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Abstract
Weconsider a parabolic obstacle problem forEuler’s elastic energyof graphswithfixed
ends.We show global existence, well-posedness and subconvergence provided that the
obstacle and the initial datum are suitably ‘small’. For symmetric cone obstacles we
can improve the subconvergence to convergence. Qualitative aspects such as energy
dissipation, coincidence with the obstacle and time regularity are also examined.
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Symmetric Rearrangements
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1 Introduction

Our object of study is the Euler-Bernoulli elastic energy

W(γ ) :=
∫

γ

κ2 ds,

where γ : I → R
2 is a suitably smooth curve, κ denotes its curvature and ds denotes

the arclength parameter. If I = (0, 1) and γ (x) = (x, u(x)) for some sufficiently
smooth u : I → R the energy becomes

E(u) :=
∫ 1

0

u′′(x)2

(1 + u′(x)2) 5
2

dx .

The author was supported by the LGFG Grant (Grant no. 1705 LGFG-E) and would like to thank Anna
Dall’Acqua, Francesco Nobili and Kensuke Yoshizawa for helpful discussions.

B Marius Müller
marius.mueller@math.uni-freiburg.de

1 Albert-Ludwigs-Unversität Freiburg, Mathematisches Institut, Freiburg im Breisgau 79104, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-021-09773-9&domain=pdf


S356 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S355–S402

Since we deal with obstacle problems, our admissible functions are required to lie
above a suitable obstacle function ψ : (0, 1) → R which we will specify later. The
boundary conditions we want to impose are ‘fixed ends’, i.e. u(0) = u(1) = 0, so that
the admissible set can be chosen as

Cψ := {u ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1) : u ≥ ψ a.e.}. (1.1)

Existence (and nonexistence) of minimizers of E in Cψ has been studied in [7] and
[18], minimization with slightly different frameworks has also been examined in [15],
[16], [17] and [8].

The articles [7], [18] and [17] reveal that under certain smallness conditions on ψ

minimizers do exist whereas they do not exist in general if the obstacle is too large.
A useful necessary criterion for minimizers is the variational inequality. More

precisely – if u ∈ Cψ is a minimizer, then u solves

DE(u)(v − u) ≥ 0 ∀v ∈ Cψ, (1.2)

where DE denotes the Frechét derivative of E : W 2,2(0, 1) ∩ W 1,2
0 (0, 1) → R. In the

following we will also call solutions of (1.2) constrained critical points.
Once minimizers are found, an object of interest is the coincidence set � :=

{u = ψ}, which forms the so-called free boundary of the problem. For higher order
variational problems like this one, a description of this free boundary is particularly
challenging because of the lack of a maximum principle.

In this articlewedonotwant to studyminimizers but rather approximation of critical
points by a certain type of L2-gradient flow, called parabolic obstacle problem in the
literature.

Parabolic obstacle problems are time-dependent evolutions that flow towards solu-
tions of the variational inequality. Such evolutions are driven by the so-called flow
variational inequality, for short FV I . In our situation this reads

(u̇(t), v − u(t))L2 + DE(u(t))(v − u(t)) ≥ 0 ∀v ∈ Cψ.

Parabolic obstacle problems form a large class of time-dependent free boundary
problems, sometimes also calledmoving boundary problems. Here the moving bound-
ary is given by �t := {u(t) = ψ}.

In more beneficial frameworks parabolic obstacle problems can also be seen as gra-
dient flows in the metric space (Cψ, dL2), which immediately implies that evolutions
dissipate energy in a direction that is steepest possible, cf. [3], [2].

Many authors have studied moving boundary problems driven by second order
operators but recently fourth order problems have also raised a lot of interest, cf. [20],
[21], [19], [9], [22]. The energies in [20], [21] are (semi-)convex which implies that
the evolution can easily be regarded as a metric gradient flow in the sense of [3],
[2]. We emphasize that the general framework in [3], [2] really relies on convexity
assumptions, which E does not satisfy.

In [19] the lack of convexity is circumvented by looking at the gradient flow in a
different flow metric, namely in the metric space (Cψ, dW 2,2∩W 1,2

0
). We remark that in
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this metric space, E is locally semiconvex. Our given energy is neither L2-semiconvex
nor do we want to use any other flow metric than the L2-metric. For this we have to
pay a price.

Firstly, we must require that the obstacle is appropriately small to stay in a region
where the elastic flow and the biharmonic heat flow show similar behavior. Most of
our arguments will work by comparision to the biharmonic heat flow, controlling the
nonlinearities with the various smallness requirements.

Secondly, we are unable to fit the flow into the framework of metric gradient flows.
Properties like energy dissipation are thus not immediate consequences and have to be
examined seperately. Nevertheless the flow follows now dynamics that are analytically
very accessible, which makes the aforementioned comparision to the biharmonic heat
flow possible. This is the reason why we study this particular dynamics.

The techniques used to construct the flow mainly rely on De Giorgi’s minimizing
movement scheme, a ‘variational time discretization’ for the problem. We remark that
the evolution was constructed independently in [22], where the authors use the same
scheme but carry out a different approach when passing to the limit.

After the construction of our flow is finished we examine further properties such
as well-posedness, size of the moving boundary, regularity and convergence behavior.
A byproduct of this study is that we show reflection symmetry of minimizers of E in
Cψ for some obstacles ψ using symmetric decreasing rearrangements in a setting of
nonlinear higher order equations.

2 Main Results

In the following we discuss the basic notation and the main results. The scalar prod-
uct (·, ·) will always denote the scalar product on L2(0, 1). The space W 2,2(0, 1) ∩
W 1,2

0 (0, 1) will always be endowed with the norm ||u||W 2,2∩W 1,2
0

:= ||u′′||L2 , cf. [13,

Theorem 2.31].

Definition 2.1 (Elastic energy) We define the elastic energy E : W 2,2(0, 1) ∩
W 1,2

0 (0, 1) → R to be

E(u) :=
∫ 1

0

u′′(x)2

(1 + u′(x)2) 5
2

dx .

Remark 2.2 With the choice of

G(s) :=
∫ s

0

1

(1 + t2)
5
4

dt (2.1)

the energy becomes

E(u) =
∫ 1

0
[G(u′)′]2 dx .

The function G is important for many quantities that we consider, hence we will fix
G as in (2.1) for the rest of the article.
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Fig. 1 uc for several values of c

We also require some conditions on the obstacle for the entire article, which we
state here.

Assumption 1 (Assumptions on the obstacle) We always assume that ψ ∈ C([0, 1])
is such that ψ(0), ψ(1) < 0 and there exists x0 ∈ (0, 1) such that ψ(x0) > 0. The
admissible set Cψ is then defined as in (1.1). We define also

Iψ := inf
u∈Cψ

E(u).

We further introduce the constant

c0 :=
∫
R

1

(1 + t2)
5
4

dt, (2.2)

which is important since [7, Lemma 2.4] implies that Iψ ≤ c20 for any obstacle ψ

satisfying Assumption 1. Another crucial observation is that ψ ≤ uc for some c ∈
(0, c0), where

uc(x) := 2

c 4
√

(1 + G−1( c2 − cx)2
− 2

c 4
√
1 + G−1( c2 )

2
x ∈ (0, 1),

implies that Iψ ≤ c2, cf. [7, Lemma 2.3]. In particular, Iψ can become arbitrarily
small for small obstacles, cf. Figure 1.

In the following theorems we will always fix an initial value u0 ∈ Cψ that satisfies
a certain energy bound. For such an initial value to exist one usually needs a condition
on Iψ which we will not write explicitly.

Next we define the flow we intend to construct. For this we introduce the notation
D1,2((0,∞), V ) := {u ∈ W 1,1

loc ((0,∞), V ) : u̇ ∈ L2((0,∞), V )} where u̇ denotes
the weak time derivative of u and V is any Banach space.

Definition 2.3 (FV I gradient flow) Let u0 ∈ Cψ . We say that a function u ∈
L∞((0,∞),W 2,2(0, 1) ∩ W 1,2

0 (0, 1)) ∩ D1,2((0,∞); L2(0, 1)) is an FV I -gradient
flow for E starting at u0 if

• u(t) ∈ Cψ for almost every t > 0.
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• t 
→ E(u(t)) coincides almost everywhere with a nonincreasing function φ that
satisfies φ(0) = E(u0).

• The unique C([0,∞), L2(0, 1))-representative of u satisfies u(0) = u0.
• u satisfies the so-called FV I -inequality

(u̇(t), v − u(t)) + DE(u(t))(v − u(t)) ≥ 0 ∀v ∈ C a.e. t > 0. (2.3)

Remark 2.4 The existence and uniqueness of the required C([0,∞), L2(0, 1))-
representative follows from the Aubin-Lions lemma from which also follows that the
solution lies in C([0,∞),C1([0, 1])). Whenever we address the flow from now on
we will always identify it with its C([0,∞),C1([0, 1]))-representative unless explic-
itly stated otherwise. This means in particular that evaluations at fixed times t are
well-defined – at least in C1([0, 1]).
Remark 2.5 Monotonicity of the energy does - to our knowledge - not follow from the
FV I -equation (2.3). As already mentioned it does follow in similar frameworks, cf.
[19, Proposition 2.18].

Next we state our main existence theorem.

Theorem 2.6 (Existence theorem) For each u0 ∈ Cψ such that E(u0) <
c20
4 there

exists a (global) FV I gradient flow u starting at u0. Moreover, for each FVI Gradient
flow u starting at u0 the C([0,∞),C1([0, 1]))-representative t 
→ u(t) is bounded in
W 2,2(0, 1). Furthermore u(t) ∈ W 3,∞(0, 1) for almost every t > 0 and for all such
t, u(t) satisfies Navier boundary conditions, i.e. u(t)′′(0) = u(t)′′(1) = 0.

The energy threshold of
c20
4 is necessary for our approach since below this threshold

one can obtain a control of the nonlinearities in the Euler-Lagrange equation. The
same threshold (and the same control) is used in [22], where an existence result is

obtained independently. If E(u0) <
c20
4 one can also show that the FV I gradient flow

starting at u0 is unique, cf. [22, Section 3].
We also discuss regularity in time: As we shall see in Section 5 almost every point

t ∈ (0,∞) is a point of continuity of u in the W 2,2(0, 1)-topology.
Another interesting question is whether the flow touches the obstacle in finite time.

This is in particular of interest because in case that the flow does not touch the obstacle,
each FV I -Gradient flow just coincides with a regular L2 gradient flow. If this were the
case, it could have been constructed with much less effort. However for small initial
data there holds

Proposition 2.7 (Coincidence in finite time) For each u0 ∈ Cψ such that E(u0) <

G(

√
2
3 )

2 there exists a sequence tn → ∞ such that u(tn) touches ψ .

Next, we are interested in the asymptotic behavior of the flow. For this we first examine
closely what candidates for limits are available.

Definition 2.8 (Critical point) We say that u ∈ Cψ is a (constrained) critical point in
Cψ if it is a solution of the variational inequality

DE(u)(v − u) ≥ 0 ∀v ∈ Cψ. (2.4)
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In our classificationwe seek to understand only symmetric critical points, i.e. critical
points u that satisfy u = u(1 − ·). The reason why those critical points are more
important than the others is that under some conditions on the obstacle, the minimizers
of E in Cψ can be shown to be symmetric. The condition on the obstacle are precisely
that ψ itself is symmetric, “small” and radially decreasing i.e. ψ is a decreasing
function of |x − 1

2 |. An important special case are symmetric cone obstacles, i.e. ψ

is symmetric and ψ |[0, 12 ] is affine linear. The main technique used here is a nonlinear
version of Talenti’s inequality, a classical symmetrization procedure, cf. [23]. Once
symmetry is shown one can obtain uniqueness of critical points by the following

Theorem 2.9 (Uniqueness and minimality of symmetric critical points) Let ψ be a
symmetric and radially descreasing obstacle and u0 ∈ Cψ such that E(u0) ≤ G(2)2.
Then there exists a symmetric minimizer of E in Cψ . Moreover, if ψ is a symmetric
cone obstacle, this minimizer is the unique symmetric critical point in Cψ .

We remark that the symmetric critical points (and their uniqueness) have been
studied independently also in [25] via the shooting method. Here we present a slightly
different (but more or less equivalent) approach involving hypergeometric functions.

In Section 7 we show a subconvergence result. Here we first specify what we mean
by subconvergence.

Definition 2.10 (Subconvergence) Let A ⊂ [0,∞) be an unbounded set, X be a
Banach space and u : A → X . Let M ⊂ X be a set. We say that u is X -subconvergent
to points in M if each sequence (θn) ⊂ A such that θn → ∞ possesses a subsequence
θkn such that u(θkn ) converges in X to an element of M . If A = [0,∞) we say u is
fully X -subconvergent to points in M .

Theorem 2.11 (Subconvergence to critical points) Let u0 ∈ Cψ be such that E(u0) <
c20
4 . Let u be an FV I gradient flow starting at u0. Then u : [0,∞) → C1([0, 1]) is
fully C1([0, 1])-subconvergent to points in

Mcrit := {u∞ ∈ Cψ : DE(u∞)(v − u∞) ≥ 0 ∀v ∈ Cψ, E(u∞) ≤ E(u0)}. (2.5)

Moreover, for each ε > 0 there exists a set B ⊂ [0,∞) with |B| < ε such that
u|[0,∞)\B : [0,∞) \ B → W 2,2(0, 1) is W 2,2(0, 1)-subconvergent to points in Mcrit .

Here we note that smallness requirements on the obstacle are really necessary for such
a subconvergence result: For large obstaclesψ , it is shown in [19, Corollary 5.22] that
no critical points exist inCψ . This shows that the energy requirement in Theorem 2.11
may not be omitted.

Subconvergence improves to convergence as soon as there is only one element that
is still in the limit candidate set. This is the case in the situation of Theorem 2.9. The
following theorem summarizes many of the findings above.

Theorem 2.12 (Convergence for cone obstacles) Suppose that ψ is a symmetric cone

obstacle. Let u0 ∈ Cψ be symmetric and E(u0) < min{G(2)2,
c20
4 }. Then there exists

a unique FVI gradient flow t 
→ u(t) in Cψ that converges to the unique symmetric
minimizer of E in Cψ .
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Fig. 2 A useful byproduct of our approach is that we can find explicit formulas for minimizers if ψ is a
small cone obstacle. In the situation of the first plot, Theorem 2.9 yields that u is a minimizer and the only
symmetric critical point. In the second plot, u is the only symmetric critical point but the obstacle is too big
to conclude with Theorem 2.9 that u is a minimizer. We strongly suspect that it is a minimizer anyway

123



S362 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S355–S402

In particular we have shown that small obstacles and small initial data lead to conver-
gent evolutions that respect the obstacle condition.

3 Preliminaries

3.1 Basic Properties of the Energy

Herewe discuss basic estimates and properties of E that will be useful in the following.
Most energy estimates will be expressed in terms of the function G : R → (− c0

2 , c0
2 ),

where G and c0 are defined as in (2.1), (2.2).

Proposition 3.1 (A standard estimate for E , cf. [7, Section 4]) For each u ∈ Cψ one
has E(u) ≥ G(||u′||∞)2.

Proof If u ∈ Cψ then u(0) = u(1) = 0. This implies that we can choose ξ ∈ (0, 1)
such that u′(ξ) = 0. Also, since u′ ∈ C([0, 1]) we can find η ∈ (0, 1) such that
u′(η) = ||u′||∞. Note that |ξ − η| ≤ 1. By the Cauchy Schwarz inequality we have

E(u) =
∫ 1

0
(G(u′)′)2 dx ≥

∣∣∣∣
∫ η

ξ

(G(u′)′)2 dx
∣∣∣∣ ≥ 1

|η − ξ |
(∫ η

ξ

G(u′)′ dx
)2

= 1

|η − ξ | (G(u′(η)) − G(u′(ξ)))2 ≥ G(||u′||∞)2.

�

Remark 3.2 Note that each v ∈ Cψ such that E(v) <
c20
4 must then satisfy ||v′||∞ <

G−1
(√E(v)

)
< ∞. Using this and [7, Lemma 2.5] we find that infu∈Cψ E(u) <

c20
4

implies existence of a global minimizer of E in Cψ . It is also worth noting that each

v ∈ Cψ with E(v) <
c20
4 satisfies

||v||2
W 2,2∩W 1,2

0
≤ E(v)(1 + G−1(

√
E(v))2)

5
2 .

These observations are the crucial reason for the energy bounds in the statement of
Theorem 2.6 and Theorem 2.11.

In the following proposition we discuss first properties of the Frechét derivative DE .
Most of those computations have already been made in [7], [18].

Proposition 3.3 (Explicit formulas for the derivative) For each u, φ ∈ W 2,2(0, 1) ∩
W 1,2

0 (0, 1) one has

DE(u)(φ) = 2
∫ 1

0

u′′φ′′

(1 + u′2) 5
2

dx − 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx . (3.1)
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If additionally u ∈ W 3,1(0, 1) and u′′(0) = u′′(1) = 0 then

DE(u)(φ) = −2
∫ 1

0

A′
uφ

′

(1 + (u′)2) 5
4

dx, (3.2)

where

Au := u′′

(1 + u′2) 5
4

.

Proof Equation (3.1) can be found in [7, Equation 1.5]. If u is now as in the second
part of the claim we can perform an integration by parts in the first summand to get

DE(u)(φ) =
[

u′′φ′

(1 + u′2) 5
2

]1
0

− 2
∫ 1

0

u′′′φ′

(1 + u′2) 5
2

dx + 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx

Since the boundary terms vanish by assumption we only end up with the last two
integrals, whereupon (3.2) can easily be verified using the product rule. �
Remark 3.4 The astoundingly compact formula (3.2) was already known to Euler, see
[11], and will be of great use for us. The notation Au := u′′

(1+u′2)
5
4
will also be used

throughout the article.

Remark 3.5 Another useful consequence of (3.1) is that for all u, φ ∈ W 2,2(0, 1) ∩
W 1,2

0 (0, 1) one has

|DE(u)(φ)| ≤ (2||u||W 2,2 + 5||u||2W 2,2)||φ||W 2,2 . (3.3)

Here we have used that ||φ′||L∞ ≤ ||φ′′||L2 for all φ ∈ W 2,2 ∩ W 1,2
0 .

3.2 Basic Properties of FVI Gradient Flows

In this section we will briefly discuss why the FV I gradient flow generalizes the
concept of an L2- gradient flow. Furthermore we will discuss some basic regularity
properties that follow immediately by the definition. Recall that for a Hilbert space H
that is dense in L2, a Frechét differentiable functional F : H → R is said to have an
L2-gradient at u ∈ H if DF(u) ∈ H∗ possesses an extension to a linear continuous
functional in (L2)∗. We denote by ∇L2F(u) ∈ L2 the representing element of this
functional in L2.

Proposition 3.6 (Consistency with L2-gradient flows) Let u be an FV I gradient flow
for E in Cψ . Let t > 0 be a point where {u(t) = ψ} = ∅ and the FV I (i.e. (2.3))
holds. Then E posesses an L2-gradient at u(t) and one has

u̇(t) = −∇L2E(u(t)).
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Proof If {u(t) = ψ} = ∅ then u(t) > ψ on [0, 1]. As u(t), ψ ∈ C([0, 1]) there exists
δ > 0 such that u(t) − ψ > δ on [0, 1]. Now let φ ∈ W 2,2 ∩ W 1,2

0 . Then by Sobolev
embedding φ ∈ C([0, 1]). By the choice of δ one has v := u(t) + εφ ∈ Cψ for all
ε ∈ R : |ε| < 1

||φ||∞ δ. Testing (2.3) with the function v we have just chosen we find
that

ε ((u̇(t), φ) + DE(u(t))(φ)) ≥ 0.

Looking first at a positive and then at a negative value of ε and dividing both times by
ε we find

DE(u(t))(φ) = (−u̇(t), φ) ∀φ ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1).

SinceW 2,2∩W 1,2
0 is dense in L2 we find that DE(u(t)) can be extended to an element

of L2(0, 1)∗, represented by −u̇. By the very definition of L2-gradient follows that
−u̇(t) = ∇L2E(u(t)) and hence the claim. �

The FV I gradient flow starts with significantly less regularity in time than the
one in [19]. However we can extract some immediate regularity properties: Here
we expose a basic feature that will be very important for our analysis: Uniform

C0, 12 ((0,∞); L2(0, 1))-estimates.

Proposition 3.7 (Uniform Hölder continuity in time) Let u0 ∈ Cψ and u be an FV I
gradient flow starting at u0. Then there exists D > 0 such that for all t, s > 0 one has

||u(t) − u(s)||L2(0,1) ≤ D
√|t − s|.

Proof Let u0, u, s, t be as in the statement.

‖u(t) − u(s)‖L2(0,1) ≤
∥∥∥∥
∫ t

s
u̇(r) dr

∥∥∥∥
L2(0,1)

≤ √|t − s| ||u̇||L2((0,∞),L2(0,1))

Choosing D := ||u̇||L2((0,∞),L2(0,1)) which is finite by Definition 2.3, we obtain the
claim. �

4 Existence Theory

In this section we construct the FV I gradient flow by a variational discretization
scheme. We first show existence of so-called discrete flow trajectories, which we will
define. The discrete stepwidth will always be denoted by τ > 0. Once the discrete
trajectories are defined we can look at their asymptotics as τ → 0. To get desirable
limit trajectories we need a suitable compactness, which wewill achieve by discussing
additional regularity properties of the discrete trajectories in parabolic function spaces.
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4.1 Construction

Lemma 4.1 Discretization scheme, proof in Appendix A Suppose that f ∈ Cψ is such

that E( f ) <
c20
4 . Then for each τ > 0 the energy 

f
τ : Cψ → R defined by

 f
τ (u) := E(u) + 1

2τ
||u − f ||2L2

has a minimizer in Cψ . Any such minimizer w ∈ Cψ satisfies

1

τ
(w − f , v − w) + DE(w)(v − w) ≥ 0 ∀v ∈ Cψ. (4.1)

Definition 4.2 (Minimizing movements) Let u0 ∈ Cψ be such that E(u0) <
c20
4 and

τ > 0. We define iteratively u0,τ := u0τ := u0 and choose for each k ∈ N

u(k+1)τ ∈ argmin
u∈C

(
E(u) + 1

2τ
||u − ukτ ||2L2

)
= argmin

u∈C ukτ
τ (u). (4.2)

We also define the piecewise constant interpolation uτ : [0,∞) → Cψ by uτ (0) = u0
and

uτ (t) := u(k+1)τ , t ∈ (kτ, (k + 1)τ ]
as well as the piecewise linear interpolation uτ : (0,∞) → Cψ by

uτ (t) := ukτ + t − kτ

τ
(u(k+1)τ − ukτ ) t ∈ (kτ, (k + 1)τ ].

Remark 4.3 That the minimum problem in (4.2) has a solution for all τ > 0 and
k ∈ N is due to Lemma 4.1. To ensure that the Lemma is applicable for all k ∈ N

we have to check that E(ukτ ) <
c20
4 for all k ∈ N and τ > 0. This follows by

induction since for all k ∈ N it holds that E(u(k+1)τ ) ≤ E(ukτ ). The latter inequality
is an immediate consequence of the observation that 

ukτ
τ (u(k+1)τ ) ≤ 

ukτ
τ (ukτ ) by

(4.2). Another noteworthy implication of this inequality is that for all τ > 0 the map
[0,∞) � t 
→ E(uτ (t)) ∈ R is nonincreasing and coincides with E(u0) at t = 0.
Monotonicity of the energy is not immediate for the piecewise linear interpolations,
which reveals an important advantage of the pievewise constant interpolation.

Remark 4.4 Another consequence of the inequality 
ukτ
τ (u(k+1)τ ) ≤ 

ukτ
τ (ukτ ) that

we will use frequently is that

1

2τ
||u(k+1)τ − ukτ ||2L2 ≤ E(u(k+1)τ ) − E(ukτ ). (4.3)
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Remark 4.5 Note that the piecewise linear interpolation is weakly differentiable in t
and satisfies

∫ ∞

0
||u̇τ (t)||2L2 dt =

∞∑
k=0

∫ (k+1)τ

kτ

||u(k+1)τ − ukτ ||2L2

τ 2
dt =

∞∑
k=0

1

τ
||u(k+1)τ − ukτ ||2

≤
∞∑
k=0

2(E(u(k+1)τ ) − E(ukτ )) ≤ 2E(u0).

Hence we have a uniform estimate for ||u̇τ ||L2((0,∞),L2(0,1)) independently of τ . More-
over, for all T > 0 uτ lies in W 1,2((0, T ), L2(0, 1)) with norm bounded by

||uτ ||2W 1,2((0,T ),L2(0,1)) ≤ CT (||u0||2L2 + 2E(u0)), (4.4)

where CT is a constant that depends only on T and not on τ .

Remark 4.6 For the minimization problems in (4.2), (4.1) yields a variational inequal-
ity that reads

(u̇τ (t), v − uτ (t)) + DE(uτ (t))(v − uτ (t)) ≥ 0 ∀t > 0 ∀v ∈ Cψ. (4.5)

Notice that both uτ and ūτ play a role in this variational inequality.

Remark 4.7 Another fact we will make use of is that the L2 distance of both defined
interpolations can be uniformly controlled in time, more precisely

||uτ (t) − uτ (t)||L2 ≤ √
2τ
√
E(u0) ∀t > 0.

This is an immediate consequence of (4.3).

Lemma 4.8 (Uniform W 2,2-bounds, proof in Appendix A) Let u0 ∈ Cψ such that

E(u0) <
c20
4 . Then (uτ )τ>0 is bounded in L∞((0,∞),W 2,2(0, 1))

With the next lemma, we can obtain a global limit trajectory of uτn for a carefully
chosen sequence τn → 0. The convergence will unfortunately not be good enough to
show that this limit trajectory is an FV I gradient flow. To this end we have to obtain
more regularity first and work with both ūτn and uτn .

Here we fix the right subsequence to consider for the additional regularity.
A property that we will use very often in the arguments to come is that weak

topologies have the Urysohn property, i.e. a sequence converges weakly if and only
if each subsequence has a weakly convergent subsequence and the limit of all those
subsequences coincide.

Anothermain toolwill be the classicalAubin-Lions lemmaormoremodernversions
thereof.
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Lemma 4.9 (The limit trajectory) Let u0 ∈ Cψ be such that E(u0) <
c20
4 . Then there

exists a sequence τn → 0 and u ∈ L∞((0,∞),W 2,2(0, 1))∩ D1,2((0,∞), L2(0, 1))
such that for all T > 0, (uτn )∞n=1 converges to u weakly in W 1,2((0, T ), L2(0, 1)) and
strongly inC([0, T ],C1([0, 1])).Moreover, for each t > 0 uτn (t)⇀u(t) inW 2,2(0, 1).
In particular u(t) ∈ Cψ for each t > 0 (and not just for Lebesgue a.e. t > 0).

Proof By the Aubin-Lions lemma L∞((0, 2),W 2,2(0, 1)) ∩ W 1,2((0, 2), L2(0, 1))
embeds compactly intoC([0, 2],C1([0, 1])) and continuously intoW 1,2((0, 2), L2(0, 1)).
Hence one can find a sequence τ 2n → 0 such that uτ 2n converges to some u2 strongly in
C([0, 2],C1([0, 1])) and weakly inW 1,2((0, 2), L2(0, 1)). Now, again by the Aubin-
Lions lemma L∞((0, 3),W 2,2(0, 1))∩W 1,2((0, 3), L2(0, 1)) embeds compactly into
C([0, 3],C1([0, 1])) and continuously into W 1,2((0, 3), L2(0, 1)) and therefore we
can find a subsequence (τ 3n )∞n=1 of (τ

2
n )∞n=1 such that u

τ 3n converges to some u3 strongly
in C([0, 3],C1([0, 1])) and weakly in W 1,2((0, 3), L2(0, 1)). Since uniform conver-
gence implies pointwise convergence,wefind that u3 = u2 on [0, 2]. Iterativelywe can
construct nested subsequences (τ ln)

∞
n=1 ⊂ (τ l+1

n )∞n=1 and u ∈ C([0,∞),C1([0, 1]))
such that uτ ln converges to u|[0,l] strongly in C([0, l],C1([0, 1])) and weakly in
W 1,2((0, l), L2(0, 1)). Taking now the subsequence (τ nn )∞n=1 we find that uτ nn con-
verges to u strongly inC([0, T ],C1([0, 1])) and weakly inW 1,2((0, T ), L2(0, 1)) for
each T > 0.

It remains to prove that u lies in L∞((0,∞),W 2,2(0, 1))∩D1,2((0,∞), L2(0, 1))
and uτ (t) converges weakly to u(t) in W 2,2(0, 1) for each t > 0. We start with the
latter assertion. We know that for each t > 0, (uτ nn (t)) converges to u(t) in C1([0, 1]).
Since also ||uτ nn (t)||W 2,2 is uniformly bounded by Lemma 4.8, we obtain that each sub-
sequence of uτ nn has a weakly W 2,2-convergent subsequence to some ũ ∈ W 2,2(0, 1)
that may depend on the choice of the subsequence. However, by uniqueness of
limits in C1([0, 1]), we get that ũ = u(t) for each possible choice of a subse-
quence. This being shown, the Urysohn property of weak convergence implies that
uτ nn (t)⇀u(t) inW 2,2(0, 1).Note that u(t) ∈ Cψ asCψ is weakly closed inW 2,2(0, 1).
The uniform boundedness of (uτ nn )∞n=1 in L∞((0,∞),W 2,2(0, 1)) implies then that
u ∈ L∞((0,∞),W 2,2(0, 1)). We now show that u ∈ D1,2((0,∞), L2(0, 1)). For
weak differentiability of u on (0,∞) fix φ ∈ C∞

0 ((0,∞);R). Observe that there
exists T > 0 such that supp(φ) ⊂ (0, T ). Since uτ nn ⇀u in W 1,2((0, T ), L2(0, 1)) we
obtain

∫ ∞

0
uφ̇ dt = wlimn→∞

∫ T

0
uτ nn φ̇ dt = −wlimn→∞

∫ T

0
u̇τ nn φ dt = −

∫ ∞

0
u̇φ dt,

where wlim denotes the weak limit in L2(0, 1). It only remains to show that u̇ ∈
L2((0,∞), L2(0, 1)). To this end, note that for each N ∈ N one has by Remark 4.3

∫ N

0
||u̇(t)||2L2 dt ≤ lim inf

n→∞

∫ N

0
||u̇τ nn (t)||2L2 dt ≤ 2E(u0),
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which is a bound that is independent of N . Letting N → ∞ themonotone convergence
theorem implies the claim. �
In thenext lemmaweshowanestimate thatwill later account for L2((0, T ),W 3,∞(0, 1))-
bound of (uτ )τ>0. This will be the needed extra regularity to pass to the limit in the
energy space. Another useful byproduct are the Navier boundary conditions that are
a natural consequence of the underlying variational inequalities (cf. (4.5)).

Lemma 4.10 (W 3,∞-bounds and Navier boundary conditions, proof in Appendix A)

Let u0 ∈ Cψ be such that E(u0) <
c20
4 . Then there exist C, D > 0 such that for

each τ > 0 and each t > 0, uτ (t) ∈ W 3,∞(0, 1), (uτ (t))′′(0) = (uτ (t))′′(1) = 0.
Moreover

||uτ (t)′′′||L∞ ≤ C + D||u̇τ (t)||L2(0,1) ∀t > 0 (4.6)

for constants C, D that may depend on u0 and the obstacle but not on τ .

Lemma 4.11 (Almost-everywhere convergence in energy space) Let u0, u be as in
Lemma4.9. Then, for each T > 0, (uτ )τ>0 is uniformlybounded in L2((0, T ),W 3,∞)∩
W 1,2((0, T ), L2). Moreover there exists a sequence τn → 0 such that for each T > 0,
(uτn )∞n=1 converges to u weakly in L

2((0, T ),W 3,2), strongly in L2((0, T ),C2([0, 1]))
and pointwise almost everywhere in C2([0, 1]). In particular, u(t) ∈ W 3,2(0, 1) and
u(t)′′(0) = u(t)′′(1) = 0 for almost every t .

Proof Let T > 0 be fixed. That (uτ )τ>0 is uniformly bounded in W 1,2((0, T ), L2)

has already been shown in Remark 4.5. Fix t, τ > 0 and fix k ∈ N0 such that
t ∈ (kτ, (k + 1)τ ]. By (4.6) one has

||uτ (t)||W 3,∞ ≤ ||ukτ ||W 3,∞ + ||u(k+1)τ ||W 3,∞ = ||uτ (kτ)||W 3,∞ + ||uτ ((k + 1)τ )||W 3,∞

≤ ||uτ ||L∞((0,T ),W 2,2) + 2C + D(||u̇τ (kτ)||L2 + ||u̇τ ((k + 1)τ )||L2),

where C, D are chosen as in (4.6). For the next computation we set for convenience
of notation u−1τ := u0. We can use the above estimate and (4.3) to find

∫ T

0
||uτ (t)||2W 3,∞ dt ≤ 2T (||uτ ||L∞((0,T ),W 2,2 + 2C)2

+ 4D2

( ∞∑
k=0

τ(||u̇τ (kτ)||2L2 + ||u̇τ ((k + 1)τ )||2L2)

)

≤ 2T (||uτ ||L∞((0,T ),W 2,2 + 2C)2

+ 4D2

( ∞∑
k=0

1

τ
(||u(k+1)τ − ukτ ||2 + ||ukτ − u(k−1)τ ||2)

)

= 2T (||uτ ||L∞((0,T ),W 2,2) + 2C)2

+ 4D2

( ∞∑
k=0

2(E(u(k−1)τ ) − E(u(k+1)τ ))

)
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≤ 2T (||uτ ||L∞((0,T ),W 2,2) + 2C)2 + 16D2E(u0).

We infer that (uτ )τ>0 is bounded in L2((0, T ),W 3,∞) ∩ W 1,2((0, T ), L2), which
embeds by the Aubin-Lions-Lemma compactly into L2((0, T ),C2([0, 1]). Let τn
be the sequence constructed in Lemma 4.9. Then by the L2((0, T ),W 3,∞) ∩
W 1,2((0, T ), L2)-bound each subsequence of τn must have another subsequence
along which (uτn )∞n=1 converges weakly in L2((0, T ),W 3,2(0, 1)) and strongly in
L2((0, T ),C2([0, 1])). Because of uniqueness of weak limits in L2((0, T ),W 2,2)

we deduce that all those subsequences must converge to the same u as con-
structed in Lemma 4.9. By the Urysohn property (uτn )∞n=1 converges to u strongly
in L2((0, T ),C2([0, 1])) and weakly in L2((0, T ),W 3,2(0, 1)). Convergence in the
claimed spaces follows as T > 0 was arbitrary. Choosing a further subsequence of
(τn)

∞
n=1 we may also assume that uτn → u pointwise almost everywhere in C2([0, 1])

as L2-convergence of Banach-space valued functions implies the existence of a point-
wise almost everywhere convergent subsequence. That u(t)′′(0) = u(t)′′(1) = 0 for
almost every t > 0 is then an immediate consequence of this fact. �

So far we have shown convergence of the piecewise linear interpolations. As men-
tioned in Remark 4.3 we also need results on the behavior of the piecewise constant
interpolations to control the energy.

Lemma 4.12 (Precompactness of piecewise constant interpolation) Let u0 be as
before. Then (uτ )τ∈(0,1) is precompact in L2((0, T ),C2([0, 1])) for each T > 0.

Proof The proof relies on a discrete version of the Aubin-Lions lemma – the so-called
discrete Aubin-Lions-Dubinskii lemma, see [10, Theorem 1]. To apply this we just
need to show that for all T > 0 the expression

1

τ
||uτ (· − τ) − uτ (·)||L1((0,T ),L2(0,1)) + ||uτ ||L2((0,T ),W 3,∞(0,1))

is uniformly bounded in τ . The claim follows then since the embeddingW 3,∞(0, 1) ↪→
C2([0, 1]) is compact. That the second summand is uniformly bounded in τ follow
from (4.6) and (4.4). For the first summand let Nτ ∈ N be such that (Nτ −1)τ ≤ T ≤
Nτ τ and calculate using (4.3)

1

τ
||uτ (· − τ) − uτ (·)||L1((0,T ),L2(0,1)) ≤ 1

τ

Nτ∑
k=0

τ ||u(k+1)τ − ukτ ||L2

=
Nτ∑
k=0

||u(k+1)τ − ukτ ||L2 ≤ √
2τ

Nτ∑
k=0

√E(ukτ ) − E(u(k−1)τ )

= √
2τ
√
Nτ

( Nτ∑
k=0

E(ukτ ) − E(u(k−1)τ )

) 1
2

= √
2(T + 1) (E(u0))

1
2 .

Hence [10, Theorem 1] is applicable and the claim follows. �
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Corollary 4.13 (FV I gradient flow property) Let u0, u be as in Lemma 4.9. Then u is
a FV I -Gradient Flow.

Proof The fact that u(t) ∈ Cψ for almost every t > 0 follows from the fact that Cψ is
weakly closed in W 2,2(0, 1). For the proof of the FV I inequality we choose v ∈ Cψ .
Let (uτn )∞n=1 be a sequence chosen as in Lemma 4.11. Further let 0 < a < b be
arbitrary. Integrating (4.5) we find that

∫ b

a
(u̇τn (t), v − uτn (t)) dt +

∫ b

a
DE(uτn (t))(v − uτn (t)) dt ≥ 0.

Since uτn converges to u uniformly in L2(0, 1) we can infer from Remark 4.7 that
for each t > 0 uτn (t) converges to u(t) in L2(0, 1). We also infer from Lemma 4.12
that – after choosing an approprate subsequence of (τn)

∞
n=1 again with a straightfor-

ward diagonal argument – we can ensure that for almost every t > 0 the sequence
(uτn (t))∞n=1 converges to u(t) inC2([0, 1]). From this one immediately concludes that

DE(uτn (t))(v − uτn (t)) → DE(u(t))(v − u(t)) a.e. t > 0.

Moreover (|DE(uτn (t))(v−uτn (t))|)∞n=1 canbedominateduniformly inn byobserving
that by (3.3)

|DE(uτn (t))(v − uτn (t))| ≤ (2||uτn (t)||W 2,2 + 5||uτn (t)||2W 2,2)||v − uτn (t)||2W 2,2

≤ C(1 + ||uτn ||3L∞((0,T ),W 2,2)
)

which is unformly bounded by a constant because of Lemma 4.8. By dominated
convergence we infer

lim
n→∞

∫ b

a
DE(uτn (t))(v − uτn (t)) dt =

∫ b

a
DE(u(t))(v − u(t)) dt . (4.7)

Also observe that

∫ b

a
(u̇τn (t), v − uτn (t)) dt

=
∫ b

a
(u̇τn (t), v − u(t)) dt +

∫ b

a
(u̇τn (t), uτn (t) − u(t)) dt

and note that by weak convergence of (uτn )∞n=1 in W 1,2((0, T ), L2(0, 1)) we have

∫ b

a
(u̇τn (t), v − u(t)) dt →

∫ b

a
(u̇(t), v − u(t)) dt (n → ∞). (4.8)

Moreover
∣∣∣∣
∫ b

a
(u̇τn (t), uτn (t) − u(t)) dt

∣∣∣∣ ≤ ||uτn ||W 1,2((0,b),L2(0,1))||uτn − u||L2((0,b),L2(0,1))
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which tends to zero as n → ∞. This and (4.8) together imply that

∫ b

a
(u̇τn (t), v − uτn (t)) dt →

∫ b

a
(u̇(t), v − u(t)) dt

and together with (4.5) and (4.7) we find

0 ≤ lim
n→∞

(∫ b

a
(u̇τn (t), v − uτn (t)) dt +

∫ b

a
DE(uτn (t))(v − uτn (t)) dt

)

=
∫ b

a
(u̇(t), v − u(t)) + DE(u(t))(v − u(t)) dt .

Since a, b are arbitrary and the integrand lies in L1
loc((0,∞)) we infer that at each

Lebesgue point t of the integrand one has

(u̇(t), v − u(t)) + DE(u(t))(v − u(t)) ≥ 0.

This shows (2.3). It remains to show that t 
→ E(u(t)) coincides almost everywhere
with a nonincreasing function f that satisfies f (0) = E(u0). By Remark 4.3 t 
→
E(uτn (t)) is nonincreasing for each τ > 0. By Helly’s theorem (cf. [3, Lemma 3.3.3])
this sequence of functions has a pointwise limit, which is a nonincreasing function,
call it f . We have already shown in Lemma 4.12 that uτn (t) converges to u(t) in
C2([0, 1]) for almost every t > 0 so that E(uτn (t)) converges to E(u(t)) pointwise
almost everywhere. Hence t 
→ E(u(t)) coincides almost everywhere with f . �
Remark 4.14 Auseful byproduct of this approach is that alsouτn (t) → u(t) in L2(0, 1)
for all t > 0 (and not just almost everywhere). More can be said: Boundedness of
(uτn (t))∞n=1 in W 2,2(0, 1) (cf. (A.3)) implies that uτn (t)⇀u(t) weakly in W 2,2(0, 1)
for all t > 0.

Finally, we have constructed an FV I gradient flow. Before we can prove Theorem
2.6 we need to discuss some further properties of the constructed flow.

4.2 Space Regularity and Navier Boundary Conditions

The minimizing movement construction in the first part of this section is a highly
nonunique concept. In general Theorem2.6 asserts however some additional regularity
properties that hold true for every possible choice of a FV I gradient flow starting at
u0. To show this, we will not use the above construction and work directly with the
definition instead.

Lemma 4.15 (Weak W 2,2-continuity in time) Let u0 ∈ Cψ be such that E(u0) <
c20
4

and let u be a FV I -Gradient Flow. Then u(t) ∈ Cψ for all t > 0 and for each
sequence tn → t one has u(tn) → u(t) weakly in W 2,2(0, 1). In particular t 
→ u(t)
is a bounded curve in W 2,2(0, 1).
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Proof Let t > 0 be arbitrary and u be as in the statement. Recall that we always
identify u with its C([0,∞),C1([0, 1])-representative. By Definition 2.3 there exists
sn → t such that u(sn) ∈ Cψ and ||u(sn)||W 2,2 ≤ ||u||L∞((0,∞),W 2,2) for all n ∈ N. We
know that each subsequence of (u(sn))∞n=1 has a subsequence that converges weakly
in W 2,2(0, 1). As u(sn) → u(t) in C1([0, 1]) we infer by the Urysohn property that
u(sn)⇀u(t) weakly in W 2,2(0, 1). It follows that u(t) ∈ Cψ and

||u(t)||W 2,2 ≤ lim inf
n→∞ ||u(sn)||W 2,2 ≤ ||u||L∞((0,∞),W 2,2). (4.9)

Now let tn → t be an arbitrary sequence. By the choice of the representative we
know that u(tn) → u(t) in C1([0, 1]). By (4.9), (u(tn))∞n=1 ⊂ W 2,2(0, 1) is a
bounded sequence. Therefore each subsequence has a weakly convergent subsequence
inW 2,2(0, 1). Because of uniqueness of limits inW 1,∞(0, 1) all those sequences con-
verge weakly to u(t). Again the Urysohn property yields that u(tn) converges weakly
to u(t) in W 2,2(0, 1). �
Lemma 4.16 (Space regularity and Navier boundary conditions) Let u0 ∈ Cψ be such

that E(u0) <
c20
4 . Let u be any FV I gradient flow starting at u0. Then for almost every

t > 0 one has that u(t) ∈ W 3,∞(0, 1) and u(t)′′(0) = u(t)′′(1) = 0

Proof Since the proof is very similar to the proof of Lemma 4.10 we only mention
some important steps. Let t > 0 be such that FV I holds true. Similar to the proof of
Lemma 4.10 one can infer from FV I that there exists a Radon measure μ on (0, 1)
such that for all φ ∈ C∞

0 (0, 1).

∫ 1

0
u̇(t)φ dx + DE(u(t))(φ) =

∫ 1

0
φ dμ

and for all φ ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1) such that supp(φ) is compactly contained in

{u > ψ} ∫ 1

0
u̇(t)φ dx + DE(u(t))(φ) = 0.

Proceeding similar to the proof of Lemma 4.10 we can derive the claimed regularity
and the Navier boundary conditions. �
Proof of Theorem 2.6 Existence of u follows from Corollary 4.13. That t 
→ u(t) ∈
W 2,2(0, 1) is everywhere defined and bounded follows from the last sentence of
Lemma 4.15. The additional space regularity and the Navier boundary conditions
follow from Lemma 4.16. �

4.3 Energy Dissipation

In the rest of this section we will prove an energy dissipation inequality. This shows
that energy is dissipated in (0, T ) is comparable to ||u̇||2

L2((0,T ),L2(0,1))
, which is what

one would expect for a gradient flow. The speed of energy dissipation we obtain might
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however be worse than in the usual formulation of metric gradient flows. The expected
dissipation speed can be described by De Giorgi’s energy dissipation identity, cf. [19,
Section 2.3]. How much worse the FVI gradient flow performs depends highly on the
quantity |∂−E | from [3, Equation (2.3.1)], cf. [3, Theorem 2.3.3].

Lemma 4.17 (An energy dissipation inequality) Let u0 ∈ Cψ be such that E(u0) <
c20
4

Let u be an FV I gradient flow starting at u0 which was constructed as in the Proof
of Theorem 2.6. Then for each T > 0 one has

E(u(T )) + 1

2

∫ T

0
||u̇(t)||2L2 dt ≤ E(u0).

Proof Let (uτn )∞n=1 be the sequence from Lemma 4.11. For n ∈ N we define kn ∈ N0
to be the unique integer such that knτn ≤ T ≤ (kn+1)τn . By weak convergence of uτn

inW 1,2((0, T ), L2(0, 1)) (cf. Lemma 4.9) and weakW 2,2−convergence of uτn (T ) to
u(T ) (cf. Remark 4.14) we obtain with (4.3)

E(u(T ))+1

2

∫ T

0
||u̇(t)||2L2 dt ≤ lim inf

n→∞

(
E(uτn (T )) + 1

2

∫ T

0
||u̇τn (t)||2 dt

)

≤ lim inf
n→∞

(
E(u(kn+1)τn ) + 1

2

∫ (kn+1)τn

0
||u̇τn (t)||2 dt

)

≤ lim inf
n→∞

(
E(u(kn+1)τn ) +

kn∑
l=0

||u(l+1)τn − ulτn ||2L2

2τ

)

≤ lim inf
n→∞

(
E(u(kn+1)τn ) +

kn∑
l=0

(E(ul) − E(ul+1))

)
= E(u0).

�

4.4 Uniqueness and Preservation of Symmetry

Now that we have shown existence of FV I gradient flows one can ask whether they
are unique. This uniqueness has been obtained in [22, Section 3]. It has an important
consequence for our later studies of the asymptotics — namely that evolutions are
symmetry preserving, as we shall show.

Proposition 4.18 (Uniqueness, cf. [22, Theorem 3.2]) Suppose that u0 ∈ Cψ is such

that E(u0) <
c20
4 . Then the FV I gradient flow starting at u0 is unique.

Proof This has been shown [22, Theorem 3.2] for a length-penalized elastic energy
E + λL, λ > 0. By [22, Remark 6.6] however the case λ = 0 can also be shown

following the lines of [22, Section 3] provided that E(u0) <
c20
4 . This energy estimate

is needed in the same way as in the existence proof, namely for the control in Remark
3.2. �
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Corollary 4.19 (Symmetry preservation) Suppose that ψ is symmetric, i.e. ψ(1− ·) =
ψ . Suppose that u0 ∈ Cψ is symmetric and such that E(u0) <

c20
4 . Let u be the FV I

gradient flow starting at u0. Then u(t) = u(t)(1 − ·) for all t > 0.

Proof Let u be as in the statement.We show that ũ : t 
→ u(t)(1−·) is an FV I gradient
flow. As u and ũ have the same initial datum, they must coincide by uniqueness. From
the symmetry of ψ follows that ũ(t) ∈ Cψ for almost every t > 0. The regularity
requirements are also easily to be checked. Moreover, by symmetry of E , E ◦ ũ = E ◦u
coincides almost everywhere with a nonincreasing function that takes the value E(u0)
at t = 0.

To verify the FV I equation we first observe by direct computation that for all
u, φ ∈ W 2,2(0, 1) ∩ W 1,2

0 (0, 1) one has

DE(u)(φ) = DE(u(1 − ·))(φ(1 − ·)). (4.10)

For arbitrary v ∈ Cψ we infer by symmetry properties of the L2 scalar product that

( ˙̃u(t), v − ũ(t)) + DE (̃u(t))(v − ũ(t))

= (u̇(t)(1 − ·), v − u(t)(1 − ·)) + DE(u(t)(1 − ·))(v − u(t)(1 − ·))
= (u̇(t), v(1 − ·) − u(t)) + DE(u(t))(v(1 − ·) − u(t)) ≥ 0,

for a.e. t > 0, because u is an FV I Gradient Flow and v(1− ·) ∈ Cψ because of the
symmetry of the obstacle. �

5 Qualitative Behavior

Describing the qualitative behavior of higher order PDEs is in general a challenging
task as there is no maximum priciple available that would allow a comparision of
solutions. In the field of parabolic obstacle problems one is however interested in
several qualitative aspects, in particular the description of the coincidence set {u(t) =
ψ} that forms the now time-dependent free boundary of the problem.

5.1 The Coincidence Set

Herewe prove that the obstacle is touched in finite time, provided that the initial energy
is suitably small. Not much more can be said about the size of the coincedence set as
there exist critical points for which the coincedence set is only a singleton (cf. [18,
Proposition 3.2]).

Proof of Proposition 2.7 Suppose that E(u0) < G(

√
2
3 )

2. Observe that then

3 − 5

(1 + G−1(
√E(u0)))2

< 0.
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FromRemark 3.2 also follows that infu∈Cψ E(u) = minu∈Cψ E(u) > 0.We here prove
the slightly stronger statement that each time interval of length larger than

L0 := G−1(
√E(u0))2

2 infu∈Cψ E(u)

1
5

(1+G−1(
√E(u0)))2

− 3

must contain a time t such that u(t) touches ψ . Suppose that (a, b) is an interval of
length exceeding L0 such that {u(t) = ψ} = ∅ on (a, b). Note that then u(t) > ψ

and Proposition 3.6 yields that

(u̇(t), φ) + DE(u(t))(φ) = 0 ∀φ ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1) (5.1)

for almost every t ∈ (a, b). We use again the Lions-Magenes-Lemma to compute in
the sense of distributions we have

d

dt

∫ t

0
u(t)2 dx = 2(u̇(t), u(t)).

Since t 
→ u(t) is absolutely continuous with values in L2, so is t 
→ ||u(t)||L2 with
values inR. By the product rule for Sobolev functions and the fact that t 
→ ||u(t)||L2 is
uniformly bounded in t , t 
→ ||u(t)||2

L2 lies inW
1,1(0, 1). Hence the above inequality

holds also pointwise almost everywhere and the fundamental theorem of calculus can
be applied. By Theorem 2.6, u(t) ∈ Cψ ∩ W 3,2(0, 1) and u(t)′′(0) = u(t)′′(1) = 0

for almost every t . For those t we can define At := u(t)′′

(1+u(t)′2)
5
4
and use (5.1) and (3.2)

to find

d

dt

∫ 1

0
u(t)2 dx = 2

∫ 1

0
u(t)u̇(t) dx = 4

∫ 1

0

A′
t

(1 + u(t)′2) 5
4

u(t)′ dx

=
[

4Atu(t)′

(1 + u(t)′2) 5
4

]x=1

x=0

−
∫ 1

0
4At

(
u(t)′′

(1 + u(t)′2) 5
4

− 5

2

u(t)′2u(t)′′

(1 + u(t)′2) 9
4

)
dx

= 4

(
−
∫ 1

0
A2
t dx + 5

2

∫ 1

0
A2
t dx − u(t)′′2

(1 + u(t)′2) 7
2

dx

)

≤ 4

(
3

2
E(u(t)) − 5

2

∫ 1

0

u(t)′′2

(1 + u(t)′2) 7
2

dx

)

≤ 2

(
3 − 5

(1 + G−1(
√E(u0))2

)
E(u(t))

≤ 2

(
3 − 5

(1 + G−1(
√E(u0))2

)
inf
u∈Cψ

E(u),
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which is negative by the assumptions. By the fundamental theorem of calculus (whose
applicability we have discussed above) and Remark 3.2 we find

∫ 1

0
u(b)2 dx ≤

∫ 1

0
u(a)2 dx + 2

(
3 − 5

(1 + G−1(
√E(u0))2

)
inf
u∈Cψ

E(u)(b − a)

< ||u(a)′||2L∞ + L02

(
3 − 5

(1 + G−1(
√E(u0))2

)
inf
u∈Cψ

E(u)

≤ G−1(
√
E(u0))

2 + L02

(
3 − 5

(1 + G−1(
√E(u0))2

)
inf
u∈Cψ

E(u) = 0.

which results in a contradiction as the expression on the left hand side must be non-
negative. �

5.2 Time Regularity

Since the constructed evolution is not driven by an equation but rather by an inequality
one can not immediately obtain time regularity from space regularity. In general, time
regularity for parabolic obstacle problems is an important problem. A technique that
has been applied in previous works, e.g. [20], is to consider the flow as singular limit of
perturbed evolutionswithout obstacle.We refer to [4] for a discussion of this technique.
We remark that this approach heavily relies on uniqueness which is not the focus of
this article. This is why we present a different approach.

Lemma 5.1 (Time continuity in energy space) Let u0 ∈ Cψ be such that E(u0) <
c20
4 and let u be the C([0,∞),C1([0, 1]))-representative of an FV I -Gradient Flow
starting at u0. Let

A := {s ∈ [0,∞) : lim
r→s

u(r) = u(s) in W 2,2(0, 1)}

the set of points of W 2,2-continuity of u. Then |[0,∞) \ A| = 0.

Proof Since u is an FV I Gradient Flow, there exists a nonincreasing function φ :
[0,∞) → R and a set B̃ ⊂ [0,∞) such that |[0,∞) \ B̃| = 0 and E ◦ u = φ on
B̃. Also, let B be all the points of continuity of φ that lie in B̃. Since φ is monotone,
B̃ \ B is at most countable and we find that |[0,∞) \ B| = 0.

Moreover define

E := {s : s is not a Lebesgue point of ||u̇||L2 , or FV I does not hold true at s}.

Since |E | = 0 it suffices to show that each point s ∈ B\E is a point ofW 2,2-continuity.
We fix therefore s ∈ B \ E and let first t > 0 be arbitrary. All we know then is that
u(t) ∈ Cψ by Lemma 4.15. Now we compute, again using that x 
→ 1

(1+x2)
5
2
is
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Lipschitz continuous and Remark 3.2

1

(1 + G−1(
√E(u0))2)

5
2

∫ 1

0
(u(t)′′ − u(s)′′)2 dx ≤

∫ 1

0

(u(t)′′ − u(s)′′)2

(1 + u(s)′2) 5
2

dx

=
∫ 1

0

u(t)′′2

(1 + u(s)′2) 5
2

dx −
∫ 1

0

u(s)′′2

(1 + u(s)′2) 5
2

dx + 2
∫ 1

0

u(s)′′(u(s)′′ − u(t)′′)
(1 + u(s)′2) 5

2

dx

=
∫ 1

0

u(t)′′2

(1 + u(t)′2) 5
2

dx +
∫ 1

0
u(t)′′2

[
1

(1 + u(s)′2) 5
2

− 1

(1 + u(t)′2) 5
2

]
dx

−
∫ 1

0

u(s)′′2

(1 + u(s)′2) 5
2

dx + DE(u(s))(u(s) − u(t))

+ 5
∫ 1

0

u(s)′′2u(s)′

(1 + u(sn)′2)
7
2

(u(s)′ − u(t)′) dx

≤ E(u(t)) − E(u(s)) + 5

2
E(u0)(1 + G−1(

√
E(u0))

2)
5
2 ||u(s)′ − u(t)′||L∞

+ (u̇(s), u(t) − u(s)) + 5E(u(s))||u(s)′ − u(t)′||L∞

≤ E(u(t)) − E(u(s)) + (D + ||u̇(s)||L2)||u(s)′ − u(t)′||L∞

where D > 0 is an appropriately chosen constant that does not depend on t . We find
that there exists C0 > 0 such that

||u(t)−u(s)||W 2,2 ≤ C0(E(u(t))−φ(s))+(D+||u̇(s)||L2)||u(s)′−u(t)′||L∞) (5.2)

for all arbitrary t > 0. Now let ε > 0 be arbitrary. Since s is a point of continu-
ity of φ there exists δ1 > 0 such that supt∈Bδ1 (s) |φ(t) − φ(s)| < ε

2C0
. Moreover

||u̇(s)||L2 < ∞ as s is a Lebesgue point of u̇ and therefore there exists δ2 > 0 such
that supt∈Bδ2 (s) ||u(t)′ − u(s)′||L∞ < ε

2C0(D+||u̇(s)||) . Now choose δ := min{ δ1
2 , δ2}.

Let t ∈ (0,∞) be such that |t − s| < δ. Then there exists a sequence tn → t such that
(tn)∞n=1 ⊂ B as |(0,∞)\ B| = 0.We can assume without loss of generality that for all
n ∈ N one has |tn − t | < δ1

2 , which implies |tn − s| < δ1 for all n ∈ N. Now note that
by weak lower semicontinuity of E (cf. [7, Proof of Lemma 2.5]) and Lemma 4.15 we
have

(E(u(t)) − φ(s)) ≤ lim inf
n→∞ (E(u(tn)) − φ(s)) ≤ lim inf

n→∞ (φ(tn) − φ(s)) ≤ ε

2C0

by the choice of δ1. This and (5.2) imply that

||u(t) − u(s)||W 2,2 < ε.

�
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6 Critical Points

In the next section we want to examine the critical points of E in Cψ . One question
that could be asked is how many critical points exist. A partial answer is given in [19,
Corollary 5.22] and [17], where it is shown that there exist no critical points above an
obstacle of a certain height. This is also why our convergence results may only hold
true for small obstacles.

Once existence is ensured, another question one can look at is symmetry of critical
points, which is to expect since the equation has a symmetry: If u ∈ Cψ solves (2.4)
and ψ = ψ(1 − ·) then also u(1 − ·) ∈ Cψ is a solution of (2.4), as follows directly
from (4.10).

Lemma 6.1 (Regularity and concavity of critical points) Let u ∈ C be a critical point.
Then u ∈ W 3,∞(0, 1), u′′(0) = u′′(1) = 0 and u is concave. Moreover, if u > ψ on
some interval (a, b) then u|[a,b] ∈ C∞([a, b]) and

A′
u

(1 + u′2) 5
4

≡ const. on (a, b). (6.1)

Proof For the regularity, (6.1) and the fact that u′′(0) = u′′(1) = 0, we refer to [7,
Corollary 3.2 and Theorem 5.1]. For the concavity observe that by (3.2)

∫ 1

0

A′
uφ

′

(1 + u′2) 5
4

≤ 0 ∀φ ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1) : φ ≥ 0. (6.2)

By density we obtain that the same holds true for all φ ∈ W 1,2
0 (0, 1) such that φ ≥ 0.

Plugging in φ = max{Au, 0}, which is admissible as by the previous regularity Au ∈
W 1,∞(0, 1) and Au(0) = u′′(0) = 0 and Au(1) = u′′(1) = 0. We obtain that

∫ 1

0

max{Au, 0}′2
(1 + (u′)2) 5

4

≤ 0.

This implies that max{Au, 0} = 0 a.e. and hence Au ≤ 0 a.e.. In particular we can
conclude that u′′ ≤ 0 a.e. which implies the concavity of u. �
Remark 6.2 Note that concavity of critical points implies in particular that those are
nonnegative, i.e. u ≥ 0.

6.1 Symmetry of Minimizers

Critical points of special importance areminimizers, which exist by Remark 3.2 when-

ever infu∈Cψ E(u) <
c20
4 . Here we investigate symmetry of those. The main method

used will use is a nonlinear version of Talenti’s inequality for which we need some
additional notation. For f ∈ L1(0, 1) we denote by μ f (t) := |{ f > t}| and by
f ∗(x) := inf{t > 0 : μ f (t) < x}. Moreover we define f∗(x) := f ∗(2|x − 1

2 |) and
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call f∗ the symmetric decreasing rearrangement of f . Note that for each decreasing
function g : (0, 1) → (0, 1) one has that r(x) := g(2|x − 1

2 |) satisfies r∗ = r .
Another important fact is that || f ||L p = || f ∗||L p = || f∗||L p for each p ∈ [1,∞], cf.
[14, Section 3.3].

The proof of the next result can be regarded as a special case of [23, Theorem 1] in
one dimension. Since the assumptions in this article differ however slightly from our
situation we give a self-contained proof, which however follows the lines of the proof
in [23].

Lemma 6.3 (A nonlinear version of Talenti’s symmetrization result) Let H ∈ C∞(R)

be an odd function that satisfies H ′ > 0. Moreover, let f ∈ L2(0, 1) be nonnegative
and such that 1

2 || f ||L2(0,1) ≤ ||H ||∞. Suppose that u ∈ W 2,2(0, 1) is a nonnegative
weak solution of {

−H(u′)′ = f in (0, 1),

u(0) = u(1) = 0.
(6.3)

Then there exists a unique symmetric weak solution v ∈ W 2,2(0, 1) of

{
−H(v′)′ = f∗ in (0, 1),

v(0) = v(1) = 0.
(6.4)

If 1
H−1 is convex on [0, H(||u′||∞)] then one has v ≥ u∗.

Proof Without loss of generality u �≡ 0, otherwise the claim is trivially true. To show
the existence of v we set

v(x) := 1

2

∫ 1

2|x− 1
2 |
H−1

(
1

2

∫ s

0
f ∗(r) dr

)
ds. (6.5)

Note that v is well-defined because of the fact that 1
2 || f ∗||L2(0,1) = 1

2 || f ||L2(0,1) ≤
||H ||∞ and inverse function H−1 is defined on H(R) = (−||H ||∞, ||H ||∞). Symme-
try and (6.4) follow by direct computation. For the uniqueness suppose that v1, v2 are
symmetric weak solutions of (6.4). It follows that H(v′

1(x)) − H(v′
2(x)) = const. on

(0, 1). Plugging in x = 1
2 and using that by symmetry v′

1(
1
2 ) = v′

2(
1
2 ) = 0 we find that

the constant on the right hand side equals zero and hence H(v′
1) = H(v′

2). As H is
by assumption invertible we obtain v′

1 = v′
2 and now the fact that v1(0) = v2(0) = 0

implies the claim. For the Talenti-type inequality we define as in [23]

(t) :=
∫

{u>t}
H(u′)u′ dx .

which is nonnegative and nonincreasing in t as H(u′)u′ = H(|u′|)|u′| ≥ 0. Hence
 is almost everywhere differentiable. Let t now be a point of differentiability of .
Note that

(t) =
∫ 1

0
H(u′)(max(u − t, 0))′ dx =

∫ 1

0
f (x)max(u(x) − t, 0) dx .
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Observe that then for each h > 0

(t)−(t+h) =
∫ 1

0
f (x)(max(u−t, 0)−max(u−t−h, 0)) dx ≤ h

∫
{u>t}

f (x)dx .

By [23, Equation (2.6b)] we obtain

− ′(t) ≤
∫

{u>t}
f (x)dx ≤

∫ μu(t)

0
f ∗(r) dr . (6.6)

By [23, Equation (2.22)]) we have

− d

dt

∫
{u>t}

|u′| dx ≥ 2 a.e. t .

By monotonicity of H−1 and by Jensen’s inequality, which is applicable because of
the convexity assumption on 1

H−1 we obtain that for almost every t

1

H−1

(−′(t)
2

)
≤ 1

H−1

(
−′(t)

− d
dt

∫
{u>t} |u′| dx

)

= lim
h→0+

1

H−1

(
(t) − (t + h)∫
{t<u≤t+h} |u′| dx

)

= lim
h→0+

1

H−1

(∫
t<u≤t+h H(u′)u′ dx∫

{t<u≤t+h} |u′| dx

)

= lim
h→0+

1

H−1

(∫
{t<u≤t+h} H(|u′|)|u′| dx∫

{t<u≤t+h} |u′| dx

)

≤ lim
h→0+

∫
{t<u≤t+h} 1 dx∫

{t<u≤t+h} |u′| dx = lim
h→0+

μu(t) − μu(t + h)∫
{t<u≤t+h} |u′| dx

= −μ′
u(t)

− d
dt

∫
{u>t} |u′| dx ≤ −μ′

u(t)

2
.

Hence for almost every t > 0 we have by the previous computation and by (6.6)

1 ≤ −μ′
u(t)

2
H−1

(−′(t)
2

)
≤ −μ′

u(t)

2
H−1

(
1

2

∫ μu(t)

0
f ∗(r) dr

)
. (6.7)

Now define

W (t) :=
∫ 1

μu(t)

1

2
H−1

(
1

2

∫ s

0
f ∗(r) dr

)
ds.

Note that W is increasing. With the mean value theorem for integrals it can be shown
thatW is differentiable at t at all points of differentiability of μu and at all such points
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(6.7) yields W ′(t) ≥ 1. By [6, Proposition 4.7]

t =
∫ t

0
1 ds ≤

∫ t

0
W ′(s) ds ≤ W (t) − W (0).

Note that W (0) = 0 as μu(0) = 1. This is so since u is by (6.3) concave and
nonnegative and therefore {u = 0} = {0, 1} or u ≡ 0 where we excluded the last
case in the beginning of the proof. Hence {u = 0} is a Lebesgue null set and therefore
|{u > 0}| = 1. We obtain that t ≤ W (t), i.e.

t ≤
∫ 1

μu(t)

1

2
H−1

(
1

2

∫ s

0
f ∗(r) dr

)
ds.

By the very definition of u∗ we get that

u∗(x) ≤
∫ 1

x

1

2
H−1

(
1

2

∫ s

0
f ∗(r) dr

)
ds.

Finally

u∗(x) = u∗ (2 |x − 1/2|) ≤
∫ 1

2|x− 1
2 |
1

2
H−1

(
1

2

∫ s

0
f ∗(r) dr

)
= v(x),

where we used (6.5) in the last step. �
Corollary 6.4 (Symmetry of minimizers) Suppose that ψ is symmetric and radially
decreasing, i.e. ψ∗ = ψ . If infu∈Cψ E(u) < G(2)2 then there exists a symmetric
minimizer of E .

Proof Let u ∈ Cψ be a minimizer, which exists by Remark 3.2 as G(2)2 <
c20
4 . Note

also by Remark 3.2 that ||u′||∞ ≤ 2. Moreover u is concave and nonnegative by
Lemma 6.1 and Remark 6.2. Hence u ∈ Cψ is a nonnegative solution of

{
−[G(u′)]′ = −[G(u′)]′ on (0, 1)

u(0) = u(1) = 0.

Observe that f := −G(u′)′ is nonnegative as f = − u′′

(1+u′2)
5
4

≥ 0 almost everywhere

due to concavity of u. Also observe that || f ||2
L2 = infw∈Cψ E(w). Now define v ∈

W 2,2 to be the unique solution of

{
−[G(v′)]′ = f∗ on (0, 1),

v(0) = v(1) = 0.
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Wewill now use Lemma 6.3 to deduce that v ≥ (u)∗ ≥ ψ∗ = ψ . To apply Lemma 6.3
we have to check that 1

2 || f ||L2 < ||G||∞ and that 1
G−1 is convex on [0,G(||u′||∞)].

For the L2-bound we can look at

1

2
|| f ||L2 ≤ 1

2

√
E(u) ≤ G(2) < ||G||∞.

For the convexity of 1
G−1 we can compute for arbitrary s ∈ (0, ||G||∞) that

(
1

G−1(s)

)′′
= 2 − 1

2G
−1(s)2

G−1(s)3
(1 + G−1(s)2)

3
2

which makes 1
G−1 convex on [0,G(2)]. Note that ||u′||∞ ≤ 2 implies G(||u′||∞) ≤

G(2) and hence 1
G−1 is convex in [0,G(||u′||∞)]. Thus Lemma 6.3 is applicable and

we find that v ∈ Cψ is admissible and symmetric. Moreover

E(v) = || f∗||2L2 = || f ||2L2 = E(u) = inf
w∈Cψ

E(w),

which implies that v ∈ Cψ is another minimizer. �

6.2 Uniqueness of Symmetric Critical Points

We show now uniqueness of critical points for symmetric cone obstacles. This will
follow from a more general uniqueness result for solutions to ODEs that we will prove
in the appendix.

Lemma 6.5 (Uniqueness of strictly concave solutions, Proof in Appendix c) Let x0 > 0
and let J : [0, x0] → R be nonnegative and decreasing such that J > 0 on (0, x0)
Further assume that J is locally Lipschitz continuous on (0, x0) and J (x0) = 0. Then
there exists at most one solution f ∈ C2([0, 1

2 ]) to
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′(r) = J ( f (r)) r ∈
[
0,

1

2

]

f

(
1

2

)
= x(0), f (0) = 0

f is strictly concave on (0, 1
2 ].

Here we call a C2-function strictly concave on a set A if f ′′ < 0 on A.

The previous lemma is inspired by the following observation: A primary example for
nonuniqueness of solutions to initial value problems is

{
ẋ(t) = 2

√|x(t)|,
x(0) = 0.
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Fig. 3 The solution with initial value 0 is not unique, but only one of the solutions is stricly convex

It possesses infinitely many solutions but only one of them, namely t 
→ t2, is strictly
convex in (0,∞), cf. Figure 3.

The following analysis of critical points has been obtained independently in [25].

Lemma 6.6 (Symmetric cone obstacles) Letψ ∈ C([0, 1]) be a symmetric cone obsta-
cle, i.e. ψ is symmetric and affine linear on [0, 1

2 ]. Then there exists at most one
symmetric constrained critical point of E in C.

Proof Let u be a symmetric critical point. We will in the following derive an explicit
formula for u that characterizes it uniquely. We claim first that {u = ψ} = { 12 }. In
case that u(a) = ψ(a) for some a ∈ (0, 1

2 ) one gets u
′(a) = ψ ′(a) and by concavity

(cf. Lemma 6.1) one has for all x ∈ (0, 1
2 )

u(x) ≤ u(a) + u′(a)(x − a) = ψ(a) + ψ ′(a)(x − a) = ψ(x),

a contradiction to the nonnegativity of u. Hence u cannot touch ψ on (0, 1
2 ) and

similarly one shows that u cannot touch ψ on ( 12 , 1). Morover, we assert that u has to
touch ψ , for if not then one obtains by Proposition 3.3 that u ∈ C∞([0, 1]) and

A′
u

(1 + u′2) 5
4

≡ const. on (0, 1).
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But since Au(0) = Au(1) = 0 one can find a point ξ ∈ (0, 1) such that A′
u(ξ) = 0.

Therefore
A′
u

(1 + u′2) 5
4

≡ 0

and hence Au ≡ const. This yields u′′ ≡ 0 but then the boundary conditions imply
u ≡ 0, a contradiction to Assumption 1. Hence {u = ψ} = { 12 }. In particular by basic
properties of the variational inequality there exists C ∈ R such that

A′
u(x) = C(1 + u′(x)2)

5
4 ∀x ∈ (0, 1/2). (6.8)

As a further intermediate claim we assert that C �= 0. Indeed, if C = 0 then A′
u ≡ 0

which implies together with Au(0) = 0 that Au ≡ 0. Then however u′′ ≡ 0 on (0, 1
2 )

which implies that u′ ≡ const on [0, 1
2 ]. But u is symmetric and therefore u′( 12 ) = 0

resulting in u′ ≡ 0. As a result u ≡ 0 which yields again a contradiction to u ∈ Cψ .
Hence C �= 0.

As an indermediate claim, we assert that that u is strictly concave on (0, 1
2 ], i.e.

u′′ > 0 on (0, 1
2 ]. To show this we can multiply (6.8) by Au and integrate to obtain

1

2
A2
u = C(u′(x) − u′(0)) ∀x ∈ (0, 1/2]

and thus
u′′(x)2 = 2C(u′(x) − u′(0))(1 + u′(x)2)

5
2 ∀x ∈ (0, 1/2]. (6.9)

If there were now x0 ∈ (0, 1
2 ] such that u′′(x0) = 0, the above equation would imply

that u′(x0) = u′(0) and because of monotonicity of u′ one has that u′ ≡ u′(0) on
(0, x0). Another look at (6.9) implies that then u′′ ≡ 0 on (0, x0). This implies that
A′
u ≡ 0 on (0, x0). This however is a contradiction to C = 0 when looking at (6.8).

Since u is strictly concave on (0, 1
2 ] we find that for all x > 0 one has u′(x) < u′(0)

and now

u′′(x) = −√2|C |√u′(0) − u′(x)(1 + u′(x)2)
5
4 ∀x ∈ (0, 1/2).

Since the right hand side does not vanish on (0, 1
2 ) we obtain

−u′′(x)
√
u′(0) − u′(x)(1 + u′(x)2) 5

4

= √
2|C | ∀x ∈ (0, 1/2).

Next we fix ε > 0 and integrate from ε to some arbitary x ∈ (0, 1
2 ) to get after a

substitution of s = u′(x)

∫ u′(ε)

u′(x)

1
√
u′(0) − s(1 + s2)

5
4

ds = √
2|C |(x − ε)
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We can pass to the limit as ε ↓ 0 using the monotone convergence theorem on the left
hand side to obtain

∫ u′(0)

u′(x)

1
√
u′(0) − s(1 + s2)

5
4

ds = √
2|C |x .

As u is symmetric one has u′( 12 ) = 0 which implies

∫ u′(0)

0

1
√
u′(0) − s(1 + s2)

5
4

ds = 1

2

√
2|C |.

Note that this means
u′(x) = F−1(x) ∀x ∈ (0, 1/2)

where

F(z) =
∫ u′(0)
z

1√
u′(0)−s(1+s2)

5
4
ds

2
∫ u′(0)
0

1√
u′(0)−s(1+s2)

5
4
ds

.

Therefore

u(x) =
∫ x

0
u′(s) ds =

∫ x

0
F−1(s) ds =

∫ F−1(z)

F−1(0)
zF ′(z) dz

= 1

2

∫ u′(0)
u′(x)

z√
u′(0)−z(1+z2)

5
4
dz

∫ u′(0)
0

1√
u′(0)−z(1+z2)

5
4
dz

. (6.10)

Note that this already yields an equation for u with only one free parameter, namely
u′(0).We shownext that u′(0) is uniquely determined byψ( 12 ). To this endwe compute

ψ(1/2) = u(1/2) = 1

2

∫ u′(0)
0

z√
u′(0)−z(1+z2)

5
4
dz

∫ u′(0)
0

1√
u′(0)−z(1+z2)

5
4
dz

=: H(u′(0)), (6.11)

where

H(A) := 1

2

∫ A
0

z√
A−z(1+z2)

5
4
dz

∫ A
0

1√
A−z(1+z2)

5
4
dz

. (6.12)

We show in Appendix B that H is a strictly monotone and smooth function of A.
Hence there exists one unique A > 0 such that H(A) = ψ( 12 ). We conclude with
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(6.11) that u′(0) = H−1(ψ( 12 )). Using (6.10) again we find that u satisfies

u(x) = 1

2

∫ H−1(ψ( 12 ))

u′(x)
z√

H−1(ψ( 12 ))−z(1+z2)
5
4
dz

∫ H−1(ψ( 12 ))

0
1√

H−1(ψ( 12 ))−z(1+z2)
5
4
dz

, x ∈ (0,
1

2
).

Hence u solves on (0, 1
2 )

{
u′(x) = J (u(x)) x ∈ (0, 1

2 )

u( 12 ) = ψ( 12 ),
(6.13)

where J is the inverse function to

[0, H−1(ψ(1/2))] � r 
→ 1

2

∫ H−1(ψ( 12 ))

r
z√

H−1(ψ( 12 ))−z(1+z2)
5
4
dz

∫ H−1(ψ( 12 ))

0
1√

H−1(ψ( 12 ))−z(1+z2)
5
4
dz

,

which is well defined because of the positivity of the integrand. The only problem
that remains is that maximal solutions to (6.13) are not necessarily unique as J is not
locally Lipschitz around ψ( 12 ). It follows however by Lemma 6.5 that it does have a
unique solution that is strictly concave in (0, 1

2 ]. As we have shown strict concavity
of each critical point, u is uniquely determined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′(x) = J (U (x)) r ∈
[
0,

1

2

]

u

(
1

2

)
= ψ

(
1

2

)
, u(0) = 0

u is strictly concave on (0, 1
2 ].

Hence there can exist at most one such u as in (6.13). �
Proof of Theorem 2.9 Follows now immediately from the previous Lemma and Corol-
lary 6.4. �

6.3 Compactness of the Critical Set

In the rest of this section we discuss compactness of the set of critical points. This will
be of high importance later when examining the convergence. Here we do not impose
any further assumption on ψ anymore, except for Assumption 1.

Lemma 6.7 (Compactness of critical set) Suppose that A <
c20
4 and let

Mcrit (A) := {w ∈ Cψ : DE(w)(v − w) ≥ 0 ∀v ∈ Cψ, E(w) ≤ A}.
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Then Mcrit (A) is compact in W 2,2(0, 1).

Proof Let A be as in the statement. We show that Mcrit (A) is a bounded set in
W 3,∞(0, 1) and also closed in W 2,2(0, 1) ∩ W 1,2

0 (0, 1). This immediately implies
the compactness. For the boundedness in W 3,∞(0, 1) first note that there exists some
δ > 0 such that ψ < 0 on [0, δ] ∪ [1 − δ, 1]. Now fix w ∈ Mcrit (A). By Remark

3.2 one has ||w′||∞ ≤ G−1(
√
A) and ||w′′||2

L2 ≤ A(1+G−1(
√
A)2)

5
2 . Similar to the

derivation of (6.2) we can conclude that for Aw := w′′

(1+w′2)
5
4

2
∫ 1

0

A′
wφ′

(1 + w′2) 5
4

≤ 0 ∀φ ∈ C∞
0 (0, 1).

By [24, Lemma 37.2] there exists a Radon measure μ on (0, 1) which is by (6.1)
supported on {u = ψ} such that

2
∫ 1

0

A′
wφ′

(1 + w′2) 5
4

=
∫ 1

0
φ dμ ∀φ ∈ C∞

0 (0, 1). (6.14)

By (3.1) we also find

2
∫ 1

0

w′′φ′′

(1 + w′2) 5
2

− 5
∫ 1

0

w′′2w′φ′

(1 + w′2) 7
2

=
∫ 1

0
φ dμ ∀φ ∈ C∞

0 (0, 1). (6.15)

Note that since w is nonnegative by Remark 6.2 one has {u = ψ} ⊂ [δ, 1 − δ] and
hence μ is finite. Moreover one can plug into (6.15) a function φ ∈ C∞

0 (0, 1) such
that φ = 1 on [δ, 1 − δ], 0 ≤ φ ≤ 1 and ||φ′||∞ < 2

δ
as well as ||φ′′||∞ < 2

δ2
to find

μ((0, 1)) ≤ 10

δ

∫ 1

0

w′′2|w′|
(1 + w′2) 7

2

+ 4

δ2

∫ 1

0

|w′′|
(1 + w′2) 5

2

≤ 10A

δ
+ 4

√
A

δ2
. (6.16)

Going back to (6.14) we obtain

∫ 1

0

(
2A′

w

(1 + w′2) 5
4

− m

)
φ′ = 0 ∀φ ∈ C∞

0 (0, 1),

where m(t) := μ((t, 1)) is a function bounded by μ(0, 1). We conclude

2A′
w

(1 + w′2) 5
4

− m ≡ const. =
∫ 1

0

(
2A′

w

(1 + w′2) 5
4

− m

)
.

This implies

|A′
w| ≤ 1

2
(1 + G−1(

√
A)2)

5
4

(
2μ(0, 1) +

∣∣∣∣∣
∫ 1

0

2A′
w

(1 + w′2) 5
4

∣∣∣∣∣
)

. (6.17)
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By Lemma 6.1 we can integrate by parts without boundary terms and obtain

∣∣∣∣∣
∫ 1

0

A′
w

(1 + w′2) 5
4

∣∣∣∣∣ =
∣∣∣∣−5

2

∫ 1

0
A2

w

w′

(1 + w′2)

∣∣∣∣ ≤ 5

2
E(w) ≤ 5

2
A.

Together with this (6.17) and (6.16) we obtain

|A′
w| ≤ 1

2
(1 + G−1(

√
A)2)

5
4

(
2

(
10A

δ
+ 4

√
A

δ2

)
+ 5A

)
=: D(A, δ). (6.18)

Note that δ is chosen independently of w. This also implies that for all x ∈ (0, 1) one
has

|Aw(x)| ≤ |Aw(0)| +
∫ x

0
|A′

w(s)|ds ≤ D(A, δ) (6.19)

as Aw(0) = w′′(0) = 0. Since ||w′||∞ < G−1(
√
A) we obtain with the explicit

formula for Aw that
|w′′| ≤ (1 + G−1(

√
A)2)

5
4 D(A, δ).

Finally note that

A′
w = w′′′

(1 + w′2) 5
4

− 5

2
A2

w

w′

(1 + w′2)
.

Combining this with (6.18) and (6.19) we get

|w′′′| ≤ (1 + G−1(
√
A)2)

5
4 (D(A, δ) + 5

4
D(A, δ)2).

We have bounded ||w′′||∞ and ||w′′′||∞ with bounds that depend only on A and ψ .
This implies that Mcrit (A) is bounded in W 3,∞(0, 1). This makes it precompact in
W 2,2(0, 1). The closedness of Mcrit (A) inW 2,2(0, 1)∩W 1,2

0 (0, 1) follows by an easy
computation using (3.1). �

7 Convergence Behavior

In this section we want to examine whether the flow converges in the energy space
W 2,2(0, 1). For large obstacles the absence of critical points already shows nonconver-
gence, cf. [19, Corollary 5.22]. For small obstacles and small initial energies however,
convergence is true.

Lemma 7.1 (W 2,2-subconvergence disregarding small sets) Let u0 ∈ Cψ be such that

E(u0) <
c20
4 . Then for each ε > 0 there exists a set B ⊂ [0,∞) with |B| < ε such

that u|[0,∞)\B : [0,∞) \ B → W 2,2(0, 1) is W 2,2(0, 1)-subconvergent (in the sense of
Definition 2.10) to points in Mcrit , where Mcrit is defined as in (2.5).
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Proof Let ε > 0 and let φ be a nonincreasing function that coincides with E ◦u almost
everywhere. Let M be as in the statement. Define for each n ∈ N the set

Qn :=
{
t > 0 : E(u(t)) �= φ(t) or FVI is not true at t or ||u̇(t)||L2 >

1

n

}
.

Note that by Chebyshov’s inequality, Qn has finite measure for all n and therefore
there exists some kn ∈ N such that |Qn∩[kn,∞)| < ε

2n . Without loss of generality we
can also achieve that kn+1 > kn for all n ∈ N. Therefore |⋃∞

n=1(Qn ∩ [kn,∞))| < ε.
Define B := ⋃∞

n=1(Qn ∩[kn,∞)). Suppose now that (θn)∞n=1 is an arbitrary sequence
satisfying (θn) ⊂ [0,∞) \ B and θn → ∞.

By Remark 3.2 (u(θn))
∞
n=1 is bounded in W 2,2(0, 1) and hence there exists a sub-

sequence (θln )
∞
n=1 and u∞ ∈ Cψ such that θln > kn for all n ∈ N, u(θln ) → u∞ in

W 1,∞(0, 1) and u(θln )⇀u∞ inW 2,2(0, 1). It remains to show that this convergence is
strong inW 2,2(0, 1) and u∞ ∈ Mcrit . Note that θln > kn implies that θln ∈ QC

n for all
n ∈ N. We verify that (u(θln ))

∞
n=1 is a Cauchy sequence in W 2,2(0, 1) ∩ W 1,2

0 (0, 1).
Using the definition of Qn , the FV I equation and again the Lipschitz continuity of
x 
→ 1

(1+x2)
5
2
we can compute

1

(1 + G−1(
√E(u0))2)

5
2

∫ 1

0
(u(θln )

′′ − u(θlm ))′′)2 dx ≤
∫ 1

0

(u(θln )
′′ − u(θlm )′′)2

(1 + u(θlm )′2) 5
2

dx

=
∫ 1

0

u(θln )
′′2

(1 + u(θlm )′2) 5
2

dx −
∫ 1

0

u(θlm )′′2

(1 + u(θlm )′2) 5
2

dx

+ 2
∫ 1

0

u(θlm )′′(u(θlm )′′ − u(θln )
′′)

(1 + u(θlm )′2) 5
2

dx

=
∫ 1

0

u(θln )
′′2

(1 + u(θln )
′2) 5

2

dx +
∫ 1

0
u(θln )

′′2
[

1

(1 + u(θlm )′2) 5
2

− 1

(1 + u(θln )
′2) 5

2

]

−
∫ 1

0

u(θlm )′′2

(1 + u(θlm )′2) 5
2

dx + DE(u(θlm ))(u(θlm ) − u(θln ))

+ 5
∫ 1

0

u(θlm )′′2u(θlm )′

(1 + u(θlm )′2) 7
2

(u(θlm )′ − u(θln )
′) dx

≤ E(u(θln )) − E(u(θlm ))

+ 5

2
E(u0)(1 + G−1(

√
E(u0))

2)
5
2 ||u(θlm )′ − u(θln )

′||L∞

+ (u̇(θlm ), u(θln ) − u(θlm )) + 5E(u(θlm ))||u(θlm )′ − u(θln )
′||L∞

= φ(θln ) − φ(θlm ) + (D + ||u̇(θlm )||L2)||u(θlm )′ − u(θln )
′||L∞

≤ φ(θln ) − φ(θlm ) + (D + 1)||u(θlm )′ − u(θln )
′||L∞,

for some fixed constant D > 0. Since φ is nonincreasing, (φ(θln ))
∞
n=1 is a Cauchy

sequence and hence the Cauchy property of (u(θln ))
∞
n=1 ⊂ W 2,2(0, 1) is shown. Hence
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u(θln ) → u∞ in W 2,2(0, 1). Moreover

(u̇(θln ), v − u(θln ))L2 + DE(u(θln ))(v − u(θln )) ≥ 0.

The fact that ||u̇(θln )||L2 < 1
n since θln ∈ QC

n implies that

(u̇(θln ), v − u(θln ))L2 → 0. (7.1)

Here we also used that u ∈ L∞((0,∞),W 2,2(0, 1)) ⊂ L∞((0,∞), L2(0, 1)). By a
direct computation that uses the just derived W 2,2-convergence it is also easy to see
that

DE(u(θln ))(v − u(θln )) → DE(u∞)(v − u∞).

We conclude with this and (7.1) that u∞ ∈ Mcrit . �
So far we have proved a W 2,2-subconvergence result for FV I gradient flows with an
exceptional set B of artbitrary small measure. The next step is now to use the uniform
Hölder continuity of FV I gradient flows in L2(0, 1) to get rid of the exceptional set.
The topology however changes for the worse but can be improved again in the rest of
the section.

Lemma 7.2 (Full L2-subconvegence to critical points) Let u0 ∈ Cψ be such that

E(u0) <
c20
4 and let u be an FVI gradient flow starting at u0. Let Mcrit be as in (2.5).

Then u : [0,∞) → L2(0, 1) is fully L2-subconvergent to points in Mcrit .

Proof Letu0,u be as in the statement.We start by showing full L2(0, 1)-subconvergence.
For this let tn → ∞. Now set ε1 := 1 > 0 and apply Lemma 7.1 with ε = ε1. This
yields a set B = B(ε1) such that |B(ε1)| < ε1 and u|[0,∞)\B(ε1)

W 2,2-subconverges to

points in Mcrit . Note that for all n ∈ N there exists s1n ∈ (tn − ε1, tn + ε1) such that
s1n ∈ [0,∞)\B(ε1), since the contrapositive of this statement contradicts |B(ε1)| < ε1.
By Lemma 7.1 there exists a subsequence (l1n)

∞
n=1 ⊂ N such that u(s1

l1n
) converges in

W 2,2 to some u1∞ ∈ Mcrit . Note that by Proposition 3.7 one there exists D > 0 such
that

lim sup
n→∞

||u(tl1n ) − u1∞||L2(0,1) ≤ lim sup
n→∞

(||u(tl1n ) − u(s1l1n
)||L2 + ||u(s1l1n

) − u1∞||L2)

= lim sup
n→∞

||u(tl1n ) − u(s1l1n
)||L2 ≤ lim sup

n→∞
D
√

|tl1n − s1
l1n
| ≤ D

√
ε1.

Hence there exists some n1 ∈ N such that for all n ≥ n1

||u(tl1n ) − u1∞||L2(0,1) ≤ 2D
√

ε1.

We start an iterartive procedure by repeating the process starting with the sequence
(tl1n )n≥n1 and for ε2 := ε1

2 , more precisely: We again choose a measurable set B(ε2) of

measure smaller than ε2 such that u[0,∞)\B(ε2) W
2,2-subconverges to points in Mcrit .

We again observe that for all n > n1 there exists s2n ∈ (tl1n −ε2, tl1n +ε2)∩[0,∞)\B(ε2).
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Therefore we can find a subsequence of (s2n )n≥n1 along which u converges to some
u2∞ ∈ Mcrit . As above this yields now a subsequence (tl2n )n≥n1 of (tl1n )n≥n1 such that

lim sup
n→∞

||u(tl2n ) − u2∞||L2(0,1) < D
√

ε2

In particular we can choose n2 ≥ n1 such that for all n ≥ n2

||u(tl2n ) − u2∞||L2(0,1) < 2D
√

ε2.

Keeping going, we can find for all k ∈ N nested subsequences (tlkn )n>nk ⊂
(tlk−1

n
)n≥nk−1 ⊂ ... ⊂ (tn)n≥1 and {u1∞, ..., uk∞} ⊂ Mcrit such that for all q ∈ {1, ..., k}

and n > nq one has

||u(tlqn ) − uq∞||L2(0,1) < 2D
√

εq = 2D
1√
2
q
√

ε1. (7.2)

Because of the compactness of Mcrit by Lemma 6.7 we obtain that (uq∞)∞q=1 has

a W 2,2-covergent subsequence, denoted by (uqm∞ )∞m=1. We denote the limit of this
sequence simply by u∞ ∈ Mcrit . The subsequence we consider now is (tlqmnqm

)m∈N.
For the sake of simplicity of notation we define am := tlqmnqm

. Now we observe by (7.2)

||u(am) − u∞||L2 ≤ ||u(am) − uqm∞ ||L2 + ||uqm∞ − u∞||L2

≤ 2D
√

ε1
1√
2
qm + ||uqm∞ − u∞||L2 .

Now both terms on the right hand side of this inequality tend to zero as m → ∞ and
thus u(am) → u∞ in L2(0, 1). As (am)∞m=1 was a subsequence of (tn)∞n=1 the claim
follows. �
Proof of Theorem 2.11 Let (tn)∞n=1 be an arbitrary sequence that diverges to infin-
ity. By Lemma 7.2 there exists a subsequence which we call again tn and some
u∞ ∈ Mcrit such that u(tn) → u∞ in L2(0, 1). By Theorem 2.6, u(tn) is bounded in
W 2,2(0, 1) hence we can choose a further subsequence which we do not relabel such
that u(tn)⇀u∞ weakly inW 2,2(0, 1). By compact embedding we obtain u(tn) → u∞
in C1([0, 1]) and hence the claim follows. �
Proof of Theorem 2.12 Let u0,u be as in the statement. By Corollary 4.19 one has
u(t)(1 − ·) = u(t) for all t > 0. Let now w ∈ Cψ be the unique symmetric critical
point in Cψ (cf. Theorem 2.9). By Theorem 2.9, w is a minimizer of E in Cψ . Now
let tn → ∞ be a sequence. Observe that by Theorem 2.11 there exists a subsequence
tln → ∞ such that u(tln ) converges in W 1,∞(0, 1) to some critical point u∞ ∈ Cψ .
Now since u(tln )(1−·) = u(tln ) for all n ∈ N one obtains by the L2-convergence that
u∞(1 − ·) = u∞. From this follows that u∞ = w by Theorem 2.9. By the Urysohn
property of L2-convergence we obtain that u(tn) → w in L2(0, 1). As the sequence
(tn)∞n=1 was arbitrary we obtain that u(t) → w as t → ∞. �
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8 Open Problems and Perspectives

In this final section we summarize some problems that could be interesting for future
research. We also discuss some ways to approach them.

Open Problem 8.1 (Optimal energy dissipation) The article shows that energy-
dissipating FV I gradient flows can also be constructed even if the energy E is not
L2-semiconvex. It is however unclear whether the energy dissipation rate is optimal.
For L2-semiconvex functionals the dissipation rate will be optimal — in the sense of
EDI -gradient flows in optimal transport theory, cf. [2, Definition 4.3]. Even more
general — if E can be written as a sum of a convex and a Frechét differentiable
functional then each FV I gradient flow is an EDI -gradient flow. This can be shown
following the lines of [19, Section 2.3]. It is vital for the theory to understand what
role the convexity assumption plays for the energy dissipation.

Open Problem 8.2 (Energy threshold and geometry) We have shown existence of the

flow only below the energy threshold E(u0) <
c20
4 . The reason for this threshold is that

below one can obtain uniform control of ||∂xu(t, ·)||L∞ and hence one has control of
the nonlinearities. While this is helpful for our analysis, the control is lost for large
obstacles, cf. [18], [19, Section 5]. The reason is that ||∂xu||L∞ is a quantity that
disregards the nature of E as a geometric energy of curves, namely

E(u) =
∫
graph(u)

κ2 ds.

More precisely: If ||∂xu||L∞ becomes large, graph(u) is not necessarily ill-behaved

as a curve. If one wants to go beyond the threshold of
c20
4 one needs to work with

curves and formulate a geometric minimizing movement scheme. While this causes
additional difficulties, there has recently been progress, eg. in [5], for gradient flows
of the (p-)elastic energy without an obstacle constraint.

Open Problem 8.3 (Symmetry breaking or not?) In the article we have seen that sym-

metric evolutions with E(u0) <
c20
4 approach the unique symmetric critical point from

Lemma 6.6. (Note that we have only shown uniqueness of this critical point, but its
existence follows from symmetry-preserving and subconvergence — or alternatively
from [25]).

We actually want to show convergence to a global minimizer. For this we have to
show that a symmetric minimizer can be found. We have done so in Corollary 6.4 —

but again only below an energy threshold of G(2)2, which is even smaller than
c20
4 .

The value of G(2)2 corresponds to a loss of convexity of 1
G−1 and hence poses a

limitation to the nonlinear Talenti symmetrization. We expect that there exist symmet-
ric minimizers also above this threshold, but a proof will require further techniques.
Presumably one needs to find a more geometric approach to the symmetry problem,
which will be subject to our future research.
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Appendix Technical Proofs in Section 4

Proof of Lemma 4.1 Note first that

I := inf
u∈Cψ

 f
τ (u) ≤  f

τ ( f ) = E( f ) <
c20
4

.

Therefore we can choose a minimizing sequence (un)∞n=1 ⊂ Cψ such that  f
τ (un) ≤

E( f ) for all n ∈ N. Hence

E(un) ≤  f
τ (un) ≤ E( f ) ∀n ∈ N

By Remark 3.2 we obtain that ||u′
n||L∞ ≤ G−1(

√E( f )) and (un)∞n=1 is uniformly
bounded in W 2,2(0, 1). After choosing an appropriate subsequence (which we do not
relabel), we can assume that un⇀w inW 2,2(0, 1) for somew ∈ W 2,2(0, 1). Note that
w ∈ Cψ sinceCψ is weakly closed as closed convex subset ofW 2,2(0, 1). By Sobolev
embedding un → w in C1([0, 1]) and hence in particular in L2(0, 1). Just like in the
proof of [7, Lemma 2.5] we obtain now that

E(w) ≤ lim inf
n→∞ E(un). (A.1)

Because of the L2-convergence we get

1

2τ
||w − f ||2L2 = lim

n→∞
1

2τ
||un − f ||2L2 . (A.2)

Summing (A.1) and (A.2) we obtain

 f
τ (w) ≤ lim inf

n→∞

(
E(un) + 1

2τ
||un − f ||2L2

)
= I .

Since w ∈ Cψ is admissible we also have 
f
τ (w) ≥ I , which implies that w is a

minimizer. Equation 4.1 now follows easily from the fact that for all v ∈ Cψ one has

0 ≤ d

dt |t=0

φ f
τ (w + t(v − w))

which is due to the fact that w + t(v − w) is admissible for all t ∈ [0, 1]. �
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Proof of Lemma 4.8 Remark 3.2 and Remark 4.3 yield that for each k, τ one has
||u′

kτ ||∞ ≤ G−1(
√E(u0)) < ∞. Let CE be the operator norm of the inclusion oper-

ator W 2,2(0, 1) ∩ W 1,2
0 (0, 1) ↪→ W 2,2(0, 1). Then

||ukτ ||2W 2,2 ≤ CE ||ukτ ||2W 2,2∩W 1,2
0

= CE

∫ 1

0
(ukτ )

′′2 dx

≤ CE (1 + G−1(
√
E(u0))

2)
5
2 E(ukτ ) ≤ CE (1 + G−1(

√
E(u0))

2)
5
2 E(u0)

(A.3)

Now

||uτ (t)||W 2,2 ≤ (k + 1)τ − t

τ
||ukτ ||W 2,2 + t − kτ

τ
||ukτ ||W 2,2

≤ ||ukτ ||W 2,2 + ||u(k+1)τ ||W 2,2 ≤ 2
√
CE (1 + G−1(

√
E(u0))2)

5
2 E(u0).

�
Proof of Lemma 4.10 Fix t, τ > 0. For the sake of simplicity of notation we define
u := uτ (t). First we expand (4.5) to find that for each φ ∈ W 2,2(0, 1) ∩ W 1,2

0 (0, 1)
such that φ ≥ 0

∫ 1

0
u̇τ (t)φ dx + 2

∫ 1

0

u′′φ′′

(1 + u′2) 5
2

dx − 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx ≥ 0

and for each φ ∈ W 2,2(0, 1) ∩ W 1,2
0 (0, 1) supported on {u > ψ} one has

∫ 1

0
u̇τ (t)φ dx + 2

∫ 1

0

u′′φ′′

(1 + u′2) 5
2

dx − 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx = 0. (A.4)

By a version of the Riesz-Markow-Kakutani Theorem (see [24, Lemma 37.2]), there
exists a Radon measure μ on (0, 1) such that for each φ ∈ C∞

0 (0, 1)

∫ 1

0
u̇τ (t)φ dx + 2

∫ 1

0

u′′φ′′

(1 + u′2) 5
2

dx − 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx =
∫

(0,1)
φ dμ. (A.5)

Equation (A.4) implies that μ is supported on {u = ψ}. Because of the assumptions
on the obstacle μ is a Radon measure with support compactly contained in (0, 1),
hence also a finite measure. Now we want to bound μ((0, 1)) independently of τ .
As an intermediate claim we assert that there exists δ > 0 independent of τ such
that u > ψ on [0, δ] ∪ [1 − δ, 1]. For this note that there exists δ1 > 0 such that
ψ < 1

2 min{ψ(0), ψ(1)} := P < 0 on [0, δ1] ∪ [1− δ1, 1]. By uniform boundedness
of uτ in L∞((0,∞),W 2,2(0, 1)) (cf. Lemma 4.8) there exists a universal constant L
independent of τ such that ||u′||∞ < L . This and u(0) = u(1) = 0 imply that u ≥ P
on [0, |P|

L ]∪[1− |P|
L , 1]. Choosing δ := min{δ1, |P|

L }we obtain the intermediate claim.
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We can now plug into (A.5) a function φ ∈ C∞
0 (0, 1) such that φ ≡ 1 on [δ, 1 − δ],

0 ≤ φ ≤ 1 and ||φ′||∞ < 2
δ
, ||φ′′||∞ < 2

δ2
. This yields

μ((0, 1)) =
∫ 1

0
u̇τ (t)φ dx + 2

∫ 1

0

u′′φ′′

(1 + u′2) 5
2

dx − 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx

≤ ||u̇τ (t)||L2 + 2||φ′′||∞
∫ 1

0

|u′′|
(1 + u′2) 5

2

dx + 5||φ′||∞
∫ 1

0

u′′2

(1 + u′2) 5
2

dx

≤ ||u̇τ (t)||L2 + 2||φ′′||∞
(∫ 1

0

u′′2

(1 + u′2) 5
2

dx

) 1
2

+ 5||φ′||∞
∫ 1

0

u′′2

(1 + u′2) 5
2

dx

≤ ||u̇τ (t)||L2 + 4
√E(u0)

δ2
+ 10E(u0)

δ
=: ||u̇τ (t)|| + A, (A.6)

for some A = A(δ, u0). Now observe that

∫ 1

0
φ dμ =

∫ 1

0

∫ x

0
φ′(y) dy dμ =

∫ 1

0
μ((y, 1))φ′(y) dy.

Defining m(t) := μ((t, 1)) we obtain by (A.5) that for each φ ∈ C∞
0 (0, 1)

∫ 1

0
u̇τ (t)φ dx + 2

∫ 1

0

u′′φ′′

(1 + u′2) 5
2

− 5
∫ 1

0

u′′2u′φ′

(1 + u′2) 7
2

dx =
∫ 1

0
mφ′ dx . (A.7)

Now fix θ ∈ C∞
0 (0, 1) such that

∫ 1
0 θ = 1 and let η ∈ C∞

0 (0, 1) be arbitrary. Observe

that φ(x) := ∫ x
0 η(r) dr − ∫ x

0 θ(r) dr
∫ 1
0 η(y) dy lies in C∞

0 (0, 1). Plugging this in
(A.7) we infer

2
∫ 1

0

u′′η′

(1 + u′2) 5
2

= −
∫ 1

0

∫ x

0
u̇τ (t)(x)η(r) dr dx

+
∫ 1

0

∫ x

0
u̇τ (t)(x)θ(s) ds dx

∫ 1

0
η(r) dr

+ 2
∫ 1

0

u′′θ ′

(1 + u′2) 5
2

dx
∫ 1

0
η(r) dr + 5

∫ 1

0

u′′2u′η
(1 + u′2) 7

2

dx

− 5
∫ 1

0

u′′2θ
(1 + u′2) 7

2

dx
∫ 1

0
η(r) dr +

∫ 1

0
mη dx −

∫ 1

0
mθ dx

∫ 1

0
η(r) dr

=
∫ 1

0
η(r)

[∫ 1

r
u̇τ (t) dx +

∫ 1

0
u̇τ (t)

∫ x

0
θ(s) ds dx −

∫ 1

0

u′′θ ′

(1 + u′2) 5
2

dx
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+5
u′′2(r)u′(r)

(1 + u′(r)2) 7
2

− 5
∫ 1

0

u′′2θ
(1 + u′2) 7

2

dx + m(r) −
∫ 1

0
mθ dx

]
dr .

Since η ∈ C∞
0 (0, 1) was arbitrary, we infer that u′′

(1+u′2)
5
2

∈ W 1,1
loc (0, 1) and

(
u′′

(1 + u′2) 5
2

)′
=
[∫ 1

r
u̇τ (t) dx +

∫ 1

0
u̇τ (t)

∫ x

0
θ(s) ds dx −

∫ 1

0

u′′θ ′

(1 + u′2) 5
2

dx

+5
u′′2(r)u′(r)

(1 + u′(r)2) 7
2

− 5
∫ 1

0

u′′2θ
(1 + u′2) 7

2

dx + m(r) −
∫ 1

0
mθ dx

]
.

(A.8)

Note that the right hand side of the previous equation lies in L1 and hence

(
u′′

(1+u′2)
5
2

)
∈

W 1,1. Using similar estimates as above (A.8) implies

∥∥∥∥∥
(

u′′

(1 + u′2) 5
2

)′∥∥∥∥∥
L1

≤ C1||u̇τ (t)||L2 + C2(1 + E(u0)) + C3||m||∞

for some C1,C2,C3 > 0 that can be chosen independently of τ, u0. Using (A.6) we
find that there exist C̃1 and C̃2 > 0 such that

∥∥∥∥∥
(

u′′

(1 + u′2) 5
2

)′∥∥∥∥∥
L1

≤ C̃1||u̇||L2 + C̃2(1 + E(u0)).

From this and the fact that ||u′||L∞(0,1) is bounded independently of τ we infer that
u′′ ∈ L∞(0, 1) and

||u′′||L∞ ≤ (1 + ||u′||2∞)
5
2

∥∥∥∥∥
u′′

(1 + (u′)2) 5
2

∥∥∥∥∥∞
≤ (1 + ||u′||2∞)

5
2

∥∥∥∥∥
u′′

(1 + (u′)2) 5
2

∥∥∥∥∥
W 1,1

≤ (1 + ||u′||2∞)
5
2

(∫ 1

0

|u′′|
(1 + u′2) 5

2

dx + C̃1||u̇τ (t)||L2 + C̃2(1 + E(u0))

)

≤ C4||u̇τ (t)||L2 + C5

for some C4,C5 > 0 independent of τ . With this additional information we can go
back to (A.8) and prove that

||u′′′||L∞ ≤ C6||u̇τ (t)||L2 + C7,

whereupon the claimed estimate follows. The proof that u′′(0) = u′′(1) = 0 is very
similar to [7, Corollary 3.3]. �
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Appendix B Completion of the Proof of Lemma 6.6

It remains to show the strict monotonicity of H(A), which is defined as in (6.12).
We show that H is differentiable and H ′ > 0. Since we work with hypergeometric
functions, we need some preliminary notation.

Definition B.1 (Hypergeometric Function, see [1, Definition 2.1.5]) Let a, b, c, z ∈ C.
We define for n ∈ N

(a)n := �(a + n)

�(a)
= a · (a + 1) · ... · (a + n − 1),

where � denotes Euler’s Gamma Function. We define HYP2F1(a, b, c, ·) to be the
unique analytic continuation of

B1(0) � z 
→
∞∑
n=1

(a)n(b)n
(c)nn! zn ∈ C

We also recall the famous Pfaff Transformation (cf. [1, Theorem 2.2.5])

HYP2F1(a, b, c, z) = 1

(1 − z)a
HYP2F1

(
a, c − b, c,

z

z − 1

)
.

Note that by [18, Lemma C5] and the Pfaff Transformation

H(A) = 1

2

∫ A
0

z√
A−z(1+z2)

5
4
dz

∫ A
0

1√
A−z(1+z2)

5
4
dz

= 1

3
A

HYP2F1(1, 3
2 ,

7
4 ,−A2)

HYP2F1(1, 1
2 ,

3
4 ,−A2)

= 1

3
A

HYP2F1
(
1, 1

4 ,
7
4 ,

A2

1+A2

)

HYP2F1
(
1, 1

4 ,
3
4 ,

A2

1+A2

) = 1

3
A

∑∞
k=0

(1/4)k
(7/4)k

(
A2

1+A2

)k
∑∞

k=0
(1/4)k
(3/4)k

(
A2

1+A2

)k

where the last step is justified as A2

1+A2 ∈ [0, 1) for each A ∈ R. For the computation

to come we introduce the following notation. We write x := A2

1+A2 ∈ [0, 1) and set

D(x) := ∑∞
k=0

(1/4)k
(3/4)k

xk as well as r(x) := HYP2F1
(
1, 1

4 ,
7
4 , x

)
. We will also use the

hypergeometric equation (cf. [1, Equation (2.3.5)]) for r , which reads

x(1 − x)r ′′(x) +
(
7

4
− 9

4
x

)
r ′(x) − 1

4
r(x) = 0.
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We compute the derivative and perform some rearrangements

H ′(A) = 1

3

∑∞
k=0

(1/4)k
(7/4)k

(
A2

1+A2

)k
∑∞

k=0
(1/4)k
(3/4)k

(
A2

1+A2

)k + 1

3
A

∑∞
k=0 k

(1/4)k
(7/4)k

(
A2

1+A2

)k−1

∑∞
k=0

(1/4)k
(3/4)k

(
A2

1+A2

)k
2A

(1 + A2)2

− 1

3
A

∑∞
k=0

(1/4)k
(7/4)k

(
A2

1+A2

)k
(∑∞

k=0
(1/4)k
(3/4)k

(
A2

1+A2

)k)2

∞∑
k=0

k
(1/4)k

(3/4)k

(
A2

1 + A2

)k−1
2A

(1 + A2)2

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k

(
A2

1 + A2

)k ∞∑
k=0

(1/4)k

(3/4)k

(
A2

1 + A2

)k

+ 2

1 + A2

∞∑
k=0

k
(1/4)k

(7/4)k

(
A2

1 + A2

)k ∞∑
k=0

(1/4)k

(3/4)k

(
A2

1 + A2

)k

− 2

1 + A2

∞∑
k=0

(1/4)k

(7/4)k

(
A2

1 + A2

)k ∞∑
k=0

k
(1/4)k

(3/4)k

(
A2

1 + A2

)k
]

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(3/4)k
xk + 2(1 − x)

∞∑
k=0

k
(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(3/4)k
xk

−2(1 − x)
∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

k
(1/4)k

(3/4)k
xk
]

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(3/4)k
xk

+2(1 − x)
∞∑
k=0

xk
k∑

l=0

l

(
(1/4)l(1/4)k−l

(7/4)l(3/4)k−l
− (1/4)l(1/4)k−l

(3/4)l(7/4)k−l

)]

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(3/4)k
xk

+2(1 − x)
∞∑
k=0

xk
k∑

l=0

l(1/4)l(1/4)k−l

(
3
4 + k − l

3
4 (

7/4)l(7/4)k−l
−

3
4 + l

3
4 (

7/4)l(7/4)k−l

)]

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(3/4)k
xk

+8

3
(1 − x)

∞∑
k=0

xk
k∑

l=0

l(k − 2l)
(1/4)l(1/4)k−l

(1/4)l(1/4)k−l

]

= 1

3D(x)2

[ ∞∑
k=0

(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(7/4)k

3
4 + k

3
4

xk
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+8

3
(1 − x)

∞∑
k=0

xk
k∑

l=0

l(k − 2l)
(1/4)l(1/4)k−l

(7/4)l(7/4)k−l

]

= 1

3D(x)2

⎡
⎣
( ∞∑
k=0

(1/4)k

(7/4)k
xk
)2

+ 4

3

∞∑
k=0

(1/4)k

(7/4)k
kxk

∞∑
k=0

(1/4)k

(7/4)k
xk

+ 8

3
(1 − x)

∞∑
k=0

xk
k∑

l=0

l(k − l)
(1/4)l(1/4)k−l

(7/4)l(7/4)k−l

−8

3
(1 − x)

∞∑
k=0

xk
k∑

l=0

l2
(1/4)l(1/4)k−l

(7/4)l(7/4)k−l

]

= 1

3D(x)2

⎡
⎣
( ∞∑
k=0

(1/4)k

(7/4)k
xk
)2

+ 4

3

∞∑
k=0

(1/4)k

(7/4)k
kxk

∞∑
k=0

(1/4)k

(7/4)k
xk

+ 8

3
(1 − x)

( ∞∑
k=0

k
(1/4)k

(7/4)k
xk
)2

−8

3
(1 − x)

∞∑
k=0

k2
(1/4)k

(7/4)k
xk

∞∑
k=0

(1/4)k

(7/4)k
xk
]

= 1

3D(x)2

⎡
⎣
( ∞∑
k=0

(1/4)k

(7/4)k
xk
)2

+ 4

3

∞∑
k=0

(1/4)k

(7/4)k
kxk

∞∑
k=0

(1/4)k

(7/4)k
xk

+ 8

3
(1 − x)

( ∞∑
k=0

k
(1/4)k

(7/4)k
xk
)2

−8

3
(1 − x)

∞∑
k=0

[k(k − 1) + k] (1/4)k
(7/4)k

xk
∞∑
k=0

(1/4)k

(7/4)k
xk
]

= 1

3D(x)2

(
r(x)2 + 4

3
xr ′(x)r(x) + 8

3
(1 − x)x2r ′(x)2

−8

3
(1 − x)x2r ′′(x)r(x) − 8

3
(1 − x)xr ′(x)r(x)

)

= 1

3D(x)2

(
r(x)2 + 4

3
xr ′(x)r(x) + 8

3
(1 − x)x2r ′(x)2

+8

3
x

(
7

4
− 9

4
x

)
r ′(x)r(x)

−2

3
xr(x)2 − 8

3
(1 − x)xr ′(x)r(x)

)

= 1

3D(x)2

(
r(x)2 − 2

3
xr(x)2 + 8

3
(1 − x)x2r ′(x)2
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+10

3
xr(x)r ′(x) − 10

3
x2r(x)r ′(x)

)
.

As r(x), r ′(x) are power series with only positive coefficients, they are themselves
positive on (0, 1). As x ∈ (0, 1) we can estimate x2 ≤ x and x ≤ 1 to obtain

H ′(A) ≥ 1

3D(x)2

(
1

3
r(x)2 + 8

3
(1 − x)x2r ′(x)2

)
> 0.

The claim follows.

Appendix C Proof of Lemma 6.5

Proof Let f be as in the statement. First note that

f ′(1/2) = J ( f (1/2)) = J (x0) = 0.

As f is strictly concave, f ′ is strictly decreasing and hence f ′ > 0 on (0, 1
2 ). This

implies in particular that 0 < f (r) < x0 for all r ∈ (0, 1
2 ). In particular J ( f (r)) > 0

for all r ∈ (0, 1
2 ). Hence we may write

f ′(r)
J ( f (r))

= 1 ∀r ∈ (0,
1

2
).

Now fix s ∈ (0, 1
2 ) and choose rn → 1

2 a monotone sequence such that rn < 1
2 for all

n ∈ N. Integrate from s to rn to find

∫ rn

s

f ′(r)
J ( f (r))

dr = rn − s.

As J is locally Lipschitz on (0, x0) we can use the substitution rule to get

∫ f (rn)

f (s)

1

J (z)
dz = rn − s.

Note that 1
J > 0 in the domain of integration. As f ′ > 0 on (0, 1

2 ) we find that f is
monotone and hence f (rn) converges monotonically to f ( 12 ) = x0. We can apply the
monotone convergence theorem to pass to the limit and find

∫ x0

f (s)

1

J (z)
dz = 1

2
− s ∀s ∈ (0, 1/2).

As the integrand is positive on (0, x0), the integral is strictly monotone in its lower
argument and as a result f (s) is uniquely determined for each s ∈ (0, 1

2 ). As we have
required that f ∈ C2([0, 1

2 ]), f is also uniquely determined at the boundary points. �
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