjoint state coincides with p(0). Therefore it is not indicated. ��
With the above proposition, the verification of (H1)–(H7) is concluded.We also obtain
the following corollary to Theorem 2.1.

Corollary 4.9 Let assumptions (A) hold and let (ȳ, ū) be a local solution of (P) cor-
responding to an initial datum ȳ0 ∈ BY (δ̃2). Then there exist δ3 > 0, a neighborhood
Û = Û (ȳ, ū, p) ⊂ W∞ × (U ∩ C( Ī ;U)) × W∞, and a constant μ > 0 such that for
each y0 ∈ BY (ȳ0, δ3) there exists a unique (y(y0), u(y0), p(y0)) ∈ Û satisfying the
first order condition, and

∥∥(y(ŷ0), u(ŷ0)), p(ŷ0))
) − (y(ỹ0), u(ỹ0), p(ỹ0)))

∥∥
W∞×(U∩C( Ī ;U))×W∞

≤ μ
∥∥ŷ0 − ỹ0

∥∥
Y , (4.51)

for all ŷ0, ỹ0 ∈ BY (ȳ0, δ3), and (y(y0), u(y0)) is a local solution of (P).

Next we obtain one of the main results of this paper, the Fréchet differentiability of
the local value function associated to (P). By referring to a local value function we
pay attention to the fact that for some y0 ∈ BY (δ̃2), problem (P) may not admit a
unique solution. But since due to the second order optimality condition local solutions
are locally unique under small perturbations of y0, there is a well-defined local value
function. We continue to use the notation for Û and BY (ȳ0, δ3) of Corollary 4.9.

Theorem 4.10 (Sensitivity of Cost) Let assumptions (A) hold and let (ȳ, ū) be a local
solution of (P) corresponding to an initial datum ȳ0 ∈ BY (δ̃2). Then for each y0 ∈
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BY (ȳ0, δ3) the local value function V associated to (P) is Fréchet differentiable with
derivative given by

V ′(y0) = −p(0; y0). (4.52)

Proof Let ȳ0 ∈ BY (δ̃2), y0 ∈ BY (ȳ0, δ3), and choose δy0 sufficiently small so that
y0 + δy0 ∈ BY (ȳ0, δ3) as well. Following Corollary 4.9 let (ỹ(y0 + s(δy0)), ũ(y0 +
s(δy0)), p̃(y0 + s(δy0))) ∈ Û for s ∈ [0, 1] be solutions of the optimality system with
(ỹ(y0 + s(δy0)), ũ(y0 + s(δy0))) local solutions to (P). We obtain

V(y0+s(δy0))−V(y0) =
(
1

2
‖ỹ‖2L2(I ,Y )

+ α

2
‖ũ‖2U

)
−

(
1

2
‖y‖2L2(I ,Y )

+ α

2
‖u‖2U

)
= 〈y, ỹ − y〉L2(I ,Y ) + α〈u, ũ − u〉U

+1

2
‖ỹ − y‖2L2(I ,Y )

+ α

2
‖ũ − u‖2U . (4.53)

Observe the identity

〈y, ỹ − y〉L2(I ,Y ) + α〈u, ũ − u〉U

= −(p(0), s(δy0))Y −〈(ỹt − yt ) − A(ỹ − y) − F ′(y)(ỹ − y), p〉
+α〈u, ũ − u〉U

= −(p(0), s(δy0))Y −〈F(ỹ) − F(y) − F ′(y)(ỹ − y), p〉L2(I ;V ∗),L2(I ;V )

+〈αu − B∗ p, ũ − u〉U ,

where p = p(y0). Now we have for V(y0 + s(δy0)) − V(y0),

V(y0 + s(δy0)) − V(y0)

= −(p(0), s(δy0))Y + 〈F(y) − F(ỹ) + F ′(y)(ỹ − y), p〉L2(I ,V ∗),L2(I ,V )

+〈αu − B∗ p, ũ − u〉U + 1

2
‖ỹ − y‖2L2(I ,Y )

+ α

2
‖ũ − u‖2U . (4.54)

Since p ∈ L2(I ; V ), ‖ỹ − y‖W∞ = O(s), and by the continuous Fréchet differentia-
bility of F ′ due to (A3) we have

∣∣〈F(ỹ) − F(y) + F ′(y)(ỹ − y), p〉L2(I ,V ∗),L2(I ,V )

∣∣ = o(s) (4.55)

Let sn → 0 be an arbitrary convergent sequence. By Corollary 4.9 we have that

‖ũ(y0 + sn(δy0)) − u(y0)‖U ≤ μsn(δy0)

for all sn sufficiently small. Hence there exists a subsequence, denoted by the same
notation and some u̇ such that

s−1
n (ũ(y0 + sn(δy0)) − u(y0)) ⇀u̇ weakly in U .
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Using (4.18), we have

lim
n→∞ s−1

n 〈αu − B∗ p, ũ − u〉U = 〈αu − B∗ p, u̇〉U ≥ 0.

Analogously

lim
n→∞ s−1

n 〈αũ − B∗ p, u − ũ〉U = 〈αu − B∗ p, u̇〉U ≤ 0.

and hence 〈αu − B∗ p, u̇〉U = 0. Since the sequence {sn} is arbitrary, we obtain

〈αu − B∗ p, ũ − u〉U = o(s). (4.56)

Corollary 4.9 yields,

‖ỹ(y0 + sn(δy0)) − y(y0)‖2L2(I ;Y )
+ α ‖ũ(y0 + sn(δy0)) − u(y0)‖2L2(I ;Y )

= o(sn).

(4.57)

Combining (4.55), (4.56), and (4.57) we obtain

lim
s→0+ s−1 (V(y0 + s(δy0)) − V(y0)) = −(p(0), (δy0))Y . (4.58)

This implies the Gateaux differentiability. Since y0 → p(y0) is continuous from
BY (ȳ0; δ3) toC( Ī , Y ) themapping y0 → V(y0) is Fréchet differentiable in BY (ȳ0; δ3).

��

Remark 4.4 (Sensitivity w.r.t. other parameters) We have developed a technique to
verify the continuous differentiability of the local value function V pertaining to a
semilinear parabolic equation on infinite time horizon subject to control constraints
with respect to small initial data y0 ∈ Y . Thus the parameter q in (Pq ) is the initial
condition y0. The reason to focus on this case is due to feedback control.Withoutmuch
additional effort the sensitivity analysis of the value function could be carried out with
respect to other parameters as for instance additive noise on the right hand side of the
state equation. The papers cited in the introduction, see e.g. [14, 15], consider such
situations for the finite horizon case.

5 Proof of Theorem 3.2: Derivation of the HJB Equation

Utilizing the results established so far we now verify that the (global) value function V
(i.e. the value function associated to globalminima) is a solution to aHamilton–Jacobi–
Bellman equation. The initial conditions will be chosen from the neighborhood Y0 of
the origin in Y so that the assertions of Theorem 4.10 and Corollary 4.9 are available.
It will be convenient to recall the dynamic programming principle for the infinite time
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horizon problem: let y0 be an initial condition for which a solution to (P) exists. Then
for all τ > 0, we have

V(y0) = inf
u∈L2(0,τ ;Uad )

∫ τ

0
�(S(u, y0; t), u(t))dt + V(S(u, y0; τ)), (5.1)

where �(y, u) = 1

2
‖y‖2Y + α

2
‖u‖2U , and S(u, y0; t) denotes the solution to (3.2b),

(3.2c) on (0, τ ].
For convenience we restate Theorem 3.2. Utilizing the notation that we have already
established we can now slightly ease the assumption on the regularity of F(ȳ).

Theorem 5.1 Let assumptions (A) hold and let (ȳ, ū) be a global solution of (P)
corresponding to an initial datum ȳ0 ∈ BY (δ̃2). Let Y0 denote the subset of initial
conditions in BY (ȳ0, δ3) which allow global solutions in Û , and assume that for each
y0 ∈ D(A) ∩ Y0 there exists Ty0 > 0 such that F(ȳ) ∈ C([0, Ty0); Y ). Then the
following Hamilton–Jacobi–Bellman equation holds at y0:

V ′(y)(Ay + F(y)) + 1

2
‖y‖2Y + α

2

∥∥∥∥PUad

(
− 1

α
B∗V ′(y)

)∥∥∥∥
2

Y

+
〈

B∗V ′(y),PUad

(
− 1

α
B∗V ′(y)

)〉
Y

= 0. (5.2)

If for the optimal trajectory ȳ(t) ∈ BY (ȳ0, δ3) ∩ D(A) for a.a. t ∈ (0,∞) and
Ty0 = ∞, then (5.2) holds at a.a. t ∈ (0,∞) and

ū(t) = PUad

(
− 1

α
B∗V ′(ȳ(t))

)
. (5.3)

Proof The proof is similar to that of [5,Proposition 10]. For the sake of completeness
and since it also requires some changes we provide it here. Choose and fix some
y0 ∈ D(A) ∩ Y0. Then the existence of a (globally) optimal pair (ŷ, û) ∈ W∞ × Uad

to (P) and of an associated adjoint state p̂ ∈ W∞ with (ŷ, û, p̂) ∈ Û are guaranteed,

see Corollary 4.9. In particular we have that û(t) = PUad

(
1

α
B∗ p̂(t)

)
, and since

p̂ ∈ C([0,∞); Y ) we have that û ∈ C([0,∞); Y ). Let u0 denote the limit of û as
time t tends to 0. Since ŷ ∈ C([0,∞); Y ) and since BY (y0, δ3) is open there exists
τy0 > 0 such that ŷ(t) ∈ BY (y0, δ3), for all t ∈ [0, τy0).
Step 1 : Let us first prove that

V ′(y0)
(
Ay0 + F(y0) + Bu0

) + �(y0, u0) = 0. (5.4)

For this purpose we invoke the dynamic programing principle: We have

1

τ

∫ τ

0
�(ŷ(s), û(s))ds + 1

τ

(
V(ŷ(τ )) − V(y0)

) = 0, (5.5)
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where we choose τ ∈ (0,min(Ty0 , τy0)) . By continuity of ŷ and û at time 0, the first
term converges to �(y0, u0) as τ → 0. To take τ → 0 in the second term we first
consider

1

τ

(
ŷ(τ ) − y0

) = 1

τ

(
eAτ y0 − y0

) + 1

τ

∫ τ

0
eA(τ−s)[F(ŷ(s)) + Bû(s)

]
ds. (5.6)

Using the facts that y0 ∈ D(A), that the terms in square brackets are continuous with
values in Y , and thatA generates a strongly continuous semigroup on Y , we can pass
to the limit in (5.6) to obtain that

lim
τ→0+

1

τ

(
ŷ(τ ) − y0

) = Ay0 + F(y0) + Bu0 in Y . (5.7)

Now we return to the second term in (5.5) which we express as

1

τ

(
V(ŷ(τ )) − V(y0)

) =
∫ 1

0
V ′(y0 + s(ŷ(τ ) − y0)

)
ds

1

τ
(ŷ(τ ) − y0). (5.8)

Using (5.7) and since y → V ′(y) is continuously differentiable at y0, we can pass to
the limit in (5.8) to obtain

lim
τ→0+

1

τ

(
V(ŷ(τ )) − V(y0)

) = V ′(y0)
(
Ay0 + F(y0) + Bu0

)
. (5.9)

Now we can pass to the limit in (5.5) and obtain (5.4).
Step 2 : For u ∈ Uad we define ũ ∈ Uad by,

ũ(τ, x) =
{

u for τ ∈ (0, 1)

0 for τ ∈ [1,∞)

and define ỹ = S(y0, ũ) as the solution to (3.2b), (3.2c). Then ỹ(t) ∈ BY (ȳ0, δ3), for
all t sufficiently small, and by (5.1) we have,

1

τ

∫ τ

0
�(ỹ(s), u(s))ds + 1

τ

(
V(ỹ(τ )) − V(y0)

) ≥ 0,

for all τ sufficiently small. We pass to the limit τ → 0+ with the same arguments as
in Step 1 and obtain

V ′(y0)
(
Ay0 + F(y0) + Bu

) + �(y0, u) ≥ 0. (5.10)

This inequality becomes an equality if u = u0, and thus the quadratic function on the
left had side of (5.10) reaches its minimum 0 at u = u0. This implies that

u0 = PUad

(
− 1

α
B∗V ′(y0)

)
.
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Inserting this expression into (5.4) we obtain

V ′(y0)(Ay0 + F(y0)) + 1

2
‖y0‖2Y + α

2

∥∥∥∥PUad

(
− 1

α
B∗V ′(y0)

)∥∥∥∥
2

Y

+
〈

B∗V ′(y0),PUad

(
− 1

α
B∗V ′(y0)

)〉
Y

= 0. (5.11)

Under the additional assumptions on the trajectory, (5.3) follows.
��

6 Some Applications

In this section we discuss the applicability of the framework in two specific cases.
It should be noted that even for linear state equations, the sensitivity result for the
constraint infinite horizon optimal control problem may be new.

6.1 Fisher’s Equation

We consider the optimal stabilization problem for the Fisher equation in an open
connected bounded domain � in R

d , d ∈ {1, 2, 3, 4}, with Lipschitzian boundary

 = ∂�:

(PFis) V(y0) = min
(y, u) ∈ W∞ × Uad

1

2

∫ ∞

0
‖y‖2Y dt + α

2

∫ ∞

0
‖u‖2U dt, (6.1a)

subject to

⎧⎪⎨
⎪⎩

yt = �y + y(1 − y) + Bu in Q = (0,∞) × �

y = 0 on � = (0,∞) × 


y(0) = y0 in �.

(6.1b)

(6.1c)

(6.1d)

where U andUad are as in Sect. 3.1, B ∈ L(U , Y ), with Y = L2(�) and V = H1
0 (�).

To further cast this problem in the framework of Sect. 3, we define the operator

Ay = (� + I)y and y|
 = 0, D(A) = H2(�) ∩ V .

Clearly A has an extension as operator A ∈ L(V , V ∗). Moreover it generates an
analytic semigroup on Y . Thus (A1) holds. For U = Y and B = I, condition (A2)
is trivially satisfied. Feedback stabilization by finite dimensional controllers was ana-
lyzed in [24], for example.
It can readily be checked that the nonlinearity F(y) = −y2 is twice continuously
differentiable as mapping F : W∞ → L2(I ; V ∗). The first and second derivatives of
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F are given by,

F ′(y)v1 = 2yv1, F ′′(y)(v1, v2) = 2(v1, v2), for y, v1, v2 ∈ W∞.

Since the second derivative is independent of y, its boundedness is automatic. For
the sake of illustration we verify the boundedness of the bilinear form of the second
derivative on W∞ × W∞. For this purpose, for arbitrary y ∈ W∞, v1, v2 ∈ W∞, φ ∈
L2(I ; V ) we estimate

∫ ∞

0
〈F ′′(y)(v1, v2), φ〉V ∗,V dt

≤ 2
∫ ∞

0

∫
�

v1v2φ dxdt ≤
∫ ∞

0
‖v1‖L2(�) ‖v2‖L4(�) ‖φ‖L4(�) dt,

≤ C1 ‖v1‖W∞

∫ ∞

0
‖v2‖V ‖φ‖V dt ≤ C2 ‖v1‖W∞ ‖v2‖L2(I ;V ) ‖φ‖L2(I ;V ) ,

≤ C3 ‖v1‖W∞ ‖v2‖W∞ ‖φ‖L2(I ;V ) ,

(6.2)

where Ci are embedding constants, independent of y ∈ W∞, v ∈ W∞, φ ∈ L2(I ; V ).
We use that V embeds continuously into L4(�) in dimension up to 4. This implies that∥∥F ′′(y)(v1, v2)

∥∥
L2(I ;V ∗) ≤ C3 ‖v1‖W∞ ‖v2‖W∞ . Finally we have F(0) = F ′(0) = 0

and thus (A3) and (3.3) are satisfied.
Turning to (A4) we show that F(y) : W (0, T ) → L1(0, T ; V ∗) is continuous for
every T > 0. We consider the sequence yn⇀ŷ in W∞ and let z ∈ L∞(0, T ; V ) be
given. Then we estimate

∫ T

0
〈F(yn) − F(ŷ), z〉V ∗,V dt

=
∫ T

0
〈y2n − ŷ2, z〉V ∗,V =

∫ T

0

∫
�

(yn − ŷ)(yn + ŷ)z dxdt

≤ C4

∫ T

0

∥∥yn − ŷ
∥∥

Y

∥∥yn + ŷ
∥∥

L4(�)
‖z‖L4(�) dt

≤ C4
∥∥yn − ŷ

∥∥
L2(0,T ;Y )

[
‖yn‖L2(0,T ;V ) + ∥∥ŷ

∥∥
L2(0,T ;V )

]
‖z‖L∞(0,T ;V ) .

Since V is compactly embedded in Y , we obtain by the Aubin Lions lemma that∥∥yn − ŷ
∥∥

L2(0,T ;Y )
→ 0 for n → ∞. This implies

∫ T

0
〈F(yn) − F(ŷ), z〉V ∗,V dt −−−→

n→∞ 0,

and (A4) follows. It is simple to check that F ′(ȳ) = 2 ȳ ∈ L(L2(I ; V ), L2(I ; V ∗))
and thus (A5) holds as well.
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We turn to the assumption F(ȳ) ∈ C([0, Ty0); Y ), for y0 ∈ D(A) and some Ty0 ,
arising in Theorem 3.2 for y0 ∈ D(A). Utilizing the fact that V embeds continuously
into L4(�) in dimension d ≤ 4 and ȳ ∈ L2(I ; V ), we have F(ȳ) ∈ L2(I ; Y ).
Hence parabolic regularity theory implies that ȳ ∈ C([0,∞); V ) for y0 ∈ V , and
F(ȳ) ∈ C([0,∞); Y ) follows.

Remark 6.1 The specificity of this example rests in the fact that the second derivative is
independent of the point were it is taken. Other nontrivial cases of analogous structure
are reaction diffusion systems with bilinear coupling, see [13] where the finite horizon
case was treated. Even the case of the Navier Stokes equations falls in this category.
Sensitivity for the infinite horizon problems was treated by independent techniques in
[6].

6.2 Nonlinearities Induced by Functions with Globally Lipschitz Continuous
Second Derivative

Consider the system (P) with A associated to a strongly elliptic second order
operator with domain H2(�) ∩ H1

0 (�), so that (A1)–(A2) are satisfied. Let F :
W∞ → L(I ; V ∗) be the Nemytskii operator associated to a mapping f : R → R

which is assumed to be C2(R) with first and second derivatives globally Lips-
chitz continuous, and second derivative globally bounded. The regularity assumption
F(ȳ) ∈ C([0, Ty0); Y ) for y0 ∈ V = H1

0 (�) is satisfied by parabolic regularity the-
ory. We discuss assumption (A3)–(A5) for such an F , and show that they are satisfied
for dimensions d ∈ {1, 2}. For the finite horizon problem it will turn out that d = 3 is
also admissible. By direct calculation it can be checked thatF is continuously Fréchet
differentiable for d ∈ {1, 2, 3}. We leave this part to the reader and immediately turn
to the second derivative.
We proceed by considering the general dimension d to highlight, how the restrictions
on the dimension arise. Thus let d ∈ N with d > 1. The case d = 1 can be treated
with minor modifications from those in the following steps.

6.2.1 Second Derivative ofF(y)

For y, h1, h2 ∈ W∞ the relevant expression is given by

∥∥F ′(y + h2)h1 − F ′(y)h1 − F ′′(y)(h1, h2)
∥∥

L2(I ;V ∗)
= sup

‖ϕ‖L2(I ;V )
≤1

〈F ′(y + h2)h1 − F ′(y)h1 − F ′′(y)(h1, h2), ϕ〉L2(I ;V ∗),L2(I ;V )

= sup
‖ϕ‖L2(I ;V )

≤1

∫ ∞

0

∫
�

(f′(y(t, x) + h2(t, x))

−f′(y(t, x)) − f′′(y(t, x))h2(t, x))h1(t, x)ϕ(t, x)dxdt

= sup
‖ϕ‖L2(I ;V )

≤1

∫ ∞

0

∫
�

g(t, x) h2(t, x)h1(t, x)ϕ(t, x)dxdt,
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where g(t, x) =
∫ 1

0
(f′′(y(t, x) + sh2(t, x)) − f′′(y(t, x)))ds.

Note that g is bounded on I × � and g ∈ W∞. Here we use that f′′ is globally
Lipschitz continuous and that h1 ∈ W∞. Henceforth we let r ∈ (1, 2d

d−2 ] so that

W 1,2(�) ⊂ Lr (�) continuously. Let r ′ denote the conjugate of r so that r ′ ∈ [ 2d
d+2 ,∞)

for d > 2 and r ′ ∈ (1,∞) for d = 2. We further choose ρ > 1, σ > 2 such that
1
ρ

+ 2
σ

= 1. Then we estimate

∣∣∣∣
∫ ∞

0

∫
�

gh1h2ϕ dxdt

∣∣∣∣
≤

∫ ∞

0

(∫
�

|gh1h2|r ′
dx

)1/r ′
‖ϕ(t)‖Lr (�) dt

≤
(∫ ∞

0

(∫
�

|gh1h2|r ′
dx

)2/r ′
dt

)1/2 (∫ ∞

0
‖ϕ‖2Lr (�) dt

)1/2

.

This further implies that

∣∣∣∣
∫ ∞

0

∫
�

gh1h2ϕ dxdt

∣∣∣∣
≤ C0

[∫ ∞

0
‖g(t)‖2

Lr ′ρ(�)
‖h1(t)‖2Lr ′σ (�)

‖h2(t)‖2Lr ′σ (�)
dt

]1/2

‖ϕ‖L2(I ;V ) ←−(a).

(6.3)

Here and below Ci , i = 0, 1, 2, . . . denote constant which are independent of
y, ϕ, h1, h2. We next recall Gagliardo’s inequality [3,p 173]:

‖u‖Lq (�) ≤ ‖u‖1−d/q−d/2

L2(�)
‖u‖d/2+2/q

W 1,2(�)
, for all q > 2, and u ∈ W 1,2(�) ≡ V ,

where q ∈ [2, 2∗] and

q∗

⎧⎪⎨
⎪⎩

∈ [2,∞] for d = 1,

∈ [2,∞) for d = 2,

∈ [2, 2d
d−2 ], for d > 2.

In the above estimate we take, q = r ′σ . We obtain

1 + d

q
− d

2
= (2 − d)r ′σ + 2d

2r ′σ
,

d

2
− d

q

= d(r ′σ − 2)

2r ′σ
, also r ′σ > 2, (2 − d)r ′σ + 2d > 0.
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We estimate (6.3), (and check the conditions on the ranges of the parameters below)

sup
‖ϕ‖L2(I ;V )

≤1
(a)

= C1

(∫ ∞

0
‖g(t)‖2

Lr ′ρ(�)

(‖h1(t)‖L2(�) ‖h2(t)‖L2(�)

) (2−d)r ′σ+2d
r ′σ

(‖h1(t)‖V ‖h2(t)‖V )
d(r ′σ−2)

r ′σ
)1/2

dt

≤ C2
(‖h1‖W∞ ‖h2‖W∞

) (2−d)r ′σ+2d
2r ′σ(∫ ∞

0
‖g(t)‖2

Lr ′ρ(�)
(‖h1(t)‖V ‖h2(t)‖V )

d(r ′σ−2)
r ′σ

)1/2

dt ←− (b)

We set d(r ′σ−2)
r ′σ = 2

3 . This yields,

(b) ≤ C3
(‖h1‖W∞ ‖h2‖W∞

)2/3 (‖h1‖W∞ ‖h2‖W∞
)1/3 (∫ ∞

0
‖g(t)‖6

Lr ′ρ(�)

)1/6

dt

= C4 ‖h1‖W∞ ‖h2‖W∞

(∫ ∞

0

(∫
�

|g(t)|r ′ρ dx

)6/r ′ρ
dt

)1/6

. (6.4)

Now we check the conditions on the parameter r , σ, d , and r ′, σ . Since d(r ′σ−2)
r ′σ = 2

3 ,
together with the conditions on r ′ and σ these parameters need to satisfy

r ′σ = 6d

3d − 2
, r ′ ∈

[
2d

d + 2
,∞

)
, σ ∈ (2,∞) r ′σ ∈ [2, 2∗], (6.5)

and r ′ > 1 if d = 2. The last condition above holds without restricting the dimension
d. From the first three relations we infer that necessarily 6d

3d−2 = r ′σ > 4d
d+2 which is

only possible for d ≤ 3.
Let us focus on d = 2. Then the choice of parameters r = 6, r ′ = 6/5, σ = 5/2, ρ = 5
satisfies all the above requirements and it is convenient to further estimate (6.4). In
fact we obtain

∥∥F ′(y + h2)h1 − F ′(y)h1 − F ′′(y)(h1, h2)
∥∥

L2(I ;V ∗)

≤ C5 ‖h1‖W∞ ‖h2‖W∞

(∫ ∞

0

(∫
�

|g(t, x)|6 dx

)
dt

)1/6

≤ C6 ‖h1‖W∞ ‖h2‖W∞

(∫ ∞

0

(∫
�

|g(t, x)|2 dx

)
dt

)1/6

for all y, h1, h2 ∈ W∞. Here we use the boundedness of g. By Lebesgue’s bounded
convergence theorem the last factor converges to 0 for ‖h2‖W∞ → 0 and hence the
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fact that F is twice differentiable is verified. The continuity of the second derivative
follows with the above estimates and again by the Lebesgue theorem.
Next we consider d = 3. In this case an analogous procedure is not possible, since
the relations (6.5) and r ′ρ ≤ 6 cannot be fulfilled simultaneously. In fact, r ′σ =
18/7, r ′ ≥ 6/5, and thus necessarily σ ∈ (2, 15/7]. The condition r ′ρ ≤ 6 is equivalent
to 12 ≤ σ(6 − r ′) = 18/7r ′(6 − r ′), which in turn is equivalent to 17r ′ ≤ 18, which
contradicts r ′ ≥ 6/5.
Thus we fix parameters r and σ such that (6.5) are satisfied for d = 3, as for instance
r ′ = 6/5, σ = 15/7, which implies that ρ = 15 and r ′ρ = 18. Then for the finite
horizon problem we can estimate by Hölder’s inequality with η = r ′ρ/6:

(b) ≤ C7 ‖h1‖W∞ ‖h2‖W∞

(∫ T

0

(∫
�

|g(t, x)|2 dx

)6/r ′ρ
dt

)1/6

≤ C8 ‖h1‖W∞ ‖h2‖W∞

(∫ T

0

(∫
�

|g(t, x)|2 dx

)
dt

)1/6η

T
1/6η′ .

From here we can proceed as in the case d = 2 to assert the continuous second Fréchet
differentiability of F in d = 3 for the finite horizon case.

6.2.2 Assumptions (A4) and (A5)

In order to verify (A4), we show that F(y) : W (0, T ) → L1(0, T ; V ∗) is continuous
for every T > 0.We consider the sequence yn⇀ŷ inW (0, T ) and let z ∈ L∞(0, T ; V )

be given. Then we estimate

∫ T

0
〈F(yn) − F(ŷ), z〉V ,V ∗dt =

∫ T

0

∫
�

(f(yn)

−f(ŷ))z dxdt ≤ C
∥∥yn − ŷ

∥∥
L2(0,T ;Y )

‖z‖L2(0,T ;Y ) .

Then by the compactness of V in Y , we obtain (A4).
Now we verify (A5). We recall Remark 3.1, and proceed as in (6.2) for y ∈ W∞, ϕ ∈
L2(I ; V ),

∥∥F ′(y)∗ p
∥∥

L2(I ;V ∗)
= ∥∥(F ′(y)∗ − F ′(0)∗)p

∥∥
L2(I ;V ∗)

= sup
‖ϕ‖L2(I ;V )

≤1

∫ ∞

0

∫
�

〈(F ′(y)∗ − F ′(0)∗)p, ϕ〉V ∗,V

= sup
‖ϕ‖L2(I ;V )

≤1

∫ ∞

0

∫
�

(f′(y) − f′(0))pϕ dxdt ≤ C ‖y‖W∞ ‖p‖L2(I ;V ) .

This shows F ′(y)∗ satisfies (A5).
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6.3 Cubic Nonlinearity y3 in One Dimension (Ä ⊂ R)

We can also consider the optimal stabilization problem with cubic nonlinearity, i.e.
F(y) = y3 in one dimension. This is a special monotone case of the Schlögl model
of theoretical chemistry.

(PSch) V(y0) = min
(y, u) ∈ W∞ × Uad

1

2

∫ ∞

0
‖y‖2Y dt + α

2

∫ ∞

0
‖u‖2U dt,

(6.6a)

subject to

⎧⎪⎨
⎪⎩

yt = �y + y3 + Bu in Q = (0,∞) × �

y = 0 on � = (0,∞) × 


y(0) = y0 in �.

(6.6b)

(6.6c)

(6.6d)

In this model, one can easily verify assumption (A1) is satisfied by taking Ay =
�y, y|
 = 0, andD(A) = H2(�)∩V . ClearlyA can be extended toA ∈ L(V , V ∗).
Moreover A generates an analytic semigroup on Y which is uniformly stable.
Assumption (A2) is satisfied under the same argumentation as in Fisher’s equation.
Differentiability assumption (A3), and continuity assumption (A4) are satisfied along
similar computations as in Sects. 6.2.1, 6.2.2. For (A5) we require that y0 ∈ V . Indeed
in this case for ȳ ∈ W∞ by Gagliardo’s inequality

∫ ∞

0

∫
�

|ȳ3|2dxdt =
∫ ∞

0
‖ȳ‖6L6(�)

dt ≤
∫ ∞

0
‖ȳ‖4L2(�)

‖ȳ‖2V dt

≤ C ‖ȳ‖4W∞

∫ ∞

0
‖ȳ‖2V dt ≤ C ‖ȳ‖6W∞ .

Thus ȳ3 ∈ L2(I ; Y ) and parabolic regularity theory implies that ȳ ∈ C(I ; V ) if
y0 ∈ V . We estimate for h, ϕ ∈ L2(I ; V ), suppressing the arguments (t, x),

∣∣∣∣
∫ ∞

0

∫
�

F ′(ȳ)hϕ dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

0

∫
�

ȳ2hϕ dxdt

∣∣∣∣
≤

∫ ∞

0
‖ȳ‖2L4(�)

‖h‖L4(�) ‖ϕ‖L4(�) dt,

≤ C ‖ȳ‖2C(I ;V ) ‖h‖L2(I ;V ) ‖ϕ‖L2(I ;V )

which implies (A5). Moreover we have F(ȳ) ∈ C([0, Ty0); Y ), since V ⊂ C(�̄) in
dimension 1, and thus the extra regularity demanded in Theorem 3.2 is satisfied.
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