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Abstract
We consider the existence and first order conditions of optimality for a stochastic
optimal control problem inspired by the celebrated FitzHugh–Nagumo model, with
nonlinear diffusion term, perturbedby a linearmultiplicativeBrownian-type noise. The
main novelty of the present paper relies on the application of the rescaling method
which allows us to reduce the original problem to a random optimal one.
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1 Introduction

Consider the following problem

⎧
⎪⎨

⎪⎩

dv(t, ξ) = (
Δγ (v(t, ξ)) − I ion(v(t, ξ)) − f (ξ)v(t, ξ) + F(t, ξ)

)
dt + v(t, ξ)dW (t) , ξ ∈ O

v(0, ξ) = v0(ξ) ,

γ (v(t, ξ)) = 0 , on (0, T ) × ∂O .

(1)
γ : R → R being a monotone, increasing continuous function, v = v(t, ξ) rep-

resents the transmembrane electrical potential, O ⊂ R
d , d = 2, 3, is a bounded

and open set with smooth boundary ∂O. We indicate with Δξ the Laplacian operator
with respect to the spatial variable ξ , while ε and δ are positive constants repre-
senting phenomenological coefficients, f (ξ) is a given external forcing term, while
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I ion is the Ionic current and, according with the FitzHugh–Nagumo model, it equals
I ion(v) = v(v − a)(v − 1), v0, w0 ∈ L2(O), namely it represents a cubic non-
linearity. Also F is a bounded term needed to treat the general controlled equation in
next section.

Equation (1) with linear diffusion, i.e. γ (x) = x , is the well-known FitzHugh–
Nagumo (FHN) equation. FHN equation is a reaction–diffusion equation, first
introduced by Hodgkin and Huxley in [32] and then simplified in [31,35]. The model
has been proposed to provide a rigorous, yet simplified, analysis of electrical impulses
dynamics along a nerve axon, see, e.g., [38], where the propagation of the transmem-
brane potential on the nerve axon is represented by a cubic nonlinear reaction term,
possibly perturbed by a noisy one, see, e.g., [12,22,38,41].

The random perturbation represents the effect of noisy input currents within neu-
rons, their source being the random opening/closing actions of ion channels, see, e.g.,
[41]. Moreover, in two-dimensional and three-dimensional settings, Eq. (1) plays also
a relevant role in statistical mechanics, under the name of Ginzburg–Landau equation,
as well as concerning phase transition models of Ginzburg–Landau type, see, e.g.,
[27].

The general case where γ is a monotone function corresponds to an anomalous–
diffusive FitzHugh–Nagumo (FHN) equation, see [33], also describing phase transi-
tions in porous media, see, e.g., [36,40].

Remark 1.1 In what follows we shall focus on the mathematical setting behind the
Stochastic FitzHugh–Nagumo (FHN) model, without entering into details about the
neuro-biological justification of parameters characterizing it. Appropriate details, as
well as in depth analysis of the existing literature on the subject, will be provided later.

We assume that W is a H−1 := H−1(O)-cylindrical Wiener processes, such that

W (t, ξ) =
∞∑

n=1

μnenβn(t) , t ≥ 0 , ξ ∈ O ,

where {βn}n≥1 is a sequence of mutually independent standard Brownian motion
defined on afiltered probability space

(
Ω,F , {Ft }t≥0 ,P

)
, while {en}≥1 is an orthonor-

mal basis in H−1 and μn ∈ R.
Since the Laplacian operator Δξ is a linear operator in L2 (O), and −Δξ is

self-adjoint, then there exists a complete orthonormal system {ēk}k≥1 in L2 (O) of
eigenfunctions of −Δξ , and we shall indicate the corresponding sequence of eigen-
values denoted by {λ̄k}k≥1. Therefore, we have

Δξ ēk = −λ̄k ēk , k ∈ N .

Also, we set
Gv = I ion(v) = v(v − a)(v − 1) , (2)

and note that G is monotonically nondecreasing.
The present paper addresses the problem of existence and uniqueness of a strong

solution, in a sense to be better specified in a while, to Eq. (1). We stress that this is
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not a trivial problem as the nonlinear operator Δγ is naturally defined on the space
H−1 whereas the nonlinear polynomial perturbation I ion is not m-accreative on the
same space. In order to solve above problem we will transform the original equation,
via a rescaling transformation, to a random PDE. It turns out that the existence and
uniqueness of transformed random PDE can be treated by the theory of nonlinear
semigroup in L1.

We will further consider the problem of existence of an optimal control for the
nonlinear FHN equation. Again, in order to solve the problem we will apply a rescal-
ing transformation to obtain a corresponding random PDE. As already emerged in
[12,22], the nonlinear polynomial term implies that standard minimization argument
does not apply. Therefore, existence of an optimal control is achieved using Eke-
land’s variational principle. First order conditions of optimality are given in terms
of dual stochastic backward equation, see, e.g, [12,17], whereas, due to the applied
rescaling transformation are expressed in terms of a random backward dual equation
which allows to simplify the setting also giving more insights on the derived optimal
controller.

It is worth stressing that the present work continues the investigation of optimal
control problem for a stochastic FHN system, generalizing further the result presented
in [12,22]. It must be stressed that the techniques used in the present work, although
presenting some similarity with [12,22], as for instance the usage of the Ekeland
principle to treat the cubic nonlinearity typical of the FHN equation, are in general
different. In fact, the nonlinear term γ poses several difficulties since its natural state
space is H−1. As already mentioned, the cubic nonlinear term arising in the FHN
equation is not sufficiently regular in such a space.Therefore, differently to the previous
works [12,22], existence and uniqueness of a solution for the main equation is non
trivial. The nonlinear diffusion γ also affects the main technique used in proving the
existence of an optimal control since a suitable trasnformation to reduce the problem
to a random equation must be applied.

The present paper is structured as follows: Sect. 1.1 introduces main notation used
thorough the paper. Section 2 addresses the problem of proving existence and unique-
ness for the state equation whereas in Sect. 3 the problem of the existence for an
optimal control is considered.

1.1 Main Notations

In what follows we will denote by | · |, resp. 〈·, ·〉, the norm, resp. scalar product,
on R

d . Also, L p (O) =: L p, for 1 ≤ p ≤ ∞, is the standard space of p-Lebesgue
measurable function over the domain O ⊂ R

d , with corresponding norm defined as
| · |p. For the case p = 2, we will further denote by 〈·, ·〉2 the scalar product in L2. The
space H1(O) =: H1 is the Sobolev space

{
u ∈ L2 : ∂ξ u(ξ) ∈ L2

}
, endowed with

the standard norm ‖u‖2
H1 := ∫

O
(|u|2 + |∇u|2) dξ . The dual of the space H1 will be

denoted as H−1 equipped with corresponding norm | · |−1.
Similarly, we will denote by W n,p(O) =: W n,p, n ∈ N, 1 ≤ p ≤ ∞, the stan-

dard Sobolev space of p-integrable functions with p-integrable n-order derivatives.
Coherently, W 1,p([0, T ]; H−1) will be the space of absolutely continuous function
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u : [0, T ] → H−1 such that both u and d
dt u ∈ L p([0, T ]; H−1). Further, given a

Banach space X , L p([0, T ]; X) is the space of X -valued Bochner p-integrable func-
tions on the interval [0, T ]. Also, C([0, T ]; X), resp. C1([0, T ]; X), denotes the space
of continuous, resp. continuously differentiable, functions u : [0, T ] → X .

We shall also introduce CW ([0, T ]; H) the space of all H−1-valued (Ft )-adapted
processes such that X ∈ C

([0, T ]; L2
(
Ω; H−1

))
, that is X satisfies

sup
t∈[0,T ]

E|X(t)|2−1 < ∞ .

In an analogous manner L2
W ([0, T ]; H−1) is the space of all H−1-valued (Ft )-

adapted processes such that X ∈ L2
([0, T ]; L2

(
Ω; H−1

))
, that is X satisfies

∫ T

0
E|X(t)|2−1dt < ∞ .

At last L2
W (Ω; C

([0, T ]; H−1
)
) denotes the space of all H−1-valued (Ft )-adapted

and continuous processes such that

E sup
t∈[0,T ]

|X(t)|2−1 < ∞ .

Above definition are still in place if instead of H−1 we consider a general Hilbert
space H . It is also known that there is a natural embedding of L2

W (Ω; C
([0, T ]; H−1

)
)

into the space CW ([0, T ]; H−1), see, e.g. [13, Chapter 1].
We therefore can rewrite Eq. (1) as

{
d X(t) − [Δ(γ (X(t))) − G(X(t)) − f X(t) + F]dt = XdW (t),

X(0) = x0 ∈ H−1 , t ∈ [0, T ] ,
. (3)

We will assume the following to hold.

Hypothesis 1 (i) γ : R → R with γ (0) = 0 is a continuous and differentiable
function such that

0 < C1 ≤ γ ′(x) ≤ C2 < ∞ , ∀ x ∈ R ;

(ii) G : R → R is continuous monotonically non–decreasing and G(0) = 0; more-
over G is locally Lipschitzian;

(iii) F ∈ L∞((0, T ) × O), P-a.s. and it is progressively measurable w.r.t. (0, T ) ×
Ω × B(O); f ∈ L∞(O), and f ≥ 0 a.e. in O;

(iv) W is a H−1 := H−1(O)-cylindrical Wiener processes, that is,

W =
∞∑

j=1

μ j e jβ j ,
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with

∞∑

j=1

μ2
j |e j |2L∞(O) < ∞ ,

see, [13, p. 22].

Then, we can state the notion of solution to Eq. (3) that we will consider in subse-
quent analysis, see [13, p. 50].

Definition 1.1 Let x ∈ H−1, we say that the process

X ∈ L2
W

(
Ω; C

(
[0, T ]; H−1

))
∩ L2

W ([0, T ]; L2) ,

is a solution to (3) if X(t) : [0, T ] → H−1 is P-a.s. continuous and ∀ t ∈ [0, T ]

X(t) = x +
∫ t

0
(Δ(γ (X(s))) − G(X(s)) + f X(s) + F(s)) ds +

∫ t

0
X(s)dW (s).

2 Existence for the State Equation

The main problem in proving existence and uniqueness for a solution to Eq. (3) is that
the operator G in not m-accretive on the space H−1 and so basic existence results in
[11,13] are not applicable in the present case. It turns out that the proper space one
has to consider to successfully treat Eq. (3) is the space L1, which, in turn, is not the
proper one if one has to deal with SPDEs such as (3).

To overcome such a stalemate, we follow [9,10]. In particular, we apply the trans-
formation X = eW y, which allows to reduce the stochastic equation (3) to a random
PDE that can be treated with analytical techniques. In fact, the random equation can be
successfully solved by exploiting the theory of nonlinear semigroup in L1. As noted
in [10], we have still to face the problem that, because of the non regularity of the
term W , the general theory cannot be applied straightforward to the resulting random
PDE. Therefore, for ε > 0, we shall consider a suitable sequence of regular approxi-
mations Wε of W , to first establish a priori estimates for solutions yε of the associated
Wε-approximating problem, and then to show that, in the limit ε → 0, we obtain both
existence and uniqueness of the solution for the original equation.

The following theorem constitutes the main result existence of this section.

Theorem 2.1 Let x ∈ H−1∩L1 with γ (x) ∈ H1
0 , then there is a unique strong solution

to Eq. (3) X = eW y which satisfies

Xe−W ∈ W 1,2([0, T ]; H−1) ∩ L∞((0, T ) × O) , P − a.s.

In order to prove Theorem 2.1 we need some auxiliary lemmas. In particular, let us
then introduce the transformation

X(t) = eW (t)y(t) , t ≥ 0 , (4)
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so that by an application of the Itô formula we obtain the random equation

∂

∂t
y + e−W G(eW y) − e−W Δγ (eW y) + f y + μy = e−W F

y(0, ξ) = x(ξ) , ξ ∈ O ,

y(t) ∈ H1
0 (O) , t ∈ (0, T )

(5)

with

μ = 1

2

∞∑

n=1

μ2
ne2n ,

see, e.g. [7,9,10].
Following [10], we prove the existence of a unique strong solution to Eq. (5) by

first considering an approximating problem. In particular, let us denote by βε(t) :=
(β ∗ ρε)(t), where ρε(t) = 1

ε
ρ

( t
ε

)
is a standard mollifier and ρ ∈ C∞

0 , then we have
that βε ∈ C1([0, T ];R). Setting

Wε(t, ξ) =
∞∑

n=1

μnenβε(t) , t ≥ 0 , ξ ∈ O .

we thus have that Wε ∈ C1([0, T ] × O). Moreover

Wε(t, ξ) → W (t, ξ) uniformly in (t, ξ) ∈ [0, T ] × ξ ,

as ε → 0.
For each ε > 0, let us thus consider the approximating equation associated to (5)

∂

∂t
yε + e−Wε Gε(e

Wε yε) − e−Wε Δ
(
γ (eWε yε + εeWε yε

)
+ f y + μyε = e−Wε F

yε(0, ξ) = x(ξ) , ξ ∈ O ,

yε(t) ∈ H1
0 (O) , t ∈ (0, T ) (6)

where Gε is the Yosida approximation of G, that is

Gε := 1

ε

(
I − (I + εG)−1

)
, ε > 0 . (7)

Note that, Gε is monotonically non–decreasing, Lipschitzian and

lim
ε→0

Gε(z) = G(z) , ∀z ∈ R

uniformly on compacts.
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Defining zε := eWε yε , Eq. (6) becomes

∂

∂t
zε + Gε(zε) − Δ(γ (zε) + εzε) + f z +

(

μ − ∂

∂t
Wε

)

zε = Fε , in (0, T ) × O ,

zε(0, ξ) = x(ξ) , ξ ∈ O ,

γ (zε(t)) + εzε(t) ∈ H1
0 (O) , t ∈ (0, T ) (8)

where Fε := e−Wε F .

Lemma 2.2 Let x ∈ H−1 ∩ L1 with γ (x) ∈ H1
0 , then for each ε > 0 Eq. (6) has a

unique solution such that

yε ∈ W 1,∞ (
[0, T ]; H−1

)
∩ L∞ (

0, T ; H1
0

)
.

Proof Let us first prove existence and uniqueness of a solution to Eq. (8) in the space
H−1. For a fixed ε > 0, let us define the operator A : D(A) ⊂ H−1 → H−1 as

Az = −Δ(γ (z) + εz) + f z + Gε(z) + μz ,

D(A) =
{

z ∈ L2 : γ (z) ∈ H1
0

}
.,

(9)

We equip the space H−1 with the scalar product

〈y, z〉−1 := H1〈(−Δ)−1 y, z〉H−1 ,

where (−Δ)−1 y = x indicates the solution to the Dirichlet problem −Δx = y in O,
x ∈ H1

0 .
Taking into account that Gε is Lipschitz continuous in L2 and since

z �→ −Δ(γ (z) + εz) ,

is m-accreative in the space H−1, see, e.g., [4, p. 68], we have that, for a suitable
α = αε , it holds

〈(A + α I )z − (A + α I )z̄, z − z̄〉−1 ≥ 0

which implies (A + α I ) to be accretive in H−1.
Moreover, for λ > 0 sufficiently large, we also haveR ((λ + α)I + A) = H−1, so

that A is quasi-m-accretive. In other words, for f ∈ H−1 the equation

(λ + α) (−Δ)−1 z + γ (z) + εz + (−Δ)−1 (Gε(z) + f z − μz) = (−Δ)−1 f̃ , (10)

has a unique solution in z ∈ L2. Indeed, introducing the operators

B : L2 → L2 , Bz := γ (z) ,
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and

Γ : L2 → L2 ,

Γ z = (λ + α) (−Δ)−1 z + (−Δ)−1 (Gε(z) + f z − μz) ,

we see that Eq. (10) can be rewritten as

εz + Bz + Γ z = (−Δ)−1 f̃ . (11)

Since B is m-accretive and Γ is m-accretive and continuous in L2, it follows, see,
e.g., [4, p. 104], thatR(ε I + B + Γ ) = L2, so that Eq. (11) admits a unique solution
z in L2. Moreover, since γ (z) + εz ∈ H1 and the inverse map of z �→ γ (z) + εz
is Lipschitz, then z ∈ D(A). It follows that, applying [10, Lemma A.1, Corollary
A.2], see also [4, Sect. 4], zε is a strong solution to Eq. (8) in W 1;∞([0, T ]; H−1). In
addition, by [10, Corollary A.2], we also have

γ (zε) + εzε − (−Δ)−1 Gε(z) ∈ L∞(0, T ; H1
0 ) ,

and
∣
∣
∣(−Δ)−1 Gε(z)

∣
∣
∣
2

≤ Cε |z|−1 ,

so that, since zε ∈ W 1;∞([0, T ]; H−1), we obtain

γ (zε) + εzε ∈ L∞(0, T ; L2) ,

and consequently zε ∈ L∞(0, T ; L2). Moreover we have that

(−Δ)−1 Gε(zε) ∈ L∞(0, T ; H1
0 ) ,

which implies thatγ (zε)+εzε ∈ L∞(0, T ; H1
0 ) and consequently zε ∈ L∞(0, T ; H1

0 ).
��

Lemma 2.3 Taking x ∈ D(A), then yε ∈ L∞((0, T ) × O), and it holds
sup
ε

{|yε |L∞((0,T )×O)

} ≤ C(1 + |x |∞) . (12)

Proof Let α ∈ C1([0, T ]), such that α(0) = 0 and α′ ≥ 0. Then, defining M :=
(1 + |x |∞), we have

∂

∂t
(yε − M − α(t)) + e−Wε

(
Gε

(
eWε (yε)

)
− Gε

(
eWε (M + α(t))

))

− f (yε − M − α(t)) − e−Wε Δ
(
γ (eWε yε) + εeWε yε

)

+ e−Wε Δ
(
γ

(
eWε (M + α(t))

)
+ εe−Wε (M + α(t))

)

+ μ(yε − M − α(t)) = F̃ε − α′ ,

123



Applied Mathematics & Optimization (2021) 84:2947–2968 2955

with

F̃ε := −e−Wε Gε(e
Wε (M + α(t))) − μ(M + α(t)) − f (M + α(t))

+ e−Wε Δγ
(

eWε (M + α(t))
)

+ ε(M + α(t))e−Wε Δ(eWε ) + e−Wε F ,

with α such that Fε − α′ ≤ 0.
Following [10, Lemma 3.3], we first assume that

∂

∂t
yε , Δ

(
γ (eWε yε) + εeWε yε

)
∈ L1((0, T ) × O) , (13)

then, denoting by

J (t) : = −
∫

O
e−Wε

[(
Δ(γ (eWε yε) + εeWε yε

)

− Δ
(
γ

(
eWε (M + α(t))

)
+ εeWε (M + α(t))

)]
sign (yε − M − α(t))+ dξ ,

we have

∫ t

0
J (s)ds ≥ −(γ ′(e|W |∞ M) + 1)e|W |∞ (|ΔW |∞ + |∇W |2∞)

∫ t

0
|(yε − (M + α(s))))+|1ds .

Moreover, by Hypothesis 1, it follows that Gε is monotone, so that

∫ t

0

∫

O
e−Wε

(
Gε(e

Wε (yε)) − Gε(e
Wε (M + α(t)))

)
sign(e−Wε (yε − M − α(s)))+dsdξ

=
∫ t

0

∫

O
e−Wε

(
Gε

(
eWε (yε)

)
− Gε

(
eWε (M + α(t))

))
sign

(
Gε(e

−Wε yε)

−Gε

(
e−Wε (M + α(s))

))+
dsdξ ≥ 0 ,

and since
∫

O
∂

∂t
(yε − M − α(s)) sign (yε − M − α(s))+ dξ

= d

dt
| (yε(t) − M − α(t))+ |1 , a.e.t ∈ (0, T ) ,

by [10, Lemma 3.3], we conclude that

| (yε(t) − M − α(t))+ |1 = 0 ,

if F̃ε ≤ α′ a.e. in (0, T ) × O. Moreover, for a suitable α, it also holds

yε ≤ M + α(t) , a.e. in(0, T ) × O ,
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and

yε ≥ −M − α(t) , a.e. in(0, T ) × O ,

and inequalities (12) follows.
Using the approximating scheme described in [10, Lemma 3.3], we have (12)

without requiring the condition (13), and the claim follows. ��

Lemma 2.4 Let x ∈ D(A), then there exists an increasing function C : [0,∞) →
(0,∞) such that

sup
t∈[0,T ]

|yε(t)|22 +
∫ T

0

∫

O
|∇γ

(
eWε yε

)
|2dξds ≤ C (1 + |x |∞) , ∀ε ∈ (0, 1] .

Proof In what follows we will use the following

∫

O
j(yε(t))dξ =

∫ t

0
H−1

〈
dyε

ds
(s), γ (yε(s))

〉

H1
0

ds +
∫

O
j(x)dξ ,

H−1

〈
Δγ (eWε yε), e−Wε γ (yε)

〉
= −

∫

O
∇γ

(
eWε yε

)
· ∇

(
e−Wε γ (yε)

)
dξ ,

,

with j(r) = ∫ r
0 γ (s)ds, r ∈ R

+.
Thus, multiplying Eq. (6) by γ (yε) and integrating over (0, t) × O we obtain

∫

O
j(yε(t))dξ +

∫ t

0

∫

O

[
∇γ

(
eWε yε

)
+ ε∇

(
eWε yε

)
) · ∇

(
γ (yε) e−Wε

)]
dξds

≤
∫

O
j(x)dξ−

∫ t

0

∫

O

(
e−Wε Gε

(
eWε yε

)
+ f yε − e−Wε F

)
γ (yε) dξds .

(14)
Concerning the last integral in the right hand side of Eq. (14), using Assumption 1

(i) on γ we obtain

∫ t

0

∫

O

(
e−Wε Gε(e

Wε yε) + f yε

)
γ (yε) dξds

≤ C
∫ t

0

∫

O

(
e−Wε Gε

(
eWε yε

)
+ f yε

)
yεdξds .

(15)

Using estimate (15) it follows, recalling that Gε is the Yosida approximant of G and
using the monotonicity of γ and Gε that
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∫ t

0

∫

O

(
e−Wε Gε

(
eWε yε

)
+ f yε

)
γ (yε) dξds

≥ C
∫ t

0

∫

O
e−Wε Gε

(
eWε yε

)
yεdξds

≥ −C
∫ t

0

∫

O
| f ||yε |2dξds .

(16)

From the boundedness on F and assumption on γ in hypothesis 1 (i) − (i i), we
obtain ∫ t

0

∫

O
Fγ (yε) dξds ≤ C(1 + |x |2∞) , (17)

for a positive constant C independent of ε.
The other terms in Eq. (14) can be studied as done in [10, Lemma 3.3], so that the

claim follows by Lemma 2.3. ��

Lemma 2.5 There is a unique solution to Eq. (5) with

y ∈ W 1,2
(
[0, T ]; H−1

)
∩ L∞ ((0, T ) × O) ,

γ
(

eW y
)

∈ L2
(
0, T ; H1

0

)
.

(18)

Moreover, the process y is (Ft )t≥0-adapted.

Proof Let us first prove uniqueness. Let y1 and y2 be two solutions to Eq. (5), and let
ȳ := y1 − y2. Then it holds

∂

∂t
ȳ + e−W

(
G

(
eW y1

)
− G

(
eW y2

))
+ f ȳ

− e−W Δ
(
γ

(
eW y1

)
− γ

(
eW y2

))
+ μȳ = 0 in (0, T ) × O

ȳ(0, ξ) = 0 , ξ ∈ O .

(19)

We can rewrite Eq. (19) as

∂

∂t
ȳ + (−Δ)(ȳη) = −e−W

(
G

(
eW y1

)
− G

(
eW y2

))
− eW Δ

(
e−W

)
ȳη

− f ȳ − 2∇
(

e−W
)

· ∇
(

eW ȳη
)

− μȳ = 0 ,

(20)

where we have denoted for short

η :=
{(

γ (eW y1)−γ
(
eW y2

))

eW ȳ
{(t, ξ) : ȳ(t, ξ) �= 0} ,

0 {(t, ξ) : ȳ(t, ξ) = 0} .
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Multiplying Eq. (20) by (−Δ)−1 ȳ, we obtain

1

2
|ȳ|2−1 +

∫ t

0

∫

O
η ȳ2dsdξ

=
∫ t

0

∫

O
e−W

(
G

(
eW y1

)
− G

(
eW y2

))
(−Δ)−1 ȳdsdξ

−
∫ t

0

∫

O
eW Δ

(
e−W

)
ȳη(−Δ)−1 ȳdsdξ

− 2
∫ t

0

∫

O
∇

(
e−W

)
· ∇

(
eW ȳη

)
(−Δ)−1 ȳdsdξ

−
∫ t

0

∫

O
f ȳ(−Δ)−1 ȳdsdξ −

∫ t

0

∫

O
μȳ(−Δ)−1 ȳdsdξ.

(21)

Concerning the first integral in the right hand side of Eq. (21), notice that, for
α ∈ [0, 1] it holds

G
(

eW y1
)

− G
(

eW y2
)

= G ′ (αeW y1 + (1 − α)eW y2
)

eW ȳ .

Moreover, since G is locally Lipschitz, we have

∣
∣
∣
∣

∫

O
e−W

(
G(eW y1) − G(eW y2)

)
(−Δ)−1 ȳdξ

∣
∣
∣
∣ ≤ C |ȳ|2|ȳ|−1 ,

whereas other terms can be treated as in [10, Theorem 2.2]. So that, we have

d

dt
|ȳ|2−1 ≤ C |ȳ|2−1 , a.e. t > 0 ,

from which it follows that ȳ = 0, and, by Lemma 2.4, it holds

|y(t)|∞ +
∫ t

0

∫

O
|∇γ (y(s)) |2dξds ≤ C (1 + |x |∞) ,

so that, see [10, Theorem 2.2], we further have

y ∈ W 1,2
(
[0, T ]; H−1

)
∩ L∞ ((0, T ) × O) .

As regard existence, by Lemmas 2.3 and 2.4, we have that (γ (eWε yε)) is bounded
in L2(0, T ; H1

0 ), (yε) is bounded in L∞(0, T ; L2)∩ L∞((0, T )×O)∩ L2(0, T ; H1
0 ),

and
(

dyε

dt

)
is bounded in L2(0, T ; H−1). Thus, by Aubin compactness theorem, (yε)

is compact in each L2(0, T ; L2(O)). It follows that, for fixed ω ∈ Ω , along a subse-
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quence, which we still denote by {ε} → 0 for the sake of clarity, we have

yε → y strongly in L2((0, T ); L2) ,

weak-star in L2((0, T ); L2) ,

strongly in L∞((0, T ) × O) ,

weakly in L2((0, T ); H1
0 ) ,

γ
(

eWε yε

)
→ η weakly in L2((0, T ); H1

0 ) ,

dyε

dt
→ dy

dt
weakly in L2((0, T ); H−1) ,

Wε → W inC((0, T ) × O) .

(22)

Since the map z �→ γ (z) is maximal monotone, by (22) we have that η = γ (eW y).
Then, since it holds

| (1 + εG)−1
(

eWε yε

)
− eWε yε | ≤ ε|Gε

(
eWε yε

)
| ≤ Cε a.e. in (0, T ) × O ,

and

(1 + εG)−1
(

eWε yε

)
→ y strongly in L2

(
(0, T ); L2

)
and a.e. in (0, T ) × O ,

then, for ε → 0, we get

Gε

(
eWε yε

)
→ G(y) weakly in L2

(
(0, T ); H1

0

)
and a.e. in (0, T ) × O .

(23)
Thus, again from the fact that G : R → R is maximal monotone it follows that it

is also closed and therefore we have that ζ = G(eW y).
Therefore, by letting ε → 0, from Eq. (6) we obtain

dy

dt
+ e−W G(eW y) + f y − e−W Δγ (eW y) + μy = e−W F , in (0, T ) × O ,

y(0) = x .

Then, by the uniqueness result already proved, we also have that the sequence (yε)

is independent of ω ∈ Ω , implying that y is (Ft )-adapted, ending the proof. ��
We can finally prove that it exists a unique strong solution X to Eq. (3) which

satisfies

Xe−W ∈ W 1,2([0, T ]; H−1) P − a.s.

Proof of Theorem 2.1 Using [9, Lemma 8.1] we have the equivalence between the
stochastic PDE 3 and the random PDE 5 via the rescaling transformation 4, so that
existence and uniqueness of a solution X in the sense of Definition 1.1 follows by
Lemma 2.5. ��
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3 The Optimal Control Problem

In this section we will focus the attention to a controlled version of Eq. (1). We denote
by X = L2

ad ((0, T ) × O) the space of all Ft−adapted processes u : [0, T ] → R
d ,

and we consider the following optimal control problem

MinimizeE

[∫ T

0

∫

O
|v(t, ξ) − v1(ξ)|2 + α

2
|u(t, ξ)|2dξdt +

∫

O
|v(T , ξ) − v2(ξ)|2 dξ

]

,

(P)

subject to u ∈ U and

⎧
⎪⎨

⎪⎩

∂tv(t, ξ) − Δγ (v(t, ξ)) + I ion(v(t, ξ)) + f (ξ)v(t, ξ) = u(t, ξ) + v(t, ξ)∂t W (t) , in (0, T ) × O
v(0, ξ) = v0(ξ) , ξ ∈ O ,

v(t, ξ) = 0 , on (0, T ) × ∂O .

(24)
Here

U :=
{

u ∈ L2
ad((0, T ) × O × Ω) :

|u(t, ξ, ω)| ≤ M a.e. (t, ξ, ω) ∈ (0, T ) × O × Ω} ,

M > 0 being a suitable constant, while v1, v2 ∈ L2(Ω) F0-adapted and α > 0 are
given.

Inwhat followswe are going to treat the problem (P) by a rescaling procedurewhich
allows us to reduce it to a random optimal control problem. In the current section the
following Hypothesis will be assumed to hold.

Hypothesis 2 (i) G ∈ C1(R), G ′ is locally Lipschitz.

Theorem 3.1 Let Hypotheses 1 and 2 hold, then, for T sufficiently small, there exists
at least one optimal pair (u∗, v∗) solution to problem (P).

Proof As in Sect. 2, we will apply the rescaling transformation y := e−W v so that the
optimal control problem (P) reads,

MinimizeE

[∫ T

0

∫

O

∣
∣
∣eW y(t, ξ) − v1(ξ)

∣
∣
∣
2 + α

2
|u(t, ξ)|2dξdt

]

+ E

[∫

O

∣
∣
∣eW y((T , ξ) − v2(ξ)

∣
∣
∣
2

dξ

]

,

(P2)

subject to

∂t y − e−W Δγ (eW y) + e−W G(eW y) + f y + μy = e−W u , in (0, T ) × O ,

y = 0 , in (0, T ) × ∂O .
(25)

123



Applied Mathematics & Optimization (2021) 84:2947–2968 2961

Due to the cubic nonlinear term G, existence and uniqueness of an optimal control
cannot be established by standard minimization arguments. In order to overcome this
problem Ekeland’s variational principle can be exploited in order to obtain a nearly
optimal solution to the above control problem.

Applying Ekeland’s variational principle, see, e.g. [28] or also [12,22], there exists
a sequence {uε} ⊂ U such that, defining for short,

Ψ (u) :=E

[∫ T

0

∫

O

∣
∣
∣eW y(t, ξ) − v1(ξ)

∣
∣
∣
2 + α

2
|u(t, ξ)|2dξdt

]

+ E

[∫

O

∣
∣
∣eW y((T , ξ) − v2(ξ)

∣
∣
∣
2

dξ

]

,

it follows
Ψ (uε) ≤ inf {Ψ (u) ; u ∈ U} + ε ,

Ψ (uε) ≤ Ψ (u) + √
ε |uε − u| , ∀ u ∈ U ,

(26)

or equivalently it holds

uε = argmin
u∈U

{Ψ (u) + √
ε |uε − u|U } . (27)

In particular, the optimal pair (yε, uε) solves

MinimizeE

[∫ T

0

∫

O

∣
∣
∣eW y(t, ξ) − v1(ξ)

∣
∣
∣
2 + α

2
|u(t, ξ)|2dξdt

]

+ E

[∫

O

∣
∣
∣eW y((T , ξ) − v2(ξ)

∣
∣
∣
2

dξ

]

+ √
ε |uε − u|U .

(28)

A variational argument alike the one carried out in [12,22], allow us to associate
the the optimal control problem (26) the dual backward problem

⎧
⎪⎪⎨

⎪⎪⎩

∂t yε − e−W Δγ
(

eW yε

)
+ e−W G

(
eW yε

)
+ f yε + μyε = 1

α e−W (pε + θε)

∂t pε + eW γ ′ (eW yε

)
Δ

(
e−W pε

)
+ eW G′ (eW yε

)
pε − f pε − μpε = 2

(
eW yε − v1

)

yε(0) = y0 , pε(T ) = 2(eW yε(T ) − v2) ,

(29)
where |θε |L2(Ω×O×(0,T )) ≤ √

ε. Indeed, by (26), it follows Ψ ′(uε) = θε , yielding
(29). Existence and uniqueness for a solution to Eq. (25) follows from Lemma 2.5
whereas standard arguments yield, using assumption 2, that it exists a unique solution
pε ∈ L∞((0, T ) × O × Ω), see [5].
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By Eq. (29) we have P − a.s.,

∂t (yε − yλ) − e−W Δ
(
γ (eW yε) − γ (eW yλ)

)

− e−W
(

G
(

eW yε

)
− G

(
eW yλ

))
+ f (yε − yλ) + μ (yε − yλ) =

= 1

α
e−W ((pε − pλ) + (θε − θλ)) .

(30)

Therefore multiplying Eq. (30) by (yε − yλ) and integrating over O, we therefore
obtain in virtue of Lemma 2.4,

1

2
|yε − yλ|22 +

∫ t

0

∫

O
|∇ (γ (yε) − γ (yλ))|2 dξds

= −
∫ t

0

∫

O

(
G

(
eW yε

)
− G

(
eW yλ

))
(yε − yλ)dξds

−
∫ t

0

∫

O
f (yε − yλ) (yε − yλ) dξds

−
∫ t

0

∫

O
μ (yε − yλ) (yε − yλ) dξds

+
∫ t

0

∫

O
e−W

α
(pε − pλ) (yε − yλ) dξds

+
∫ t

0

∫

O
e−W

α
(θε − θλ) (yε − yλ) dξds .

(31)

The last two terms in Eq. (31) can be treated exploiting the Young inequality,
yielding

∣
∣
∣
∣

∫

O
e−W

α
(pε − pλ) (yε − yλ) dξ

∣
∣
∣
∣ ≤ C |pε − pλ|22|yε − yλ|22
≤ C1|pε − pλ|22 + C2|yε − yλ|22 ,

∣
∣
∣
∣

∫

O
e−W

α
(θε − θλ) (yε − yλ) dξ

∣
∣
∣
∣ ≤ C |θε − θλ|22|yε − yλ|22
≤ C |yε − yλ|22 + ε + λ ,

(32)

as to obtain

1

2
|yε(t) − yλ(t)|22 +

∫ t

0
|∇ (γ (yε) − γ (yλ))|22 ds

≤ C1|yε(t) − yλ(t)|22 + C2|pε(t) − pλ(t)|22 + ε + λ .

(33)
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Applying the Gronwall lemma and taking the mean value, we obtain using assump-
tion 1 on γ

E|yε(t) − yλ(t)|22 + E

∫ t

0
|∇ (yε − yλ)|22 ds ≤ CE

∫ t

0
|pε(s) − pλ(s)|22ds + ε + λ .

(34)
Regarding the second equation in (29), we obtain

∂t (pε − pλ) + eW
(
γ ′ (eW yε

)
Δ

(
e−W pε

)
− γ ′ (eW yε

)
Δ

(
e−W pλ

))

+ eW
(

G ′ (eW yε

)
pε − G ′ (eW yλ

)
pλ

)
− f (pε − pλ) − μ (pε − pλ)

= 2
(

eW (yε − yλ)
)

.

(35)
Then, multiplying Eq. (35) by (pε − pλ) and integrating over O, we obtain

1

2
|pε(t) − pλ(t)|22 = |eW (yε(T ) − yλ(T )) |22
∫ T

t

∫

O
eW

(
γ ′ (eW yε

)
Δ

(
e−W pε

)
− γ ′ (eW yλ

)
Δ

(
e−W pλ

))
(pε(s) − pλ(s)) dξds

+
∫ T

t

∫

O
eW

(
G′ (eW yε

)
pε(s) − G′ (eW yλ

)
pλ(s)

)
(pε(s) − pλ(s)) dξds

−
∫ T

t

∫

O
( f + μ)(pε(s) − pλ(s))2dξds

−
∫ T

t

∫

O
2

(
eW (yε − yλ)

)
(pε(s) − pλ(s)) dξds .

Rearranging terms above, we further have

1

2
|pε(t) − pλ(t)|22 = |eW (yε(T ) − yλ(T )) |22
∫ T

t

∫

O
eW γ ′ (eW yε

) (
Δ

(
e−W pε

)
− Δ

(
e−W pλ

))
(pε(s) − pλ(s)) dξds

+
∫ T

t

∫

O
eW Δ

(
e−W pλ

) (
γ ′ (eW yε

)
− γ ′ (eW yλ

)))

(pε(s) − pλ(s)) dξds

+
∫ T

t

∫

O
eW G ′ (eW yε

)
(pε(s) − pλ(s))

2 dξds

+
∫ T

t

∫

O
eW pλ(s)

(
G ′ (eW yε

)
− G ′ (eW yλ

))
(pε(s) − pλ(s)) dξds

−
∫ T

t

∫

O
( f + μ) (pε(s) − pλ(s))

2 dξds

−
∫ T

t

∫

O
2

(
eW (yε − yλ)

)
(pε(s) − pλ(s)) dξds . (36)
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Taking into account that u ∈ U , it follows exploiting Lemma 2.3 and using the Young
inequality,

|pε(t) − pλ(t)|22 ≤ |yε(T ) − yλ(T )|22
C

∫ T

t
|pε(s) − pλ(s)|22ds + C

∫ T

t
|pλ(s)|2|pε(s) − pλ(s)|2ds

+ C
∫ T

t
|yε(s) − yλ(s)|2|pλ(s)|2|pε(s) − pλ(s)|2ds

≤ C

(∫ T

t
|pε(s) − pλ(s)|22ds +

∫ T

t
|yε(s) − yλ(s)|22ds

)

,

(37)

where we have used C to denote possibly different constants as to simplify notation.
Taking the expectation in Eq. (37) and combining it with Eq. (34), we thus have

E|yε(t) − yλ(t)|22 + E|pε(t) − pλ(t)|22
≤ C

(

E

∫ t

0
|pε(s) − pλ(s)|22ds + ε + λ

)

+ C

(

E

∫ T

t
|pε(s) − pλ(s)|22ds + E

∫ T

t
|yε(s) − yλ(s)|22ds

)

,

(38)

so that, if T is small enough, we can infer that

E|yε(t) − yλ(t)|22 + E|pε(t) − pλ(t)|22 ≤ C (ε + λ) , (39)

implying that (yε, pε) is a Cauchy sequence, therefore ,along a subsequence still
denoted by {ε} → 0 for the sake of clarity, we have

yε → y weakly in L2((0, T ); H1
0 ) ,

pε → p weakly in L2((0, T ) × O) ,

uε := 1

α
e−W (pε + θε) → u∗ weakly in L2((0, T ) × O × Ω) .

(40)

Further, arguments analogous to the ones used in the proof of Lemma 2.5, it follows
from the fact that G is maximal monotone, that for ε → 0, we get

G
(

eWε yε

)
→ G(eW y) weakly in L2

(
(0, T ); H1

0

)
. (41)

Letting then ε → 0 in the first equation in (29), we have, denoting by y∗ the solution
corresponding to the optimal control u∗,

∂t y∗ − e−W Δγ
(

eW y∗) − e−W G
(

eW y∗) + μy∗ = e−W u∗ ,
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hence, since Ψ is lower–semicontinuous, previous computations give us:

Ψ (u∗) = inf
u∈U

Ψ (u) ,

and the claimed existence result follows. ��
Theorem 3.2 (Necessary condition of optimality) Let be (v∗, u∗) an optimal pair for
problem (P), then if α > 0 it holds

u∗(t, ξ) = 1

α
PU

(
−e−W p(t, ξ)

)
, a.e. on (0, T ) × O × Ω ,

where p is the solution to the dual backward Eq. (45) and

PU (v) =

⎧
⎪⎨

⎪⎩

M v ≥ M ,

v |v| ≤ M

−M v ≤ M .

(42)

Remark 3.1 Wewould like to underline that in literature about stochastic control prob-
lem, the first order conditions of optimality (the Pontryagin maximum principle) are
expressed in terms of dual stochastic backward equation, see, e.g., [12,17]. Here,
instead, optimality conditions are given in terms of a random backward dual equation
which allows to simplify the setting also giving more insights on the derived optimal
controller.

Proof We provide the result exploiting the rescaling transformation y := e−W X ,
hence proving necessary condition for the problem (P2).

Let (y∗, u∗) be an optimal pair for problem (P2), therefore we have that for any
u ∈ U , defining uλ := u∗ + λū = u∗ + λ(u − u∗), λ ≥ 0, by the optimality of u∗ it
must hold,

1

λ

(
Ψ (uλ) − Ψ (u∗)

) ≥ 0 .

By the Gâteaux differentiability of Ψ it follows, taking the limit as λ → 0,

E

[∫ T

0

∫

O

(
eW y∗(t, ξ) − v1(ξ)

)
z(t) + αu∗ūdξdt

]

+ E

[∫

O

(
eW y∗(T , ξ) − v2(ξ)

)
z(T )dξ

]

≥ 0 ,

(43)

being z the solution to the system in variation defined as

⎧
⎪⎨

⎪⎩

ż(t) − Δ
(
γ ′(eW y∗)z(t)

) + G ′(eW y∗)z(t) + μz(t) = e−W u∗ ,

γ ′(eW y∗)z(t) ∈ H1
0 (O) , t ∈ (0, T )

z(0) = 0 .

(44)
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Therefore, introducing the backward dual system

ṗ(t) = −Δγ ′ (eW y∗) p − G ′ (eW y∗) pλ(t) + μp(t) + 2
(

eW y∗ − v1

)
,

p(T ) = 2
(
y∗(T ) − v2

)
,

(45)

and exploiting Eqs. (44) and (45) together with Eq. (43), we have

E

[∫ T

0

∫

O

〈
e−W p(t) + αu∗, ū

〉
dt

]

≥ 0 , (46)

which gives

u∗(t, ξ) = 1

α
PU (−e−W p(t, ξ)) , a.e. on (0, T ) × O × Ω ,

where PU is the projection operator defined in (42). ��
Theorem 3.3 (The bang–bang principle) Let be (v∗, u∗) an optimal pair for problem
(P) and let α = 0, then it holds

u∗ =

⎧
⎪⎨

⎪⎩

−M if p > 0

∈ [−m, M] if p = 0

M if p < 0 .

(47)

where p is the solution to the dual backward Eq. (45).

Proof Proceeding as in Theorem 3.2 with obtain the equivalent of Eq. (46) to be

E

[∫ T

0

∫

O

〈
e−W p(t), ū

〉
dt

]

≥ 0 , (48)

which yields Eq. (47), and the claim follows. ��
Remark 3.2 By (47) it follows that if | v∗ − v1 |> 0 a.e. on (0, T ) × O × Ω then the
optimal controller u∗ is a bang-bang controller, namely | u∗ |= M a.e. on (0, T ) ×
O × Ω .
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