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Abstract
We are interested in the optimal control problem associated with certain quadratic
cost functionals depending on the solution X = Xα of the stochastic mean-field type
evolution equation in R

d

d Xt = b(t, Xt ,L(Xt ), αt )dt+σ(t, Xt ,L(Xt ), αt )dWt , X0 ∼ μ (μ given), (1)

under assumptions that enclose a system of FitzHugh–Nagumo neuron networks, and
where for practical purposes the controlαt is deterministic. Todo so,we assume thatwe
are given a drift coefficient that satisfies a one-sided Lipschitz condition, and that the
dynamics (2) satisfies an almost sure boundedness property of the form π(Xt ) ≤ 0.
The mathematical treatment we propose follows the lines of the recent monograph
of Carmona and Delarue for similar control problems with Lipschitz coefficients.
After addressing the existence of minimizers via a martingale approach, we show a
maximum principle for (2), and numerically investigate a gradient algorithm for the
approximation of the optimal control.
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1 Introduction

Motivations

Based on a modification of a model by van der Pol, FitzHugh [17] proposed in 1961
the following system of equations in order to describe the dynamics of a single neuron
subject to an external current I :

v̇ = v − 1

3
v3 − w + I

ẇ = c(v + a − bw)

(2)

for some constants a, b, c > 0, where the unknowns v,w correspond respectively
to the so-called voltage and recovery variables (see also Nagumo [19]). In presence
of interactions, one has to enlarge the previous pair by an additional unknown y
that counts a fraction of open channels (synaptic channels), and which is sometimes
referred to as gating variable.

When it comes to an interacting network of neurons, it is customary to assume that
the corresponding graph is fully connected, which is arguably a good approximation
at small scales [24]. This implies that all the neurons in the given network add a
contribution to the interaction terms in the equation. Precisely, for a population of size
N ∈ N, the state at time t of the i-th neuron is described by the three-dimensional
vector

Xi
t = (vi

t , w
i
t , yi

t ), i = 1, . . . N ,

and one is led to study the system of 3N stochastic differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dvi
t =

(
vi

t − (vi
t )
3

3
− wi

t + It

)
dt + σext dW i

t

− 1

N

∑N

j=1
J (vi

t − Vrev)y j
t dt − 1

N

∑N

j=1
σ J (vi

t − Vrev)y j
t d Bi

t

dwi
t = c(vi

t + a − bwi
t )dt ,

dyi
t = (aS(vi

t )(1 − yi
t ) − byi

t )dt + σ yi
(vi )d B̃i

t .

(3)

In the above, W i , Bi , B̃i are i.i.d. Brownian motions modelling independent sources
of noise with respective intensities σ J , σext , σ

yi
(vi ) > 0. The last of these intensities

depends on the solution, through the formula

σ y(v) = χ(y)

√

aS(v)(1 − y) + by (4)

with given constants a, b > 0 and some smooth cut-off function χ : R → R supported
in (0, 1).
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In this model, the voltage variable vi describes the membrane potential of the i-
th neuron in the network, while the recovery variable wi models the dynamics of
corresponding ion channels, which can influence the membrane potential of neuron i
by opening and closing, depending on vi .

Without interaction term (i.e. when J = σ J = 0), equation (3) reduces to a
network of N independent neurons, where the dynamics of each neuron is modelled
by the FitzHugh–Nagumo equation (2).

When interaction is present (J �= 0), the model describes the situation where each
neuron of the network affects its adjacent neurons by releasing chemical transmitters,
causing particular ion channels of adjacent neurons to open. This induces a current
to the adjacent neuron, affecting its membrane potential. In this extended model, the
gating variable yi models a fraction of open ion channels in the adjacent neurons of
neuron i , and thus ought to be a number between 0 and 1 (hence the cut-off χ(yi ) in
(4)). Loosely speaking, yi should be thought as the output contribution of the neuron
i .

Depending on the fraction yi of open channels, the induced current for an adjacent
neuron with membrane potential v is given by −J (v − Vrev)yi , where the constant
Vrev describes the membrane potential, at which there is no net current flow. The
coupling strength J originally refers to the (mean of) the maximum conductance,
which is typically affected by noise coming from the environment. This explains the
diffusion part of the interaction term in Eq. (3) for σ J �= 0. For further details we refer
to [2].

The dynamics of the gating variable yi in Eq. (3) depends on some physical con-
stants, which we will now briefly introduce:

• S(vi ) refers to the concentration of chemical transmitters, released by neuron i ;
explicitly for v ∈ R

S(v) = Tmax

1 + e−λ(v−VT )
(5)

where Tmax is a given maximal concentration and λ−1 > 0, VT > 0, are constants
setting the steepness, resp. the value, at which S(v) is half-activated (for typical
values, see for instance [13]);

• a, b > 0 correspond to some rise and decay rates, respectively.

For a better understanding of the interaction, we included a small illustration in
Fig. 1.

In this representation, a rapid increase of the membrane potential of the neuron
i will cause it to release chemical messengers into the (synaptic) cleft between the
neuron i and the adjacent neuron j , which in turn will bind to receptors of the neuron
j . The receptors will cause ion channels of neuron j to open, thus neuron i induces the
opening of a fraction yi of ion channels at the dendrites of the neuron j . As already
mentioned, the resulting current from i to j affecting the neuron j is then given by
−J (v j − Vrev)yi . For a thorough presentation of (3) and its applications in the field
of neurosciences, we refer for instance to the monograph of Ermentrout and Terman
[16].
When it comes tomonitoringneural activity in the brain, onedoes typically notmeasure
single neuron activity, but consider more macroscopic measurements like, e.g., local
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Fig. 1 Synaptic dynamics

field potentials (LFPs). TheLFP refers to the electric potential in the extracellular space
around neurons and it is influenced by all ionic processes around the electrode. It is
assumed that action potentials have a limited impact to the LFP and that it is strongly
influenced by synaptic currents. Although we are aware of the fact that the correct
interpretation of measurements like the intracerebral local field potential is highly non
trivial, for our type of application it is reasonable to assume that measurements only
depend on the distribution of our network, rather than on activities of single neurons
from the network. Furthermore, external stimulation acts homogeneously on every
neuron of the network, that is every neuron of the network receives the same external
input I . We therefore model the dynamics of a typical neuron as a controlled mean-
field type equation and admissible controls need to be independent of the state of the
individual neuron, hence we will consider deterministic controls. In the following we
will formulate our mean-field model and the set of admissible controls will be defined
in Sect. 2.2.

Propagation of Chaos

The system (3) has the generic form

{
d X N ,i

t = b(t, X N ,i
t , μX N

t
, αt )dt + σ(t, X N ,i

t , μX N
t
, αt )dW i

t , t ∈ [0, T ],
X N ,i
0 ∼ u0,

(6)

for i = 1, . . . , N , where u0 is a probability measure on R
d , (αt ) is a control and μ̄X N

t
denotes the empirical measure
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μX N
t

:= 1

N

N∑

k=1

δX N ,k
t

.

For N → ∞, one is naturally pushed to investigate the convergence in law of the
solutions of (6) towards the probability measure μ = L(X |P), where X solves

{
d Xt = b(t, Xt ,L(Xt ), αt )dt + σ(t, Xt ,L(Xt ), αt )dWt , t ∈ [0, T ] ,

X0 ∈ L2(�,F0, P; R
d) ,

(7)

and where b, σ are the coefficients obtained by substituting expectations in (6) in
place of empirical means. In the context of (3), a first mathematical investigation
of such convergence is due to Baladron, Fasoli, Faugeras and Touboul [2] (see also
the clarification notes [6]). In this direction, the authors show that the sequence of
symmetric probability measures

μN := L((X N ,1, . . . , X N ,N )|P)

is μ-chaotic. Namely, for each integer k ≤ N and every finite sequence of bounded
and continuous functions φi : C([0, T ]; R

d) → R, for i = 1, ..., k, it holds

lim
N→∞〈μN , φ1 ⊗ · · · ⊗ φk ⊗ 1 ⊗ · · · ⊗ 1〉 =

k∏

i=1

〈μ, φi 〉,

where 〈μ, φ〉 := ∫
φdμ and the symbol “⊗” denotes the usual tensor product, i.e.

φi ⊗φ j ( f , g) := φi ( f )φ j (g), for any f , g ∈ C([0, T ]; R
d). This situation is usually

referred to as “propagation of chaos”. Although we could not find any literature con-
cerning propagation of chaos results in the general non Lipschitz case, propagation of
chaos for the system (3) was investigated in [6].

Mean-Field Limit and Control

In this regard, taking N � 1 guarantees that a “good enough” approximation of (3) is
given by themean-field limit (7),where the corresponding coefficients (b, σ ) : [0, T ]×
R
3 × P(R3) × R → R

3 × R
3×3, are given by

b(t, x, μ, α) =
⎛

⎝
v − v3

3 − w + α

c(v + a − bw)

aS(v)(1 − y) − by

⎞

⎠+
⎛

⎝
−J (v − Vrev)

∫

R3 z3μ(dz)
0
0

⎞

⎠ , (8)
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for x = (v,w, y), and

σ(t, x, μ, α) =
⎛

⎜
⎝

σext −σ J (v − Vrev)
∫

R3 z3μ(dz) 0
0 0 0

0 0 χ(y)

√

aS(v)(1 − y) + by

⎞

⎟
⎠ .

(9)
In this paper,we concentrate our attention on the optimal control problemassociated

with a cost functional of the form

J : A → R, α �→ E

(∫ T

0
f (t, Xα

t ,L(Xα
t ), αt )dt + g(Xα

T ,L(Xα
T ))

)

, (10)

for suitable functions f and g, and where Xα is subject to the dynamical constraint
(7). The functional cost ought to be minimized over some convex, admissible set of
controls A.

Because of potential applications in neuroscience, the control of the stochastic FHN
model has gained a lot of attention during the last years (see, e.g., [3,11]). The need
to introduce random perturbations in the original model is widely justified from a
physics perspective (see for instance [12] and the references therein). In [11] the
authors investigate a FitzHugh–NagumoSPDEwhich results from the continuum limit
of a network of coupled FitzHugh–Nagumo equations. We have a similar structure
in mind regarding the dependence of the coefficients on the control (namely, the
dynamics of the membrane potential depends linearly on the control). Our approach
here is however completely different, in that we hinge on the McKean-Vlasov type
SDE (7) that originates from the propagation of chaos.

McKean-Vlasov control problems of this type were investigated in the past decade
by Bensoussan, Frehse and Yam [4], but also by Carmona and co-authors (see for
instance [9]). These developments culminated with the monograph of Carmona and
Delarue [8], where a systematic treatment is made (under reasonable assumptions).
Other related works include [1,5,7,14]. These results fail however to encompass (7)–
(9), due for instance to the lack of Lipschitz property for the drift coefficient.

From the analytic point of view, the FitzHugh–Nagumo model also suffers the fact
that the diffusion matrix is degenerate, making difficult to obtain energy estimates for
the Kolmogorov equation (see Remark 3.2).

Our objective in this work is twofold. At first, our purpose is to extract some of the
qualitative features of FitzHugh–Nagumo system and its mean field limit, in a broader
treatment that encloses (3) and (7)–(9). In this sense, our intention is not to deal with
the previous models “as such” but instead, we aim to take a step further by dealing
with a certain class of equations that has the following peculiarities

• (Monotonicity) – though the drift coefficient in (7) displays a cubic non-linearity,
it satisfies the monotonicity condition 〈x − x ′, b(t, x, μ, α) − b(t, x ′, μ, α)〉 �
|x − x ′|2.

• (Structural assumption on dynamics and level set boundedness) – the dynamics of
the coupling variable ensures that the boundedness property yt ∈ [0, 1] holds for
all times.
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• (Interaction with linear growth w.r.t. the unknown) – the drift nonlinearity displays
thebehaviour |b(t, x, μ, α)−b(t, x, ν, α)| � (1+|x |)W2(μ, ν),whereW2 denotes
the usual 2-Wasserstein distance defined in Sect. 2.1.

Under the above setting, we aim to develop and implement direct variational methods,
in the spirit of the stochastic approach of Yong and Zhou [25] for classical control
problems (note that some work in this direction has been already done by Pfeiffer [21,
22], in a slightly different setting). Second, we aim to derive a Pontryagin maximum
principle for mean-field type control problems of the previous form, with a view
towards efficient numerical approximations of optimal controls (e.g. gradient descent).

Organization of the Paper

In Sect. 2 we introduce our assumptions on the coefficients and give the main results.
Section 3 is devoted to the well-posedness of the main optimal control problem (The-
orem 2.1). In Sect. 4, we show the corresponding maximum principle (Theorem 2.2).
Finally, Sect. 5 will be devoted to numerical examples.

2 Preliminaries

2.1 Notation and Settings

In the whole manuscript, we consider an arbitrary but finite time horizon T > 0.
We fix a dimension d ≥ 1, and denote the scalar product in R

d by 〈·, ·〉. If A, B are
matrices of the same size, we shall also write 〈A, B〉 for their scalar product, namely

〈A, B〉 := tr(A†B)

where A† is the transposed matrix, and tr the trace operator. For a continuously dif-
ferentiable function f : R

d → R, we adopt the suggestive notation fx to denote its
Jacobian (seen for each x ∈ R

d as an element of the dual of R
d ). Given h ∈ R

d , we
let

fx (x) · h (11)

be the evaluation of fx (x) at h. A similar convention will be used for vector-valued
functions.

Throughout the paper, we fix a complete filtered probability space (�,F ,

(Ft )t∈[0,T ], P) carrying an m-dimensional Wiener process (Wt )t∈[0,T ]. Given p ∈
[1,∞) and a p-integrable random variable X , we denote its usual L p-norm by
‖X‖p := E(|X |p)1/p. We further introduce the spaces

H2,d :=
{

Z : � × [0, T ] → R
d
∣
∣
∣
∣ Z prog. measurable and

∫ T

0
‖Zt‖22dt < ∞

}

S2,d :=
{

Z : � × [0, T ] → R
d
∣
∣
∣
∣ Z prog. measurable, continuous and

∥
∥
∥ sup

t∈[0,T ]
|Zt |
∥
∥
∥
2

2
< ∞

}

.
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Form ∈ N, the notationsS2,d×m ,H2,d×m will also be used to denote the corresponding
sets of d ×m matrix-valued processes. Whenever clear from the context, we will omit
to indicate dimensions and write S2 or H2 instead.

We will denote by P(Rd) the set of all probability measures on (Rd ,B(Rd)). For
p ∈ [1,∞), μ ∈ P(Rd) we define the moment of order p:

Mp(μ)p :=
∫

Rd
|x |pμ(dx) ∈ [0,∞],

and we letPp(R
d) := {μ ∈ P(Rd)

∣
∣Mp(μ) < ∞} . By Wp, p ∈ [1,∞),we denote

the usual p-Wasserstein distance on Pp, that is for μ, ν ∈ Pp(R
d)

Wp(μ, ν)p := inf
π∈�(μ,ν)

∫∫

Rd×Rd
|x − y|p

Rd π(dx × dy), (12)

where �(μ, ν) denotes the set of probability measures on R
d × R

d with μ and ν

as respective first and second marginals (we refer to [8, Chap. 5] for a thorough
introduction to the subject). Moreover, we recall the following elementary but useful
consequence of the previous definition. Let μ, ν be in Pp, and assume that there are
random variables X , Y on (�,F , P) such that X ∼ μ and Y ∼ ν. Then, it holds

Wp(μ, ν) ≤ E
(|X − Y |p) 1p . (13)

Finally, we will shortly recall the notion of L-differentiability. A function f :
P2(R

d) → R is called L-differentiable at μ0 ∈ P2(R
d) if there exists a random

variable X0 with law μ0, such that the lifted function

f̃ : L2(�,F , P; R
d) → R, X �→ f (L(X))

is Fréchet differentiable at X0. The following property for a L-differentiable function
f is well-known (see [8, Chap. 5]): for any μ0 ∈ P2(R

d), there exists a μ0-almost
everywhere uniquely defined measurable function ξ : R

d → R
d , such that for all

X0 ∈ L2(�,F , P; R
d) with L(X0) = μ0, it holds D f̃ (X0) = ξ(X0). We write

fμ(μ0) to denote the equivalence class of ξ in L2(Rd , μ0; R
d). In keeping with the

notation (11) on differentials, wewill let fμ(ν)(x)·h be its evaluation (as an element of
the dual ofR

d ) at h ∈ R
d . If fμ is continuous, we call f continuously L-differentiable.

2.2 Controls and Cost Functional

Our controlled dynamics will be given by aMcKean-Vlasov type SDE (state equation)
of the form (7), where X0 ∈ Lr (�,F0, P; R

d) for some fixed r ≥ 6 and α is an
admissible control, i.e. for some bounded convex set A ⊂ R

k and throughout the
paper,

α ∈ A := {α : [0, T ] → A} . (14)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1925–S1968 S1933

In thewholemanuscript, we assume that we are given continuous running and terminal
cost functions

f : [0, T ] × R
d × P2(R

d) × A → R

g : R
d × P2(R

d) → R

which have quadratic growth in the following sense: there exists C > 0 such that for
all t ∈ [0, T ], x ∈ R

d , α ∈ A and μ ∈ P2(R
d)

| f (t, x, μ, α)| ≤ C(1 + |x | + M2(μ) + |α|)2
|g(x, μ)| ≤ C(1 + |x | + M2(μ))2.

We will then consider the cost functional

J : A → R, α �→ E

(∫ T

0
f (t, Xα

t ,L(Xα
t ), αt )dt + g(Xα

T ,L(Xα
T ))

)

, (15)

where Xα is subject to the dynamical constraint (7).

2.3 Level Set Boundedness

A formal application of Itô Formula reveals that the solutions of the state equation
associated with a network of FitzHugh–Nagumo neurons take values in the set

C := {x = (v,w, y) : 0 ≤ y ≤ 1} .

This is of course coherent with the intuition that y is a fraction of open channels. In
other words, we have π(X) ≤ 0 where π : R

3 → R, is the map x �→ y(y − 1).
Motivated by this example, we will assume in the sequel that we are given a convex
function π ∈ C2(Rd , R) such that any solution X is supported in C ⊂ R

d for all times,
where C is the set

C :=
{

x ∈ R
d : π(x) ≤ 0

}
. (16)

We suppose moreover that C contains at least one element, which for convenience
is assumed to be 0. To ensure that the solutions are indeed C-valued, we need to
assume that π(X0) ≤ 0, P-almost surely. Furthermore we need to make the following
compatibility assumptions on π : R

d → R.

Assumption 2.1 (structural assumption on the dynamics) For allμ ∈ P(Rd), α ∈ A,

t ∈ [0, T ] and x ∈ R
d \ C, we have

πx (x) · b(t, x, μ, α) ≤ 0, (17)

while

Im (σ (t, x, μ, α)) ⊂ πx (x)⊥ and πxx (x) · (σσ †(t, x, μ, α)) = 0. (18)

123



S1934 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1925–S1968

Example 2.1 (Gating variable boundedness for FitzHugh–Nagumo) Assumption 2.1
is fulfilled for (7)–(9) and with π(v,w, y) = y(y − 1), as can be seen as follows. We
have the identities (recall the notation (4))

πx (x) = (0 0 2y − 1
)
, πxx (x) =

⎛

⎝
0 0 0
0 0 0
0 0 2

⎞

⎠ ,

σσ †(t, x, μ, α) =
⎛

⎝
σ 2

ext + (σ J )2(v − Vrev)
2
(∫

R3 z3μ(dz)
)2 0 0

0 0 0
0 0 σ y(v)2

⎞

⎠ ,

Clearly,

πx (x)σ (t, x, μ, α) ∈ Linspan
{(
0 0 (2y − 1)σ y(v)

)}
.

But using Suppχ ⊂ (0, 1), we find indeed that (2y − 1)σ y(v) = 0 outside C. The
same argument implies

πxx (x) · (σσ †(t, x, μ, α)) = 2σ y(v)2

and the latter vanishes if x /∈ C, hence (18).
Towards (17), one observes letting q = āS(v) that

πx (x) · b(t, x, μ, α) = −q + (3q + b̄)y − 2(q + b̄)y2 = P(y) .

The polynomial P(y) has discriminant (q − b)2, hence the roots

r− = q

q + b̄
, r+ = 1

2
,

which both lie in the interval (0, 1). It follows that P(y) is negative outside C, implying
(17).

2.4 Regularity Assumptions andMain Results

Besides Assumption 2.1, one needs to make suitable hypotheses on the regularity of
the drift and diffusion coefficients. In the sequel, we denote by PC

2 (Rd) the subset of
all probability measures in P2(R

d) which are supported in C = π−1((−∞, 0]).
Assumption 2.2 (MKV Regularity) We assume that the coefficients

(b, σ ) : [0, T ] × R
d × P2(R

d) × A → R
d × R

d×m

are locally Lipschitz. Moreover, there are constants L1, L2, L3 > 0 such that the
following properties hold.
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(L1) – (regularity of the diffusion coefficient) – The diffusion coefficient σ satisfies
the property sup0≤t≤T |σ(t, 0, δ0, 0)|2 < ∞.Moreover, for all t ∈ [0, T ], x ∈ C,
α ∈ A and μ ∈ PC

2 (Rd) we have

|σ(t, x, μ, α)|2 ≤ L1(1 + |α|2 + |x |2). (19)

For all x, x ′ ∈ C, α′ ∈ A, it holds

|σ(t, x, μ, α) − σ(t, x ′, μ, α′)|2 ≤ L1(|x − x ′|2 + |α − α′|2). (20)

Finally, if x ∈ C and μ′ ∈ P2(R
d), then

|σ(t, x, μ, α) − σ(t, x, μ′, α)|2 ≤ L1(1 + |x |2)W2(μ,μ′)2. (21)

(L2) – (regularity of the drift coefficient) – There exists q ∈ N with 4q ≤ r , such
that for all t ∈ [0, T ], x, x ′ ∈ C, α, α′ ∈ A and μ ∈ P2(R

d)

|b(t, x, μ, α) − b(t, x ′, μ, α′)|
≤ √L2(1 + |x |q−1 + |x ′|q−1 + |α|q−1 + |α′|q−1 + M2(μ)2)(|x − x ′| + |α − α′|). (22)

In addition, b satisfies the following Lipschitz property with respect to the
Wasserstein distance: for all t ∈ [0, T ], x ∈ C, α ∈ A and μ,μ′ ∈ P2(R

d)

|b(t, x, μ, α) − b(t, x, μ′, α)|2 ≤ L2(1 + |x |2)W2(μ,μ′)2. (23)

(L3) – (monotonicity of the drift) –Thedrift coefficientb is such that sup0≤t≤T |b(t, 0,
δ0, 0)| < ∞. Moreover, for all t ∈ [0, T ], x ∈ C, α ∈ A and μ ∈ PC

2 (Rd) it
holds

〈x, b(t, x, μ, α)〉 ≤ L3(1 + |α|2 + |x |2) (24)

and if x ′ ∈ C, α′ ∈ A, then

〈
x − x ′, b(t, x, μ, α) − b(t, x ′, μ, α′)

〉 ≤ L3(|x − x ′|2 + |α − α′|2). (25)

Example 2.2 (Analysis of the FitzHugh–Nagumo model) Let us go back to the set-
tings of (7)–(9) for a coupled system of FitzHugh–Nagumo neurons. Trivially, one
has sup0≤t≤T |σ(t, 0, δ0, 0)| = |σext | < ∞. The map v �→ S(v) being positive
and bounded, we further see that the (3, 3)-th entry of σ is Lipschitz, as deduced
immediately from the fact that χ is supported in (0, 1). For the remaining non-trivial
component, we have

σ 1,2(x, μ, α)2 ≤ J (Vrev + |v|2)|β(μ)|
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where to ease notation we introduce the barycenter β(μ), defined as the quantity

β(μ) :=
∫

R3
z3μ(dz1 × dz2 × dz3). (26)

The condition Suppμ ⊂ C, implies trivially that |β(μ)| ≤ 1 and thus we obtain (19)
for L1 = (Vrev J )∨ 1. The Lipschitz-type property (20) is shown in a similar fashion.

The Wasserstein-type regularity (21) is hardly more problematic: using the Kan-
torovitch duality Theorem [8, Prop. 5.3 & Cor. 5.4] and the fact that the projector
z = (z1, z2, z3) �→ z3 is Lipschitz, one finds that

|β(μ − μ′)| = |
∫

R3
z3(μ − μ′)(dz)| ≤ W1(μ,μ′). (27)

hence

|σ(x, μ) − σ(x, μ′)| ≤ J |v − Vrev|W1(μ,μ′).

As is classical, the 1-Wasserstein distance W1(μ,μ′) can be estimated by W2(μ,μ′),
which in turn implies (21), and thus 2.2.

As for the drift coefficient, sinceb(t, 0, δ0, 0) is also independent of t , the supremum
condition in 2.2 is clear. Moreover, it has polynomial dependency on the variables
v,w, y, which implies the local Lipschitz property (22) with q = 3. We also have

|b(t, x, μ, α) − b(t, x, μ′, α)| ≤ J |v − Vrev||β(μ − μ′)|

and we conclude by (27) that 2.2 holds.
To show (24) and (25), it is enough to prove the corresponding bounds when c =

0 = b, since the related contributions are affine linear in the variables. Similarly, by
linearity we can let w = α = 0. But in that case, it holds

〈x, b(t, x, μ, 0)〉 ≤ v2 − v4

3
+ aS(v)(1 − y)y − Jv2β(μ) + J Vrevvβ(μ) .

Observe that, since μ is supported inside C, one has in particular β(μ) ≥ 0. Con-
sequently, the fourth term in the right hand side can be ignored, showing (24) with
L3 = L3(a, |S|∞, J , Vrev) > 0.

Similarly, if x ′ = (v′, 0, y′) ∈ R
3

〈x − x ′, b(t, x, μ, 0) − b(t, x ′, μ, 0)〉
= (v − v′)2 − 1

3
(v3 − v′3)(v − v′) − J (v − v′)2β(μ)

+ a(1 − y)(y − y′)(S(v) − S(v′)) − aS(v′)(y − y′)2

≤ |S′|∞(1 ∨ a)(1 + y2)(|y − y′|2 + |v − v′|2) .

It follows that (24) holds with L3 = L3(a, b, c, |S|C1) > 0.
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Assumption 2.3 (Weak continuity) For any t ∈ [0, T ], x ∈ R
d and μ ∈ P2(R

d),
the function A → R, α �→ f (t, x, μ, α) is convex and the functions A → R

d ×
R

d×m, α �→ (b, σ )(t, x, μ, α) are affine. Furthermore, for all x ∈ C([0, T ]; R
d) and

μ ∈ C([0, T ];PC
2 (Rd)) the functions

A → L2([0, T ]; R
d), α �→ b(·, x·, μ·, α·),

A → L2([0, T ]; R
d×m), α �→ σ(·, x·, μ·, α·),

are weakly sequentially continuous, that is for all (αn)n∈N ⊂ A with αn⇀α, for some
α ∈ A, it holds (b, σ )(·, x·, μ, αn· )⇀(b, σ )(·, x·, μ, α·).

Remark 2.1 The continuity and convexity of f (t, x, μ, ·) leads to weak lower semi-
continuity of the map

A → R, α �→
∫ T

0
f (t, xt , μt , αt )dt,

for all x ∈ C([0, T ]; R
d) and μ ∈ C([0, T ];P2(R

d)).

We can now present our main results. At first, we investigate the existence of an
optimal control for the following problem

min
α∈A J (α), (SM)

subject to

{
d Xt = b(t, Xt ,L(Xt ), αt )dt + σ(t, Xt ,L(Xt ), αt )dWt , t ∈ [0, T ],

X0 ∈ Lr (�,F0, P; R
d).

(28)

Theorem 2.1 Under assumptions 2.1–2.3, the problem (SM) is finite and has an opti-
mal control. Namely, infα∈A J (α) < ∞ and there is α ∈ A, such that

J (α) ≤ J (α),

for all α ∈ A.

In order to address the correspondingmaximumprinciple, we now introduce further
assumptions on our coefficients.

Assumption 2.4 (Pontryagin Principle) The coefficients b, σ, f and g are contin-
uously differentiable with respect to (x, α) and continuously L-differentiable with
respect to μ ∈ P2(R

d). Furthermore there exist A1, A2, A3 > 0 such that:

(A1) For every (s, x, μ, α) ∈ [0, T ] × C × PC
2 (Rd) × A, and each y, z ∈ R

d :

〈bx (t, x, μ, α) · z, z〉 ≤ A1|z|2,
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|bx (t, x, μ, α)| ≤ A1(1 + |x |q−1),

|bα(t, x, μ, α)| ≤ A1,

|bμ(t, x, μ, α)(y)| ≤ A1(1 + |x |),

where q is the same constant as in 2.2.
(A2) For every (s, x, μ, α) ∈ [0, T ] × C × PC

2 (Rd) × A, and y ∈ R
d :

|σx (t, x, μ, α)| ≤ A2,

|σα(t, x, μ, α)| ≤ A2,

|σμ(t, x, μ, α)(y)| ≤ A2(1 + |x |).

(A3) For all R > 0 and every (s, x, μ, α) ∈ [0, T ] × R
d × P2(R

d) × A, such that
|x | ∨ M2(μ) ∨ |α| ≤ R the quantities

fx (t, x, μ, α), fα(t, x, μ, α), gx (x, μ),

∫

Rd
| fμ(t, x, μ, α)(y)|2μ(dy),

∫

Rd
|gμ(x, μ)(y)|2μ(dy),

are all bounded in norm by A3(1 + R).

Example 2.3 Again, we investigate the above properties for the setting of a FitzHugh–
Nagumo neural network. The property 2.4 depends on the choice of f and g, hence
we do not discuss it here (it is however clear for the ansatz (47) below). Concerning
assumption 2.4 and 2.4 we have

bx (t, x, μ, α) =
⎛

⎝
1 − v2 − Jβ(μ) 1 0

c −cb 0
aS′(v)(1 − y) 0 −aS(v) − b

⎞

⎠ ,

where we recall the notation (26). Using that Supp(μ) ⊂ C, together with the bound-
edness of S′(v), this leads to

〈bx (t, x, μ, α) · z, z〉 ≤ A1(b, c, a, b, |S|∞, |S′|∞)|z|2,

hence the first estimate. Letting as before β(μ) := ∫

R3 z3μ(dz), it is easily seen by
definition of the L-derivative that

βμ(μ)(x̃) · h = h3 for all x̃ and h ≡ (h1, h2, h3) ∈ R
3.

In a matrix representation, this gives the following constant value for the L-derivative
of the drift coefficient at a given point x ≡ (v,w, y) ∈ R

3

bμ(t, x, μ, α)(x̃) =
⎛

⎝
0 0 −J (v − Vrev)

0 0 0
0 0 0

⎞

⎠ , for all x̃ ∈ R
3 .
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Thuswehave |bμ(t, x, μ, α)(x̃)| ≤ J∨(J Vrev)(1+|x |), showing the desired property.

Next, we introduce the corresponding adjoint equation, which will be essential
for the maximum principle. For a solution X ∈ S2,d of (28) consider the following
backward SDE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d Pt = −
{
〈bx (t, Xt ,L(Xt ), αt ), Pt 〉 + 〈σx (t, Xt ,L(Xt ), αt ), Qt 〉 + fx (t, Xt ,L(Xt ), αt )

− Ẽ

(
〈bμ(t, X̃t ,L(Xt ), αt )(Xt ), P̃t 〉 + fμ(t, X̃t ,L(Xt ), αt )(Xt )

) }
dt + Qt dWt

PT = gx (XT ,L(XT )) + Ẽ

(
gμ(X̃t ,L(XT ))(XT )

)
,

(29)
where the tilde variables X̃ , P̃ are independent copies of the corresponding random
variables (carried on some arbitrary probability space (�̃, F̃ , P̃)), and Ẽ denotes inte-
gration in �̃ (this convention will be adopted throughout the paper). Herein, we recall
that 〈σ(t, x, μ, α), q〉 is a synonym for tr(σ (t, x, μ, α)†q).

A pair of processes (P, Q) ∈ H2,d ×H2,d×m will be called a solution to the adjoint
equation corresponding to X if it satisfies (29) for all t ∈ [0, T ], P-almost surely.

We are now in position to formulate the maximum principle. For that purpose, we
introduce the Hamiltonian, which for each x, p ∈ R

d , q ∈ R
d×m μ ∈ P2 and α ∈ A,

is the quantity

H(t, x, μ, p, q, α) := 〈b(t, x, μ, α), p〉 + 〈σ(t, x, μ, α), q〉 + f (t, x, μ, α) .

Theorem 2.2 Let assumptions 2.1–2.4 hold. Let α ∈ A be an optimal control for the
problem (SM). If (P, Q) ∈ H2,d ×H2,d×m is the solution to the corresponding adjoint
equation, then we have for Lebesgue-almost every t ∈ [0, T ]

E (H(t, Xt ,L(Xt ), Pt , Qt , αt )) ≤ E (H(t, Xt ,L(Xt ), Pt , Qt , α)) ,

for all α ∈ A.

It should be noticed that in contrast to themaximumprinciple stated in [8, Thm. 6.14
p. 548], the maximum principle here is formulated in terms of the expectation for
almost every t ∈ [0, T ] instead of dt ⊗P− almost everywhere, since we only consider
deterministic controls and thus we only alter the control in deterministic directions.

3 Well-Posedness of the Optimal Control Problem

The main purpose of this section is to prove the existence of an optimal control for the
stated control problem. For that purpose, we will need to show (among other results)
that the state equation (7) is well-posed, and that the solution satisfies uniformmoment
bounds up to a certain level. Hereafter, we suppose that assumptions 2.1, 2.2 and 2.3
are fulfilled.
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3.1 Well-Posedness of the State Equation

Our first task is to show that the level-set constraint which was alluded to in Sect. 2.3
is preserved along the flow of solutions. This statement is contained in the next result.
The proof is partially adapted from that of [6, Prop. 3.3].

Lemma 3.1 For every α ∈ A and μ ∈ C([0, T ];PC
2 (Rd)) we have that

P
(
π(Xα,μ

t ) ≤ 0,∀t ∈ [0, T ]) = 1 (30)

where Xα,μ
t is the unique solution to

{
d Xt = b(t, Xt , μt , αt )dt + σ(t, Xt , μt , αt )dWt , t ∈ [0, T ]

X0 ∈ Lr (�,F0, P; R
d).

(31)

Proof First, observe that given μ ∈ C([0, T ];P2(R
d)), equation (31) has a unique

strong solution Xμ in S2. Indeed, if we let

bμ(t, x, α) := b(t, x, μ, α), σμ(t, x, α) := σ(t, x, μ, α),

then from Assumption 2.2 we see that σμ is Lipschitz, while 2.2 and 2.2 imply the
local Lipschitz continuity and the monotonicity of the drift coefficient bμ. Hence, by
standard results on monotone SDEs (see for instance [20, Thm. 3.26 p. 178]) (31)
has a unique strong solution, this solution being progressivey measurable and square
integrable. This proves our assertion.

In order to show (30), consider a family (�ε)ε>0 of non-negative and non-
decreasing functions in C2(R) which for all ε > 0 satisfy:

�ε(x) = 0 on (−∞, 0] , �ε(x) = 1 on [ε,∞) , sup
ε

|�ε |∞ ≤ 1 ,

and such that �ε converges pointwise to 1(0,∞) as ε → 0. Let τn := inf{t ≥
0 s.t. |Xt | ≥ n}. By Itô Formula, we have for each n ≥ 0 and ε > 0

�ε(π(Xt∧τn )) − Mε
t =

∫ τn∧t

0

(
πx (Xs) · b(s, Xs, μs, αs)

)
� ′

ε(π(Xt ))ds

+ 1

2

∫ τn∧t

0
� ′′

ε (π(Xs))|πx (Xs)
†σ(s, Xs, μs, αs)|2ds

+ 1

2

∫ τn∧t

0
� ′

ε(π(Xs))πxx (Xs) · (σσ †(s, Xs, μs, αs))ds ,

where we let Mε
t := ∑m

k=1

∫ τn∧t
0 πx (Xs) · σ ·,k(s, Xs, μs, αs)�

′
ε(π(Xs))dW k

s . Since
�ε is supported on the real positive axis, only the values of X which satisfy π(X) > 0
contribute to the above expression. Hence, making use of Assumption 2.1, we see that
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the first term in the previous right hand side is bounded above by 0, while the two last
terms simply vanish. We arrive at the relation

E

(

sup
t∈[0,T ]

�ε(π(Xt∧τn ))

)

≤ 0.

Letting first n → ∞, and then ε → 0, we observe by Fatou Lemma that

E

(

sup
t∈[0,T ]

1(0,∞)(π(Xt ))

)

= 0,

and our claim follows. ��
We are now able to prove the existence of a unique solution to equation (7).

Theorem 3.1 There exists a unique strong solution to equation (7) in S2, which is
supported in C for all times. Furthermore, for each p ∈ [2, r ] and every α ∈ A, the
solution satisfies the moment estimate

E

(

sup
t∈[0,T ]

|Xt |p

)

≤ C
(‖X0‖p, L1, L3, p

)
(

1 +
∫ T

0
|αt |pdt

)

. (32)

where the constant C depends only upon the indicated quantities.

Proof Recall that PC
2 denotes the set of probability measures in P2(R

d) which are
supported in C := π−1((−∞, 0]). Equipped with the standard Wasserstein distance,
it is a closed subset of P2(R

d). Indeed, it is standard (see for instance [15]) that given
probability measures {μn, n ∈ N} and μ such that μn ⇒ μ, then

suppμ ⊂ lim inf
n→∞ (suppμn) :=

{

x ∈ R
d
∣
∣
∣ lim sup

n→∞
inf

y∈suppμn
|x − y| = 0

}

,

so that our claim follows. Thus, for fixedα ∈ A, we can rightfully consider the operator

� : C([0, T ];PC
2 ) → C([0, T ];PC

2 ), μ �→ (L(Xα,μ
t ))t∈[0,T ],

where Xμ = Xα,μ is the unique solution to equation (31). Using similar arguments
as in [8], the existence of a unique solution to (28) follows if one can show that �

has a unique fixed point. In fact, we are going to show that it is a contraction (for
a well-chosen metric). The moment estimate (32) will follow from the fixed point
argument, provided one can show that

E

(

sup
t∈[0,T ]

|Xμ
t |p

)

≤ C
(‖X0‖p, L1, L3, p

)
(

1 +
∫ T

0
|αt |pdt

)

(33)

123



S1942 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1925–S1968

where the displayed constant depends on the indicated quantities but not on the par-
ticular element μ in C([0, T ];PC

2 ). We now divide the proof into two steps.
Step 1: moment bounds.Weneed a localization argument. For each n > 0, introduce

τn := inf{t ∈ (0, T ], |Xμ
t | > n}, and denote by Xμ,n

t := Xμ
t∧τn

. Itô Formula gives

1

p
|Xμ,n

t |p − Nμ,n
t = 1

p
|Xμ,n

0 |p +
∫ t∧τn

0

{ 〈
Xμ

s , b(s, Xμ
s , μs , αs)

〉 |Xμ
s |p−2

+ 1

2
|σ(s, Xμ

s , μs , αs)|2|Xμ
s |p−2 + p − 2

2
|σ †Xμ

s |2|Xμ
s |p−4

}
ds

(34)

where N n,μ
t := ∫ t∧τn

0

∣
∣Xμ

s |p−2〈Xμ
s , σ (s, Xμ

s , μs, αs)dWs
〉
is the corresponding mar-

tingale term. Denoting by κ > 0 the constant in the Burkholder-Davis-Gundy
Inequality, the latter is estimated for each t ∈ [0, T ] thanks to (19) and Cauchy-
Schwarz Inequality as

E( sup
s∈[0,t]

N n,μ
t ) ≤ κE

((∫ t∧τn

0
|Xμ

s |2p−4|σ(s, Xμ
s , μs , αs)

†Xμ
s |2ds

) 1
2
)

≤ κ
√

L1E

(

sup
0≤s≤t

|Xμ,n
s | p

2

(∫ t

0
|Xμ,n

s |p−2(1 + |Xμ,n
s |2 + |αs |21[0,τn ](s))ds

) 1
2
)

.

But from Young’s inequality, the previous right hand side is also bounded by

1

2p
E

(

sup
0≤s≤t

|Xμ,n
s |p

)

+ pκ2L1

2
E

(∫ t

0
(|Xμ,n

s |p−2 + |Xμ,n
s |p + |Xμ,n

s |p−2|αs |21[0,τn ](s))ds

)

.

Define �n
t := E

(
sup0≤s≤t |Xn,μ

s |p
)
. Taking the expectation in (34), we infer from

(24), (19), Young’s inequality ab ≤ 2
p a

p
2 + p−2

p b
p

p−2 and the previous discussion that

1

2p
�n

t ≤ 1

p
E(|X0|p) + C p (L1 + L3)

∫ t

0
(1 + �n

s + |αs |p)ds

for some universal constant C p > 0. Applying Gronwall Inequality, we obtain the
corresponding moment estimate for Xμ,n , for each n > 0. Since none of the constants
used in the above computations depend on n, the localization is removed by letting
n ↗ ∞ and using the monotone convergence theorem.

Step 2: the fixed point argument. From Lemma 3.1, it is clear that for all t ∈
[0, T ], the probability measure P ◦ (Xμ

t )−1 is supported in C. For simplicity, let
L := L1 ∨ L2 ∨ L3 and introduce the weight

φt := exp (−2Lt) , t ∈ [0, T ].
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Then, Itô Formula gives

d

(
1

2
|Xμ

t − Xν
t |2φt

)

+ 2L|Xμ
t − Xν

t |2φt dt

= φt
〈
Xμ

t − Xν
t , b(t, Xμ

t , μt , αt ) − b(t, Xν
t , μt , αt )

〉
dt

+ φt
〈
Xμ

t − Xν
t , b(t, Xν

t , μt , αt ) − b(t, Xν
t , νt , αt )

〉
dt

+ φt
〈
Xμ

t − Xν
t , σ (t, Xμ

t , μt , αt ) − σ(t, Xν
t , νt , αt )dWt

〉

+ 1

2
φt |σ(t, Xμ

t , μt , αt ) − σ(t, Xν
t , νt , αt )|2dt .

(35)
The first term in the right hand side of (35) is evaluated thanks to (25). For the
second term, we use the quadratic growth assumption (23). As for the Itô correc-
tion, we can estimate it similarly, using this time Assumption 2.2. With Mt :=∫ t
0 φs

〈
Xμ

s − Xν
s , σ (s, Xμ

s , μs, αs) − σ(s, Xν
s , νs, αs)dWs

〉
we get

1

2
|Xμ

t − Xν
t |2φt + 2L

∫ t

0
|Xμ

s − Xν
s |2φsds − Mt

≤
∫ t

0

{
(L1 + L3)|Xμ

s − Xν
s |2 + (L1 + L2)(1 + |Xν

s |2)W2(μs , νs)
2
}
φsds

≤ 2L

(∫ t

0
|Xμ

s − Xν
s |2φsds +

(
1 + sup

s∈[0,t]
|Xν

s |2
) ∫ t

0
W2(μs , νs)

2φsds

)

.

Taking expectations, supremum in t , then absorbing to the left yields

sup
0≤s≤t

E

(
|Xμ

s − Xν
s |2
)

φs ≤ 4L
(
1 + E

(
sup

s∈[0,t]
|Xν

s |2)
) ∫ t

0
W2(μs, νs)

2φsds

Using the estimate (32) with p = 2, the fact that exp(−2T L) ≤ φ ≤ 1, inequality
(13) and the boundedness of the control state space A ⊂ R

k , we arrive at

sup
0≤s≤t

W2(�(μ)s,�(ν)s)
2 ≤ C(‖X0‖p, T , L)

∫ t

0
W2(μs, νs)

2ds .

Considering the k-th composition of the map �, we get

sup
0≤s≤T

W2(�
k(μ)s,�

k(ν)s)
2 ≤ C(‖X0‖p, T , L)k T k

k! sup
0≤s≤T

W2(μs, νs)
2 ,

hence contractivity of �k follows for k > 0 large enough and the result then follows
from Banach-fixed point theorem. ��

We now investigate some regularity of the control-to-state operator, which will be
needed in the proof of the optimality principle.

123



S1944 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1925–S1968

Lemma 3.2 For p ∈ [2, r ], the solution map

G : A → S p ∩ S2, α �→ Xα

is well-defined and Lipschitz continuous. More precisely, there exists a constant
C(L1, L2, L3, T ) > 0, such that for all α, β ∈ A

E

(

sup
t∈[0,T ]

|Xα
t − Xβ

t |2
)

≤ C(L1, L2, L3, T )

∫ T

0
|αt − βt |2dt .

Proof That G is well-defined follows immediately from Theorem 3.1. Towards
Lipschitz-continuity, the property is shown by similar considerations as in the proof
of Theorem 3.1. Indeed, fixing α, β ∈ A and letting M be the martingale Mt :=∫ t
0 〈σ(t, Xα,L(Xα), α) − σ(s, Xβ,L(Xβ), β), (Xα − Xβ)dW 〉, then using Itô For-
mula with assumptions 2.2, 2.2 and 2.2, we arrive at

1

2
|Xα

t − Xβ
t |2 − Mt

=
∫ t

0

{ 〈
Xα

s − Xβ
t , b(s, Xα

s ,L(Xα
s ), αs) − b(s, Xβ

s ,L(Xα
s ), βs)

〉

+ 〈Xα
s − Xβ

s , b(s, Xβ
s ,L(Xα

s ), βs) − b(s, Xβ
s ,L(Xβ

s ), βs)
〉

+ 1

2
|σ(t, Xα

s ,L(Xα
s ), αs) − σ(t, Xβ

s ,L(Xβ
s ), βs)|2

}

ds

≤
∫ t

0

{
(L3 + 1

2
+ L1)(|Xα − Xβ |2 + |α − β|2)

+ (
L2

2
+ L1)(1 + |Xα|2 + |Xβ |2)W2(L(Xα),L(Xβ))2

}
ds .

Letting κ > 0 be the constant in theBDG inequality, the estimate (13) andab ≤ a2
4 +b2

yield

1

4
E

(

sup
s∈[0,t]

|Xα
t − Xβ

t |2
)

≤ CL(3 + κ2)
(
2 + E

(
sup

s∈[0,T ]
|Xα

s |2 + |Xβ
s |2)

)

∫ t

0

{

E( sup
r∈[0,s]

|Xα
r − Xβ

r |2) + |αs − βs |2
}

ds

where CL := 1
2 ∨ L1 ∨ L2

2 ∨ L3. The result now follows from the uniform bound (32),
together with Gronwall Lemma. ��
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Remark 3.1 Since we have W2(L(Xα
s ),L(Xβ

s )) ≤ E

(
supt∈[0,T ] |Xα

s − Xβ
s |2
) 1

2
we

also get the Lipschitz continuity of the map

A → P2(S2), α �→ L(G(α)).

Remark 3.2 (Fokker-Planck equation) Given the settings of Example 2.2, we define

b0(t, x, α) :=
⎛

⎝
v − v3

3 − w + α

c(v + a − bw)

aS(v)(1 − y) − by

⎞

⎠ , b1(x, z) :=
⎛

⎝
−J (v − Vrev)z3

0
0

⎞

⎠ ,

σ̃ (x, z) :=
⎛

⎜
⎝

σext −σ J (v − Vrev)z3 0
0 0 0

0 0 χ(y)

√

aS(v)(1 − y) + by

⎞

⎟
⎠ .

If we assume that the solution to the corresponding mean-field equation has a density
p(t, x)with respect to the 3-dimensional lebesguemeasure, then theMcKean-Vlasov-
Fokker-Planck equation is given by the nonlinear PDE:

∂t p(t, x) = −div

((

b0(t, x, α) +
∫

R3
b1(x, z)p(t, z)dz

)

p(t, x)

)

+ 1

2
∇2 ·

((∫∫

R3×R3
σ̃ (x, z)σ̃ (x, z̄)† p(t, z)p(t, z̄) dzdz̄

)

p(t, x)

)

(see [2]). It is degenerate parabolic because the matrix σ σ̃ † is not strictly positive.

3.2 Proof of Theorem 2.1

We now prove the existence of an optimal control for (28). The strategy we use strings
along the commonly named “direct method” in the calculus of variations. As a trivial
consequence of the assumptions made in Sect. 2.2 and the uniform estimate (32), note
at first that our control problem is indeedfinite.Next, consider a sequence (αn)n∈N ⊂ A

realizing the infimum of J asymptotically, i.e.

lim
n→∞ J (αn) = inf

α∈A J (α).

Since A ⊂ L2([0, T ]; R
k) is bounded and closed, by Banach Alaogu Theorem there

exists an α ∈ L2([0, T ]; R
k) and a subsequence also denoted by (αn)n∈N, such that

αn⇀α, weakly in L2(0, T ; R
k).

Since A is also convex, we get α ∈ A, so α is indeed an admissible control. We now
divide the proof into four steps.
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Step 1: tightness. In the sequel, we denote by Xn the solution of the state equation
(7) with respect to the control αn , n ∈ N. Adding and subtracting in (7), we have

‖Xn
t − Xn

s ‖44 ≤ 43
{
∥
∥
∫ t

s
b(r , 0, δ0, 0)dr

∥
∥4
4 + ∥∥

∫ t

s
b(r , 0,L(Xn

r ), 0) − b(r , 0, δ0, 0)dr
∥
∥4
4

+∥∥
∫ t

s
b(r , Xn

r ,L(Xn
r ), αn

r ) − b(r , 0,L(Xn
r ), 0)dr

∥
∥4
4 + κ

∥
∥
∫ t

s
|σ(r , Xn

r ,L(Xn
r ), αn

r )|2dr
∥
∥2
2

}

,

where κ > 0 is the constant in the BDG inequality. Using the assumptions 2.2, 2.2, 2.2,
the fact that 0 ∈ C and the basic inequality (13), we obtain that

‖Xn
t − Xn

s ‖44 ≤ 43
{

(t − s)4 sup
r∈[0,T ]

|b(r , 0, δ0, 0)|4 + (t − s)4L2
2 sup

r∈[0,T ]
|Xn

r |4

+L2
2

∥
∥
∫ t

s
(1 + |Xn

r |q−1 + |αn
r |q−1 + M2(L(Xn

r ))2(|Xn
r | + |αn

r |)dr
∥
∥4
4

+κL2
1

∥
∥
∫ t

s
(1 + |Xn

r |2 + |αn
r |2)dr‖22

}

.

Using Hölder Inequality, Young Inequality ab ≤ q−1
q a

q
q−1 + 1

q bq , we arrive at the
following estimate, for all n ∈ N and 0 ≤ s ≤ t ≤ T

E

(
|Xn

t − Xn
s |4
)

≤ C(L, T )

{

(t − s)4
[

sup
r∈[0,T ]

|b(r , 0, δ0, 0)|4 + E

(

1 + sup
r∈[0,T ]

|Xn
r |4q

)]

+ C(t − s)4/3(1 + (t − s))

}

,

where we used the fact that A is bounded. Note that the above constants depends upon
the indicated quantities, but not on n ∈ N.

Making use of the uniform estimate (32), the Kolmogorov continuity criterion then
asserts that the sequence of probability measures (P ◦ (Xn)−1)n∈N, defined on the
space

E :=
(

C([0, T ]; R
d),B(C([0, T ]; R

d))
)

is tight. In the same way, we can prove that the sequence on probability measures
(Pn)n∈N := (P ◦ (Xn, Bn)−1

)

n∈N, with

Bn(t) :=
∫ t

0
b(s, Xn

s ,L(Xn
s ), αn

s )ds,

is tight on the product space E × E, with respect to the product topology, where for
two E-valued random variables Z1, Z2 defined on (�,A, P), P ◦ (Z1, Z2)

−1 denotes
the joint law of Z1 and Z2. Thus by Prokhorov’s theorem there exists a subsequence
of (Pn)n∈N, which converges weakly to some probability measure P

∗ on E × E .
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Step 2: passage to the limit in the drift. By Skorokhod’s representation theorem we
can then find random variables X , B, (X

n
)n∈N, (B

n
)n∈N defined on some probability

space (�,F , P) and with values in E × E such that

• P ◦ (X
n
, B

n
)−1 = Pn for all n ∈ N and P ◦ (X , B)−1 = P

∗ and
• lim

n→∞(X
n
, B

n
) = (X , B), P-almost surely with respect to the uniform topology.

From (33) and by the definition of A we get for any p ≤ r

E

(

sup
0≤t≤T

|Xn
t |p

)

≤ C(p, ‖X0‖p, L1, L2, L3),

for some constant independent of n. Thus we can conclude by the dominated conver-
gence theorem that

W2(L(X
n
t ),L(Xt ))

2 ≤ E

(

sup
0≤t≤T

|Xn
t − Xt |2

)

→ 0,

as n → ∞. This also implies (L(Xt ))t∈[0,T ] ⊂ PC
2 , since PC

2 is closed.
To identify the almost sure limit B, we first claim that for each t ∈ [0, T ]

B
n
(t)⇀

∫ t

0
b(s, Xs,L(Xs), αs)ds, (36)

weakly in L2(�; R
d). Indeed, by (22) and the dominated convergence theorem we

have

E

(∫ t

0
|b(s, X

n
s ,L(X

n
s ), αn

s ) − b(s, Xs,L(Xs), α
n
s )|2ds

)

→ 0.

Likewise, for h ∈ L2(�; R
d)we have by Assumption 2.3 and dominated convergence

E

(∫ t

0
〈(b(s, Xs,L(Xs), α

n
s ) − b(s, Xs,L(Xs), αs)

)
, h〉ds

)

→ 0,

as n → ∞, thus proving our claim.
The desired identification then follows from (36), the Banach-Saks theorem and the

uniqueness of the almost sure limit. The processes B and
∫ ·
0 b(s, Xs,L(Xs), αs)ds

being both continuous pathwise, they are indistinguishable, hence the identity

B(t) =
∫ t

0
b(s, Xs,L(Xs), αs)ds, (37)

for all t ∈ [0, T ], P-almost surely.
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Step 3: identification of the martingale. Letting σσ †(t, x, μ, α) := σ(t, x, μ, α)

σ (t, x, μ, α)† for short, similar arguments as above show that

σσ †(t, X
n
t ,L(X

n
t ), αn

t )⇀σσ †(t, Xt ,L(Xt ), αt )

weakly in L2([0, T ] × �; R
d). Since the process

Mn
t := Xn

t − X0 − Bn(t) =
∫ t

0
σ(s, Xn

s ,L(Xn
s ), αn

s )dWs

is, for each n, a Gn
t := σ(Xn

s |s ≤ t) martingale under P, we can conclude that

M
n
t := X

n
t − X0 − B

n
(t)

is a Gn
t := σ(X

n
s |s ≤ t) martingale under P with quadratic variation

〈M
n〉t =

∫ t

0
σσ †(s, X

n
s ,L(X

n
s ), α

n
s )ds.

From the previous considerations, we can conclude that

M
n
t → Xt − X0 −

∫ t

0
b(s, Xs,L(Xs), αs)ds =: Mt ,

P-almost surely for all t ∈ [0, T ]. Thus by the dominated convergence theorem the
process (Mt )t∈[0,T ] is a Gt := σ(Xs |s ≤ t) martingale under P and with standard
arguments we also obtain, that (Mt )t∈[0,T ] has quadratic variation

〈M〉t =
∫ t

0
σσ †(s, Xs,L(Xs), αs)ds.

By the martingale representation theorem we can find an extended probability space
(�̂, F̂ , (F̂t )t∈[0,T ], P̂) with an m-dimensional brownian motion Ŵ , such that the nat-

ural extension X̂ of X satisfies P̂ ◦ (X̂−1) = P ◦ (X
−1

) and

X̂t = X0 +
∫ t

0
b(s, X̂s,L(X̂s), αs)ds +

∫ t

0
σ(s, X̂s,L(X̂s), αs)dŴs,

P̂-almost surely for all t ∈ [0, T ].
Step 4: end of the proof It remains to show that the infimum is attained for α. Due

to the uniqueness of equation (7), we have P ◦ (Xα)−1 = P̂ ◦ (X̂−1). Using Fatou’s
lemma, continuity of f , g, Assumption 2.3 and Remark 2.1, we obtain

inf
α̃∈A

J (α̃) = lim
n→∞ J (αn)
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≥ lim inf
n→∞ E

(∫ T

0
f (t, Xn

t ,L(Xn
t ), αn

t )dt + g(Xn
T ,L(Xn

T ))

)

= lim inf
n→∞ E

(∫ T

0
f (t, X

n
t ,L(X

n
t ), αn

t )dt + g(X
n
T ,L(X

n
T ))

)

≥ E

(∫ T

0
f (t, Xt ,L(Xt ), αt )dt + g(X T ,L(X T ))

)

= Ê

(∫ T

0
f (t, X̂t ,L(X̂t ), αt )dt + g(X̂T ,L(X̂T ))

)

= E

(∫ T

0
f (t, Xα

t ,L(Xα
t ), αt )dt + g(Xα

T ,L(Xα
T ))

)

= J (α).

This shows that α has the desired properties, and hence the proof is finished. ��

4 TheMaximum Principle: Proof of Theorem 2.2

In this section, it will be assumed implicitly that assumptions 2.1, 2.2, 2.3 and 2.4
hold. Hereafter, we let (�̃, Ã, P̃) be a copy of the probability space (�,A, P). The
corresponding expectation map will be denoted by Ẽ.

4.1 Gâteaux Differentiability

In this subsection we aim to complete Lemma 3.2 by showing the Gâteaux-
differentiability of the control-to-state operator

G : A ⊂ L p([0, T ]; R
k) → S2, α �→ Xα.

The Gâteaux derivative of the solution map will be given by the solution of a mean-
field equation with random coefficients. We will deal with this problem in the similar
fashion as it is done in [8, Thm. 6.10 p. 544].

Lemma 4.1 The solution map G is Gâteaux-differentiable. Moreover, for each α ∈ A,
its derivative in the direction β ∈ A is given by

dG(α) · β = Zα,β,

where, introducing

Bμ(t, x, μ) :=
∫∫

Rd×Rd
bμ(t, x,L(Xt ), αt )(x̃) · ỹμ(dx̃ × d ỹ)

�μ(t, x, μ) :=
∫∫

Rd×Rd
σμ(t, x,L(Xt ), αt )(x̃) · ỹμ(dx̃ × d ỹ) ,
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the process Z = Zα,β is characterized as the unique solution to

⎧
⎪⎨

⎪⎩

d Zt = {bx (t, Xt ,L(Xt ), αt ) · Zt + bα(t, Xt ,L(Xt ), αt ) · βt + Bμ(t, Xt ,L(Xt , Zt ))
}
dt,

+ {σx (t, Xt ,L(Xt ), αt ) · Zt + σα(t, Xt ,L(Xt ), αt ) · βt + �μ(t, Xt ,L(Xt , Zt ))
}
dWt

Z0 = 0.
(38)

Proof We will start by showing that (38) has a unique solution. For that purpose, we
define

R :=
{
μ ∈ C([0, T ];P2(R

d × R
d)), such that μt ◦ p−1

1 = L(Xt ), ∀t
}

,

where p1 denotes the projector onto the first d-coordinates, namely

p1 : R
d × R

d → R
d , (x, y) �→ x .

Clearly, ifμn
t is a sequence convergingweakly toμt for every t ∈ [0, T ], the constraint

μn
t ◦p−1

1 = L(Xt ),∀t remains true forμ itself. Since theWasserstein distancemetrizes
the weak topology, we see that R is closed in C([0, T ];P2(R

d × R
d)). Next, define

� : R → R,

which maps μ ∈ C([0, T ];P2(R
d × R

d)) to (L(Xt , Vt ))t∈[0,T ], where (Vt )t∈[0,T ] is
the unique solution to

⎧
⎪⎨

⎪⎩

dVt = bx (t, Xt ,L(Xt ), αt ) · Vt + bα(t, Xt ,L(Xt ), αt ) · βt + Bμ(t, Xt , μt )dt

+ σx (t, Xt ,L(Xt ), αt ) · Vt + σα(t, Xt ,L(Xt ), αt ) · βt + �μ(t, Xt , μt )dWt

Z0 = 0.
(39)

For fixedμ ∈ C([0, T ];P2(R
d ×R

d))we first need to check the existence of a unique
solution V . But letting

B(t, ω, v, μ, α) := bx (t, Xt (ω),L(Xt ), αt ) · v + bα(t, Xt (ω),L(Xt ), αt )

· βt + Bμ(t, Xt (ω), μt ),

�(t, ω, v, μ, α) := σx (t, Xt (ω),L(Xt ), αt ) · v + σα(t, Xt (ω),L(Xt ), αt )

· βt + �μ(t, Xt (ω), μt ),

we have the following properties:

〈B(t, ω, v, μ, α) − B(t, ω, v′, μ, α), v − v′〉 ≤ A1|v − v′|2
∫ T

0
sup
|v|≤c

|B(t, ω, v, μ, α)|dt < ∞, ∀c ≥ 0,
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for all t ∈ [0, T ] and P-almost everyω. The first estimate is a result of Assumption 2.4
and the fact that P(Xt ∈ C,∀t) = 1. The second estimate follows from

|B(t, ω, v, μ, α)|
≤ C

{

(1 + |Xt (ω)|q−1)|v| + |βt | + (1 + |Xt (ω)|)
∫∫

Rd×Rd
|y|μt (dx × dy)

}

,

togetherwith the continuity of t �→ ∫∫

Rd×Rd |y|μt (dx×dy), and the uniform estimate
(32). Using (30) we get with similar arguments

|�(t, ω, v, μ, α) − �(t, ω, v′, μ, α)| ≤ A2|v − v′|,
∫ T

0
sup
|v|≤c

|�(t, ω, v, μ, α)|2dt < ∞, ∀c ≥ 0,

for all t ∈ [0, T ], P-almost every ω. It follows then by classical SDE results that (39)
is well-posed. Moreover, adapting the arguments yielding the moment estimates of
Theorem 3.1, it is shown mutatis mutandis that for 2 ≤ p ≤ r

E

(

sup
0≤t≤T

|Vt |p

)

< ∞.

Therefore (Vt ) (and hence �(μ) ≡ L(X , V )) is uniquely determined by the proba-
bility measure μ.

We now aim to prove that � is a contraction, but for that purpose it is convenient
to introduce another (stronger) metric. For any μ, ν ∈ P2(R

d × R
d) with μ ◦ p−1

1 =
ν ◦ p−1

1 , we let

d(μ, ν)2 := inf
m∈�(μ,ν)

∫∫∫

Rd×Rd×Rd
|v − w|2m(dx × dv × dw) ,

where �(μ, ν) is the set of all probability measures m on (Rd)3 such that for any
A, B ∈ B(Rd)

m(A × B × R
d) = μ(A × B) and m(A × R

d × B) = ν(A × B).

That d is stronger than W2 can be seen as follows. If m is any element in �(μ, ν), one
can define

ρ(dx × dv × dy × dw) := m(dx × dv × dw)δx (dy)
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where δx is the Dirac mass centered at x . Clearly, ρ belongs to the set of transport
plans �(μ, ν) between μ and ν, so that in particular

W2(μ, ν) = inf
ρ∈�(μ,ν)

∫∫∫∫

(Rd )4

(|x − y|2 + |v − w|2)π(dx × dv × dy × dw)

≤
∫∫∫

(Rd )3

|v − w|m(dx × dv × dw).

Then, taking the infimum over all such m yields our conclusion.
Next, let m ∈ �(μ, ν). Using the marginal condition on m, we have

|Bμ(t, Xt , μt ) − Bμ(t, Xt , νt )|
=
∣
∣
∣

∫∫

Rd×Rd
bμ(t, Xt ,L(Xt ), αt )(x) · vμ(dx × dv)

−
∫∫

Rd×Rd
bμ(t, Xt ,L(Xt ), αt ) · wν(dx × dw)

∣
∣
∣

=
∣
∣
∣

∫∫∫

Rd×Rd×Rd
bμ(t, Xt ,L(Xt ), αt )(x) · vm(dx × dv × dw)

−
∫∫∫

Rd×Rd×Rd
bμ(t, Xt ,L(Xt ), αt ) · wm(dx × dv × dw)

∣
∣
∣ .

Thus,

|Bμ(t, Xt , μt ) − Bμ(t, Xt , νt )| =
∣
∣
∣

∫∫∫

Rd×Rd×Rd
bμ(t, Xt ,L(Xt ), αt )(x) · (v − w)

m(dx × dv × dw)

∣
∣
∣ .

Since m is arbitrary, we obtain

|Bμ(t, Xt , μt ) − Bμ(t, Xt , νt )| ≤ A1(1 + |Xt |)d(μt , νt ) ,

and a similar result can be shown for�μ. Now, if we equipRwith a metric δ inherited
from d, for instance δ(μ, ν) := supt∈[0,T ] e−γ t d(μt , νt ) for γ > 0 large enough, the
proof that � is a contraction follows with simple arguments. Since it is similar to the
proof of Theorem 3.1, we omit the details.

Let now α, β ∈ A and ε > 0 small enough, such that α + εβ ∈ A. By X we denote
the solution of (7) with respect to α and by X ε we denote the solution to (7) with
respect to α + εβ. Furthermore for λ ∈ [0, 1] we introduce Xλ,ε := X + λ(X ε − X)

and αλ,ε := α + λεβ. Note that, since π is convex, we have

π(Xt + λ(X ε
t − Xt )) = π((1 − λ)Xt + λX ε

t ) ≤ (1 − λ)π(Xt ) + λπ(X ε
t ) ≤ 0 ,

(40)
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hence Xλ,ε
t is supported in C.

Next, by Lemma 3.2 we get

E

(

sup
λ∈[0,1]

sup
t∈[0,T ]

|Xλ,ε
t − Xt |2

)

≤ ĈL,T ε2
∫ T

0
|βt |2dt .

Thus, we can conclude that Xλ,ε −→
ε→0

X in L2(�, C([0, T ]; R
d)), uniformly in λ. By

a simple Taylor expansion we get

b(t, X ε
t ,L(X ε

t ), αt + εβt )

= b(t, Xt ,L(Xt ), αt ) + [bx ]εt · (X ε
t − Xt ) + ε[bα]εt · βt + Ẽ

(
[bμ]ε · ˜(X ε

t − Xt )
)

where, given ϕ = ϕ(t, x, μ, α)(x̃) we use the shorthand notation

[ϕ]εt :=
∫ 1

0
ϕ
(

t, Xλ,ε
t ,L(Xλ,ε

t ), α
λ,ε
t

) (
X̃λ,ε

t

)
dλ ,

with the convention that the last input is ignored whenever ϕ does not depend on the
tilde variable. Similarly, we have

σ(t, X ε
t ,L(X ε

t ), αt + εβt )

= σ(t, Xt ,L(Xt ), αt ) + [σx ]εt · (X ε
t − Xt ) + ε[σα]εt · βt + Ẽ

(
[σμ]ε · ˜(X ε

t − Xt )
)

.

Thus, for Δε
t := X ε

t − Xt

ε
− Zα,β

t we have

dΔε
t =

{

[bx ]εt · Δε
t + Ẽ

(
[bμ]εt · Δ̃ε

t

)
+ ([bx ]εt − bx (t, Xt ,L(Xt ), αt )) · Zα,β

t

+ ε([bα]εt − bα(t, Xt ,L(Xt ), αt )) · βt

+ Ẽ

(
([bμ]εt − bμ(t, Xt ,L(Xt ), αt )(X̃t )) · Z̃α,β

t

)}

dt

+
{

[σx ]εt · Δε
t + Ẽ

(
[σμ]εt · Δ̃ε

t

)
+ ([σx ]εt − σx (t, Xt ,L(Xt ), αt )) · Zα,β

t

+ ε([σα]εt − σα(t, Xt ,L(Xt ), αt )) · βt

+ Ẽ

(
([σμ]εt − σμ(t, Xt ,L(Xt ), αt )(X̃t )) · Z̃α,β

t

)}

dWt .

By Itô formula, (40) and Assumption 2.4, we get

d

( |Δε
t |2
2

)

≤
{

A1|Δε
t |2 + Ẽ

(
|[bμ]εt ||Δ̃ε

t |
)

|Δε
t |
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+ |[bx ]εt − bx (t, Xt ,L(Xt ), αt )||Zα,β
t ||Δε

t |
+ ε|[bα]εt − bα(t, Xt ,L(Xt ), αt )||βt ||Δε

t |
+ Ẽ

(
|[bμ]εt − bμ(t, Xt ,L(Xt ), αt )(X̃t )||Z̃α,β

t |
)

|Δε
t |
}

dt

+
〈

Δε
t ,

(

[σx ]εt · Δε
t + Ẽ

(
σε

μ(Δ) · Δ̃ε
t

)
+ ([σx ]εt − σx (t, Xt ,L(Xt ), αt )) · Zα,β

t

+ ε([σα]εt − σα(t, Xt ,L(Xt ), αt )) · βt

+ Ẽ

(
([σμ]εt − σμ(t, Xt ,L(Xt ), αt )(X̃t )) · Z̃α,β

t

))

dWt

〉

+ 5

2

{

A2|Δε
t |2 +

( ∫ 1

0
A2(1 + |Xλ,ε

t |2)dλ
)
Ẽ

(
|Δ̃ε

t |
)2

+ |[σx ]εt − σx (t, Xt ,L(Xt ), αt )|2|Zα,β
t |2

+ ε2|[σα]εt − σα(t, Xt ,L(Xt ), αt )|2|βt |2

+ Ẽ

(
|[σμ]εt − σμ(t, Xt ,L(Xt ), αt )(X̃t )||Z̃α,β

t |
)2
}

dt .

By Young Inequality, Jensen Inequality and assumption 2.4 we have

Ẽ

(
|[bμ]εt ||Δ̃ε

t |
)

|Δε
t | ≤ 1

2

(
Ẽ

(
|[bμ]εt |2|Δ̃ε

t |2
)

+ |Δε
t |2
)

≤ A1

2

(∫ 1

0
(1 + |Xλ,ε

t |2)dλ

)

Ẽ

(
|Δ̃ε

t |2
)

+ 1

2
|Δε

t |2.

Since ε > 0 is chosen in a way that α + εβ ∈ A, we can conclude by the a priori
bound (32) and the definition of A, that

E

(

sup
s∈[0,t]

Ẽ

(
|[bμ]εs ||Δ̃ε

s |
)

|Δε
s |
)

≤ C(T , ‖X0‖p)Ẽ

(

sup
s∈[0,t]

|Δ̃ε
s |2
)

+ E

(

sup
s∈[0,t]

|Δε
s |2
2

)

,

for some constant C(T , ‖X0‖p) > 0 which does not depend on ε. By the Burkholder-
Davis-Gundy inequality, Young and Jensen inequalities we arrive at

E

(

sup
t∈[0,T ]

|Δε
t |2
)

≤ I1 + I2 + I3 + I4 + I5 + I6 + C
∫ T

0
E

(

sup
s∈[0,t]

|Δε
s |2
)

ds,

for a constant C > 0 which does not depend on ε and

I1 = E

(∫ T

0
|[bx ]εt − bx (t, Xt ,L(Xt ), αt )|2|Zα,β

t |2dt

)

I2 = ε2E

(∫ T

0
|[bα]εt − bα(t, Xt ,L(Xt ), αt )|2|βt |2dt

)

I3 = E

(∫ T

0
Ẽ

(
|[bμ]εt − bμ(t, Xt ,L(Xt ), αt )(X̃t )|2|Z̃α,β

t |2
)

dt

)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1925–S1968 S1955

and I4, I5, I6 are analogues for σ . We will only show I1 → 0 as ε → 0, the other
terms being handled by similar arguments. By assumption 2.4 we have

|[bx ]εt − bx (t, Xt ,L(Xt ), αt )|4 ≤ C(1 + |Xt |4q−4 + |Xλ,ε
t |4q−4).

Furthermore we have for any p ≤ r that

E

(

sup
0≤t≤T

|Xλ,ε
t |p

)

≤ C p

{

(1 + λp)E

(

sup
0≤t≤T

|X ε
t |p

)

+ λp
E

(

sup
0≤t≤T

|Xt |p

)}

,

is bounded from above by some constant that does not depend on ε for ε > 0 small
enough. Since Xλ,ε → X in L2(�; C([0, T ]; R

d)), by the a-priori bound (32), the
estimate E

(
supt∈[0,T ] |Zt |4

)
< ∞, the continuity of bx and the dominated conver-

gence theorem, one concludes that I1 → 0 as ε → 0. Similar arguments combined
with Gronwall’s lemma finish the proof. ��

As an important consequence, we obtain the following formula for the Gâteaux
derivative of the cost functional. Given Lemma 4.1, the next result is proven in the
same way as it is done in [8] and thus omitted.

Corollary 4.1 The cost functional

J : A → R

is Gâteaux differentiable and its Gâteaux derivative at α ∈ A in direction β ∈ A is
given by

d J (α) · β = E

(
fx (t, Xt ,L(Xt ), αt ) · Zα,β

t + fα(t, Xt ,L(Xt ), αt ) · βt

)

+ E

(
Ẽ

(
fμ(t, Xt ,L(Xt ), αt )(X̃t ) · Z̃α,β

t

))

+ E

(
gx (XT ,L(XT )) · Zα,β

t + Ẽ

(
gμ(XT ,L(XT ))(X̃T ) · Z̃α,β

T

))
.

4.2 Maximum Principle

For the reader’s convenience, we now rewrite the adjoint equation (29) using Hamil-
tonian formalism. Recall that for x, y, p ∈ R

d , q ∈ R
d×m μ ∈ P2 and α ∈ A, we

introduced the quantity

H(t, x, μ, p, q, α) := 〈b(t, x, μ, α), p〉 + 〈σ(t, x, μ, α), q〉 + f (t, x, μ, α) .
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Thus, given a control α ∈ A, one sees that the pair (P, Q) ∈ S2,d × H2,d×m solves
the adjoint equation if and only if for all t ∈ [0, T ], P-almost surely
⎧
⎪⎨

⎪⎩

d Pt = −
[

Hx (t, Xt ,L(Xt ), Pt , Qt , αt ) + Ẽ

(
Hμ(t, X̃t ,L(Xt ), P̃t , Q̃t , αt )(Xt )

)]
dt + Qt dWt

PT = gx (XT ,L(XT )) + Ẽ

(
gμ(X̃t ,L(XT ))(XT )

)
.

(41)
where (X̃ , P̃, Q̃, α̃) is an independent copy of (X , P, Q, α) on the space (�̃, F̃ , P̃).

Let us point out that the above coefficients fail to satisfy
[8, Assumption MKV BSDE, Chap. 4]. Hence, we first need to address the solvability
of the BSDE (41) under the assumptions of Theorem 2.2.

Lemma 4.2 Under the assumptions of Theorem 2.2, there exists a unique solution
(P, Q) ∈ S2 × H2,d×m of (41).

Proof Fixα ∈ A and for simplicity, denote by Hx (t, ω, p, q) := Hx (t, Xt (ω),L(Xt ), p, q, αt )

and by Hμ(t, ω, x, p, q) := Hμ(t, x,L(Xt ),

p, q, αt )(Xt (ω)). Consider the map � : H2,d × H2,d×m → H2,d × H2,d×m which
maps a given pair

(Y , Z) ∈ H2,d × H2,d×m

to the solution (P, Q) of

⎧
⎨

⎩

d Pt = − [Hx (t, ω, Pt , Qt ) + E
(
Hμ(t, ω, Xt , Yt , Zt )

)]
dt + QdWt

PT = gx (XT (ω),L(XT )) + Ẽ

(
gμ(X̃t ,L(XT ))(XT )

)
,

(42)

where the expectation is to be understood in the following way:

E
(
Hμ(t, ω, Xt , Yt , Zt )

) =
∫

�

Hμ(t, ω, Xt (ω
′), Yt (ω

′), Zt (ω
′))P(dω′).

In the following we drop the dependence on ω for Hμ.
Since the above equation is a standard backward SDE with monotone coefficients,

the existence of a solution is well-known by standard results. We will now show that
the map � is a contraction, when the spaceH2,d ×H2,d×m is equipped with the norm

|||(P, Q)|||γ :=
(∫ T

0
eγ t (‖Pt‖22 + ‖Qt‖22)dt

)1/2

,

for a sufficiently large parameter γ > 0. If we denote by (P1, Q1), (P2, Q2) two
solutions of (42) for (Y 1, Z1) and (Y 2, Z2) respectively, then by the backward Itô
Formula [20, p. 356] applied to eγ t |P1

t − P2
t |2 we get

|P1
t − P2

t |2 + E

(∫ T

t
γ eγ (r−t)|P1

r − P2
r |2dr

∣
∣
∣
∣ Ft

)
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+E

(∫ T

t
eγ (r−t)|Q1

r − Q2
r |2dr

∣
∣
∣
∣ Ft

)

≤ 2E

(∫ T

t
eγ (r−t)

{
(
Hx (t, P1

r , Q1
r ) − Hx (r , P2

r , Q2
r )
) · (P1

r − P2
r ) + |P1

r − P2
r | ×

∫

�

|Hμ(r , Xr (ω
′), Y 1

r (ω′), Z1
r (ω′)) − Hμ(r , Xr (ω

′), Y 2
r (ω′), Z2

r (ω′))|P(dω′)
}

dr

∣
∣
∣
∣ Ft

)

.

(43)

From assumptions 2.4,2.4, Young’s inequality and Lemma 3.1, we infer that

‖(Hx (t, ω, P1, Q1) − Hx (t, ω, P2, Q2)) · (P1 − P2)‖1
≤ (A1 + A2

2)‖P1 − P2‖22 + 1

4
‖Q1 − Q2‖22

and
∫

�

|Hμ(r , Xr (ω
′), Y 1

r (ω′), Z1
r (ω′)) − Hμ(r , Xr (ω

′), Y 2
r (ω′), Z2

r (ω′))|P(dω′)

≤ (A1 ∨ A2)(1 + ‖Xr‖22)
1
2 (‖Y 1

r − Y 2
r ‖2 + ‖Z1

r − Z2
r ‖2) .

Invoking (32), Cauchy-Schwarz and Young Inequalities, we can conclude that

∫ T

0
γ eγ r ‖P1

r − P2
r ‖22dr +

∫ T

0
eγ r ‖Q1

r − Q2
r ‖22dr

≤ 2(A1 + A2
2)

∫ T

0
eγ r ‖P1

r − P2
r ‖22dr + 1

2

∫ T

0
eγ r ‖Q1

r − Q2
r ‖22dr

+ 1

2

∫ T

0
eγ r ‖P1

r − P2
r ‖22dr + C(A, ‖X0‖2)

∫ T

0
eγ r (‖Y 1

r − Y 2
r ‖22 + ‖Z1

r − Z2
r ‖22
)

dr .

For γ large enough this leads to

|||(P1 − P2, Q1 − Q2)|||2γ ≤ 1

2
|||(Y 1

r − Y 2
r , Z1

r − Z2
r )|||2γ ,

showing that � is a contraction. The conclusion follows. ��
The following corollary follows immediately by integration by parts and an

application of Fubini Theorem. We therefore omit the proof and refer to [8,
Lemma 6.12 p. 547].

Corollary 4.2 Let (P, Q) be a solution to (41), then it holds

E

(
〈PT , Zα,β

T 〉
)

= E

(∫ T

0
〈Pt , bα(t, Xt ,L(Xt ), αt ) · β〉 + 〈Qt , σα(t, Xt ,L(Xt ), αt ) · β〉dt

)

−E

(∫ T

0
fx (t, Xt ,L(Xt ), αt ) · Zα,β

t + Ẽ

(
fμ(t, Xt ,L(Xt ), αt )(X̃t ) · Z̃α,β

t

))

. (44)
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Remark 4.1 An immediate consequence of (44) is the following formula for the
Gâteaux derivative of the cost functional

d J (α) · β = E

(∫ T

0

{
〈bα(t, Xt ,L(Xt ), αt ) · βt , Pt 〉 + 〈σα(t, Xt ,L(Xt ), αt ) · βt , Qt 〉

+ fα(t, Xt ,L(Xt ), αt ) · βt

}
dt

)

= E

(∫ T

0
Hα(t, Xt ,L(Xt ), Pt , Qt , αt ) · βt dt

)

.

An application of Fubini Theorem then leads to the following representation for the
gradient of J :

∇ J (α)t = E (Hα(t, Xt ,L(Xt ), Pt , Qt , αt )) , t ∈ [0, T ]. (45)

It is hardly necessary to mention that the formula (45) is of fundamental importance
for numerical purposes, see Sect. 5 below.

We are now in position to prove the maximum principle.

Proof of Theorem 2.2 Let α ∈ A be an optimal control for (SM), X the corresponding
solution to (7) and (P, Q) the associated solution to (41). For β ∈ A we have by the
optimality of α

d J (α) · (β − α) = 〈∇ J (α), β − α〉L2([0,T ];Rk ) ≥ 0 .

Invoking the convexity of the Hamiltonian (see Assumption 2.3), we get

∫ T

0
E

(
H(t, Xt ,L(Xt ), Pt , Qt , αt ) − H(t, Xt ,L(Xt ), Pt , Qt , βt )

)
dt ≥ 0 .

For any arbitrary measurable set C ⊂ [0, T ] and α̃ ∈ A we can define the admissible
control

βt =
{

α̃ for t ∈ C,

αt otherwise,

hence

∫ T

0
1C (t)E

(
H(t, Xt ,L(Xt ), Pt , Qt , αt ) − H(t, Xt ,L(Xt ), Pt , Qt , α̃)

)
dt ≥ 0.

Therefore we get

E
(
H(t, Xt ,L(Xt ), Pt , Qt , αt ) − H(t, Xt ,L(Xt ), Pt , Qt , α̃)

) ≥ 0,

dt-almost everywhere. This proves the theorem. ��
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5 Numerical Examples

In this section we focus on the FitzHugh–Nagumo model with external noise only, i.e.
the system of 3N stochastic differential equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dvi
t =

(
vi

t − (vi
t )
3

3
− wi

t + αt − 1

N

∑N

j=1
J̄ (vi

t − Vrev)y j
t

)
dt + σext dW i

t

dwi
t = c(vi

t + a − bwi
t )dt ,

dyi
t = (ar S(vi

t )(1 − yi
t ) − ad yi

t )dt,
(46)

where we recall that S(v) := Tmax/[1 + exp λ(v − VT )].
We are interested in controlling the average membrane potential (called in the

following “local field potential”) of a network of FitzHugh–Nagumo neurons into a
desired state. Our cost functional is given by

f (t, x, μ, α) := |
∫

R3
vμ(dv × dw × dy) − vt |2

g(t, x) := 0,
(47)

where (vt )t is a certain reference profile. We should mention that the average mem-
brane potential will only give an idea about the average activity of the network at each
time. For example a high average membrane potential is an indication that a high num-
ber of neurons are in the regenerative or active phase, while a low average membrane
potential means that a high number of neurons are in the absolute refractory or silent
phase.

In the described case the adjoint equation is reduced to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d Pt = −
{

〈bx (t, Xt ,L(Xt ), αt ), Pt 〉 + Ẽ

(〈
bμ(t, Xt ,L(Xt ), αt )(X̃t ), P̃t

〉)

+ Ẽ

(
fμ(t, Xt ,L(Xt ), αt )(X̃t )

)}

dt + Qt dWt

PT = 0.
(48)

In the following section we will give a short introduction on how to solve (48) numer-
ically.

5.1 Numerical Approximation of the Adjoint Equation

In general we consider the following non fully coupled MFFBSDE
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d Xt = b(t, Xt ,L(Xt ))dt + σ(t, Xt ,L(Xt ))dWt

dYt = [ f (t, Xt , Yt ) + h(t, Xt ,L(Xt , Yt ))] dt − Zt dWt

X0 = ξ

YT = g(XT ).

(49)

For the approximation of the forward component we consider an implicit Euler scheme
for McKean-Vlasov equations. Since this is standard, we will not go into further
details. Concerning the backward component, we consider a scheme similar to the
one presented in [10]. We should mention that since we are not dealing with a fully
coupled MFFBSDE, our situation is a lot easier to handle than the one treated in [10].
For a given discrete time grid π : 0 = t0 < t1 < ... < tN = T , we consider the
following numerical scheme:

Y π
tk = E

(
Y π

tk+1
|Ftk

)
− (tk+1 − tk)

{

f (tk, Xπ
tk , Y π

tk ) + h(tk+1, Xπ
tk ,L(Xπ

tk+1
, Y π

tk+1
))

}

Zπ
tk := (tk+1 − tk)

−1
E

(
Y π

tk+1
(Wtk+1 − Wtk )|Ftk

)
,

Y π
tn = g(Xπ

tn ), Zπ
tn = 0.

For the approximation of the conditional expectation, we make use of the decoupling
field mentioned in [8], to write

Y π
tk+1

= u(tk+1, Xπ
tk+1

,L(Xπ
tk+1

)) =: û(tk+1, Xπ
tk+1

).

Thus we can represent the conditional expectation in terms of a function ũ by

E

(
Y π

tk+1
|Ftk

)
= ũ(tk+1, Xπ

tk ).

We approximate ũ(tk+1, ·)with gaussian radial basis functions, by solving the follow-
ing minimization problem for fixed nodes x1, ..., xL :

min
α

E

(

|Y π
tk+1

−
L∑

i=1

αi (tk+1)e
1
2δ ‖Xπ

tk
−xi ‖2 |2

)

,

for α = (α1(tk+1), ..., αL (tk+1))
†, where δ > 0 and L ∈ N are fixed. Therefore we

initialize our reference points x1, ..., xL by L independent realizations of Xπ
tk . For m

realizations of Y π
tk+1

and Xπ
tk , denoted by y1tk+1

, ..., ym
tk+1

and x1tk+1
, ..., xm

tk+1
respectively,

we then write

ytk+1 = (y1tk+1
, ..., ym

tk+1
)†

A(tk) = (e
1
2δ ‖xi

tk
−x j ‖2)i=1,...,m, j=1,...,L .
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Thus we need to minimize

‖ytk+1 − A(tk)α(tk+1)‖2.

A similar approach for BSDEs can be found in [18]. There is no convergence analysis
of this scheme for our assumptions on the coefficients, this should only give an idea
how to solve the adjoint equation in practice. Furthermore we should mention, that in
the case where only external noise is present, the duality (44) and the resulting gradient
representation still holds true for any non adapted solution of (41), i.e. any solution
to the random backward ODE arising from equation (41) for Q ≡ 0. Thus one can
also implement a numerical scheme for the adjoint equation, without any conditional
expectations involved. For more general diffusion coefficient however this is not true,
since the proof of the duality is based on integration by parts and the stochastic integral
which appears is not defined if the integrand is not adapted.

5.2 Gradient Descent Algorithm

We will now briefly sketch our gradient descent algorithm.

Algorithm 5.1 Take an initial control α0 ∈ A, s0 > 0, and recursively for n =
0, 1, · · · :
(1) determine Xαn by solving the state equation with an implicit particle scheme to

avoid particle corruption;
(2) solve the adjoint equation for given Xαn in order to approximate (Pαn , Qαn );
(3) approximate the gradient

∇ J (αn)s = E

[
〈bα(s, Xαn

s ,L(Xαn
s ), αn

s ), Pαn
s 〉 + fα(s, Xαn

s ,L(Xαn
s ), αn

s )
]

via Monte-Carlo method, where (Pαn , Qαn ) solves the adjoint equation;
(4) update the step size sn according to a suitable step size rule (e.g. Armijo-rule),

repeating step 5.1–5.1 if necessary
(5) update the control in direction of the steepest descent: αn+1 := αn − sn∇ J (αn);
(6) the algorithm stops if ‖∇ J (αn)‖ < ε

To compute the expectation term, one is in fact reduced to simulate the solution
of the network equation itself and use the particles as samples for the Monte-Carlo
simulation.

5.3 Numerical Examples for Systems of FitzHugh–Nagumo Neurons

Although the solution to the adjoint equation is a 3-dimensional process, in the fol-
lowing we will only plot its first variable, since the other variables are irrelevant for
the gradient in our situation.

To illustrate some problems we had with the simulations, we consider the example
of the deterministic uncoupled case of equation (46), where J = 0 and σext = 0.
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Fig. 2 Membrane potential of the solution to (46) for α ≡ 0.3251

Fig. 3 Reference profile generated by solving (46) for α ≡ 0.332

In the given situation the membrane potential v becomes highly sensitive to small
perturbations of the control at specific times, when we chose the control αt ≡ α close
to the bifurcation value αc ≈ 0.33 for the supercritical Hopf bifurcation point of the
equation, where the fixed point is stable, but there is no periodic orbit, in particular we
chose α = 0.3251 < αc ≈ 0.33. The bifurcation point of the deterministic system can
be determined in a similar way as it is done in [23]. This sensitivity can lead to high
valued solutions of the corresponding adjoint equation for specific reference profiles.
One example is to choose the reference profile as the v-trajectory of a solution to (46),
for a control parameter α in the limit cycle regime. This situation is illustrated by the
Figs. 2, 3 and 4.

The same type of phenomena also occurs in the case of the coupled system of
stochastic FitzHugh–Nagumo neurons. Here it can lead to high fluctuations of the
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Fig. 4 Solution to the corresponding adjoint equation

Fig. 5 Local field potential of the solution to (46) for α ≡ 0

sample mean for the adjoint equation, thus a high number of particles is required to
compute the expectation of the solution to the adjoint equation. A small illustration is
given by the Figs. 5, 6 and 7.

In this example and in the following, the initial states are uniformly distributed
on the orbit of a solution to (46) with α ≡ 0, σext = 0 and initial conditions V0 =
−0.828, w0 = −0.139, y0 = 0.589. The other parameters are given below in Table 1.
In our example only external noise is present, so we can approximate the non adapted
solution to the BSDE using the simple Euler-scheme with no conditional expectations

involved, replacing E

(
Y π

tk+1
|Ftk

)
by Y π

tk+1
in our numerical scheme, to get a good

approximation of the gradient. For the sake of completeness we mention that for the
approximation of the adapted solutionwewould use the parameter L = 200 and δ = 2.
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Fig. 6 Reference profile chosen as the local field potential of (46) for α(t) = 0.8 if t ≤ 7

Fig. 7 Samples of the solution to the adjoint equation

Furthermore we are always using N = 1000 particles for the particle approximation
of (46).

5.3.1 Control of a Coupled System of FitzHugh–Nagumo Neurons

For our first example, we consider a parameter regime where the activity of a large
number of neurons of the network at some time t leads to further activity at a later time,
without any external current applied to the system. Therefore we slow down the gating
variable, by decreasing the closing rate of the synaptic gates. This way its impact on
the network is still high enough, when a large part of the network is excitable again.
Figure 8 shows the uncontrolled local field potential in this case (i.e. when α ≡ 0).

Our goal is now to increase the activity of the network up to time t = 100 and
then control the network back into its resting potential. Up to time t = 100, the
reference profile showed in Fig. 9 shows the local field potential of a network of
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Fig. 8 Uncontrolled local field potential

Fig. 9 Reference profile

coupled FitzHugh–Nagumo neurons, when a constant input current of magnitude 0.8
is applied for a time period of �t = 7 at t = 0. For times t > 100 it shows the resting
potential of a single FitzHugh–Nagumo neuron.

We expect the optimal control to raise the membrane potential for a small time
period at t = 0 and then counteract the stimulating effect of the coupling around
t = 100. However this effects should not occur in the uncoupled setting, which we
will consider afterwards.

Figures 10 and 11 show the optimal control and the corresponding optimal local
field potential. We remind that this might only be locally optimal, since we cannot
expect to find a globally optimal control with our gradient descent algorithm.

Since our terminal cost is always zero, i.e. g ≡ 0, the solution to the adjoint equation
will always be zero at terminal time T . Consequently our gradient will always be zero
at time T and our gradient descent algorithm does not change the control at time T .
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Fig. 10 Optimal control

Fig. 11 Local field potential with optimal control

That is why the value of our approximated optimal control will stay at the value of our
initial control α0 at the terminal time. We started with initial control α0 ≡ 0, which
explains the small peak in Figs. 10 and 11.

5.3.2 Control of an Uncoupled System of FitzHugh–Nagumo Neurons

Nowwe investigate the control problem for the uncoupled equation (46), where J = 0.
Since the reference profile it still the same as in example 5.3.1, we will only present
the corresponding optimal control (Fig. 12).

As expected, the control does not need to counteract any stimulating effects for
times t > 100. Furthermore it is not sufficient in the uncoupled case to apply an input
current for a small time period at t = 0, to reach the desired local field potential up to
time t = 100 (Table 1).
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Fig. 12 Optimal control

Table 1 Parameters used for the examples

Time parameters FitzHugh–Nagumo parameters Synapse

tend = 200 a = 0.7 Vrev = 1

�t = 0.1 b = 0.8 a = 1

c = 0.08 b = 0.3

σext = 0.04 Tmax = 1

λ = 0.1

Vrev = 1.2

VT = 2

J = 0.46

σJ = 0
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