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Abstract

In this article, we analyse optimal statistical arbitrage strategies from stochastic control
and optimisation problems for multiple co-integrated stocks with eigenportfolios being
factors. Optimal portfolio weights are found by solving a Hamilton—Jacobi—Bellman
(HJB) partial differential equation, which we solve for both an unconstrained portfolio
and a portfolio constrained to be market neutral. Our analyses demonstrate sufficient
conditions on the model parameters to ensure long-term stability of the HIB solutions
and stable growth rates for the optimal portfolios. To gauge how these optimal port-
folios behave in practice, we perform backtests on historical stock prices of the S&P
500 constituents from year 2000 through year 2021. These backtests suggest three key
conclusions: that the proposed co-integrated model with eigenportfolios being factors
can generate a large number of co-integrated stocks over a long time horizon, that
the optimal portfolios are sensitive to parameter estimation, and that the statistical
arbitrage strategies are more profitable in periods when overall market volatilities are
high.
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1 Introduction

Statistical arbitrage strategies involve trading among pairs of assets having co-
integration. The essential idea is that a pair of co-integrated asset prices have a
difference that is mean reverting. This mean-reverting difference is referred to as
a spread. For a trader with the ability to sell short and utilise leverage, a possible
strategy is to long the cheaper asset, short the expensive asset, and then wait for the
spread to converge, at which time point the positions can be closed for a profit. This is
an example of statistical arbitrage because, while it may seem like a sure profit, there
is not any finite time by when a spread will have almost surely converged. Instead,
there is only a high probability of the spread converging before reaching a fixed and
finite investment horizon.

The model we consider in this article is proposed in Avellaneda and Lee [1] and
is implemented in Yeo and Papanicolaou [2]. The model considers stocks whose total
returns have co-integration with the total returns of a set of factors. The factors can
be any selection of variables, traded or untraded, which have explanatory power in
the cross sections of stock returns. The spreads are defined as the residuals that are
obtained after regressing the total returns of a stock onto the total returns of factors. A
stock has co-integration with the factors if their spread forms a stationary stochastic
process. We determine whether or not spreads have stationarity by checking that the
time series of spreads rejects a unit-root hypothesis, that is, we run the co-integration
test proposed in Engle and Granger [3].

The factors that we utilise are eigenportfolios, which are the orthogonal portfo-
lios constructed from the correlation matrix of stock returns. Eigenportfolios are an
effective factor construction because they are orthogonal, and so the addition of each
factor adds another orthogonal variable to the regression. An alternative factor choice
is to regress onto exchange traded funds (ETFs), but ETFs were not as prevalent in the
early 2000s, which means that long-term backtesting requires synthesising of ETFs. In
Avellaneda and Lee [1], they find better performance utilising eigenportfolios instead
of historical sector ETFs data or synthetic sector ETFs. Trading of eigenportfolios can
incur heavy transaction costs because they contain hundreds of stocks but only a few
dozen that have co-integration. Therefore, trading signals with lower transaction costs
should treat the eigenportfolios as untradeable factors and only take trading positions
in the co-integrated stocks. This is a feature of the model in this article that adds gener-
ality, as there are other factors, such as the illiquidity returns of Pastor and Stambaugh
[4], that lack tradeability.

Untradeable factors cause the markets to be incomplete, which is in contrast to
the complete markets considered in Chiu and Wong [5] and Ma and Zhu [6]. An
advantage to utilising the factor model of Avellaneda and Lee [1] is the simplification
of parameter estimation, as the factor model allows for drift parameters to be estimated
individually for each stock. In comparison, it can be more challenging to estimate the
vector auto-regression matrices involved in general multi-asset co-integration models.

The contribution of this article is the analyses and implementation of solutions to the
Hamilton—Jacobi—Bellman equations arising from the model of Avellaneda and Lee
[1] with non-tradeability of factors. We formulate stochastic control and optimisation
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problems where the optimal portfolios depend on the spreads

Z;':/’ﬂ_ ﬂu/tdFJ_ait,
o S, i 0o F]
where Sf is the price of the ith stock fori = 1, 2, ..., d € N, th is the jth

eigenportfolio for j = 1,2, ..., m € N, and the parameters (o', B'/) are the regression
coefficients returned by the statistical test for making Zf stationary. As is the case in
Mudchanatongsuk et al. [7] and Li and Tourin [8], these spreads form a stationary
vector Ornstein-Uhlenbeck (O) process.

The optimal portfolio is obtained from the solution to an HIB equation, which in the
case of power utility function we are able to reduce to a system of ordinary differential
equations (ODEs) that includes a matrix Riccati equation and a pair of linear equations.
We perform long-term stability analyses for these ODEs, which gives us an indication
of the soundness of the model. In particular, finiteness of the ODEs for any finite-time
investment horizon indicates that the model has an absence of arbitrage; if there was
an arbitrage, then the ODEs would have singularities. In addition, if the solution of
the HIB equation converges to a steady state as the investment horizon tends toward
infinity, then there is a long-term statistical arbitrage portfolio that earns positive profits
with probability close to one.

We analyse HJIB equations for an unconstrained portfolio and for another portfolio
constrained for market neutrality. Market neutrality is important when doing statistical
arbitrage with a factor model, as it immunises the portfolio against market fluctua-
tions. Basic pairs trading strategies where the spreads are directly tradeable have this
immunisation built in, see Angoshtari [9]. However in our case, because the factors are
not tradeable, the optimisation should be constrained in order to have a market-neutral
portfolio.

We implement various optimal portfolios in backtests on historical stock prices
data. These studies give us a practical sense for profitability of the optimal strategies
that are given by the proposed models. We take the S&P 500 constituents from year
2000 through year 2021, and then look at the profits, expected returns, volatilities,
Sharpe ratios, and maximum drawdowns for out-of-sample portfolios computed with
varying estimation windows, both with and without a market-neutrality constraint.
From these studies, we arrive at three main conclusions about statistical arbitrage
strategies: first, the proposed co-integrated model with eigenportfolios being factors
can generate a large number of co-integrated stocks over a long time horizon, second,
these strategies are sensitive to parameter estimation, and third, these strategies have
greater potential to out-perform the benchmark during periods of higher overall market
volatilities. Sensitivity to parameter estimation is in line with the backtesting studies
in Yeo and Papanicolaou [2], where they demonstrate the variation in Sharpe ratios
relative to estimation windows and stock selections.
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1.1 Literature of Related Research

A formal definition for statistical arbitrage is given in Hogan et al. [10]. A test for co-
integration of financial time series is constructed in Engle and Granger [3], namely,
the Engle-Granger co-integration test. An application of Engle and Granger [3] for
co-integration-based trading strategies are shown in Vidyamurthy [11], trading of co-
integrated pairs with implementation of methods for filtering and parameter estimation
to handle latency is studied in Elliott et al. [12], and an in-depth statistical analysis
of the performance of pairs trading strategies is done in Gatev et al. [13]. Principal
component analysis of large number of stocks co-integrated through common factors
is the topic in Avellaneda and Lee [1], and is the basis for the model in this article.
Empirical testing of pairs trading, including out-of-sample experiments with changing
parameters, is completed in Galenko et al. [14] and in Yeo and Papanicolaou [2]. In Liu
and Timmermann [15], there is an analysis of pairs data from the Hong Kong China
and Mainland China stock exchanges. Analysis showing significance of short-term
reversal and momentum factors on returns of pairs trading is presented in Chen et al.
[16].

Stochastic control and optimisation for pairs trading with OU spreads is studied
in Mudchanatongsuk et al. [7]. A stochastic control approach for optimal trading of
co-integrated pairs is proposed and solved in Tourin and Yan [17] and Angoshtari [9],
and stochastic control for pairs trading with a local-volatility model is analysed by Li
and Tourin [8]. A multi-variate version of the stochastic control problem with power
utility is the topic in Chiu and Wong [5] and Ma and Zhu [6], with analyses of the
matrix Riccati equation being presented. Additionally, there is the long-term stability
analysis for matrix Riccati equations of multiple-asset models completed in Davis and
Lleo [18], and the matrix Riccati equations analysis for a single co-integrated pair with
partial information is studied in Lee and Papanicolaou [19]. An HIB equation for an
optimal portfolio constrained to be 100% long is presented in Al-Aradi and Jaimungal
[20] with a comparison of active and passive fund management, and has an HIB
equation similar to the market-neutral constrained HIB equation that we present in
this article. Related work also includes the optimal trading of spreads with transaction
costs and stop-loss criterion, which are analysed in Lei and Xu [21] and Leung and
Li [22]. There are also machine learning approaches to statistical arbitrage, such as
reinforcement learning and boosting applied to co-integrated constituents in the S&P
500, which is completed by Fallahpour et al. [23].

1.2 Structure of This Article

In this article, we propose and solve stochastic control and optimisation problems
for optimal statistical arbitrage portfolios, and then analyse the solutions for the
unconstrained portfolio and the market-neutral constrained case. We explore the imple-
mentation of these portfolios by performing some empirical studies on historical stock
data. The organisation of the article is as follows: Sect. 2 contains the mathemat-
ical models along with analyses of the HIB equations, with Sect. 2.1 defining the
co-integration model with factors and the value function for the stochastic control
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problems, with Sect. 2.2 presenting the solution of the HIB equation for the uncon-
strained portfolio through an exponential ansatz, with Sect. 2.3 presenting the stability
analysis, and then with Sect. 2.4 presenting the HJB equation and stability analysis for
the optimisation with market-neutral constraint; the empirical analyses of historical
stock data come in Sect. 3 with construction of factors through eigenportfolios pre-
sented in Section 3.1, preliminary data analyses and parameter estimation presented
in Sect. 3.2, and analyses of portfolio performance, for example Sharpe ratio and
maximum drawdown, presented in Sect. 3.3; Sect. 4 is the conclusion.

2 Model Constructions and Optimisations

This section introduces the models and the stochastic control and optimisation prob-
lems for multiple co-integrated stocks with factors. We first build the stochastic system
for stock prices, factors, and spreads in Sect. 2.1. Then in Sect. 2.2, we propose a
stochastic control problem for the unconstrained portfolio, and analyse the stability
for its solution in Sect. 2.3. In Sect. 2.4, we formulate a constrained portfolio with
respect to market-factor neutrality and complete the stability analysis for its solution.

2.1 Co-integration Model with Factors

Suppose Sf, i=1,2,...,d e N,is the stock price of the ith individual firm in the

financial market. Let F; denote the value of the jth factor for j =1, 2, ..., m € N.
One of the stocks is co-integrated with these factors if there is a stationary stochastic
process Z; such that

d——ad +Zﬂ” +dZ 2.1)

where o’ is a component of the systemic return coefficient vector ¢ = [a L2 ...,

T .
ad] € R? after controlling for the factor returns, and 8%/ is the loading of the ith

stock on the jth factor and is recorded in matrlx B e R?*™ The total returns of

stocks fo S,” and the total returns of factors fo F‘“ are non-stationary, but there will

be statistical arbitrage strategies if the stock S! is co-integrated with the factors F,J .
A stock S! is determined to be co-integrated with a set of factors F;’ if the stochastic
process Zf rejects a unit-root hypothesis. If we know that a stock is co-integrated with
these factors, then we can further specify Zf to be a stationary Ornstein-Uhlenbeck
process if we model the dynamics of S in the same way as Liu and Timmermann [15]
and as Tourin and Yan [17].

T
Let B, = [B,l, Btz, B,d+m € R4*T™ denote a vector of independent

standard Brownian motions (SBMs). The stochastic differential equation (SDE) for
the dynamics of a factor is
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J d+m

dF . .
C=pldi+ Y yitdBL, (2.2)
th k=1

where Btk is a component of the SBM vector B, / is a component of the factor drift
. T ik . .
coefficient vector 5 = [nl, n, ..., 17’”] € R™, and wo’k is a component of matrix

W, € R™*@+m) which forms a symmetric positive definite (SPD) diffusion matrix
Yo = \IIO\IIS— . The SDE for the dynamics of an individual stock is

dSti i i i « ik 3 pk
?=(u ) Z,)dt+21p1 dB*, 2.3)
t k=1
i : : 1,2 a1’ d
where ' is a component of the drift coefficient vector u = [/L N ) ] eR

of stock prices, 8’ is a component of the mean reversion speed coefficient vector § =
[61, 8% ..., 8‘1]T € RY of the processes Zf, and w{k is a component of matrix ¥ €
Rx@+m) \which forms a SPD diffusion matrix ¥| = \Ill\IllT. Utilising Egs. (2.1),
(2.2), and (2.3), the co-integrated process Z; has the following stochastic differential
equation:

m
dzi =5 (9" - z,) dt =" B (WodB) + (¥1dB,) 2.4)
j=1
where 0! = all (—ozi -3 Biinl + ,ui) is the stationary mean, (Wod B,)’ is the

jth element of vector ¥od B;, and‘('Il 1dB,)i is the ith element of vector ¥ d B;. Each
Z; is a stationary OU process if §' > 0. The factor loadings in Eq. (2.1) are

B="¥]3;", (2.5)

which can be confirmed by looking at the quadratic cross variation between d% and
1

j
dFi}foralli <dandj < m.
t

i
Remark 2.1 Please note that from Eq. (2.5), it follows that the cross variation %d Z;

equals zero for any i and j. This will be relevant in Sect. 2.4 when we equate market
neutrality, or factor neutrality, to portfolios being adapted to the filtration generated
by the co-integrated processes Z;.

We consider a self-financing portfolio process W; with portfolio weight in the ith

risky asset at time ¢ denoted by nti fori =1, 2, ..., d,and (1 — Z?:l rrt’) being
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the proportion of wealth invested in the risk-free asset with interest rate » > 0. The
SDE for the dynamics of the portfolio W; is given by the following equation:

d . gsi d
de:Z”thfS_it +r<1—27‘r;) Wdt . (2.6)
i=1 t i=1

Please note that none of the factors FlJ ,j=1,2, ..., m,are contained in the portfolio
W;, as you can observe from Eq. (2.6).
A control process (m;);<r is at each time ¢ the portfolio allocation m, =

T S o . .
[n,l, b SR 14 ] € R?, which is sought to maximise the expectation of a util-

ity function U (-) with respect to the wealth Wr at terminal time ¢+ = T. The value
function for this stochastic control and optimisation problem is

ut, w,z)=supE[UWp) | W, =w, Z; =2], 2.7

reA
where t € [0, T, Z, = [z}, 7%, ..., 2¢]" € R, w € R and z =
[zl, 2, ..., zd]T € R? are the state variables, and (7)< is selected from a set of

admissible controls A that is defined as
T
A= {(n,),<T |7lz e R? non-anticipative, / ||7r,W,||2dt < 00 a.s.} , (2.8)
N 0

see chapter four of Fleming and Soner [24] for comprehensive mathematical details.
In this article we assume a concave utility function U (w) of power type:

1
Uw)=—-w", 2.9)
14

where y < 1 (y # 0) is the risk aversion coefficient. Risk aversion measures the risk
preferences of traders. If y approaches to one, it indicates that the trader is more risk
loving, and if y approaches to —oo, it represents that the trader is more risk averse; y
tending toward zero is the case of logarithmic utility.

2.2 Hamilton-Jacobi-Bellman Equation

In addition to 8, X1, and X, that are defined in Sect. 2.1, we denote the following
vectors and matrices for mathematical convenience for the upcoming parts of this
article:

o= [Mi —r] cRY, (2.10)
T

0 = [9‘, 0%, ... 9"] eRY,

5 =diag([81, 82, ..., ad]) e Réxd |
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Tr=3 ¥ ¥]B" e R,
Ti=3 - W] B —BUoV¥] + B3B8 e RI¥,

Please note that we assume that X is positive definite and invertible in this article.
We can also observe that ¥ and X3 are symmetric matrices, however X, is not.
Subsequently, we apply the standard stochastic control and optimisation techniques
and expect the value function u (#, w, z) defined in Eq. (2.7) to satisfy the following
HIJB partial differential equation (PDE):

1
—u = (0 =) §Vau — s (z3v§u) — rwu, 2.11)
1
— sup <7IT (e — 82) wuy, + nTZQVZ (Vyu) w + —nTmezuww) =0,
weRd 2
u|T = ;w” .

In the HIB Eq. (2.11), the control variable & is not subject to any constraint, so we
call it the unconstrained stochastic control and optimisation problem, and the optimal
portfolio W; that is given by its solution is called the unconstrained portfolio. The
wealth variable w can be factored out of the solution by utilising the following:

1
w(t, w, z) =—w'g(t, z), (2.12)
14

and the derivatives with respect to this ansatz are

1 1
u = ;wygt, Uy = (v — DHw?’ g, Vo= ;wyvzg,

1
wy =w’"'g,  Viu=—w'Vig, V (Vyu)=w’"'Vzg.
4
Therefore, the HIB Eq. (2.11) can be transformed into

1
e —0—2) " 8V,e — St (E3VZ2g> —ryg (2.13)

. 1

— inf <nT (m—3982)yg —i—nTy):szg + —nTZurgy (y — 1)) =0,
weRd 2

glp=1.

We then can compute the optimal control &* by solving the unconstrained control
problem described by Eq. (2.13) in terms of function g (¢, z) and its partial derivatives:

1 1
= 1T (=8 B B Ve (ing) 2.14)
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Inserting the optimal r* that is given by Eq. (2.14) back into Eq. (2.13) results in the
following nonlinear PDE:

1
g+ —2) 85+ S (zwfg) tryg (2.15)

Y8
+—
2(1-vy)

g|T=1.

(R—38z2+ 2V, (Ing) =7 (- 8z+ 2V, (Ing) =0,

We utilise the following exponential ansatz for g (¢, z) to solve PDE (2.15):
g, =exp(a+bT Oz +2'CW02), (2.16)

where a (t) € R is a scalar, b (1) = [b; (t)] € R? is a column vector, and C (1) =
[cij (t)] e R¥>d ig a symmetric matrix, for i, j = 1, 2, ..., d. By utilising the
exponential ansatz (2.16), PDE (2.15) can be transformed into a system of ODE:s.

Proposition 2.1 PDE (2.15) for the unconstrained stochastic control and optimisation
problem (2.11) is solved by utilising the exponential ansatz (2.16), where foranyt < T,
functions a (1) € R, b (1) € RY, and C (t) € R4 of the ansatz satisfy the following
system of ODEs:

da) _ . Tyl 1
10y (;)<2(1 ~3Tx; 22+223>b(f)
_ 4 T -1, _ 14 Ty—1 _pT
2(1—y)b (t)22221 n 2(1_7/)11, X Xob(t) -0 8b(t)
Y Tyl _
2(1_y)u iopn—tr (X3C @) —ry,
a(T)=0; (2.17)
db (1) 2y
- __c()< J/):22 E2+263>b(t)
+(Lazl—lzz+a)b(z)—0(z)( 2y z}z;1u+260>
l—y l—y
Y -1
—l——l_ySZl I,
b(T)=0; (2.18)
dfh(t) —C()( 2y ):22 ):2+2z3>0(z)
.
+C(t)< v z}zl‘a+a>+<1fyz§zl‘s+s> C (1)
—az Is,
2(1—1y)
C(T)=0. (2.19)
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Proof By inserting the exponential ansatz (2.16) into PDE (2.15), and grouping terms
as either quadratic in z and z ', linear in z, or constant in z, then ODE (2.17), ODE
(2.18), and ODE (2.19) are respectively obtained. O

Because the gradient of the exponential ansatz (2.16)is V; (In g) = 2C (t) z+b (1),
hence, the optimal =* from Eq. (2.14) can be expressed as

1 1
n* = mzl—l(ﬂ_szwmz;lzz QC(M)z+b() . (2.20)

From Eq. (2.20), we can observe that the optimal control = * contains two parts: a
time-constant part and a dynamic part that contains the solution of the HIB Eq. (2.13).
We call the time-constant part of Eq. (2.20) the myopic control of the unconstrained
portfolio:

1
Tt = mz]—‘ (n—82) . (2.21)

Remark 2.2 (Verification) Verification of optimality for strategy m* that is given by
Eq. (2.14) is shown by utilising the argument of Davis and Lleo [18]. Utilising the
solution of the HIB Eq. (2.13) that is obtained from the exponential ansatz (2.16), the
optimal control (*), <7 thatis given by formula (2.20) belongs to the set of admissible
controls A defined in Eq. (2.8), and maximises the expected utility function defined
in Eq. (2.7). The form of the model for this unconstrained control problem fits into
the framework set forth in Davis and Lleo [25] and Davis and Lleo [18], and hence,
the same argument for verification of these references applies here. The essential
step in verification is to confirm that neither of the solutions a(t), b(z), or C(¢t) to
Egs. (2.17), (2.18), and (2.19), respectively, have finite-time blow up; Sect. 2.3 in the
sequel confirms the absence of blow up.

2.3 Stability Analysis

Stability analyses of the ODE (2.17), the linear ODE (2.18), and the matrix Riccati
equation (2.19) for the unconstrained stochastic control and optimisation problem
inform us whether our solution to PDE (2.15) blows up or not. We extend the time
domain for the ODEs (2.17), (2.18), and (2.19) to (—o0, T'] for any finite 7, and if the
solution remains finite for all time, then we have a stable system from which we can
draw intuition about long-term portfolio performance.

Our analysis for the matrix Riccati Eq. (2.19) with respect to C (¢) utilises Theo-
rem 2.1 from Wonham [26], which proves that the solution of the equation exists, is
bounded, and is unique for all + < T'. Let us rewrite the matrix Riccati ODE (2.19) as

dit(’) = -A,C (1)~ C M)A~ C1QC (1) — P, (2.22)

C(T)=0,
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where
2
Q=+ _”y 3T, + 23,
)4 Ts—1
Auz—Tj722213—&
 J—— ¥}
2(1—vy)

Proposition 2.2 For y < 0, the coefficient matrices of the quadratic term and the
constant term of the matrix Riccati equation with respect to C (t), namely Q, and
P, in Eq. (2.22), are symmetric positive definite and symmetric negative definite,
respectively.

Proof From formula (2.10), the coefficient matrix Q, of the quadratic term of the
matrix Riccati Eq. (2.22) for the unconstrained stochastic control and optimisation
problem has the following decomposition:

2y T _
Q=1 (z1—wwlgT) =7 (21— wi9]p7) + 22,
2y 2y 2y
= T - LR A A A 2L 2
I—y L—y I—y

2
+ ﬁﬂ\voﬂz;‘w]wgﬂ +235
2 2y 2y _
= ¥ — BEoBT + Bz W] gT
I—vy -y I—vy

2 2 B
=% - v ﬁwo(l—ﬂzll\m)\l’gﬂT,
-y 1=y

which is symmetric positive definite for y < 0 if we can show that I — \111'—21_1 W is
symmetric positive semi-definite, where I € R@T™*d+m) is the identity matrix.
Indeed, for any vector x € RY*", we have x = \Il—lry + y, where ¥y = 0.
Then, x " (I — \IITZII\IH) X = j:Ty > 0, thereby confirming its positive semi-
definiteness.

Proving that matrix P, is symmetric negative definite is uncomplicated. We can
observe that matrix 621_16 is symmetric positive definite. Consequently, for y < 0,

—P, is symmetric positive definite, in other words, matrix P, is symmetric negative
definite. O

Given Proposition 2.2, the stability analysis from Wonham [26] applies directly. In
order to do so, it is useful to define the following properties.

Definition 2.1 (Controllability) Let A € R"™" and B € R"*" be constant matri-
ces. The controllability matrix of (A, B) is the n x mn matrix ' (A, B) =
[B, AB, .-, A”’IB]. The pair (A, B) is controllable if the rank of T is n. If (A, B)
is controllable, so is (A — BM, B) for every matrix M € R™*",
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Definition 2.2 (Observability) Let A € R™*" and E € R”*" be constant matrices.
The pair (E, A) is observable if the pair (AT, ET) is controllable.

Definition 2.3 (Stabilisability) Let A € R™" and B € R"*™ be constant matrices.
The pair (A, B) is stabilisable if there exists a constant matrix M such that all the
eigenvalues of A — BM have negative real parts.

With these definitions that are given above, we have the following proposition for
the matrix Riccati equation (2.19).

Proposition 2.3 For y < 0, the coefficient matrix Q, of the quadratic term in the
matrix Riccati Eq. (2.22) is symmetric positive definite. Consequently, there are matri-
ces B,, E,, and N,, such that Q, = BMNM_IBI and —P, = EMTE,,, with the pair
(Ay, By) being stabilisable, and the pair (E,, A,) being observable. Hence, there
is an unique solution C (t) to the matrix Riccati ODE (2.22) which is negative semi-
definite and bounded on (—oo, T1, and there exists a unique limit C = t_l)ir_nooC (o).

Proof We first perform a change of variable. Define C (t) = —C (1), so the matrix
Riccati Eq. (2.22) becomes

dC ()
dt
C(T)=0.

+AJCH+CHA, —C1)Q,C 1)+ (—P,) =0, (2.23)

Proposition 2.2 has shown that matrix —P, € R4*? is symmetric positive defi-

nite. Therefore, all eigenvalues A p, of matrix —P, are positive, and there exists an
orthonormal basis for R? of their associated eigenvectors, in other words, there is an
orthonormal matrix O, such that —P, = O,D, O;'—, where D, = diag (X pu) € Rdxd
is a diagonal matrix with positive entries on the diagonal. Hence, we can write
—P, = E_E,, where E, = (O, \/D_M)T is a real square matrix. We can observe

that matrix E, is invertible, and so the controllability matrix T’ (AI, EMT) € RdXdz, as
defined by Definition 2.1, has rank d. Consequently, the pair (A;r, EMT) is controllable,
and the pair (E,, A,) is observable as per Definition 2.2.

The symmetric positive definiteness of matrix Q, € R?*? is proven in Proposi-
tion 2.2 as well. Thus, matrix Q, also has a diagonal decomposition, Q, = B, N, lBMT,
where B, is an orthogonal matrix, and N;! = diag (Ag,) € R?*d_ where A, are
the positive eigenvalues of Q,. Because matrix B, is invertible, hence we can find a
constant matrix M, € R?*? such that all eigenvalues of A, — B,,M,, have negative
real parts, therefore the pair (A,, B,) is stabilisable.

The above analyses of matrix Q, and matrix —P,, confirm that we can apply The-
orem 2.1 from Wonham [26] to conclude that solution C () to the matrix Riccati Eq.
(2.23) is unique, positive semi-definite, bounded on (—oo, T'], and has unique limit
as the time variable ¢ tends toward —oo. O

Remark 2.3 The stability analysis of Proposition 2.3 is sufficient for there to be no
arbitrage in the model proposed by Egs. (2.2) and (2.3). If there were an arbitrage,
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then it would always be optimal to take additional positions in the arbitrage portfolio,
hence causing the value function to have a singularity in finite time, thus reaching a
Nirvana, see Lee and Papanicolaou [19]. Stability of the matrix Riccati Eq. (2.19) with
respect to C (¢) ensures no such singularity for y < 0.

After analysing the stability of the matrix Riccati Eq. (2.19), we then study the
stability of the solution to the linear ODE (2.18) with respect to b (). We start the
analysis by introducing the following lemma, which is a theorem from Wielandt [27]
in regard to the eigenvalues of matrices. Comprehensive mathematical knowledge for
this lemma can be found in chapter one of Horn and Johnson [28].

Lemma 2.1 Let M be a d x d matrix and define the field of values S (M) := {vTMv |
v is a vector such that v' v = 1}, which contains the eigenvalues of M.

(a) Suppose My and My are two d x d matrices. If A is an eigenvalue of M| + Mp,
thenie SMpD+SM) ={A+X1 |21 € SMy), A €S (M)},
(b) Suppose My and M3 are two d x d matrices, 0 ¢ S (M2) and My U exits. If Ais

an eigenvalue osz_lMl, then . € S (Mp) /S (M) = [)\1/)»2 |1 € S(My),

r2eSM) J;

(c) Suppose My is an arbitrary d x d matrix, My is symmetric positive semi-
definite matrix. If ) is an eigenvalue of MMy, then A € S (M) S (Mp) =
{Mir2 |2 € S(My), A2 € S(M2)}

Proof The detailed and comprehensive proofs are given by the theorems of Wielandt

[27] O

Proposition 2.4 Let R, (t) be the coefficient matrix of the homogeneous part of Eq.
(2.18) for the unconstrained stochastic control and optimisation problem. Fory < 0,
there exists a t* > —oo such that R, (t) has all positive eigenvalues for t < t*,
therefore, the solution of ODE (2.18) has a finite steady state.

Proof By observing ODE (2.18) and utilising the formulae given by Eq. (2.10), the
coefficient matrix R, (¢) of the homogeneous part for the ODE can be written as

Y

-y
1 _

—CQu+ 78— 3% W w7
-y 11—y

R, (1)

—2C (z)( ):2T>:]‘>:2+23) + <$521122+5)

Utilising Eq. (2.5), this expression can be simplified to

1 4 —1 T 1 T
Ry()==COQu+ 8= 778%; (\1:]\1:0 %5 wow] ) L Q24
Let C = Jim C (1), then the limit of Eq. (2.24) is

——00

_ 1
R, = ~CQ, + ——8 - lLazl—l (wrwgzgwow/), (2.25)
-y 11—y
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where matrix § is assumed to be symmetric positive semi-definite.

Proposition 2.2 proves that matrix Q, is symmetric positive semi-definite, and
Proposition 2.3 implies that matrix —C is symmetric positive semi-definite. Matrix
L \Il(—)r X ! \IIO\II—I'— is also symmetric positive semi-definite. Therefore, if y < 0, thenit
follows from Lemma 2.1 that matrix R, given by Eq. (2.25) has all positive eigenvalues.
This allows us to say that there exists a t* > —oo such that R, (¢) has positive
eigenvalues for all # < ¢*, and the solution b (¢) of Eq. (2.18) has a finite steady state.

O

After analysing the stability of the matrix Riccati Eq. (2.19), and the stability of
the solution to the linear ODE (2.18) with respect to b (1), we also need to study the
stability of the solution to the linear ODE (2.17) with respect to a (¢).

Proposition 2.5 For y < 0, the solution of Eq. (2.17) for the unconstrained stochas-
tic control and optimisation problem has a finite steady state as the time variable
t — —oo. Consequently, the long term certainty equivalent rate of the unconstrained
control problem that is described by Eq. (2.13) is asymptotically proportional to the
solution of ODE (2.17).

Proof Denote by L (t) the right hand side of Eq. (2.17). From the analyses of Propo-
sitions 2.3 and 2.4, both of the solution C (¢) and the solution b () to ODE (2.19) and
ODE (2.18) have finite limits as the time variable ¢ tends toward —oo, therefore when
t approaches to —oo, we have

14

. 7T
Am LD =-b (ul—_y)

1 _
):}):11):2+5):3)b
4 i T e Ty—1 14
2(1—y) 27 2(1—y)
4 Ty—1 ~
———pn X7 pu—tr(X3C) —ry

_I.

w =20 —076b

where b = . lim b (r)andC = . lim C (¢). Hence, as t tends toward negative infinity,
——00 ——00

Eq. (2.17) relaxes and we have

1 T da (s) -
/ ds =L, (2.26)
t

im
t—>—o0 T —t ds
which shows that the solution of ODE (2.17) has a finite steady state:

fim 29— f (2.27)

t——oco T —¢t

Furthermore, given the utility function (2.9), the value function (2.12), and the
exponential ansatz for g (¢, z)thatis defined by formula (2.16), the certainty equivalent
is defined by
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U@, w,2)=0" <%w)’g (t, z)>

= wexp <l (a O+b"(Hz+z'C 1) Z)) .
Y

Hence, under the optimal control & *, the long-term growth rate is

(U, w, 2)) 1 1 T T
o _T_tln<wexp(;<a(t)+b MHz+z C(Z)Z)))

1

— m(ymw+1F(z)z+zTCz+a(t)) .

In the previous paragraphs, utilising the conclusions of Propositions 2.3 and 2.4, we
have already shown by Eq. (2.27) that a (¢) is asymptotically linear as the time variable
t tends toward negative infinity, therefore,

In (U@, w, 2)

lim (2.28)
T——00 T —1t
= lim ; (ylnw +b" ()2 +zTC(t)z+a(t))
t——o00 y (T —1t)
1
= lim ——a(t)

t——c0oy (T —1t)

Consequently, utilising the result that is demonstrated by Eq. (2.26), the limit in Eq.
(2.28)is

1 1-
lim (U™ @, w, 2)) ==L,
T— 00 —1 V4
which demonstrates that the long-term growth rate is a constant. O

2.4 Market-Neutral Constraint

It is common to seek statistical arbitrage strategies that are market neutrality. Market
neutrality generally means that the returns of a portfolio are impacted only by the
idiosyncratic returns of the stocks contained in the portfolio, and are uncorrelated
with the returns of a benchmark or market factors, see Angoshtari [9] and Avellaneda
and Lee [1]. Hence, under the condition of market neutrality, if we can diversify with
a large number of co-integrated stocks, then there is a very high probability that the
portfolio can maintain steady growth and low volatility. We consider a portfolio that
is market neutral if the wealth process W; of the portfolio is adapted to the filtration
generated by the the co-integrated processes Z,. This is the case if 7 T 8 = 0, because
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d

i d
aw, dS .
W, E JT;S—; —rl|l-— E 1 JT; W:dt (2.29)
i=

i=1

d m dFj d
_ i i i ij t _ _ i
= ml|dz] +o'di+ ) p — r<1 Zn,)W,dr
i=1 j=1 t i=1
T T T dF; T
—n]dZ, +n]adt + 7] B —i—r(l—n,l)Wtdt,
< _F,
=0

where 1 € R is a vector of ones. Therefore, in matrix/vector notation, the condition
for market neutrality is 7 ' 8 = 0.

We now reformulate the optimal portfolio that is studied in Sects. 2.1 and 2.2 for
market neutrality. We include an equality constraint 7 ' 8 = 0 with respect to the
market neutrality for the control variable . Consequently, we now have a constrained
stochastic control and optimisation problem, the portfolio W; that is given by its
solution is called the market-neutral constrained portfolio, and the corresponding HIB
equation is

1
—u; — (0 — z)—r dVou — Etr (Z3szu> — FwWity, (2.30)
1
— sup (nT (m — 82) wuy, + nTEZVZ (Vypu) w + —nTzlnwzuww> =0,
reR? 2
7z B=0
1
u\T = ;w”

Utilising the ansatz that is given by Eq. (2.12), the transformed HIB equation for the
market-neutral constrained problem is

1
e —0—2)8V,e— St (E3szg> —ryg 2.31)
. 1
- mﬂgd (nT (L—382)yg+m'yTaVeg + EnTngV (v — 1)) =0,
e
7z B=0

g|T=1.

Letting A € R denote the Lagrange multiplier, we define the Lagrangian function
for the market-neutral constrained control problem:

1
Lot M=n'(n—8)yg+m yEVeg+om Timgy (v — 1) - B).
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By utilising the first-order condition VL = 0, we can get the following optimal
control * for the constrained stochastic control problem:

1 _
Tt = mzl Ygym — gydz +yZaV.g — BA) (2.32)
1 1
= —):1*1 (u —68z+ XV, (Ing) — —ﬁl) .
14 8V

We then solve for the Lagrange multiplier A to get its optimal value A* with respect
to the condition of market-neutral constraint 8 ' 7* = 0:

A= yg (,9Tz;1,3)71 <ﬂT):1_1 (L — 8z + T2V, (In g))> . (2.33)

Inserting the optimal A* that is given by formula (2.33) back into Eq. (2.32), we can
get the optimal control variables 7 * with respect to the market-neutral constraint:

1 _
Tt = = ():1 I zc) (L —8z+ 32V, (Ing)) , (2.34)

—1
where X, = Zl_lﬂ (ﬂT)Zl_lﬂ) ﬂTZl_l € R¥*4 is a symmetric matrix. We then
insert the optimal control variable * that is given by formula (2.34) back into the

HIJB Eq. (2.31) and get the following nonlinear PDE for the market-neutral constrained
problem:

1
g+ ®0—-2T"8V,g+ o (Ezvfg) +ryg

V8 T —1
— 2 (u—8z+ %V, ( ol 5
F ey st TV (ng) (37! - %)
X (b —8z+ %2V, (ng)) =0,
gly=1. (2.35)

Corresponding to the unconstrained stochastic control and optimisation problem of
Sect. 2.2, we utilise the exponential ansatz (2.16) to solve PDE (2.35), from which the
optimal control for the market-neutral constrained control problem can be expressed
as

* 1 -
e ():l 1 20) (n — 62) (2.36)
1 —1
1= (Z7' = %) @ eCwz+b0))

where a (1) € R is a scalar, b (1) = [b; (t)] € R? is a column vector, and C (1) =
[cij ()] € R?*? is a symmetric matrix, fori, j =1, 2, .-+, d, are the solutions of
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the system of ODEs that are given by the following Proposition 2.6. Correspondingly,
the myopic control for the market-neutral constrained stochastic control problem is

* 1 1
- 1—;/(2 —E)([L+3Z). (2.37)

Remark 2.4 The myopic control in Eq. (2.37) satisfies the market neutrality condition

that is given by Eq. (2.29), which is Tn;,’} = 0. This will be shown in the proof of
Proposition 2.7 as a consequence of proving ()31_1 — Zc) =0.

Proposition 2.6 PDE (2.35) for the constrained stochastic control and optimisation
problem (2.30) is solved by utilising the exponential ansatz (2.16), where for any
t < T, the functionsa (t) € R, b (t) € R, and C (t) € R4*d of the ansatz satisfy the
following system of ODEs:

da (1) _bT(t)< 4 );2T<):11_):C>):2+%)33>b(f)

Sdr 2(1—yp)
_ 2(+_wa "=, ():1*1 _ );c) "
a u%_w“T ()31_1 - Ec) b (1) —078b (1)
_ #_qu (zl—l - ):C) = tr (Z5C (1)) — ry .

@ (1) =0: (2.38)

db (1) =_C(;)(12_V

dt 2 (Efl - Ec) )+ 223) b (@)

+<1_ 8( Ec)Zz-i-S)b(t)

—C(t)( yzz (z Zc)u+280>

+1T8( Ec)llu
b(T)=0: (2.39)
ac ) 2 e
— _—C(t)(l_yZz (zl —zc)zz+2z3)cm
4 T (v-1
+C(t)(1_y22 (=; —):C)a+a>
T
4 T (v-1
+(1_y22 (=i —zc)5+5> C (1)
__r -1 _
2(1—)/)6(21 ZC)S’
C(T)=0. (2.40)
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Proof The proof is similar to that for Proposition 2.1. O

Remark 2.5 (Verification) Utilising the solution of the HIB Eq. (2.31) that is obtained
from the exponential ansatz (2.16), the optimal control (n;“) ;<7 given by formula
(2.32) belongs to the set of admissible controls A defined by equation (2.8), and
maximises the expected utility function defined by Eq. (2.7) subject to the market-
neutral constraint 7 ' § = 0. The form of the model for this constrained stochastic
control and optimisation problem fits into the framework set forth in Davis and Lleo
[25] and Davis and Lleo [18], and hence, the same argument for verification of these
references applies here with the essential step being confirmation of no finite-time
blow up in a(t), b(t), or C(¢) given by Egs. (2.38), (2.39), and (2.40), respectively;
confirmation that there is no blow up is shown by Propositions 2.7, 2.8 and 2.9.

Analogous to the unconstrained control problem of Sects. 2.2 and Sect. 2.3, we
perform the stability analyses for the solutions of the system of ODEs given by Eqgs.
(2.38), (2.39), and (2.40). We first study the behaviour of the solution to the matrix
Riccati equation for C (¢) of the constrained control problem, which is expressed by
Eq. (2.40). We rewrite this matrix Riccati equation in the following way

dC (1)

T ="COQCH-CHA~AICH) P, (241)
C(T)=0,
where
2y T (-l
Q=== (3! - %) B2 423,
C:_lfyz}(z;l—zc)a—a,
14 —1
Po=—"6(X] —X.)6.
‘T 20—y ( ! )

Similar to the unconstrained problem, we prove that the coefficient matrix Q. for
the quadratic term of the matrix Riccati Eq. (2.41) for the constrained problem is
symmetric positive definite, and its coefficient matrix P, for the constant term is
symmetric negative semi-definite.

Proposition 2.7 For y < O, in the matrix Riccati Eq. (2.41) for the constrained
stochastic control and optimisation problem, the coefficient matrix Q. of its quadratic
term is symmetric positive definite, and the coefficient matrix P, of its constant term
is symmetric negative semi-definite.

Proof Proposition 2.2 has proven that matrix Q,, of Eq. (2.22) for the unconstrained

stochastic control and optimisation problem is symmetric positive definite. By utilising
the formulae of Eq. (2.10), matrix Q. has the following decomposition:
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2y

Q=285+ 2] (37 -5 %

2 -1
=2¥3+ l—y)/ Z; (211 _Z;lﬂ(ﬂTEf]ﬂ> ﬁT211> Yo
2y

—1
—1 —1 -1
=Qu -y 2138 (87x7'6) BTz
Because matrix X is symmetric positive definite, so its inverse Zl_l is symmetric

-1
positive definite as well. Hence (,BT)Sl_lﬂ> > (. Therefore, for y < 0, matrix Q.

is symmetric positive definite.
In order to prove matrix P is symmetric negative semi-definite, we need to examine
the symmetric matrix Zl_l — X.. We observe that for any x € R?, we can decompose

itas x = v + v, where f)TZflﬂ = 0, and then
xT (z;‘ - ):C) x=Bv+9) T (Bv+ 1)

~ B0 58875 8) TR Bu+ D)

T):l_lf)

%
S =

s

where the equality holds if and only if ¥ = 0. Hence, Zl_l — X, is symmetric positive
semi-definite. Consequently, & (21_1 — Ec) 8 is a symmetric positive semi-definite

o -1 . . .
matrix with the columns of § B spanning its null space. Therefore, matrix —P, is
. o . . . -1
symmetric positive semi-definite also with null-space spanned by § f. O

Corresponding to Proposition 2.3, because matrix Q.. is symmetric positive definite,
matrix —P, is symmetric positive semi-definite, therefore, Theorem 2.1 in Wonham
[26] applies directly, consequently, the solution to matrix Riccati Eq. (2.40) exists, is
bounded, and is unique.

Proposition 2.8 For y < 0, if both matrices § — 8 (ﬂTﬁ)_l B8 and BT B are full
rank:

rank (3 _B (ﬂTﬂ)_l ﬂTa) —d, (2.42)
rank (,BTﬂ) =m,

then the coefficient matrix Q. of the quadratic term in the matrix Riccati Eq. (2.41)
for the constrained stochastic control and optimisation problem is symmetric positive
definite, and matrix — P . is symmetric positive semi-definite. Hence, there are matrices
B, E., and N, such that Q. = B.N.'B] and —P. = E E, with the pair (A., B)
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being stabilisable, and the pair (E., A;) being observable. Consequently, there is an

unique solution C (1) to the matrix Riccati equation (2.41) which is negative semi-

definite and bounded on (—oo, T, and there exists a unique limit C = . lim C (2).
——00

Proof The symmetric positive semi-definiteness of matrix —P,. comes from Propo-
-1

sition 2.7, for which the proof shows that Zl_l — Zl_lﬂ (ﬁT):;lp) ﬁTEI_I

is symmetric positive semi-definite. This matrix is diagonalizable, Zl_l - Zl_l B

(ﬁTZflﬁ) 1 ﬂTEl_l = OCDCOCT, where matrix O, € R?*? is orthonormal and
D, is a diagonal matrix with non-negative eigenvalues along its diagonal. Thus,
—P. = ECTEC, where E, = z(f—fmJD_COIS. As shown in the proof of Proposi-
tion 2.7, there is a null space of matrix —P, that is spanned by the columns of matrix
8!8, hence, the rank of matrix E, is strictly less than d with null space spanned by
8! B. However, the rank of the controllability matrix T (A, E[) € R4*4” given by
Definition 2.1 is d if the equations of formula (2.42) hold.

Itis indeed correct for the model that is proposed here in Sect. 2.4. Recall the matrix
A, defined for the matrix Riccati ODE (2.41), it can be written as

.
AT = _lLa (z7'- %) %2-8
—¥
=2E/E$7'%, -3¢,

which when multiplied on the left-hand side by ! 8 and on the right by E LT, we have
NT AT
(5 ') ATE] = (3 1/3) <2ECTEC<S_122 ~8)E/
NT AT
=2(E:s ') E5TEE! - (57 8) SE]
=—(Ep" .

We can observe that, for any vector x, we know that E.fx = 0 if and only if
x"BTP.Bx = 0, which occurs if and only if 3 v such that fx = 8! Bv. The nearest

such v is D = (/ST,B)_1 BT8Bx. Therefore, E.fx = 0 if we can find x such that
3dBx = pv. This is the case if (I - B (/3—'—,19)71 ﬂT> §Bx = 0, where I ¢ R?*4
is the identity matrix, which occurs only for x = 0 if equations in formula (2.42)
hold, because B " B is invertible implying that matrix 8 has no right-hand null vector.
Therefore, T (A], E]) € R¥*?" has full rank if formula (2.42) holds. Thus, the pair
(A;, EMT) is controllable, and the pair (E,, A,) is observable as per Definition 2.2.

The symmetric positive definiteness of matrix Q. is proven in Proposition 2.7 as
well. Corresponding to Proposition 2.3, matrix Q. = B.N_'B/], where B, is an
orthogonal matrix, A, are the eigenvalues of Q., and N;! = diag (ro,) € R4,
The matrix B, is invertible, hence we can find a constant matrix M. € R¢*“ such

that all eigenvalues of matrix A, — B.M_ have negative real parts, therefore, the pair
(A¢, B,) is stabilisable.
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Finally, we let C (t) = —C (1), so that the matrix Riccati Eq. (2.41) becomes

dcC (t - . 5 _
dt( ) +ACH+C 1A —COBN'B/C(t)+E/E. =0, (243)
C(T)=0,

and the above analyses of matrices Q. and —P, confirm that we can apply Theorem
2.1 from Wonham [26] again, to conclude that solution C (t) to Eq. (2.43) is unique,
positive semi-definite, bounded on (—oo, T], and has unique limit as the time variable
t tends toward —oo. O

Remark 2.6 In Proposition 2.8, the implication of needing 8 8 having full rank is

that there needs to be at least as many co-integrated stocks as there are factors, as
B e Rdxm_

Remark 2.7 In Proposition 2.8, a necessary condition for the first equation of formula
(2.42) to hold is for B (/3 B )_1 B to not commute with 8, which implies that § ¢« 1.

Next we analyse the behaviour of the solution for the ODE with respect to b (¢) of
the constrained control problem that is described by Eq. (2.39).

Proposition 2.9 Letr R, (t) be the coefficient matrix for the homogeneous part of Eq.
(2.39) for the constrained stochastic control and optimisation problem. For y < 0,
there exists a t* > —oo such that R, (t) has all positive eigenvalues for t < t*.
Therefore, the solution b (t) with respect to ODE (2.39) has a finite steady state.

Proof By observing Eq. (2.39), and following the notations that are denoted by formula
(2.10), also utilising the expressions for matrix 8 and for matrix X, in Egs. (2.5) and
(2.10), respectively, the coefficient matrix R, (¢) for the homogeneous part of ODE
(2.39) can be written as,

14
l—y

(T (3 -3 7 4 )

1
- CHQ+—138- Y s3.3,
I—vy I—vy
- lLa ():;1 — ):C) (wlwgzglwo\pf) .
—y

R, (1) = —2C (1) ( ] ():;1 - zc) 5+ ):3)

From Proposition 2.7, we know that matrix Q. is symmetric positive definite, from
Proposition 2.8, we have that matrix —C (¢) is positive semi-definite for r < * with
t* > —o0, and by the assumptions of the model, we have that matrices X, X,
and § are positive definite. Also note that matrix El_l — X, is symmetric positive
semi-definite, matrix \Ill\Il(—)r DIpe l\Ilo\IlIr is symmetric positive semi-definite as well.
Therefore, the above expression for R, () is the summations and products of positive
semi-definite matrices, it has all positive eigenvalues, and the solution of ODE (2.39)
is stable. O
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Remark 2.8 For y < 0, the solution a (¢) with respect to Eq. (2.38) for the constrained
stochastic control and optimisation problem has a finite steady state as the time variable
t — —oo. The long-term growth rate of the certainty equivalent of the constrained
control problem is proportional to the solution a (¢) of ODE (2.38). The proof of such
a proposition is similar to the proof of Proposition 2.5.

3 Numerical Experiments and Empirical Analyses

This section presents numerical experiments and empirical analyses utilising a sliding
window backtesting approach on historical stock data. These experiments and analyses
demonstrate the performances of the optimal portfolios proposed in Sect. 2. In Sect. 3.1,
we first describe the method that is utilised for constructing eigenportfolios, which we
then utilise as the factors F; seen in equation (2.2). We also explain how we adjust the
data for survivorship bias. The methods for parameter estimations and the approach
for statistical testing of co-integration are described in Sect. 3.2. Lastly, the sliding
window backtests and empirical analyses are discussed in Sect. 3.3.

We utilise Yahoo Finance! as our data source. The data are the daily adjusted close
stock prices of the S&P 500 constituents from January 3rd, 2000 to May 6th, 2021,
which include 5370 observations for each stock, and the data set also includes the
SPDR S&P 500 Trust ETF, whose ticker symbol is SPY, among these traded stocks.
However, the SPY is not utilised in the calculation of eigenportfolios. Hence, there
are 506 ticker symbols in total, and after removing the ticker symbols that do not have
full length data, we are left with 375 stocks. We assume that the interest rate r is 0.01,
and in every calendar year there are (around) 252 trading days.

3.1 Eigenportfolios for Constructing Factors

In order to implement the optimal portfolios that are proposed in Sect. 2, selecting
the factors F; in Eq. (2.2) is the initial step. The principal eigenportfolio is a factor
because it tracks the capitalisation-weighted market portfolio, see Avellaneda et al.
[29], which is closely tracked by the SPY. Our additional factors are the higher-order
eigenportfolios, as are studied in Avellaneda and Lee [1] and Yeo and Papanicolaou
[2].

Suppose p € R?*¢ is the correlation matrix of the stock returns:

dsi dsk
o= corr(—f, —t) i k=1,2,...,4d.
s St

Then, its eigenvalue decomposition is

p=VAV', (3.1

! Data source for stock prices: https://finance.yahoo.com.
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where matrix V = [vy, va, ,... v4] € R¥*djg composed by the eigenvectors v; € R4
of p with orthonormal property VIV = VVT = I, and A € R?*¢ is a diagonal matrix
whose diagonal elements A;; are the corresponding eigenvalues with A;7 > Xy >
ceo > Aji = -+ > Agq > 0. The weight vectors for the eigenportfolios are

| d

wij=—0 v;eRY j=1,2 ..., m,
C:
J

where ¢; = lTa_lvj, o = diag ([o1, 02, ..., 04]) € RI%d g a diagonal matrix
whose diagonal elements are the standard deviations o; of the stock returns. The jth
factor F/ has returns equal to those of the jth eigenportfolio,

dFl & dsi
A L
Fy i—1 Si

where w;; is the ith component of vector @ ;. Among all the factors (Ft‘/ )j:1 n, that

are constructed utilising the eigenportfolios returns, factor F,1 is called the principal
eigenportfolio.

The principal eigenportfolio F! should track the SPY. However, there exists a
survivorship bias if data are collected with future knowledge of the S&P 500 con-
stituents. In other words, because S&P Global Incorporated adjusts the constituents
of S&P 500 Index periodically, the latest constituents have already passed a selection
process based on market capitalisation. For instance, the list of S&P 500 constituents
that we utilise for numerical experiments was downloaded> on May 6th, 2021, but on
April 20th, 2021, PTC Incorporated, whose ticker symbol was PTC, replaced3 Varian
Medical Systems Incorporated, whose ticker symbol was VAR, in the S&P 500 list of
constituents. By observing Fig. 1, we can see clearly that in a long-time horizon the
survivorship bias is significant. Consequently, to improve the interpretability of our
numerical experiments, we should adjust for this survivorship bias in the data for the
stock returns utilising the following regression:

1 SPY
Fo_ apAt + By —— + €
Ftl = Up b SISPY l>

where StSPY is the daily adjusted close price of the SPY, and ¢, is the regression

residual between the return of the principal eigenportfolio and the SPY return. The
survivorship-adjusted stock returns are

AS!  AS!
— < -
St St

— apAt,

2 S&P 500 constituents list: https://en.wikipedia.org/wiki/List_of_S%26P_500_companies.

3 S&P Dow Jones Indices announcement for the changes to the S&P 500: https://www.spglobal.com/spdji/
en/documents/indexnews/announcements/20210415-1358567/1358567_5var-6egov-pr.pdf.
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Principal Eigenportfolio and S&P 500 ETF
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Fig. 1 Survivorship bias of the principal eigenportfolio F,1 with respect to the SPY between January 3rd,
2000 and May 6th, 2021

where i = 1, 2, ..., d. In the above formulae, o, is the survivorship bias, because
the trackability with respect to the SPY of the principal eigenportfolio F,1 implies that
the null hypothesis is «;, = 0. Therefore, any non-zero value of «;, from the regression
should be subtracted from the stock returns.

3.2 Parameter Estimation

For the numerical experiments that we perform, we select the factors to be the top six
eigenportfolios, in other words, m = 6 in Eq. (2.2). These six factors correspond to
the largest six eigenvalues of the correlation matrix p of Eq. (3.1). The factor drift
coefficient vector n of the factors seen in Eq. (2.2) have n/ = r for j > 1, n! of the
principal eigenportfolio is estimated utilising the returns of the SPY, see Boyle [30],
and the diffusion matrix X is estimated utilising the method proposed in Ledoit and
Wolf [31].

The next step is to identify co-integrated stocks and estimate the parameters in Egs.
(2.1), (2.3), and (2.4). We first run a linear regression on the factor model of Eq. (2.1)
to get the residual processes Z;, then we utilise the augmented Dickey-Fuller test to
detect stationarity. Accordingly, the systematic return vector o and the co-integration
coefficient matrix 8 are estimated by the least squares approach of the linear regression
of stock returns onto factor returns. In Eq. (2.4), the long-term mean parameter vector
0 is estimated by the time-series averages of the co-integrated processes Z;. The drift
coefficient vector g of stock prices is calculated utilising the relationship between 6
and ' given by Eq. (2.4).

Estimating the speed of mean-reversion vector § is important because each recip-
rocal 1/8' represents the characteristic time scale for mean reversion. Consequently,
it affects portfolio profit significantly because it changes the duration of the trade and
the inventory-risk exposure. The co-integrated process Z! is assumed to follow a sta-
tionary OU process that is described by Eq. (2.4). Therefore, by applying the ergodic
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Co-integrated Processes Z(t) of In-Sample Training Window
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Fig. 2 Co-integrated processes Z; of the in-sample training period from January 3rd, 2000 to April 15th,
2021. Their mean-reversion speeds § are the fifteen largest among all the OU processes Z; whose augmented
Dickey-Fuller tests reject the unit-root hypothesis with p-value < 0.01

theory, the mean-reversion speed parameter 8’ can be estimated by the order-one auto-
correlation of the process Z;:

>
—

T—l . ~, . A,
=1 ( 41— 91) <Z§ - 91)

8i = —A—ln 2 s
! Y (Zf - 9’)

where 6! = + Z,_l Z! is the estimation of the mean-reversion parameter 6'. Both

of the estimators 8/ and 5 converge to their true values in probability as 7 — +o0.

The error for estimator &' is asymptotically Gaussian distributed with expectation zero
and variance approximately 2§, see Kutoyants [32]. Figure 2 illustrates the fifteen co-

integrated processes Z lf that have largest mean-reversion speeds 8! among those whose
augmented Dickey-Fuller tests reject the unit-root hypothesis with p-value < 0.01,

and with 8 estimated from daily data between January 3™, 2000 and April 15, 2021.

We implement parameter estimation with a sliding window approach over the entire
data set. Parameters are estimated utilising data from the in-sample training windows,
and are then utilised to compute portfolios in the out-of-sample testing windows, see
Fig. 3. In each in-sample training window, the number of co-integrated stocks varies
approximately in the range of ten to one hundred. We set d < 15 of Eq. (2.3), which
means that for each in-sample training window, we first sort all the co-integrated stocks
in descending order with respect to the values of the mean reversion speeds §, and
then select only the fifteen stocks whose values of § are the largest. If the total number
of co-integrated stocks for this window is less than fifteen, we then proceed with all
of them. For each out-of-sample testing window following its respective in-sample
training window, we utilise those stocks that are selected without knowing which
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Fig.3 Sliding window schematic diagram for in-sample training and out-of-sample testing for both of the
unconstrained portfolio and the market-neutral constrained portfolio numerical experiments

will remain co-integrated in the testing window. In other words, there exists model
risk in the out-of-sample testing window. By setting up the backtests in this way, we
allow both of the number of co-integrated stocks and the ticker symbols to change
with each in-sample training and out-of-sample testing window pair. Table 1 lists the
fifteen ticker symbols with fastest mean-reversion times 252/§ among all the selected
co-integrated stocks for three different in-sample training windows. Figure 4 displays
the total number of co-integrated stocks in each and every in-sample training window
from January 3rd, 2000 to April 8th, 2021. Each training window has 220 trading days,
which we slide forward every fifteen trading days, for a total of 343 in-sample training
windows and 343 out-of-sample testing windows. The total number of co-integrated
stocks is the number of significant augmented Dickey—Fuller test statistics at the 1%
rejection level for each of these training windows. By observing the figure we can see
that, in each in-sample training window, the number of co-integrated stocks is greater
than fifteen, which is the threshold for d that we set for backtesting. Figure 4 is an
indication that the proposed co-integration model described by Eq. (2.1) can generate
a large number of co-integrated stocks over a long time horizon, which suggests that
the model has advantages in practical application. For multi-variate time series, the
Johansen test proposed by Johansen [33] can be also utilised to detect the number
co-integrated stocks. However, the Johansen test is based on a vector auto-regressive
model, whereas we consider the factor model shown in Eq. (2.1), that is, the co-
integration property for the proposed model of this article is between a stock and
factors. Therefore, rather than utilising Johansen test, we instead count the number of
co-integrations utilising separate augmented Dickey-Fuller tests as described above.

3.3 Portfolio Performance

The final step before evaluating the performances of optimal portfolios is to solve
the system of ODEs for the unconstrained portfolio and market-neutral constrained
portfolio. Because we work in the setting of very large terminal time 7', we can utilise
the steady-state portfolios to demonstrate the results. In other words, we work with
the limiting optimal control vector 7* that is calculated utilising C = t_l)ir_nooC (1)
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Number of Co-integrated Stocks in Each In-Sample Training Window
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Fig. 4 The number of co-integrated stocks in each in-sample training window from January 3rd, 2000 to
May 6th, 2021. The labels of the horizontal axis are the terminal dates of the in-sample training windows.
Each training window has 220 trading days, which we slide forward every fifteen trading days, for a total

of 343 in-sample training windows. The vertical axis is the number of significant augmented Dickey-Fuller
test statistics, at the 1% level, in each window

and b = . lim b (¢). In this situation, for the unconstrained problem with HIB Eq.
——00

(2.11), the matrix Riccati Eq. (2.19) has a steady state C that solves a continuous-time
algebraic Riccati equation, which can be solved numerically, see Dooren [34] and
Arnold and Laub [35]. The linear ODE (2.18) has a steady state b that solves a linear
system. The optimal control (2.20) for the unconstrained portfolio under the steady
state is

_ 1 _ _ _
Correspondingly, the optimal control (2.36) for the market-neutral constrained port-
folio under the steady state is

1

ﬁ’*(Z)Zm

(B = %) (1 + Zab + (—5+2%20)2) .

The wealth of optimal portfolio that is calculated utilising the steady-state optimal
control * is denoted by W; (7*).

In order to perform comprehensive comparisons, we also consider the myopic
wealth process W; (r};). Utilising the myopic control 7}, given by Eq. (2.21) for the
unconstrained portfolio and Eq. (2.37) for the market-neutral constrained portfolio,
a myopic wealth process is computed utilising Eq. (2.6) with the optimal control &*
substituted by the myopic control z,. Correspondingly, the wealth of the portfolio
that is calculated utilising the steady-state myopic control ), is denoted by W; (J"t;"n)

We implement the optimal portfolio in the sliding window backtest format that
is shown in Fig. 3, for both of the unconstrained portfolio and the market-neutral
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constrained portfolio. In each in-sample training window we identify co-integrated
stocks, estimate parameters, select those stocks that are the fastest mean reverters, and
then solve the equations for steady-state values C and b. Afterwards, in each out-of-
sample testing window, we utilise the estimated parameters, C and b to calculate the
steady-state myopic control 7}, and the steady-state optimal control 7 *. Over time,
we compute and record the myopic wealth W; (7},) and the optimal wealth W; (7*).

Figures 5 and 6 illustrate the time series of the myopic wealth and the optimal wealth
for the unconstrained portfolio and the market-neutral constrained portfolio over the
entire time interval from January 3rd, 2000 to May 6th, 2021, respectively, for a fixed
in-sample training window length 220 days and a fixed out-of-sample training window
length fifteen days. Tables 2 and 3 display the annualised statistics of expected returns,
volatilities, profit percentages, Sharpe ratios, and maximum drawdowns of the myopic
wealth and the optimal wealth for the unconstrained portfolio and the market-neutral
constrained portfolio with differing sliding window lengths over the entire time inter-
val. For the optimal wealth trajectories of unconstrained portfolio and market-neutral
constrained portfolio for varying sliding window lengths over the entire time inter-
val, see the figures in the Supplementary Materials* of this article. For the annualised
statistics of the myopic wealth and the optimal wealth for the unconstrained portfolio
and the market-neutral constrained portfolio among four different sub-intervals over
the entire time interval from January 3rd, 2000 to May 6th, 2021, see the tables in the
Supplementary Materials.

As we can observe from the figures and tables, the optimal portfolios usually have
greater profits, higher expected returns, and larger volatilities in out-of-sample tests.
However, their Sharpe ratios® are slightly worse than those of myopic portfolios,
which can be attributed to their higher volatilities. Also, their maximum drawdowns
are bigger than those of myopic portfolios, which are caused by their higher volatilities
as well. These empirical results demonstrate that the non-myopic component of the
optimal * provides improvement to the profits and expected returns. It is also clear
that the optimal market-neutral constrained portfolios, when compared to the optimal
unconstrained portfolios, have smaller profits, less expected returns, lower volatilities,
weaker Sharpe ratios, and milder maximum drawdowns. The results also show that
trading in multiple co-integrated stocks can generate significant profits during the time
periods of high volatilities, for example the post Internet bubble period among years
2000-2003, the financial crisis during years 2007-2008, the European sovereign debt
crisis between years 2010-2012, and the coronavirus pandemic of years 2020-2021.
The slowdown in statistical arbitrage performance in the post Internet bubble period
running up to year 2007 is analysed in Khandani and Lo [36]. Furthermore, from the
tables and figures, we can also observe that although the optimal portfolios constructed
utilising the proposed models of this article have high risk aversion y = —70, they
still out-perform the SPY during those time periods of high volatilities mentioned
above. These results are a general indication that statistical arbitrage strategies have

4 The Supplementary Materials can be accessed through the webpage of the author: https://apapani.
wordpress.ncsu.edu/publications.

5 In this article, the annual return that is utilised for calculating Sharpe ratio is the annualised expected
return: E (AW;/W;) /At.
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Portfolio Wealth of Out-of-Sample Test for Unconstrained Optimal Trading Strategy
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Fig. 5 Sliding window out-of-sample tests for the optimal unconstrained portfolio from November 14th,
2000 to May 6th, 2021. The in-sample training window is 220 days, the out-of-sample testing window is
fifteen days, risk aversion coefficient is y = —100, factor number is m = 6, and interest rate is » = 1%.
The annualised statistics for myopic wealth are profit of 1703.167%, expected return of 15.458%, volatility
of 0.163, Sharpe ratio of 0.888, and maximum drawdown of 0.231. The statistics for optimal wealth are
profit of 17735.254%, expected return of 30.011%, volatility of 0.306, Sharpe ratio of 0.947, and maximum
drawdown of 0.445. The statistics for the S&P 500 ETF are profit of 340.999%, expected return of 9.196%,
volatility of 0.196, Sharpe ratio of 0.417, and maximum drawdown of 0.552

Portfolio Wealth of Out-of-Sample Test for Constrained Optimal Trading Strategy
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Fig. 6 Sliding window out-of-sample tests for the optimal market-neutral constrained portfolio from
November 14th, 2000 to May 6th, 2021. The in-sample training window is 220 days, the out-of-sample
testing window is fifteen days, risk aversion coefficient is y = —100, factor number is m = 6, and interest
rate is r = 1%. The annualised statistics for myopic wealth are profit of 753.696%, expected return of
11.195%, volatility of 0.119, Sharpe ratio of 0.857, and maximum drawdown of 0.221. The statistics for
optimal wealth are profit of 4922.455%, expected return of 21.679%, volatility of 0.226, Sharpe ratio of
0.917, and maximum drawdown of 0.303. The statistics for the S&P 500 ETF are profit of 340.999%,
expected return of 9.196%, volatility of 0.196, Sharpe ratio of 0.417, and maximum drawdown of 0.552
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their greatest potential for generating profits when the overall level of market volatility
is higher than normal.

Implementation of these optimal portfolios involves the selection of five hyper-
parameters: risk aversion coefficient y, number of co-integrated stocks d, number of
factors m, in-sample training window length, and out-of-sample testing window length
in each training window and testing window. Tables 2 and 3 exhibit considerable vari-
ations in portfolio performances as the sliding window lengths change. In our studies,
we prearrange five sets for these hyper-parameters, which contain different values for
each of them, and then evaluate the performances of all hyper-parameter combinations.
The indication is that selection of these hyper-parameters, prior to real-time trading, is
a considerable challenge for practical implementation of these portfolios. In order to
achieve better portfolio performance, for every in-sample training window and out-of-
sample testing window, these hyper-parameters should be selected dynamically, for
example utilising the R? screening method of Yeo and Papanicolaou [2].

Finally, we should mention the effects of transaction costs and liquidity, which we
have not included in these sliding window backtests. However, these backtests can
be rerun with a five or ten basis points penalty on trading and the results will still be
reasonable from the points of view of practitioners. Liquidity is a deeper issue because
brokers put considerable restraints on leverage and short sales during times of crises,
which means that potential returns from statistical arbitrage strategies in year 2008
and in year 2020 require a broker who allows trading while most other brokers freeze
the trades of their clients. To summarise, backtestings of statistical arbitrage based on
historical data, such as we present in this article, are an informative feasibility study,
but considerations given to transaction costs and liquidity are essential for practical
implementation.

4 Conclusion

In this article, we present an analysis of optimal statistical arbitrage strategies under a
multiple co-integrated stocks model with eigenportfolios being factors. We compute
optimal portfolios for both an unconstrained stochastic control and optimisation prob-
lem and a market-neutral constrained stochastic control and optimisation problem. The
optimal solution is found by solving a Hamilton-Jacobi-Bellman partial differential
equation, which for power utility function can be solved with an exponential ansatz
that leads to a system of ordinary differential equations. This system consists of a
matrix Riccati equation and two first-order linear ordinary differential equations. We
present the stability analyses for the solutions to these ordinary differential equations,
for both of the unconstrained case and the market-neutral constrained case. We then
apply the optimal formulae to historical stock data and estimate the model parameters,
and then perform sliding window backtests. The results of these backtests indicate that
statistical arbitrage portfolios have profit-generating potential during periods of higher
overall market volatilities, but are sensitive to parameter estimation. In particular, we
demonstrate that profits and Sharpe ratios can be quite good but vary as we change
the lengths of the sliding windows for in-sample training and out-of-sample testing.
The conclusions drawn from these backtests are that the proposed co-integrated model

@ Springer
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can generate a large number of co-integrated stocks over a long time horizon, that the
greatest potential for profits occur during periods of higher overall volatility, and that
a priori selection of window-length parameters is a significant challenge for profitable
implementation of statistical arbitrage in practice.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/500245-022-09838-3.
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