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Abstract
We study the optimal arrangement of two conductive materials in order to maximize
the first eigenvalue of the corresponding diffusion operator with Dirichlet conditions.
The amount of the highest conductive composite is assumed to be limited. Since this
type of problems has no solution in general, we work with a relaxed formulation. We
show that the problem has some good concavity properties which allow us to get some
uniqueness results. By proving that it is related to the minimization of the energy
for a two-phase material studied in [4] we also obtain some smoothness results. As
a consequence, we show that the unrelaxed problem has never solution. The paper
is completed with some numerical results corresponding to the convergence of the
gradient algorithm.

Keywords Two-phase material · Eigenvalue · Optimal design · Relaxed formulation ·
Gradient method

Mathematics Subject Classification 49J20 · 49J45 · 49M37

1 Introduction

For two conductive materials (electric or thermic), represented by their diffusion con-
stants 0 < α < β, we are interested in finding the mixture which maximizes the first
eigenvalue of the corresponding diffusion operator with Dirichlet conditions. Namely,
for a fixed bounded open set� ⊂ R

N , N ≥ 2, we look for a measurable subsetω ⊂ �

maximizing
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λ1(ω) := min
u∈H1

0 (�)

u �=0

∫
�
(αχω + βχ�\ω)|∇u|2dx

∫
�

|u|2dx . (1.1)

With this formulation the solution is the trivial one given by ω = ∅. It consists in
taking in every point the material with the highest diffusion coefficient. The problem
becomes interesting when the amount of such material is limited, i.e. when we add
the constraint

|ω| ≥ κ, (1.2)

for some κ ∈ (
0, |�|). From the point of view of the applications, the maximization of

the first eigenvalue is a criterion to determine the best two-phase conductive material
(associated to the Dirichlet conditions). To clarify this statement we can consider the
parabolic problem

{
∂t u − div

(
(αχω + βχ�\ω)∇xu

) = 0 in (0,∞) × �

u = 0 on (0,∞) × ∂�, u|t=0 = u0 in �.

Due to the diffusion process, the solution u (electric potential of temperature) tends
to zero when t tends to infinity. Thus, we can consider that one material is a better
diffuser than another if the solution converges to zero faster. In this point we recall the
estimate (λ1 the first eigenvalue of the elliptic operator)

‖u(t, .)‖2L2(�)
≤ e−λ1t‖u0‖2L2(�)

, ∀ t > 0,

which is optimal in the sense that it is reached for u0 an associated eigenfunction.
Therefore, one way of understanding that the material is a good conductor is that λ1
is large.

The opposite problem, corresponding to get the worse conductive material (i.e. the
best isolating one) has been considered in several papers such as [2, 5, 6, 11, 12], and
[21] (see also [8] for the p-Laplacian operator). It consists in finding ω minimizing
(1.1), when (1.2) is replaced by |ω| ≤ κ. Assuming � connected, with connected
boundary, it has been proved in [6] (see [5, 8] and [25], for related results) that the
problem has a solution if and only if � is a ball.

The non-existence of solution for optimal design problems is classical ([22, 23]).
Because of that, it is usual to work with a relaxed formulation. This can be achieved
using the homogenization theory ([1, 24–26]), which describes the set of materials
that can be obtained mixing some elementary composites in a microscopic level. The
resulting materials do not only depend on the proportion of the composites but also of
their disposition. In the case of minimizing the first eigenvalue , the most elementary
estimates in H convergence (see e.g. [25], Proposition 9) prove that such relaxed
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formulation consists in replacing αχω +βχ�\ω by the harmonic mean value of α and
β with proportions θ and 1 − θ respectively, θ ∈ (0, 1), i.e. by

( θ

α
+ 1 − θ

β

)−1
.

This homogenized material is obtained by laminates of α and β in the direction of
the flow. In the case of the maximization considered here, it consists in replacing
αχω + βχ�\ω by the arithmetic mean value, i.e. by

αθ + β(1 − θ).

It is also obtained as a laminate of α and β but now in an orthogonal direction to the
flow.

Taking c = (β − α)/β, we are going then to be interested in the problem

max
θ∈L∞(�;[0,1])∫

� θdx≥κ

�(θ) with �(θ) := min
u∈H1

0 (�)

u �=0

∫
�
(1 − cθ)|∇u|2dx

∫
�

|u|2dx . (1.3)

We show that � is concave in L∞(�; [0, 1]) and that the minimization in u becomes
a convex problem after a change of variables. This allows us to write the max-min
problem as a min-max problem. If (θ̂ , û) is a saddle point we prove that û is unique
(taking it positive, with unit norm in L2(�)), and θ̂ belongs to a convex set of functions
which satisfy

θ̂ =
{
0 if |∇û| > μ̂

1 if |∇û| < μ̂,

∫

�

θ̂ dx = κ, (1.4)

for a certain μ̂ > 0, which depends on u but not on θ̂ . Thus, θ̂ is unique outside the
set {|∇û| = μ̂}.

The optimality conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div
(
(1 − cθ̂ )∇û

) = λ̂û in �∫

�

θ |∇û|2dx = min
ϑ∈L∞(�;[0,1])∫

� ϑdx≥κ

∫

�

ϑ |∇û|2dx

û ∈ H1
0 (�), û > 0 in �,

∫

�

|û|2dx = 1, θ̂ ∈ L∞(�; [0, 1]),
∫

�

θ̂ dx = κ,

are necessary and sufficient. Because of that, it is simple to check that every solution
(θ̂ , û) of (1.3) is also a solution of

max
θ∈L∞(�;[0,1])∫

� θdx≥κ

min
u∈H1

0 (�)

{
1

2

∫

�

(1 − cθ)|∇u|2dx −
∫

�

f u dx

}

, (1.5)
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with f = λ̂û. For an arbitrary f ∈ H−1(�), this is a problem which has been studied
in [4], see also [3] for a related problem where θ ∈ L∞((−∞, 0]). Applying the
results in [4] to our problem we deduce that � ∈ C1,1 implies that the solutions (θ̂ , û)

of (1.3) satisfy

û ∈ H2(�) ∩ W 1,∞(�), ∇ θ̂ · ∇û ∈ L2(�).

As a consequence of this result we show that the unrelaxed problem (1.1) has no
solution for any bounded open set � ∈ C1,1, and therefore that the set

{|∇û| = μ̂},
with μ̂ satisfying (1.4) always has a positive measure.

The connection between (1.3) and (1.5) merits to be compared with the results in
[5] (see also [8] and [10]). In these papers, it has been proved that the minimization
of the first eigenvalue can also be formulated as

min
f ∈L2(�)
‖ f ‖L2(�)

≤1

P f , P f := min
θ∈L∞(�;[0,1])∫

� θdx≤κ

min
u∈H1

0 (�)

{
1

2

∫

�

|∇u|2
1 + dθ

dx −
∫

�

f u dx .

}

, d = β − α

α
.

(1.6)

However in our case we do not know if an equivalence result of this type holds. For
an arbitrary f ∈ H−1(�), problem P f has also been considered by several authors
([1, 5, 7, 17, 25]), specially for f = 1 where it applies for example to the optimal
rearrangement of two materials in the cross section of a beam in order to minimize
the torsion

Taking into account the concavity of the functional �, we finish the paper showing
the convergence of the gradient method applied to (1.3). We also estimate the rate of
convergence (see [9] for related results), and we provide some numerical examples
corresponding to � a circle and a square respectively.

Some results about the relaxation and the optimality conditions to the minimization
or maximization of an arbitrary eigenvalue for a two-phase material have also been
obtained in [14].

2 Theoretical Results for theMaximization of the Eigenvalue

For a bounded open set � ⊂ R
N , N ≥ 2, and three positive constants 0 < α < β,

0 < κ < |�|, we look for a measurable set ω ⊂ �, with |ω| ≥ κ , which maximizes
the first eigenvalue of the operator u ∈ H1

0 (�) 
→ −div
((

αχω + β(1 − χω)
)∇u

) ∈
H−1(�), i.e. we are interested in the optimal design problem

max
ω⊂�|ω|≥κ

min
u∈H1

0 (�)

u �=0

∫
�

(
αχω + β(1 − χω)

)|∇u|2dx
∫
�

|u|2dx . (2.1)
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Since this type of problems has no solution in general ( [22, 23]), let us work with a
relaxed formulation. Using the homogenization theory ([1, 25, 26]), it is well known
that it is given by

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min
u∈H1

0 (�)

u �=0

∫
�

(
αθ + β(1 − θ)

)|∇u|2dx
∫
�

|u|2dx . (2.2)

It consists in replacing the mixture αχω + βχωc by a most general one obtained as
a laminate of both materials in an orthogonal direction to ∇u with proportions θ and
1 − θ . Dividing by β and introducing

c = 1 − β

α
∈ (0, 1), (2.3)

we can also write (2.2) as

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min
u∈H1

0 (�)

u �=0

∫
�

(
1 − cθ

)|∇u|2dx
∫
�

|u|2dx . (2.4)

Moreover, we can restrict ourselves to the set of functions u which are non-negative
and have unit norm in L2(�). The following theorem shows the uniqueness of the
optimal state function û and provides an equivalent formulation.

Theorem 2.1 We have

max
θ∈L∞(�;[0,1])∫

� θdx≥κ

min
u∈H1

0 (�)

u≥0,
∫
� |u|2dx=1

∫

�
(1 − cθ)|∇u|2dx = min

u∈H1
0 (�)

u≥0,
∫
� |u|2dx=1

max
θ∈L∞(�;[0,1])∫

� θdx≥κ

∫

�
(1 − cθ)|∇u|2dx .

(2.5)

Moreover, if θ̂ is a solution of the left-hand side problem and û is the solution of

min
u∈H1

0 (�)

u≥0,
∫
� |u|2dx=1

∫

�

(1 − cθ̂ )|∇u|2dx, (2.6)

then û is the unique solution of the right-hand side problem and θ̂ is a solution of

min
θ∈L∞(�;[0,1])∫

� θdx≥κ

∫

�

θ |∇û|2dx . (2.7)

Related with the above result, we also have
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Theorem 2.2 The function � : L∞(�; [0, 1]) → R defined by

�(θ) = first eigenvalue of − div
(
(1 − cθ)∇) with Dirichlet conditions, (2.8)

is concave. Further, for every θ, ϑ ∈ L∞(�; [0, 1]), we have

λ′ := d�

dε

(
θ + ε(ϑ − θ)

)
|ε=0 = c

∫

�

(θ − ϑ)|∇u|2dx, (2.9)

with u the solution of

⎧
⎨

⎩

−div
(
(1 − cθ)∇u

) = �(θ)u in �

u = 0 on ∂�, u > 0 in �,

∫

�

|u|2dx = 1,
(2.10)

and

λ′′ := d2�

dε2

(
θ + ε(ϑ − θ)

)
|ε=0 = 2

∫

�

|u′|2dx
(

�(θ) −
∫
�
(1 − cθ)|∇u′|2dx

∫
�

|u′|2dx

)

≤ 0, (2.11)

with u′ the solution of
⎧
⎨

⎩

−div
(
(1 − cθ)∇u′ − c(ϑ − θ)∇u

) = �(θ)u′ + λ′u in �

u′ = 0 on ∂�,

∫

�

uu′ dx = 0.
(2.12)

Corollary 2.3 A function ˆθ ∈L∞(�; [0, 1]) is a solution of (2.4) if and only if defining
û as the unique solution of (2.6), we have that θ̂ satisfies (2.7).

Remark 2.4 If θ̂ is a solution of (2.4) and û the solution of (2.6), then û satisfies

{−div
(
(1 − cθ̂ )∇û

) = λ̂û in �

û = 0 on ∂�,
(2.13)

with λ̂ the maximum value in (2.4). By Theorem 2.1, we also have that θ̂ is a solution
of (2.7). This proves that (θ̂ , û) is a saddle point of the problem

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min
u∈H1

0 (�)

{
1

2

∫

�

(1 − cθ)|∇u|2dx − λ̂

∫

�

û u dx

}

= min
u∈H1

0 (�)

max
θ∈L∞(�;[0,1])∫

θdx≥κ

{
1

2

∫

�

(1 − cθ)|∇u|2dx − λ̂

∫

�

û u dx

}

,

(2.14)

and then of the optimal design problem studied in [4] with f = λ̂û. Applying the
smoothness results in this paper, we get Theorem 2.5 below.
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A related problem to the one in [4] has been studied in [3], where the restriction
θ ∈ L∞(�; [0, 1]) is replaced by θ ∈ L∞(�; (−∞, 0]). In this case, it is proved that
the optimal state function u is still in W 1,∞(�).

Theorem 2.5 Assume � ∈ C1,1. For θ̂ a solution of (2.4) and û the solution of (2.6),
we have

û ∈ H2(�) ∩ W 1,∞(�), ∇ θ̂ · ∇û ∈ L2(�). (2.15)

If θ̂ is an unrelaxed solution of (2.4), i.e. θ̂ = χω̂ for some measurable subset
ω̂ ⊂ �, then

∇ θ̂ · ∇û = 0 in �, −�û = λ̂
(
1 + c

1 − c
χω̂

)
û in �. (2.16)

Remark 2.6 By the strong maximum principle, we know that û is strictly positive in
�. Using (2.13) and û ∈ H2(�), we also have ∇û �= 0 a.e. in �. Taking into account
(2.7), this implies that for every solution θ̂ of (2.4), there exists μ̂ > 0 such that

θ̂ =
{
0 if |∇û| > μ̂

1 if |∇û| > μ̂,

∫

�

θ̂dx = κ. (2.17)

Since μ̂ can be chosen as

μ̂ = sup
{
s ≥ 0 : ∣

∣{|∇û| ≥ s
}∣∣ ≥ κ

}
,

and û is unique, we get that μ̂ can be chosen independently of θ̂ and then by (2.17)
that all the solutions of (2.4) take the same value on the set {|∇û| �= μ̂}. By (2.13),
these solutions also satisfy the first order linear PDE

c∇ θ̂ ·∇û − (1 − cθ̂ )�û = λû in �. (2.18)

However, û ∈ H2(�) is not enough to conclude that (2.17), (2.18) and û unique imply
θ̂ unique. In any way, Theorem 2.2 proves that the set of solutions of (2.4) is a convex
set.

For the problem of minimizing the first eigenvalue, it has been proved in [6] (see [5,
7, 8, 25] for related results) that assuming that � ∈ C1,1 connected, with connected
boundary, then the unrelaxed problem has a solution if and only if � is a ball. In the
case of the maximization of the first eigenvalue, the following theorem gives that an
unrelaxed solution never exists. In particular this shows hat μ̂ in (2.17) is such that∣
∣{|∇û| = μ̂}∣∣ is always positive.
Theorem 2.7 If � is a C1,1 domain in RN , then problem (2.1) has no solution.

123



11 Page 8 of 23 Applied Mathematics & Optimization (2022) 86 :11

3 Proof of the Theoretical Results

We show in this section the results stated in the previous one relative to the properties
of the solutions of problem (2.4).

Proof of Theorem 2.1 Taking into account that

∫

�

(1 − cθ)
∣
∣∇|u|∣∣2dx =

∫

�

(1 − cθ)|∇u|2dx, ∀ u ∈ H1
0 (�),

we deduce that θ is a solution of (2.4) if and only if it is a solution of

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min
u∈H1

0 (�)

u≥0,
∫
� |u|2dx=1

∫

�

(
1 − cθ

)|∇u|2dx . (3.1)

Here we introduce the change of variables

z = u2 ⇐⇒ u = √
z.

It transforms the problem in

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min√
z∈H1

0 (�)

z≥0,
∫
� zdx=1

∫

{z>0}
(1 − cθ)

|∇z|2
z

dx . (3.2)

Let us prove that for every θ ∈ L∞(�; [0, 1]), the functional � defined by

�(z) :=
∫

{z>0}
|∇z|2
z

dx, ∀ z ≥ 0,
√
z ∈ H1

0 (�), (3.3)

is convex. Moreover, it is strictly convex on the set

{√
z ∈ H1

0 (�) : z > 0 a.e. in �,

∫

�

zdx = 1

}

. (3.4)

For this purpose, we take z1, z2 ≥ 0, with
√
z1,

√
z2 ∈ H1

0 (�) and r ∈ (0, 1). Then,
using the convexity of the function ξ ∈ R

N 
→ |ξ |2, we have
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∫

{r z1+(1−r)z2>0}
(1 − cθ)

|r∇z1 + (1 − r)∇z2|2
r z1 + (1 − r)z2

dx

= r
∫

{z1>0,z2=0}
(1 − cθ)

|∇z1|2
z1

dx + (1 − r)
∫

{z1=0,z2>0}
(1 − cθ)

|∇z2|2
z2

dx

+
∫

{z1,z2>0}
(1 − cθ)(r z1 + (1 − r)z2)

∣
∣
∣
∣

r z1
r z1 + (1 − r)z2

∇z1
z1

+ (1 − r)z2
r z1 + (1 − r)z2

∇z2
z2

∣
∣
∣
∣

2

dx

≤ r
∫

{z1>0,z2=0}
(1 − cθ)

|∇z1|2
z1

dx + (1 − r)
∫

{z1=0,z2>0}
(1 − cθ)

|∇z2|2
z2

dx

+
∫

{z1,z2>0}
(1 − cθ)

(

r
|∇z1|2
z1

+ (1 − r)
|∇z2|2
z2

)

dx

= r
∫

{z1>0}
(1 − cθ)

|∇z1|2
z1

dx + (1 − r)
∫

{z2>0}
(1 − cθ)

|∇z2|2
z2

dx,

(3.5)

This proves the convexity of�. In order to prove the strict convexity on the set defined
by (3.4), we return to (3.5). Assuming that z1, z2 are strictly positive a.e. in �, and
using that the function ξ ∈ R

N 
→ |ξ |2 is strilctly convex, we deduce that (3.5) is an
equality if and only if

∇z1
z1

= ∇z2
z2

a.e. in � ⇐⇒ ∇ log z1 = ∇ log z2 a.e. in �,

This proves that log(z1/z2) is constant in � and then that there exists a positive
constante C > 0 such that z1 = Cz2 a.e. in �. Since the integral of z1 and z2 takes
the same value, we must have C = 1. Thus � is strictly convex.

The convexity of �, allows us to apply the Von-Neumann min-max theorem (see
e.g. [27], chapter 2.13) to (3.2) to deduce

max
θ∈L∞(�;[0,1])∫

θdx≥κ

min√
z∈H1

0 (�)

z≥0,
∫
� zdx=1

∫

{z>0}
(
1 − cθ)

|∇z|2
z

dx = min√
z∈H1

0 (�)

z≥0,
∫
� zdx=1

max
θ∈L∞(�;[0,1])∫

θdx≥κ

∫

{z>0}
(
1 − cθ)

|∇z|2
z

dx,

(3.6)

Moreover, if θ̃ is a solution of the left-hand side problem and z̃ is the solution of

min√
z∈H1

0 (�)

z≥0,
∫
� zdx=1

∫

{z>0}
(
1 − cθ̃ )

|∇z|2
z

dx,

then z̃ is a solution of the right-hand side problem. Returning to the variables (θ, u),
this proves the thesis of Theorem 2.1, except the uniqueness of û. For this purpose,
we recall that by the strong maximum principle, if û is a solution of (2.6) then it is
positive in � and therefore ẑ := √

û is also positive. As a consequence we have

min√
z∈H1

0 (�)

z≥0,
∫
� zdx=1

max
θ∈L∞(�;[0,1])∫

θdx≥κ

∫

{z>0}
(
1 − cθ)

|∇z|2
z

dx = min√
z∈H1

0 (�)

z>0,
∫
� zdx=1

max
θ∈L∞(�;[0,1])∫

θdx≥κ

∫

�

(
1 − cθ)

|∇z|2
z

dx .

123



11 Page 10 of 23 Applied Mathematics & Optimization (2022) 86 :11

Since � is strictly convex on the set defined by (3.6), we also have that the function

{

z > 0,
√
z ∈ H1

0 (�),

∫

�

z dx = 1

}


→ max
θ∈L∞(�;[0,1])∫

θdx≥κ

∫

�

(
1 − cθ)

|∇z|2
z

dx,

is strictly convex as a maximum of strictly convex functions. Thus ẑ and then û is
unique. ��
Proof of Theorem 2.2 Assume θ, ϑ ∈ L∞(�; [0, 1]). We take δ > 0 such that

1 − cθ − cε(ϑ − θ) ≥ (1 − c)/2 a.e. in �, ∀ε ∈ (−δ, 1 + δ).

Taking into account that the eigenvalue �(θ + ε(ϑ − θ)) is simple, we can apply the
implicit function theorem to the function F : (−δ, 1+δ)×R×H1

0 (�) → H−1(�)×R,

defined by

F(ε, λ, u) =
(

− div
(
(1 − cθ − cε(ϑ − θ))∇u

) − λu,

∫

�

|u|2dx − 1
)
,

to deduce that for λε := �
(
θ + ε(ϑ − θ)

)
, and uε the unique solution of

⎧
⎨

⎩

−div
(
(1 − cθ − cε(ϑ − θ))∇uε

) = λεuε in �

uε = 0 on ∂�, uε ≥ 0 in �,

∫

�

|uε|2dx = 1,
(3.7)

we have that the function ε ∈ (−δ, 1+δ) → (λε, uε) ∈ R×H1
0 (�) is inC∞(−δ, 1+

δ). Deriving twice in (3.7) with respect to ε, and taking ε = 0, we get

⎧
⎨

⎩

−div
(
(1 − cθ)∇u′ − c(ϑ − θ)∇u

) = λ′u + λu′ in �

u′ = 0 on ∂�,

∫

�

uu′dx = 0,
(3.8)

⎧
⎨

⎩

−div
(
(1 − cθ)∇u′′ − 2c(ϑ − θ)∇u′) = λ′′u + 2λ′u′ + λu′′ in �

u′′ = 0 on ∂�,

∫

�

(|u′|2 + uu′′) dx = 0,
(3.9)

with

λ = λ0, u = u0, λ′ = dλε

dε

∣
∣
∣
ε=0

, λ′′ = d2λε

dε2

∣
∣
∣
ε=0

, u′ = duε

dε

∣
∣
∣
ε=0

, u′′ = d2uε

dε2

∣
∣
∣
ε=0

.

Equation (3.8) gives (2.12). In order to prove (2.9), we use u as test function in
(3.8). Since ‖u‖L2(�) = 1, we get

∫

�

(
(1 − cθ)∇u′ · ∇u − c(ϑ − θ)|∇u|2)dx = λ

∫

�

uu′ dx + λ′, (3.10)
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Using now u′ as test function in (3.7), with ε = 0, we also have

∫

�

(1 − cθ)∇u′ · ∇u dx = λ

∫

�

uu′ dx . (3.11)

Replacing (3.11) in (3.10), we conclude (2.9).
It remains to prove (2.11). For this purpose, and reasoning as above, we use u as

test function in (3.9), which taking into account ‖u‖L2(�) = 1,
∫
�
uu′dx = 0, gives

∫

�

(
(1 − cθ)∇u′′ · ∇u − 2c(ϑ − θ)∇u′ · ∇u

)
dx = λ′′ + λ

∫

�

u′′u dx,

which using u′′ as test function in (3.7), with ε = 0, simplifies to

− 2c
∫

�

(ϑ − θ)∇u′ · ∇u dx = λ′′, (3.12)

On the other hand, using u′ as test function in (3.8), we have

∫

�

(
(1 − cθ)|∇u′|2dx − c(ϑ − θ)∇u · ∇u′)dx = λ

∫

�

|u′|2dx . (3.13)

By (3.12) and (3.13), we deduce (2.11) and then that � is concave. ��
Proof of Theorem 2.7 Reasoning by contradiction, we assume that there exists a solu-
tion θ̂ of (2.13) such that θ̂ = χω̂ with ω̂ a measurable set of �. By Theorem 2.5 we
know that (2.16) holds, which taking into account that λ̂(1 + c/(1 − c)χω̂)û belongs
to L∞(�), implies (see e.g. [16])

D2u ∈ BMO(�)N×N . (3.14)

By the John-Niremberg theorem, [19], there exists τ > 0 such that

max
1≤i, j≤N

∫

�̃

eτ |∂2i j u|dx < ∞, 1 ≤ i, j ≤ N . (3.15)

This allows us to use the imbedding theorems for Orlicz-Sobolev spaces, [15], which
taking into account that

∫ ∞

ρ−N

log t

t1+ 1
N

dt = N 2ρ
(
1 − log ρ

)
,

proves the existence of C > 0 such that

∣
∣∇û(x) − ∇û(y)

∣
∣ ≤ C |x − y|max{− log |x − y|, 1}, ∀ x, y ∈ �. (3.16)
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Since

−
∫ 1

0

1

ρ ln ρ
dρ = ∞,

we then have (see e.g. [13], Theorem 2.5) that for every y ∈ �, there exists a unique
maximal solution ϕ(., y) of

{
∂tϕ(t, y) = ∇û(ϕ(t, y))
ϕ(0, y) = y,

(3.17)

which is defined in an open interval I (y) ⊂ R. Taking into account that

∂t û(ϕ(t, y)) = ∣
∣∇û(ϕ(t, y))

∣
∣2 ≥ 0, ∀ y ∈ �, ∀ t ∈ I (y),

and that û is strictly positive in� and vanishes on ∂�, we can apply LaSalle’s theorem,
[20], to deduce

sup I (y) = ∞ lim
t→∞ dist

(
ϕ(t, y),

{∇û = 0}) = 0, ∀y ∈ �. (3.18)

Now, we observe that the equation ∇ θ̂ · ∇û = 0 in �, implies

θ̂ (ϕ(t, y)) does not depend on t, a.e. y ∈ �. (3.19)

But this a contradiction with (3.18), which recalling that θ̂ = χω̂ and that ∇û is
continuous, implies

θ̂ (ϕ(0, y)) = 0, lim
t→∞ θ̂ (ϕ(t, y)) = 1 a.e. y ∈ � \ ω̂,

where by (1.4)

∣
∣�̂ \ ω̂

∣
∣ = |�| − κ > 0.

��

4 A Numerical Approximation

In this section, taking into account Theorem 2.2, let us prove the convergence of the
gradient method applied to (2.4) together with an estimate of the error. The corre-
sponding algorithm reads as follows:

We fix δ > 0.

• Take θ0 ∈ L∞(�; [0, 1]) such that

∫

�

θ0dx = κ. (4.1)
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• Assuming we have constructed θn ∈ L∞(�; [0, 1]) such that

∫

�

θndx = κ, (4.2)

we define (λn, un) as the unique solution of

⎧
⎨

⎩

−div
(
(1 − cθn)∇un

) = λnun in �

un = 0 on ∂�, un > 0 in �,

∫

�

|un|2dx = 1.
(4.3)

• Take ϑn ∈ L∞(�; [0, 1]) as a solution of

min
ϑ∈L∞(�;[0,1])∫

� ϑdx≥κ

∫

�

ϑ |∇un|2dx . (4.4)

• For

εn = min
{
1, δ

∫

�

(θn − ϑn)|∇u|2dx
}
,

we define

θn+1 = (1 − εn)θn + εnϑn . (4.5)

Remark 4.1 Problem (4.3) can be easily solved using the power method. The solutions
of (4.4) are explicitly given by

ϑn =
{
0 if |∇un| > μn

1 if |∇un| < μn,

∫

�

ϑn dx = κ, μn > 0.

Our main result is given by the following convergence theorem.

Theorem 4.2 There exists δ0 > 0, such that for every δ ∈ (0, δ0], and every θ0 ∈
L∞(�; [0, 1]) which satisfies (4.1), the sequence (θn, un) defined by the previous
algorithm satisfies:

1. There exist C > 0, which only depends on c and ‖u0‖H1
0 (�) such that defining λ̂

as the maximum value of (2.4), we have

0 ≤ λ̂ − λn ≤ C√
n
. (4.6)

2. Every θ̂ ∈ L∞(�; [0, 1]) such that there exists a subsequence of θn converging in
L∞(�) weak-∗ to θ is a solution of (2.4).
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3. The sequence un satisfies

∫

�

|û − un|2dx ≤ C
ln n√
n

. (4.7)

with û defined by Theorem 2.1 and C > 0 depending only on c and ‖u0‖H1
0 (�).

The first and second assertions of the theorem will follow from the following general
convergence result for the gradient descendent method. It applies to a convex (but non
necesaryly strictly convex) functional with bounded second derivative. It is strongly
related with the classical convergence result of the gradient method with a fixed step.
However, the rate of convergence is worse due to the lack of the ellipticity.

Theorem 4.3 Assume X a reflexive space, K ⊂ X a bounded convex closed set and
F : K → R a convex function, Gâteaux derivable, such that there exists M ≥ 0
satisfying (〈., .〉 denotes the duality product)

lim sup
ε→0+

〈F ′(k1 + ε(k2 − k1)) − F ′(k1), k2 − k1〉
ε

≤ M, ∀ k1, k2 ∈ K . (4.8)

Then, for every k0 ∈ K, and every δ ∈ (0, 1/M], the sequence {kn} defined by

kn+1 = (1 − εn)kn + εnk̃n (4.9)

with k̃n solution of

〈F ′(kn), k̃n〉 = min
k∈K 〈F ′(kn), k〉, (4.10)

and

εn = min

{
〈F ′(kn), k̃n − kn〉

M
, 1

}

, (4.11)

satisfies

F(kn) − min
k∈K F(k) ≤ C√

n
. (4.12)

The constant C only depends on F(k0) and M. Moreover, every k̂ ∈ K such that there
exists a subsequence of {kn} which converges weakly to k̂, is a minimum point for F.

Remark 4.4 The assumption F Gâteaux derivable in C can be relaxed by: For every
k ∈ C , there exists F ′(k) ∈ X ′ such that

〈F ′(k), k̃ − k〉 = lim
ε→0+

F(k + ε(k̃ − k)) − F(k)

ε
, ∀ k, k̃ ∈ K . (4.13)
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We also observe that this property combined with the convexity of F implies that F
is lower semicontinuous in K and then that F has a minimum in K .

Proof of Theorem 4.3 Thanks to (4.8), for every ε ∈ [0, 1] we have

F
(
kn + ε(k̃n − kn)

) ≤ F(kn) + ε〈F ′(kn), k̃n − kn〉 + M

2
ε2.

Defining k̃n by (4.10), εn by (4.11), and δn by

δn = 〈F ′(kn), kn − k̃n〉, (4.14)

we then have

F(kn+1) ≤

⎧
⎪⎪⎨

⎪⎪⎩

F(kn) − δ2n

2M
if δn ≤ M

F(kn) + M

2
− δn if δn > M .

≤ F(kn) − δn

2
min

{
δn

M
, 1

}

.

(4.15)

Now, we take k̂ ∈ C a minimum point for F . Using the convexity of F and the
definition (4.10) of k̃n , we have

F(k̂) ≥ F(kn) + 〈F ′(kn), k̂ − kn〉 ≥ F(kn) + 〈F ′(kn), k̃n − kn〉 = F(kn) − δn .

Taking en := F(kn) − F(k̂) ≥ 0, we deduce from this inequality and (4.15)

en ≤
{√

2M(en − en+1) if δn ≤ M
2(en − en+1) if δn > M .

(4.16)

Lemma 1 in [18], then proves (4.12).
On the other hand, the convexity and lower semicontinuity of F imply that F

is sequentially lower semicontinuous for the weak topology. Therefore, for every
subsequence of kn , still denoted by kn , which converges weakly to some k̃ ∈ K , we
have

F(k̃) ≤ lim inf F(kn) = min
K

F,

and then k̃ is a minimum point of F in K . ��
In order to prove Theorem 4.2, let us also need the following two lemmas

Lemma 4.5 Let � be a bounded open set, then there exists ρ > 0 such that defining
�(θ) by (2.8), and �2(θ) as the second eigenvalue of −div((1− cθ)∇) with Dirichlet
conditions, we have

�2(θ) − �(θ) ≥ δ, ∀ θ ∈ L∞(�; [0, 1]). (4.17)
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Proof Reasoning by contradiction, we assume that there exists a sequence θn ∈
L∞(�; [0, 1]) such that the �2(θn) − �(θn) goes to zero. Extracting a subsequence
if necessary (see e.g. [24, 26]), we can assume that there exists A ∈ L∞(�)N×N

symmetric, with

(1 − c)|ξ |2 ≤ A(x)ξ · ξ ≤ |ξ |2, ∀ ξ ∈ R
N , a.e. x ∈ �,

such that (1 − cθn)I converges to A in the sense of the H -convergence in � ([1, 24,
26]). Denoting by λ1, λ2 the first and second eigenvalues of the operator −div(A∇)

with Dirichlet conditions, this implies

�(θn) → λ1, �2(θn) → λ2.

Since λ2 − λ1 > 0, this contradicts the fact that �2(θn) − �1(θn) tends to zero. ��
Lemma 4.6 Assume� a bounded open set, then there exist three constants R, M, γ >

0 such that for every θ, ϑ ∈ L∞(�; [0, 1]), u′ defined by (2.12), and λ′′ defined by
(2.11), satisfy

∫

�

|∇u′|2dx ≤ R, −M ≤ λ′′ ≤ −γ

∫

�

|u′|2dx . (4.18)

Proof We define λ1 and λ2 as the first and second eigenvalues of −div((1 − cθ)∇)

with Dirichlet condtions, and u as the unique positive eigenfunction with unit norm
in L2(�) corresponding to λ1. Since u′ is orthogonal to u in L2(�), we have

∫

�

(1 − cθ)|∇u′|2dx ≥ λ2

∫

�

|u′|2dx, (4.19)

Using then u′ as test function in (2.12), we have

(λ2 − λ1)

∫

�

|u′|2dx ≤
∫

�

(1 − cθ)|∇u′|2dx − λ1

∫

�

|u′|2dx = c
∫

�

(ϑ − θ)∇u · ∇u′dx .

(4.20)

Therefore

∫

�

(1 − cθ)|∇u′|2dx ≤ c
∫

�

(ϑ − θ)∇u · ∇u′dx + λ1

∫

�

|u′|2dx

≤
(

1 + λ1

λ2 − λ1

)

c
∫

�

(ϑ − θ)∇u · ∇u′dx = cλ2
λ2 − λ1

∫

�

(ϑ − θ)∇u · ∇u′dx .
(4.21)

Using here Lemma 4.5, Cauchy-Schwarz’s inequality and

∫

�

(1 − cθ)|∇u|2dx = λ1 ≤ λ∗
1,
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with λ∗
1 the first eigenvalue of −� in � with Dirichlet conditions, we conclude the

existence of R > 0 such that the first assertion in (4.18) holds. From this inequality,
(4.17), (4.20), and (2.11), we easily conclude (4.18). ��
Proof of Theorem 4.2 Taking into account Lemma 4.18 and Remak 4.4, we have that
(4.6) and θ̂ solution of (2.4) are an immediate consequence of Theorem 4.3 applied to
K = L∞(�; [0, 1]) ⊂ L2(�) and F(θ) = −�(θ).

It remains to prove (4.7). Given θ̂ a solution of (2.4), and defining � by (2.8), we
have

�(θn) = �(θ̂) + d�

dε

(
θ̂ + ε(θn − θ̂ )

)
|ε=0 +

∫ 1

0
(1 − t)

d2�

dt2
(
θ̂ + t(θ − θ̂ )

)
dt,

where thanks to θ̂ solution of (2.4), we have

d�

dε

(
θ̂ + ε(θn − θ̂ )

)
|ε=0 ≤ 0.

Using then �(θ̂) − �(θn) = λ̂ − λn and the second inequality in (4.18), we get

λ̂ − λn ≥ γ

∫ 1

0

∫

�

(1 − t)|u′
t |2dxdt, (4.22)

with u′
t the solution of (2.12) for θ = θ̂ and ϑ = θn .

Now, we use that (4.22) and (4.18) imply

‖un − û‖L2(�) =
∥
∥
∥
∥

∫ 1

0
u′
t dt

∥
∥
∥
∥
L2(�)

≤
∥
∥
∥
∥
∥

∫ 1− 1
n

0
u′
t dt

∥
∥
∥
∥
∥
L2(�)

+
∥
∥
∥
∥
∥

∫ 1

1− 1
n

u′
t dt

∥
∥
∥
∥
∥
L2(�)

≤
(∫ 1− 1

n

0
(1 − t)

∫

�

|u′|2dxdt
) 1

2
(∫ 1− 1

n

0

dt

1 − t

) 1
2

+
∫ 1

1− 1
n

‖u′
t‖L2(�)dt ≤ C

√
log n
4
√
n

+ C

n
.

where C only depends on u0 and c. This proves (4.7). ��

5 Numerical Examples

In this last secton, we present some numerical experiments corresponding to the algo-
rithm described in Section 4.

Our first example refers to the case where� is a ball inRN . In this case, as a simple
application of the uniqueness of the optimal state function given by Theorem 2.1 we
can easily show that the solutions are radial. The corresponding result is given in
Proposition 5.1 below. In the case of the minimization of the first eigenvalue, a similar
result has been obtained in [2] (see [11, 12, 21] for related results). The result is more
delicate to prove than in the present paper due to the lack of uniqueness. We also recall
that for the minimization problem, the corresponding solutions θ̂ are unrelaxed, i.e.
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Fig. 1 Optimal proportion in the circle, c = 0.5, κ = 0.2|�|

Fig. 2 Optimal proportion in the circle, c = 0.5, κ = 0.5|�|

Fig. 3 Optimal proportion in the circle, c = 0.5, κ = 0.8|�|
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Fig. 4 Optimal proportion in the square, c = 0.5, κ = 0.2|�|

they are characteristic functions. In the maximization problem, Theorem 2.7 shows
that this is not the case.

Proposition 5.1 Let � be the unit ball in R
N . Then, there exists a unique solution

(θ̂ , û) of (2.5). Moreover û is a positive decreasing radial function in W 2,∞(�) and
θ̂ is a radial function in W 1,∞(�).

Proof Along the proof, we denote by BR the ball of center 0 and radius R and by
|A|N−1 the (N − 1)-Hausdorff measure of a subset A ⊂ R

N .
Assume θ̂ a solution of (2.4) and û the solution of (2.6). Then, thanks to the sym-

metry properties of the unit ball, we have that θ̃ (x) := θ̂ (Px) is also a solution of
(2.4) for every orthogonal matrix P . Moreover, the solution of (2.4) relative to θ̂ is
given by ũ(x) = û(Px). Since ũ = û by Theorem 2.1, we get û(Px) = û(x) for
every orthogonal matrix P . This proves that û is a radial function.

Once we know that û is radial we get that for every θ̃ solution of (2.4), the function
θ̂ defined by

θ̂ (x) = 1
∣
∣∂B|x |

∣
∣
N−1

∫

∂B|x |
θ̃ (y) ds(y), a.e. x ∈ B1,

is also a solution of (2.4), which is radial.
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Fig. 5 Optimal proportion in the square, c = 0.5, κ = 0.5|�|

With a little abuse of notation, let us also denote by û, θ̂ the real function in (0, 1)
satisfying

û(x) = û(|x |), θ̂ (x) = θ̂ (|x |), a.e. x ∈ �.

These functions satisfy

⎧
⎪⎨

⎪⎩

− d

dr

(
r N−1(1 − cθ̂ )

dû

dr

)
= λ̂ r N−1û in (0, 1),

dû

dr
(0) = û(1) = 0,

(5.1)

with λ̂ > 0 the value of the maximum in (2.4). From (2.17), we have θ̂ = 1 in [0, δ]
for some δ > 0, and by Theorem 2.5, the function dû

dr is continuous in [0, 1]. Then,
(5.1) shows that θ̂ is a continuous function. Using also (2.17) and that (5.1) implies

û decreassing, μ
d

dr

(
r N−1(1 − cθ̂ )

) = λr N−1û in int
({dû

dr
= −μ

})
,

we conclude that θ̂ is inW 1,∞(0, 1) and then by (5.1), the function û is inW 2,∞(0, 1).
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Fig. 6 Optimal proportion in the square, c = 0.5, κ = 0.8|�|

To finish, it remains to prove the uniqueness of θ̂ . Using the characteristic method,
this follows from (2.17), û ∈ W 1,∞(0, 1) and θ̂ solution of

−div
(
(1 − cθ̂ )

x

|x |
dû

dr

)
= λ̂û in �,

for every solution θ̂ of (2.4). ��

In figs 1, 2 and 3, we represent the optimal proportion θ of the best conductive
material for � the unit circle, c = 0.5 and κ = p|�|, with p = 0.2, p = 0.5 and
p = 0.8 respectively. Since we know that θ̂ is radial we have applied the algorithm in
Section 4 directly to the corresponding one-dimensional problem.

In figs 4, 5 and 6 we represent the optimal proportion θ of the worse conductive
material for � the unit square, c = 0.5 and κ = p|�|, p as above. As it is hoped, the
solution has the symmetries of the square.

Acknowledgements This work has been partially supported through the project PID2020-116809GB-I00
theMinisterio de Economía, Industria y Competitividad of Spain.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

123



11 Page 22 of 23 Applied Mathematics & Optimization (2022) 86 :11

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Allaire, G.: Shape optimization by the homogenization method.Appl. Math. Sci. 146, Springer-Verlag,
New York, (2002)

2. Alvino, A., Trombetti, G., Lions, P.L.: On optimization problems with prescribed rearrangements.
Nonlinear Anal. 13(2), 185–220 (1989)

3. Buttazzo, G., Oudet, E., Velichov, B.: A free boundary problem arising in PDE optimization. Calc.
Var. Partial Differential Equations 54(4), 3829–3856 (2015)

4. Casado-Díaz, J.: Some smoothness results for the optimal design of a two-composite material which
minimizes the energy. Calc. Var. Partial Differential Equations 53(3–4), 465–486 (2015)

5. Casado-Díaz, J.: Smoothness properties for the optimal mixture of two isotropic materials SIAM. The
compliance and eigenvalue problems. J. Cont. Optim. 53(4), 2319–2349 (2015)

6. Casado-Díaz, J.: A characterization result for the existence of a two-phase material minimizing the
first eigenvalue. Ann. Inst. H. Poincaré 34(15), 1215–1226 (2017)

7. Casado-Díaz, J., Conca, C., Vásquez-Varas, D.: The maximization of the p-Laplacian energy for a
two-phase material. SIAM J. Control Optim. 59(2), 1497–1519 (2021)

8. Casado-Dıaz, J., Conca, C., Vasquez-Varas, D.: Minimization of the p-Laplacian first eigenvalue for
a two-phase material. J. Comput. Appl. Math. 399,(2022)

9. Casado-Díaz, J., Conca, C., Vásquez-Varas, D.: Numerical maximization of the p-Laplacian energy
of a two-phase material. SIAM J. Numer. Anal. 59(6), 3077–3097 (2021)

10. A.Cherkaev,E.Cherkaeva.Stable optimal design for uncertain loading conditions. InHomogenization:
in memory of Serguei Kozlov, ed. by V. Berdichevsky, V. Jikov, G. Papanicolau. Series on advances in
math. for appl. sci. 50. World Scientific, Singapore, 1999, 193-213

11. Conca, C., Laurain, A., Mahadevan, R.: Minimization of the ground state for two phase conductors in
low contrast regime. SIAM J. Appl. Math. 72(4), 1238–1259 (2012)

12. Conca, C., Mahadevan, R., Sanz, L.: An extremal eigenvalue problem for a two-phase conductor in a
ball. Appl. Math. Optim. 60(2), 173–184 (2009)

13. Corduneanu, C.: Principles of differential and integral equations. Allyn and Bacon Inc, Boston (1971)
14. Cox, S., Lipton, R.: Extremal eigenvalue problems for two-phase conductors. Arch. Rational Mech.

Anal. 136(2), 101–117 (1996)
15. Donaldson, T.K., Trudinger, N.S.: Orlicz-Sobolev spaces and imbedding theorems. J. Functional Anal-

ysis 8, 52–75 (1971)
16. Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)
17. Goodman, J., Kohn, R.V., Reyna, L.: Numerical study of a relaxed variational problem for optimal

design. Comput. Methods Appl. Mech. Engrg. 57(1), 107–127 (1986)
18. Huang, Y.Q., Li, R., Liu, W.: Preconditioned descent algorithms for p-Laplacian. Sci. Comput. 32(2),

343–371 (2007)
19. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14,

415–426 (1961)
20. J.P. LaSalle. Some extensions of Liapunov’s second method. Circuit theory. IRE Trans. CT-7 (1960),

520–527
21. Mohammadi, S.A., Yousefnezhad,M.: Optimal ground state energy of two-phase conductors. Electron.

J. Diff. Eqns. 171, 8 (2014)
22. Murat, F.: Un contre-exemple pour le problème du contrôle dans les coefficients. CRAS Sci. Paris A

273, 708–711 (1971)

123

http://creativecommons.org/licenses/by/4.0/


Applied Mathematics & Optimization (2022) 86 :11 Page 23 of 23 11

23. Murat, F.: Theoremes de non existence pour des problemes de controle dans les coefficients. CRAS
Sci. Paris A 274, 395–398 (1972)

24. F. Murat. H -convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78, Université
d’Alger, multicopied, 34 pp. English translation: F. Murat and L. Tartar.H-convergence. In Top-
ics in the Mathematical Modelling of Composite Materials, ed. by L. Cherkaev, R.V. Kohn. Progress
in Nonlinear Diff. Equ. and their Appl., 31, Birkaüser, Boston, 1998, 139-174

25. Murat, F., Tartar, L., Calcul des variations et homogénéisation. In Les méthodes de l’homogénéisation:
theorie et applications en physique, Eirolles, Paris,: 319–369. English translation: F. Murat, L. Tartar.
Calculus of variations and homogenization. In Topics in the Mathematical Modelling of Composite
Materials, ed. by L. Cherkaev, R.V. Kohn. Progress in Nonlinear Diff. Equ. and their Appl., 31.
Birkaüser, Boston 1998, 139–174 (1985)

26. Tartar, L.: The general theory of homogenization. A personalized introduction. Springer, Berlin Hei-
delberger (2009)

27. Zeidler, E.: Applied Functional Analysis. Main principles and their applications.Appl. Math. Sci. 109,
Springer-Verlag, New York, (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The Maximization of the First Eigenvalue for a Two-Phase Material
	Abstract
	1 Introduction
	2 Theoretical Results for the Maximization of the Eigenvalue
	3 Proof of the Theoretical Results
	4  A Numerical Approximation
	5 Numerical Examples
	Acknowledgements
	References




