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Abstract
We consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian with 1 <

q < p. The reaction is parametric and exhibits the competing effects of a singular
term and of concave and convex nonlinearities. We are looking for positive solutions
and prove a bifurcation-type theorem describing in a precise way the set of positive
solutions as the parameter varies. Moreover, we show the existence of a minimal
positive solution and we study it as a function of the parameter.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we study

the following parametric Dirichlet (p, q)-equation

− �pu − �qu = λ
[
u−η + a(x)uτ−1

]
+ f (x, u) in � (Pλ)

u
∣∣
∂�

= 0, u > 0, λ > 0, 1 < τ < q < p, 0 < η < 1.
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For r ∈ (1,∞) we denote by �r the r -Laplace differential operator defined by

�r u = div
(
|∇u|r−2∇u

)
for all u ∈ W 1,r

0 (�).

The perturbation in problem (Pλ), namely f : �×R → R, is a Carathéodory function,
that is, f is measurable in the first argument and continuous in the second one. We
suppose that f (x, ·) is (p − 1)-superlinear near +∞ but it does not satisfy the well-
known Ambrosetti-Rabinowitz condition which we will write AR-condition for short.
Hence, we have in problem (Pλ) the combined effects of singular terms (the function
s → λs−η), of sublinear (concave) terms (the function s → λsτ−1 since 1 < τ <

q < p) and of superlinear (convex) terms (the function s → f (x, s)). For the precise
conditions on f we refer to hypotheses H( f ) in Sect. 2. Consider the following two
functions (for the sake of simplicity we drop the x-dependence)

f1(s) = (
s+)r−1

, p < r < p∗, f2(s) =
{(

s+)l if s ≤ 1,

s p−1 ln(s) + 1 if 1 < s,
q < l.

Both functions satisfy our hypotheses H( f ) but only f1 satisfies the AR-condition.
We are looking for positive solutions and we establish the precise dependence of

the set of positive solutions of (Pλ) on the parameter λ > 0 as the latter varies. For the
weight a(·) we suppose the following assumptions

H(a): a ∈ L∞(�), a(x) ≥ a0 > 0 for a.a. x ∈ �;

The main result in this paper is the following one.

Theorem 1.1 If hypotheses H(a) and H( f ) hold, then there exists λ∗ ∈ (0,+∞) such
that

(a) for all λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions

u0, û ∈ int
(
C1
0(�)+

)
with u0 ≤ û and u0 
= û;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ int
(
C1
0(�)+

)
;

(c) for λ > λ∗, problem (Pλ) has no positive solution;
(d) for every λ ∈ L = (0, λ∗], problem (Pλ) has a smallest positive solution u∗

λ ∈
int

(
C1
0(�)+

)
and the map λ → u∗

λ from L into C1
0(�) is strictly increasing, that

is, 0 < μ < λ ≤ λ∗ implies u∗
λ − u∗

μ ∈ int
(
C1
0(�)+

)
and it is left continuous.

The study of elliptic problems with combined nonlinearities was initiated with
the seminal paper of Ambrosetti–Brezis–Cerami [1] who studied semilinear Dirichlet
equations driven by the Laplacian without any singular term. Their work has been
extended to nonlinear problems driven by the p-Laplacian by García Azorero–Peral
Alonso–Manfredi [5] and Guo–Zhang [11]. In both works there is no singular term
and the reaction has the special form

x → λsτ−1 + sr−1 for all s ≥ 0with 1 < τ < p < r < p∗,
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where p∗ is the critical Sobolev exponent to p given by

p∗ =
{

Np
N−p if p < N ,

+∞ if N ≤ p.

More recently there have been generalizations involving more general nonlinear
differential operators, more general concave and convex nonlinearities and different
boundary conditions. We refer to the works of Papageorgiou–Rădulescu–Repovš [23]
for Robin problems and Papageorgiou–Winkert [19], Leonardi–Papageorgiou [14]
and Marano–Marino–Papageorgiou [16] for Dirichlet problems. None of these works
involves a singular term. Singular equations driven by the p-Laplacian and with a
superlinear perturbation were investigated by Papageorgiou–Winkert [21].

We mention that (p, q)-equations arise in many mathematical models of physical
processes.We refer to Benci–D’Avenia–Fortunato–Pisani [2] for quantum physics and
Cherfils-Il′yasov [3] for reaction diffusion systems.

Finally, we mention recent papers which are very close to our topic dealing with
certain types of nonhomogeneous and/or singular problems.We refer toPapageorgiou–
Rădulescu–Repovš [26,28], Papageorgiou–Zhang [22] and Ragusa–Tachikawa [30].

2 Preliminaries and Hypotheses

We denote by L p(�)
(
or L p

(
�;RN

))
andW 1,p

0 (�) the usual Lebesgue and Sobolev
spaceswith their norms ‖·‖p and ‖·‖, respectively. Bymeans of the Poincaré inequality
we have

‖u‖ = ‖∇u‖p for all u ∈ W 1,p
0 (�).

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (�) we define u±(·) = u(·)±.

It is known that

u± ∈ W 1,p
0 (�), |u| = u+ + u−, u = u+ − u−.

Furthermore, we need the ordered Banach space

C1
0(�) =

{
u ∈ C1(�) : u∣∣

∂�
= 0

}

and its positive cone

C1
0(�)+ =

{
u ∈ C1

0(�) : u(x) ≥ 0 for all x ∈ �
}

.

This cone has a nonempty interior given by

int
(
C1
0 (�)+

) =
{
u ∈ C1

0 (�)+ : u(x) > 0 for all x ∈ �,
∂u

∂n
(x) < 0 for all x ∈ ∂�

}
,
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where n(·) stands for the outward unit normal on ∂�. We will also use two more open
cones. The first one is an open cone in the space C1(�) and is defined by

D+ =
{
u ∈ C1(�)+ : u(x) > 0 for all x ∈ �,

∂u

∂n

∣∣∣∣
∂�∩u−1(0)

< 0

}
.

The second open cone is the interior of the order cone

K+ = {
u ∈ C0(�) : u(x) ≥ 0 for all x ∈ �

}

of the Banach space

C0(�) = {
u ∈ C(�) : u∣∣

∂�
= 0

}
.

We know that

int K+ =
{
u ∈ K+ : cud̂ ≤ u for some cu > 0

}

with d̂(·) = d(·, ∂�). Let û1 denote the positive L p-normalized, that is, ‖û1‖p =
1, eigenfunction of

(
−�p,W

1,p
0 (�)

)
. We know that û1 ∈ int

(
C1
0(�)+

)
. From

Papageorgiou–Rădulescu–Repovš [25] we have

cud̂ ≤ u for some cu > 0 if and only if ĉu û1 ≤ u for some ĉu > 0.

Given u, v ∈ W 1,p
0 (�) with u(x) ≤ v(x) for a.a.x ∈ � we define

[u, v] =
{
y ∈ W 1,p

0 (�) : u(x) ≤ y(x) ≤ v(x) for a. a. x ∈ �
}

,

int
C1
0 (�)

[u, v] = the interior in C1
0(�) of [u, v] ∩ C1

0(�),

[u) =
{
y ∈ W 1,p

0 (�) : u(x) ≤ y(x) for a.a. x ∈ �
}

.

If h, g ∈ L∞(�), then we write h ≺ g if and only if for every compact set K ⊆ �,
there exists cK > 0 such that cK ≤ g(x)−h(x) for a.a. x ∈ K .Note that ifh, g ∈ C(�)

and h(x) < g(x) for all x ∈ �, then h ≺ g.
If X is a Banach space and ϕ ∈ C1(X), then we denote by Kϕ the critical set of ϕ,

that is,

Kϕ = {
u ∈ X : ϕ′(u) = 0

}
.

Moreover, we say that ϕ satisfies the “Cerami condition”, C-condition for short, if
every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖un‖X ) ϕ′(un) → 0 in X∗ as n → ∞,
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admits a strongly convergent subsequence.
For every r ∈ (1,∞), let Ar : W 1,r

0 (�) → W−1,r ′
(�) = W 1,r

0 (�)∗ with 1
r + 1

r ′ = 1
be defined by

〈Ar (u), h〉 =
∫

�

|∇u|r−2∇u · ∇h dx for all u, h ∈ W 1,r
0 (�).

This operator has the following properties, see Gasiński–Papageorgiou [8, p. 279].

Proposition 2.1 The map Ar : W 1,r
0 (�) → W−1,r ′

(�) is bounded (that is, it maps
bounded sets into bounded sets), continuous, strictlymonotone (somaximalmonotone)
and of type (S)+, that is,

un
w→ u in W 1,r

0 (�) and lim sup
n→∞

〈Ar (un), un − u〉 ≤ 0

imply

un → u in W 1,r
0 (�).

The hypotheses on the function f (·) are the following ones:

H(f): f : � × R → R is a Carathéodory function such that

(i)

0 ≤ f (x, s) ≤ c1
[
1 + sr−1

]

for a. a. x ∈ �, for all s ≥ 0 with c1 > 0 and r ∈ (p, p∗);
(ii) if F(x, s) = ∫ s

0 f (x, t) dt , then

lim
s→+∞

F(x, s)

s p
= +∞ uniformly for a.a. x ∈ �;

(iii) there exists μ ∈
(
(r − p)max

{
1, N

p

}
, p∗

)
with μ > τ such that

0 < c2 ≤ lim inf
s→+∞

f (x, s)s − pF(x, s)

sμ
uniformly for a.a. x ∈ �;

(iv)

lim
s→0+

f (x, s)

sq−1 = 0 uniformly for a.a. x ∈ �;

(v) for every ρ > 0 there exists ξ̂ρ > 0 such that the function

s �→ f (x, s) + ξ̂ρs
p−1

is nondecreasing on [0, ρ] for a.a. x ∈ �.
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Remark 2.2 Since our aim is to produce positive solutions and all the hypotheses above
concern the positive semiaxis R+ = [0,+∞), we may assume, without any loss of
generality, that

f (x, s) = 0 for a.a. x ∈ � and for all s ≤ 0. (2.1)

Note that hypothesis H( f )(iv) implies that f (x, 0) = 0 for a.a. x ∈ �. From
hypotheses H( f )(ii), (iii) we infer that

lim
s→+∞

f (x, s)

s p−1 = +∞ uniformly for a.a. x ∈ �.

Therefore, the perturbation f (x, ·) is (p−1)-superlinear for a.a. x ∈ �. However, the
superlinearity of f (x, ·) is not expressed using the AR-condition which is common
in the literature for superlinear problems. We recall that the AR-condition says that
there exist β > p and M > 0 such that

0 < βF(x, s) ≤ f (x, s)s for a.a. x ∈ � and for all s ≥ M, (2.2)

0 < ess infx∈� F(x, M). (2.3)

In fact this is a uniliteral version of the AR-condition due to (2.1). Integrating (2.2)
and using (2.3) gives the weaker condition

c3s
β ≤ F(x, s) for a. a. x ∈ �, for all x ≥ M and for some c3 > 0,

which implies

c3s
β−1 ≤ f (x, s) for a. a. x ∈ � and for all s ≥ M .

Hence, theAR-conditiondictates that f (x, ·) eventually has at least (β−1)-polynomial
growth. In the present work we replace the AR-condition by hypothesis H( f )(iii)
which includes in our framework also superlinear nonlinearities with slower growth
near +∞.

Hypothesis H( f )(v) is a one-sided Hölder condition. If f (x, ·) is differentiable for
a.a. x ∈ � and if for every ρ > 0 there exists cρ > 0 such that

f ′
s (x, s)s ≥ −cρs

p−1 for a.a. x ∈ � and for all 0 ≤ s ≤ ρ,

then hypothesis H( f )(v) is satisfied. We introduce the following sets

L = {λ > 0 : problem (Pλ) admits a positive solution},
Sλ = {u : u is a positive solution of (Pλ)}.
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Moreover, we consider the following auxiliary Dirichlet problem

− �pu − �qu = λa(x)uτ−1 in � (Qλ)

u
∣∣
∂�

= 0, u > 0, λ > 0, 1 < τ < q < p.

Proposition 2.3 If hypothesis H(a) holds, then for every λ > 0 problem (Qλ) admits
a unique solution ũλ ∈ int

(
C1
0(�)+

)
.

Proof We consider the C1-functional γλ : W 1,p
0 (�) → R defined by

γλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq − λ

∫

�

a(x)
(
u+)τ

dx for all u ∈ W 1,p
0 (�).

Since τ < q < p it is clear that γλ : W 1,p
0 (�) → R is coercive and by the Sobolev

embedding theorem, we see that γλ : W 1,p
0 (�) → R is sequentially weakly lower

semicontinuous. Hence, there exists ũλ ∈ W 1,p
0 (�) such that

γλ (ũλ) = min
[
γλ(u) : u ∈ W 1,p

0 (�)
]
. (2.4)

If u ∈ int
(
C1
0(�)+

)
and t > 0 then

γλ(tu) = t p

p
‖∇u‖p

p + tq

q
‖∇u‖qq − λtτ

τ

∫

�

a(x)u2 dx .

Since τ < q < p, choosing t ∈ (0, 1) small enough, we have γλ(tu) < 0 and so,

γλ (ũλ) < 0 = γλ(0),

see (2.4), which shows that ũλ 
= 0. From (2.4) we know that γ ′
λ (ũλ) = 0, that is,

〈Ap (ũλ) , h〉 + 〈Aq (ũλ) , h〉 = λ

∫

�

a(x)
(
ũ+

λ

)τ−1
h dx for all h ∈ W 1,p

0 (�).

(2.5)

Choosing h = −ũ−
λ ∈ W 1,p

0 (�) in (2.5) gives

∥∥∇ũ−
λ

∥∥p
p + ∥∥∇ũ−

λ

∥∥q
q = 0,

which shows that ũλ ≥ 0 with ũλ 
= 0. Therefore, (2.5) becomes

− �pũλ − �q ũλ = λa(x)ũτ−1
λ in �, ũλ

∣∣
∂�

= 0.
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We know that ũλ ∈ L∞(�), see, for example Marino–Winkert [17]. Then, from
the nonlinear regularity theory of Lieberman [15] we have that ũλ ∈ C1

0(�)+ \ {0}.
Moreover, the nonlinear maximum principle of Pucci-Serrin [29, pp. 111, 120] implies
that ũλ ∈ int

(
C1
0(�)+

)
.

We still have to show that this positive solution is unique. Suppose that ṽλ ∈
W 1,p

0 (�) is another solution of (Qλ). As before we can show that ṽλ ∈ int
(
C1
0(�)+

)
.

We consider the integral functional j : L1(�) → R = R ∪ {+∞} defined by

j(u) =
⎧⎨
⎩

1
p

∥∥∥∇u
1
q

∥∥∥
p

p
+ 1

q

∥∥∥∇u
1
q

∥∥∥
q

q
if u ≥ 0, u

1
q ∈ W 1,p

0 (�),

+∞ otherwise.

From Díaz–Saá [4, Lemma 1] we see that j is convex. Furthermore, applying Propo-
sition 4.1.22 of Papageorgiou–Rădulescu–Repovš [24, p. 274], we obtain that

ũλ

ṽλ

,
ṽλ

ũλ

∈ L∞(�).

We denote by

dom j =
{
u ∈ L1(�) : j(u) < +∞

}

the effective domain of j and set h = ũqλ − ṽ
q
λ . One gets

ũqλ − th ∈ dom j and ṽ
q
λ + th ∈ dom j for all t ∈ [0, 1].

Note that the functional j : L1(�) → R is Gateaux differentiable at ũqλ and at ṽ
q
λ in

the direction h. Using the nonlinear Green’s identity, see Papageorgiou–Rădulescu–
Repovš [24, Corollary 1.5.16, p. 34], we obtain

j ′
(
ũqλ

)
(h) = 1

q

∫

�

−�pũλ − �q ũλ

ũq−1
λ

h dx = λ

q

∫

�

a(x)

ũq−τ
λ

h dx,

j ′
(
ṽ
q
λ

)
(h) = 1

q

∫

�

−�p ṽλ − �q ṽλ

ṽ
q−1
λ

h dx = λ

q

∫

�

a(x)

ṽ
q−τ
λ

h dx .

The convexity of j : L1(�) → R implies the monotonicity of j ′. Hence

0 ≤ λ

q

∫

�

a(x)

[
1

ũq−τ
λ

− 1

ṽ
q−τ
λ

] [
ũqλ − ṽ

q
λ

]
dx ≤ 0,

which implies ũλ = ṽλ. Therefore, ũλ ∈ int
(
C1
0(�)+

)
is the unique positive solution

of the auxiliary problem (Qλ). ��
This solutionwill provide a useful lower bound for the elements of the set of positive

solutions Sλ.
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3 Positive Solutions

Let ũλ ∈ int
(
C1
0(�)+

)
be the unique positive solution of (Qλ), see Proposition 2.3.

Let s > N . Then ũsλ ∈ int K+ and so there exists c4 > 0 such that

û1 ≤ c4ũ
s
λ,

see Sect. 2. Hence

ũ−η
λ ≤ c5û

− η
s

1 for some c5 > 0.

Applying the Lemma of Lazer–McKenna [13] we have

û
− η

s
1 ∈ Ls(�)

and thus

ũ−η
λ ∈ Ls(�). (3.1)

We introduce the following modification of problem (Pλ) in which we have neu-
tralized the singular term

− �pu − �qu = λũ−η
λ + λa(x)uτ−1 + f (x, u) in � (Pλ’)

u
∣∣
∂�

= 0, u > 0, λ > 0, 1 < τ < q < p, 0 < η < 1.

Let ψλ : W 1,p
0 (�) → R be the Euler energy functional of problem (Pλ’) defined by

ψλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq − λ

∫

�

ũ−η
λ u dx

− λ

τ

∫

�

a(x)
(
u+)τ

dx −
∫

�

F(x, u+) dx

for all u ∈ W 1,p
0 (�), see (3.1). It is clear that ψλ ∈ C1(W 1,p

0 (�)).

Proposition 3.1 If hypotheses H(a) and H( f ) hold and if λ > 0, then ψλ satisfies the
C-condition.

Proof Let {un}n≥1 ⊆ W 1,p
0 (�) be a sequence such that

|ψλ(un)| ≤ c6 for all n ∈ N and for some c6 > 0, (3.2)

(1 + ‖un‖)ψ ′
λ(un) → 0 in W 1,p

0 (�)∗ = W−1,p′
(�) with

1

p
+ 1

p′ = 1. (3.3)
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From (3.3) we have

∣∣∣∣〈Ap(un), h〉 + 〈Aq(un), h〉 − λ

∫

�

ũ−η
λ h dx − λ

∫

�

a(x)
(
u+
n

)τ−1
h dx

−
∫

�

f
(
x, u+

n

)
h dx

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p

0 (�) with εn → 0+. (3.4)

Choosing h = −u−
n ∈ W 1,p

0 (�) in (3.4) leads to

∥∥∇u−
n

∥∥p
p ≤ εn for all n ∈ N,

which implies

u−
n → 0 in W 1,p

0 (�) as n → ∞. (3.5)

Combining (3.2) and (3.5) gives

∥∥∇u+
n

∥∥p
p + p

q

∥∥∇u+
n

∥∥q
q − λp

∫

�

ũ−η
λ u+

n dx − λp

τ

∫

�

a(x)
(
u+
n

)τ
dx

−
∫

�

pF
(
x, u+

n

)
dx ≤ c7 for all n ∈ N and for some c7 > 0. (3.6)

On the other hand, if we choose h = u+
n ∈ W 1,p

0 (�) in (3.4), we obtain

− ∥∥∇u+
n

∥∥p
p − ∥∥∇u+

n

∥∥q
q + λ

∫

�

ũ−η
λ u+

n dx + λ

∫

�

a(x)
(
u+
n

)τ
dx

+
∫

�

f
(
x, u+

n

)
u+
n dx ≤ εn for all n ∈ N. (3.7)

Adding (3.6) and (3.7) yields

∫

�

[
f
(
x, u+

n

)
u+
n − pF

(
x, u+

n

)]
dx

≤ λ(p − 1)
∫

�

ũ−η
λ u+

n dx + λ
[ p
τ

− 1
] ∫

�

a(x)
(
u+
n

)τ
dx . (3.8)

By hypotheses H( f )(i), (iii) we can find c8 > 0 such that

c2
2
sμ − c8 ≤ f (x, s)s − pF(x, s) for a.a. x ∈ � and for all s ≥ 0.

This implies

c2
2
sμ

∥∥u+
n

∥∥μ

μ
− c9 ≤

∫

�

[
f
(
x, u+

n

)
u+
n − pF

(
x, u+

n

)]
dx (3.9)
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for some c9 > 0 and for all n ∈ N.
Since s > N we have s′ < N ′ ≤ p∗. Hence, u+

n ∈ Ls′(�). Then, taking (3.1)
along with Hölder’s inequality into account, we get

λ[p − 1]
∫

�

ũ−η
λ u+

n dx ≤ c10
∥∥∥ũ−η

λ

∥∥∥
s

∥∥u+
n

∥∥
s′ (3.10)

for some c10 = c10(λ) > 0 and for all n ∈ N. Moreover, by hypothesis H(a), we have

λ
[ p
τ

− 1
] ∫

�

a(x)
(
u+
n

)τ
dx ≤ c11

∥∥u+
n

∥∥τ

τ
(3.11)

for some c11 = c11(λ) > 0 and for all n ∈ N.
Now we choose s > N large enough such that s′ < μ. Returning to (3.8), using

(3.9), (3.10) as well as (3.11) and using the fact that s′, τ < μ by hypothesis H( f )(iii)
leads to

∥∥u+
n

∥∥μ

μ
≤ c12

[∥∥u+
n

∥∥
μ

+ ∥∥u+
n

∥∥τ

μ
+ 1

]

for some c12 > 0 and for all n ∈ N. Since τ < μ we obtain

{
u+
n

}
n≥1 ⊆ Lμ(�) is bounded. (3.12)

Assume that N 
= p. From hypothesis H( f )(iii) it is clear that we may assume
μ < r < p∗. Then there exists t ∈ (0, 1) such that

1

r
= 1 − t

μ
+ t

p∗ .

Taking the interpolation inequality into account, see Papageorgiou–Winkert [20,
Proposition2.3.17, p. 116], we have

∥∥u+
n

∥∥
r ≤ ∥∥u+

n

∥∥1−t
μ

∥∥u+
n

∥∥t
p∗ ,

which by (3.12) implies that

∥∥u+
n

∥∥r
r ≤ c13

∥∥u+
n

∥∥tr (3.13)

for some c13 > 0 and for all n ∈ N.
From hypothesis H( f )(i) we know that

f (x, s)s ≤ c14
[
1 + sr

]
(3.14)
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for a.a. x ∈ �, for all s ≥ 0 and for some c14 > 0. We choose h = u+
n ∈ W 1,p

0 (�) in
(3.4), that is,

∥∥∇u+
n

∥∥p
p + ∥∥∇u+

n

∥∥q
q − λ

∫

�

ũ−η
λ u+

n dx − λ

∫

�

a(x)
(
u+
n

)τ
dx

−
∫

�

f
(
x, u+

n

)
u+
n dx ≤ εn for all n ∈ N.

From this it follows by using (3.13), (3.14) and 1 < τ < p < r

∥∥u+
n

∥∥p ≤ c15
[
1 + ∥∥u+

n

∥∥tr] (3.15)

for some c15 > 0 and for all n ∈ N. The condition on μ, see hypothesis H( f )(iii),
implies that tr < p. Then from (3.15) we infer

{
u+
n

}
n≥1 ⊆ W 1,p

0 (�) is bounded. (3.16)

If N = p, then we have by definition p∗ = ∞. The Sobolev embedding theorem
ensures thatW 1,p

0 (�) ↪→ Lϑ(�) for all 1 ≤ ϑ < ∞. So, in order to apply the previous
arguments we need to replace p∗ by ϑ > r > μ and choose t ∈ (0, 1) such that

1

r
= 1 − t

μ
+ t

ϑ
,

which implies

tr = ϑ(r − μ)

ϑ − μ
.

Note that ϑ(r−μ)
ϑ−μ

→ r − μ < p as ϑ → +∞. So, for ϑ > r large enough, we see
that tr < p and again (3.16) holds.

From (3.5) and (3.16) we infer that

{un}n≥1 ⊆ W 1,p
0 (�) is bounded.

So, we may assume that

un
w→ u in W 1,p

0 (�) and un → u in Lr (�). (3.17)

We choose h = un − u ∈ W 1,p
0 (�) in (3.4), pass to the limit as n → ∞ and use the

convergence properties in (3.17). This gives

lim
n→∞

[〈Ap(un), un − u〉 + 〈Aq(un), un − u〉] = 0
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and since Aq is monotone we obtain

lim
n→∞

[〈Ap(un), un − u〉 + 〈Aq(u), un − u〉] ≤ 0.

By (3.16) we then conclude that

lim
n→∞〈Ap(un), un − u〉 ≤ 0.

Applying Proposition 2.1 shows that un → u inW 1,p
0 (�) and so we conclude that ψλ

satisfies the C-condition. ��
Proposition 3.2 If hypotheses H(a) and H( f ) hold, then there exists λ̂ > 0 such that

for every λ ∈
(
0, λ̂

)
we can find ρλ > 0 for which we have

ψλ(0) = 0 < inf [ψλ(u) : ‖u‖ = ρλ] = mλ.

Proof Hypotheses H( f )(i), (iv) imply that for a given ε > 0 we can find c16 =
c16(ε) > 0 such that

F(x, s) ≤ ε

q
sq + c16s

r for a.a. x ∈ � and for all s ≥ 0. (3.18)

Recall that ũ−η
λ ∈ Ls(�) with s > N , see (3.1). We choose s > N large enough such

that s′ < p∗. Then, by Hölder’s inequality, we have

λ

∫

�

ũ−η
λ u dx ≤ λc17‖u‖ for some c17 > 0. (3.19)

Moreover, one gets

λ

τ

∫

�

a(x)|u|τ dx ≤ λ‖a‖∞
τ

‖u‖τ . (3.20)

Applying (3.18), (3.19) and (3.20) leads to

ψλ(u) ≥ 1

p
‖∇u‖p

p + 1

q

[‖∇u‖qq − ε‖u‖qq
] − c18

[‖u‖r + λ
(‖u‖ + ‖u‖τ

)]
(3.21)

for some c18 > 0. Let λ̂1(q) > 0 be the principal eigenvalue of
(
−�q ,W

1,q
0 (�)

)
.

Then, from the variational characterization of λ̂1(q), see Gasiński–Papageorgiou [6,
p. 732], we obtain

1

q

[‖∇u‖qq − ε‖u‖qq
] ≥ 1

q

[
1 − ε

λ̂1(q)

]
‖∇u‖qq .

123



2614 Applied Mathematics & Optimization (2021) 84:2601–2628

Choosing ε ∈
(
0, λ̂1(q)

)
we infer that

1

q

[‖∇u‖qq − ε‖u‖qq
]

> 0. (3.22)

Since 1 < τ < r , it holds

‖u‖τ ≤ ‖u‖ + ‖u‖r . (3.23)

Applying (3.22) and (3.23) to (3.21) gives

ψλ(u) ≥ 1

p
‖u‖p − c18

[
2λ‖u‖ + (λ + 1)‖u‖r ]

≥
[
1

p
− c18

(
2λ‖u‖1−p + (λ + 1)‖u‖r−p

)]
‖u‖p. (3.24)

We consider now the function

kλ(t) = 2λt1−p + (λ + 1)tr−p for all t > 0.

It is clear that kλ ∈ C1(0,∞) and since 1 < p < r we see that

kλ(t) → +∞ as t → 0+ and as t → +∞.

Hence, there exists t0 > 0 such that

kλ(t0) = min [kλ(t) : t > 0] ,

which implies that k′
λ(t0) = 0. Therefore,

2λ(p − 1)t−p
0 = (r − p)(λ + 1)tr−p−1

0 .

From this we deduce that

t0 = t0(λ) =
[

2λ(p − 1)

(r − p)(λ + 1)

] 1
r−1

.

We have

kλ(t0) = 2λ
(r − p)(λ + 1)

p−1
r−1

(2λ(p − 1))
p−1
r−1

+ (λ + 1)
(2λ(p − 1))

r−p
r−1

((r − p)(λ + 1))
r−p
r−1

.

Since 1 < p < r we see that

kλ(t0) → 0 as λ → 0+.
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Therefore, we can find λ̂ > 0 such that

kλ(t0) <
1

pc18
for all λ ∈

(
0, λ̂

)
.

Then, by (3.24) we see that

ψλ(u) > 0 = ψλ(0) for all ‖u‖ = t0(λ) = ρλ and for all λ ∈
(
0, λ̂

)
.

From hypothesis H( f )(ii) we see that for every u ∈ int
(
C1
0(�)+

)
we have

ψλ(tu) → −∞ as t → +∞. (3.25)

Proposition 3.3 If hypotheses H(a) and H( f ) hold and if λ ∈
(
0, λ̂

)
, then problem

(Pλ’) admits a solution uλ ∈ int
(
C1
0(�)+

)
.

Proof Propositions 3.1, 3.2 and (3.25) permit the use of the mountain pass theorem.
So, we can find uλ ∈ W 1,p

0 (�) such that

uλ ∈ Kψλ and ψλ(0) = 0 < mλ ≤ ψλ(uλ). (3.26)

From (3.26) we see that uλ 
= 0 and ψ ′
λ(uλ) = 0, that is,

〈Ap(uλ), h〉 + 〈Aq(uλ), h〉
= λ

∫

�

ũ−η
λ h dx + λ

∫

�

a(x)
(
u+

λ

)τ−1
h dx +

∫

�

f
(
x, u+

λ

)
h dx (3.27)

for all h ∈ W 1,p
0 (�). We choose h = −u−

λ ∈ W 1,p
0 (�) in (3.27) which shows that

∥∥u−
λ

∥∥p ≤ 0.

Thus, uλ ≥ 0 with uλ 
= 0.

From (3.27) we know that uλ is a positive solution of (Pλ’) with λ ∈
(
0, λ̂

)
. This

means

− �puλ − �quλ = λũ−η
λ + λa(x)uτ−1

λ + f (x, uλ) in �, uλ

∣∣
∂�

= 0.

As before, see the proof of Proposition 2.3, using the nonlinear regularity theory, we
have uλ ∈ C1

0(�)+ \ {0}. The nonlinear maximum principle, see Pucci–Serrin [29,
pp. 111, 120] implies that uλ ∈ int

(
C1
0(�)+

)
.

Proposition 3.4 If hypotheses H(a) and H( f ) hold and if λ ∈
(
0, λ̂

)
, then ũλ ≤ uλ.
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Proof We introduce the Carathéodory function gλ : � × R → R defined by

gλ(x, s) =
{

λa(x)
(
s+)τ−1 if s ≤ uλ(x),

λa(x)uλ(x)τ−1 if uλ(x) < s.
(3.28)

We set Gλ(x, s) = ∫ s
0 gλ(x, t) dt and consider the C1-functional σλ : W 1,p

0 (�) → R

defined by

σλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

Gλ(x, u)dx for all u ∈ W 1,p
0 (�).

From (3.28) it is clear that σλ : W 1,p
0 (�) → R is coercive. Moreover, by the Sobolev

embedding, we have that σλ : W 1,p
0 (�) → R is sequentially weakly lower semicon-

tinuous. Then, by the Weierstraß-Tonelli theorem, we can find ûλ ∈ W 1,p
0 (�) such

that

σλ

(
ûλ

) = min
[
σλ(u) : u ∈ W 1,p

0 (�)
]
. (3.29)

Since τ < q < p, we have σλ

(
ûλ

)
< 0 = σλ(0) which implies ûλ 
= 0.

From (3.29) we have σ ′
λ

(
ûλ

) = 0, that is,

〈Ap
(
ûλ

)
, h〉 + 〈Aq

(
ûλ

)
, h〉 =

∫

�

gλ

(
x, ûλ

)
h dx for all h ∈ W 1,p

0 (�). (3.30)

First, we choose h = −û−
λ ∈ W 1,p

0 (�) in (3.30). Then, by the definition of the
truncation in (3.28) we easily see that ‖û−

λ ‖p ≤ 0 and so, ûλ ≥ 0 with ûλ 
= 0.

Next, we choose h = (
ûλ − uλ

)+ ∈ W 1,p
0 (�) in (3.30) which gives, due to (3.28)

and f ≥ 0,

〈Ap
(
ûλ

)
,
(
ûλ − uλ

)+〉 + 〈Aq
(
ûλ

)
,
(
ûλ − uλ

)+〉
=

∫

�

λa(x)uτ−1
λ

(
ûλ − uλ

)+
dx

≤
∫

�

[
λũ−η

λ + λa(x)uτ−1
λ + f (x, uλ)

] (
ûλ − uλ

)+
dx

= 〈Ap (uλ) ,
(
ûλ − uλ

)+〉 + 〈Aq (uλ) ,
(
ûλ − uλ

)+〉.

This shows that ûλ ≤ uλ. We have proved that

ûλ ∈ [0, uλ] , ûλ 
= 0.

Hence, ûλ is a positive solution of (Qλ) and due to Proposition 2.3 we know that

ûλ = ũλ ∈ int
(
C1
0(�)+

)
. Therefore, ũλ ≤ uλ for all λ ∈

(
0, λ̂

)
. ��
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Now we are able to establish the nonemptiness of the set L (being the set of all
admissible parameters) determine the regularity of the elements in the solution set Sλ.

Proposition 3.5 If hypotheses H(a) and H( f ) hold, then L 
= ∅ and, for every λ > 0,
Sλ ⊆ int

(
C1
0(�)+

)
.

Proof Let λ ∈
(
0, λ̂

)
. From Proposition 3.4 we know that ũλ ≤ uλ. So we can define

the truncation eλ : � × R → R of the reaction of problem (Pλ)

eλ(x, s)

=

⎧⎪⎨
⎪⎩

λ
[
ũλ(x)−η + a(x)ũλ(x)τ−1

] + f (x, ũλ(x)) if s < ũλ(x),

λ
[
s−η + a(x)sτ−1

] + f (x, s) if ũλ(x) ≤ s ≤ uλ(x),

λ
[
uλ(x)−η + a(x)uλ(x)τ−1

] + f (x, uλ(x)) if uλ(x) < s.

(3.31)

This is a Carathéodory function. We set Eλ(x, s) = ∫ s
0 eλ(x, t) dt and consider the

C1-functional Jλ : W 1,p
0 (�) → R defined by

Jλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

Eλ(x, u) dx for all u ∈ W 1,p
0 (�).

From (3.31) we see that Jλ : W 1,p
0 (�) → R is coercive and the Sobolev embedding

theorem implies that J is also sequentially weakly lower semicontinuous. Hence, its
global minimizer uλ ∈ W 1,p

0 (�) exists, that is,

Jλ(uλ) = min
[
Jλ(u) : u ∈ W 1,p

0 (�)
]
.

Hence, J ′
λ(uλ) = 0 which means that

〈Ap (uλ) , h〉 + 〈Aq (uλ) , h〉 =
∫

�

eλ (x, uλ) h dx for all h ∈ W 1,p
0 (�). (3.32)

We choose h = (uλ − uλ)
+ ∈ W 1,p

0 (�) in (3.32). Then, by using (3.31) and Propo-
sitions 3.4 and 3.3 we obtain

〈Ap (uλ) , (uλ − uλ)
+〉 + 〈Aq (uλ) , (uλ − uλ)

+〉
=

∫

�

(
λ

[
u−η

λ + a(x)uτ−1
λ

]
+ f (x, uλ)

)
(uλ − uλ)

+ dx

≤
∫

�

(
λ

[
ũ−η

λ + a(x)uτ−1
λ

]
+ f (x, uλ)

)
(uλ − uλ)

+ dx

= 〈Ap (uλ) , (uλ − uλ)
+〉 + 〈Aq (uλ) , (uλ − uλ)

+〉.

This shows that uλ ≤ uλ.
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Next, we choose h = (ũλ − uλ)
+ ∈ W 1,p

0 (�) in (3.32). Then, by (3.31) and
hypotheses H(a) as well as H( f )(i) it follows

〈Ap (uλ) , (ũλ − uλ)
+〉 + 〈Aq (uλ) , (ũλ − uλ)

+〉
=

∫

�

(
λ

[
ũ−η + a(x)ũτ−1

λ

]
+ f (x, ũλ)

)
(ũλ − uλ)

+ dx

≥
∫

�

λũ−η
λ (ũλ − uλ)

+ dx

= 〈Ap (ũλ) , (ũλ − uλ)
+〉 + 〈Aq (ũλ) , (ũλ − uλ)

+〉.

Hence, ũλ ≤ uλ and so we have proved that uλ ∈ [
ũλ, uλ

]
. Then, with view to (3.31)

and (3.32), we see that uλ is a positive solution of (Pλ) for λ ∈
(
0, λ̂

)
. In particular,

we have

−�puλ(x) − �quλ(x) = λuλ(x)
−η + aλ(x)uλ(x)

τ−1 + f (x, uλ(x)) for a.a. x ∈ �.

The nonlinear regularity theory, see Lieberman [15], and the nonlinear maximum
principle, see Pucci–Serrin [29, pp. 111 and 120] imply that uλ ∈ int

(
C1
0(�)+

)
.

Concludingwe can say that
(
0, λ̂

)
⊆ Lwhichmeans thatL is nonempty.Moreover,

for all λ > 0, Sλ ⊆ int
(
C1
0(�)+

)
. ��

Reasoning as in the proof of Proposition 3.4 with uλ replaced by u ∈ Sλ ⊆
int

(
C1
0(�)+

)
, we obtain the following result.

Proposition 3.6 If hypotheses H(a) and H( f ) hold and if λ ∈ L, then ũλ ≤ u for all
u ∈ Sλ.

Moreover, the map λ → ũλ from (0,+∞) into C1
0(�) exhibits a strong mono-

tonicity property which we will use in the sequel.

Proposition 3.7 If hypotheses H(a) holds and if 0 < λ < λ′, then ũλ′ − ũλ ∈
int

(
C1
0(�)+

)
.

Proof Following the proof of Proposition 3.4 we can show that

ũλ ≤ ũλ′ . (3.33)

From (3.33) we have

−�pũλ − �q ũλ = λa(x)ũτ−1
λ

= λ′a(x)ũτ−1
λ − (

λ′ − λ
)
ũτ−1

λ

≤ λ′a(x)ũτ−1
λ′

= −�pũλ′ − �q ũλ′ . (3.34)
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Note that 0 ≺ (
λ′ − λ

)
ũτ−1

λ . So, from (3.34) and Gasiński–Papageorgiou [9, Propo-
sition 3.2], we have

ũλ′ − ũλ ∈ int
(
C1
0(�)+

)
.

��
Next we are going to show that L is an interval.

Proposition 3.8 If hypotheses H(a) and H( f ) hold and if λ ∈ L and μ ∈ (0, λ), then
μ ∈ L.
Proof Since λ ∈ L there exists uλ ∈ Sλ ⊆ int

(
C1
0(�)+

)
, see Proposition 3.5. From

Propositions 3.4 and 3.7 we have

ũμ ≤ uλ.

We introduce the truncation function k̂μ : � × R → R defined by

k̂μ(x, s) =

⎧
⎪⎨
⎪⎩

μ
[
ũμ(x)−η + a(x)uμ(x)τ−1

] + f
(
x, uμ(x)

)
if s < ũμ(x),

μ
[
s−η + a(x)sτ−1

] + f (x, s) if ũμ(x) ≤ s ≤ uλ(x),

μ
[
uλ(x)−η + a(x)uλ(x)τ−1

] + f (x, uλ(x)) if uλ(x) < s,
(3.35)

which is a Carathéodory function. We set K̂μ(x, s) = ∫ s
0 k̂μ(x, t) dt and consider the

C1-functional σ̂μ : W 1,p
0 (�) → R defined by

σ̂μ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

K̂μ(x, u) dx for all u ∈ W 1,p
0 (�).

This functional is coercive because of (3.35) and sequentially weakly lower semicon-
tinuous due to the Sobolev embedding theorem. Hence, there exists uμ ∈ W 1,p

0 (�)

such that

σ̂μ(uμ) = inf
[
σ̂μ(u) : W 1,p

0 (�)
]
.

Therefore, σ̂ ′
μ(uμ) = 0 and so

〈Ap
(
uμ

)
, h〉 + 〈Aq

(
uμ

)
, h〉 =

∫

�

k̂μ

(
x, uμ

)
h dx (3.36)

for all h ∈ W 1,p
0 (�). We first choose h = (

uμ − uλ

)+ ∈ W 1,p
0 (�) in (3.36). Then,

by (3.35), μ < λ and since uλ ∈ Sλ, we obtain

〈Ap
(
uμ

)
,
(
uμ − uλ

)+〉 + 〈Aq
(
uμ

)
,
(
uμ − uλ

)+〉
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=
∫

�

[
μ

(
u−η

μ + a(x)uτ−1
λ

)
+ f (x, uλ)

] (
uμ − uλ

)+
dx

≤
∫

�

[
λ

(
u−η

λ + a(x)uτ−1
λ

)
+ f (x, uλ)

] (
uμ − uλ

)+
dx

= 〈Ap (uλ) ,
(
uμ − uλ

)+〉 + 〈Aq (uλ) ,
(
uμ − uλ

)+〉.

Hence, uμ ≤ vλ. In the same way, choosing h = (
ũμ − uμ

)+ ∈ W 1,p
0 (�), we get

from (3.35), hypotheses H(a), H( f )(i) and Proposition 2.3 that

〈Ap
(
uμ

)
,
(
ũμ − uμ

)+〉 + 〈Aq
(
uμ

)
,
(
ũμ − uμ

)+〉
=

∫

�

[
μ

(
ũ−η

μ + a(x)ũτ−1
μ

)
+ f

(
x, ũμ

)] (
ũμ − uμ

)+
dx

≥
∫

�

μũ−η
μ

(
ũμ − uμ

)+
dx

= 〈Ap
(
ũμ

)
,
(
ũμ − uμ

)+〉 + 〈Aq
(
ũμ

)
,
(
ũμ − uμ

)+〉.

Thus, ũμ ≤ uμ. We have proved that

uμ ∈ [
ũμ, uλ

]
. (3.37)

From (3.37), (3.35) and (3.36) it follows that

uμ ∈ Sμ ⊆ int
(
C1
0(�)+

)
and so μ ∈ L.

��
Now we are going to prove that the solution multifunction λ → Sλ has a kind of

weak monotonicity property.

Proposition 3.9 If hypotheses H(a) and H( f ) hold and if λ ∈ L, uλ ∈ Sλ ⊆
int

(
C1
0(�)+

)
and μ ∈ (0, λ), then μ ∈ L and there exists uμ ∈ Sμ ⊆ int

(
C1
0(�)+

)
such that

uλ − uμ ∈ int
(
C1
0(�)+

)
.

Proof From Proposition 3.8 and its proof we know that μ ∈ L and that we can find
uμ ∈ Sμ ⊆ int

(
C1
0(�)+

)
such that uμ ≤ vλ. Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be

as postulated by hypothesis H( f )(v). Using uμ ∈ Sμ, hypotheses H(a), H( f )(v) and
recalling that μ < λ we obtain

− �puμ − �quμ + ξ̂ρu
p−1
μ − μu−η

μ

= μa(x)uτ−1
μ + f (x, uμ) + ξ̂ρu

p−1
μ

= λa(x)uτ−1
μ + f (x, uμ) + ξ̂ρu

p−1
μ − (λ − μ)a(x)uτ−1

μ
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≤ λa(x)uτ−1
λ + f (x, uλ) + ξ̂ρu

p−1
λ

≤ −�puλ − �quλ + ξ̂ρu
p−1
λ − μu−η

λ . (3.38)

We have

0 ≺ (λ − μ)a(x)uτ−1
μ .

Therefore, from (3.38) and Papageorgiou–Smyrlis [18, Proposition 4], see also Propo-
sition 7 in Papageorgiou–Rădulescu–Repovš [27, Proposition 3.2], we have

uλ − uμ ∈ int
(
C1
0(�)+

)
.

��
Let λ∗ = supL.

Proposition 3.10 If hypotheses H(a) and H( f ) hold, then λ∗ < ∞.

Proof From hypotheses H(a) and H( f ) we can find λ̃ > 0 such that

λ̃a(x)sτ−1 + f (x, s) ≥ s p−1 for a.a. x ∈ � and for all s ≥ 0. (3.39)

Let λ > λ̃ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ int
(
C1
0(�)+

)
.

Consider a domain �0 ⊂⊂ �, that is, �0 ⊆ � and �0 ⊆ �, with a C2-boundary
∂�0 and let m0 = min�0

uλ > 0. We set

mδ
0 = m0 + δ with δ ∈ (0, 1].

Let ρ = max{‖uλ‖∞,m1
0} and let ξ̂ρ > 0 be as postulated by hypothesis H( f )(v).

Applying (3.39), hypothesis H( f )(v) and recalling that uλ ∈ Sλ as well as λ̃ < λ, we
obtain

−�pm
δ
0 − �qm

δ
0 + ξ̂ρ

(
mδ

0

)p−1 − λ̃
(
mδ

0

)−η

≤ ξ̂ρm
p−1
0 + χ(δ) with χ(δ) → 0+ as δ → 0+

≤
[
ξ̂ρ + 1

]
mp−1

0 + χ(δ)

≤ λ̃a(x)mτ−1
0 + f (x, u0) + ξ̂ρm

p−1
0 + χ(δ)

= λa(x)mτ−1
0 + f (x,m0) + ξ̂ρm

p−1
0 −

(
λ − λ̃

)
mτ−1

0 + χ(δ)

≤ λa(x)mτ−1
0 + f (x,m0) + ξ̂ρm

p−1
0 for δ ∈ (0, 1] small enough

≤ λa(x)uτ−1
λ + f (x, uλ) + ξ̂ρu

p−1
λ

= −�puλ − �quλ + ξ̂ρu
p−1
λ − λu−η

λ

≤ −�puλ − �quλ + ξ̂ρu
p−1
λ − λ̃u−η

λ for a. a. x ∈ �0. (3.40)
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From (3.40) and Papageorgiou–Rădulescu–Repovš [27, Proposition 6] we know that

uλ − mδ
0 ∈ D+ for δ ∈ (0, 1] small enough,

a contradiction. Therefore, λ∗ ≤ λ̃ < ∞. ��
Proposition 3.11 If hypotheses H(a) and H( f ) hold and if λ ∈ (0, λ∗), then problem
(Pλ) has at least two positive solutions

u0, û ∈ int
(
C1
0(�)+

)
with u0 ≤ û and u0 
= û.

Proof Let ϑ ∈ (λ, λ∗). According to Proposition 3.9 we can find uϑ ∈ Sϑ ⊆
int

(
C1
0(�)+

)
and u0 ∈ Sλ ⊆ int

(
C1
0(�)+

)
such that

uϑ − u0 ∈ int
(
C1
0(�)+

)
.

Recall that ũλ ≤ u0, see Proposition 3.4. Hence u
−η
0 ∈ Ls(�) for all s > N , see (3.1).

We introduce the Carathéodory function iλ : � × R → R defined by

iλ(x, s) =
{

λ
[
u0(x)−η + a(x)u0(x)τ−1

] + f (x, u0(x)) if s ≤ u0(x),

λ
[
s−η + a(x)sτ−1

] + f (x, s) if u0(x) < s.
(3.41)

We set Iλ(x, s) = ∫ s
0 iλ(x, t) dt and consider the C1-functional wλ : W 1,p

0 (�) → R

defined by

wλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

Iλ(x, u) dx for all u ∈ W 1,p
0 (�).

Using (3.41) and the nonlinear regularity theory along with the nonlinear maximum
principle we can easily check that

Kwλ ⊆ [u0) ∩ int
(
C1
0(�)+

)
. (3.42)

Then, from (3.41) and (3.42) it follows that, without any loss of generality, we may
assume

Kwλ ∩ [u0, uϑ ] = {u0}. (3.43)

Otherwise, on account of (3.41) and (3.42), we see that we already have a second
positive smooth solution of (Pλ) distinct and larger than u0.

We introduce the following truncation of iλ(x, ·), namely, îλ : �×R → R defined
by

îλ(x, s) =
{
iλ(x, s) if s ≤ uϑ(x),

iλ(x, uϑ(x)) if uϑ(x) < s,
(3.44)
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which is a Carathéodory function. We set Îλ(x, s) = ∫ s
0 îλ(x, t) dt and consider the

C1-functional ŵλ : W 1,p
0 (�) → R defined by

ŵλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

Îλ(x, u) dx for all u ∈ W 1,p
0 (�).

From (3.41) and (3.44) it is clear that ŵλ is coercive and due to the Sobolev embedding
theorem we know that ŵλ is also sequentially weakly lower semicontinuous. Hence,
we find û0 ∈ W 1,p

0 (�) such that

ŵλ

(
û0

) = min
[
ŵλ(u) : u ∈ W 1,p

0 (�)
]
. (3.45)

It is easy to see, using (3.44), that

Kŵλ
⊆ [u0, uϑ ] ∩ int

(
C1
0(�)+

)
(3.46)

and

ŵλ

∣∣
[0,uϑ ]

= wλ

∣∣
[0,uϑ ]

, ŵ′
λ

∣∣
[0,uϑ ]

= w′
λ

∣∣
[0,uϑ ]

. (3.47)

From (3.45)wehave û0 ∈ Kŵ′
λ
which by (3.43), (3.46) and (3.47) implies that û0 = u0.

Recall that uϑ − u0 ∈ int
(
C1
0(�)+

)
. So, on account of (3.47), we have that u0 is a

local C1
0(�)-minimizer of wλ and then u0 is also a local W 1,p

0 (�)-minimizer of wλ,
see, for example Gasiński–Papageorgiou [7].

We may assume that Kwλ is finite, otherwise, we see from (3.42) that we already
have an infinite number of positive smooth solutions of (Pλ) larger than u0 and so we
are done. From Papageorgiou–Rădulescu–Repovš [24, Theorem 5.7.6, p. 449] we find
ρ ∈ (0, 1) small enough such that

wλ(u0) < inf [wλ(u) : ‖u − u0‖ = ρ] = mλ. (3.48)

If u ∈ int
(
C1
0(�)+

)
, then by hypothesis H( f )(ii) we have

wλ(tu) → −∞ as t → +∞. (3.49)

Moreover, reasoning as in the proof of Proposition 3.1, we show that

wλ satisfies the C-condition, (3.50)

see also (3.41). Then, (3.48), (3.49) and (3.50) permit the use of the mountain pass
theorem. So we can find û ∈ W 1,p

0 (�) such that

û ∈ Kwλ ⊆ [u0) ∩ int
(
C1
0(�)+

)
, mλ ≤ wλ

(
û
)
. (3.51)
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From (3.51), (3.48) and (3.41) it follows that

û ∈ Sλ, u0 ≤ û, u0 
= û.

��

Remark 3.12 If 1 < q = 2 ≤ λ < p, then, using the tangency principle of Pucci–
Serrin [29, p. 35] we can say that û − u0 ∈ int

(
C1
0(�)+

)
.

Proposition 3.13 If hypotheses H(a) and H( f ) hold, then λ∗ ∈ L.

Proof Let λn ↗ λ∗. With ûn+1 ∈ Sλn+1 ⊆ int
(
C1
0(�)+

)
we introduce the following

Carathéodory function (recall that ũλ1 ≤ ũλn ≤ u for all u ∈ Sλn and for all n ∈ N,
see Propositions 3.4 and 3.7)

t̃n(x, s) =⎧⎪⎨
⎪⎩

λn
[
ũλ1(x)

−η + a(x)ũλ1(x)
τ−1

] + f
(
x, ũλ1(x)

)
if s < ũλ1(x)

λn
[
s−η + a(x)sτ−1

] + f (x, s) if ũλ1(x) ≤ s ≤ ûn+1(x)

λn
[
ûn+1(x)−η + a(x)ûn+1(x)τ−1

] + f
(
x, ûn+1(x)

)
if ûn+1(x) < s.

Let T̃n(x, s) = ∫ s
0 t̃n(x, t) dt and consider the C1-functional Ĩn : W 1,p

0 (�) → R

defined by

Ĩn(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

T̃n(x, u) dx for all u ∈ W 1,p
0 (�).

Applying the direct method of the calculus of variations, see the definition of the
truncation t̃n : � × R → R, we can find un ∈ W 1,p

0 (�) such that

Ĩn(un) = min
[
Ĩn(u) : u ∈ W 1,p

0 (�)
]
.

Hence, Ĩ ′
n(un) = 0 and so un ∈ [

ũλ1 , ûn+1
] ∩ int

(
C1
0(�)+

)
, see the definition of t̃n .

Moreover, un ∈ Sλn ⊆ int
(
C1
0(�)+

)
. From Proposition 2.3 we know that

Ĩn(un) ≤ Ĩn
(
ũλ1

)
< 0.

Now we introduce the truncation function t̂n : � × R → R defined by

t̂n(x, s) =
{

λn
[
ũλ1(x)

−η + a(x)ũλ1(x)
τ−1

] + f
(
x, ũλ1(x)

)
if s ≤ ũλ1(x),

λn
[
s−η + a(x)sτ−1

] + f (x, s) if ũλ1(x) < s.

(3.52)
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We set T̂n(x, s) = ∫ s
0 t̂n(x, t) dt and consider the C1-functional În : W 1,p

0 (�) → R

defined by

În(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq −

∫

�

T̂n(x, u) dx for all u ∈ W 1,p
0 (�).

It is clear from the definition of the truncation t̃n : � × R → R and (3.52) that

În
∣∣
[0,ûn+1] = Ĩn

∣∣
[0,ûn+1] and Î ′

n

∣∣
[0,ûn+1] = Ĩ ′

n

∣∣
[0,ûn+1].

Then from the first part of the proof, we see that we can find a sequence un ∈ Sλn ⊆
int

(
C1
0(�)+

)
, n ∈ N, such that

În(un) < 0 for all n ∈ N. (3.53)

Moreover we have

〈 Î ′
n(un), h〉 = 0 for all h ∈ W 1,p

0 (�) and for all n ∈ N. (3.54)

From (3.53) and (3.54), reasoning as in the proof of Proposition 3.1, we show that

{un}n≥1 ⊆ W 1,p
0 (�) is bounded.

So we may assume that

un
w→ u∗ in W 1,p

0 (�) and un → u∗ in Lr (�).

As before, see the proof of Proposition 3.1, using Proposition 2.1 we show that

un → u∗ in W 1,p
0 (�).

Then u∗ ∈ Sλ∗ ⊆ int
(
C1
0(�)+

)
, recall that ũλ1 ≤ un for all n ∈ N. This shows that

λ∗ ∈ L. ��
According to Proposition 3.13 we have

L = (0, λ∗].

The set Sλ is downward directed, see Papageorgiou–Rădulescu–Repovš [27, Proposi-
tion 18] that is, if u, û ∈ Sλ, we can find ũ ∈ Sλ such that ũ ≤ u and ũ ≤ û. Using this
fact we can show that, for every λ ∈ L, problem (Pλ) has a smallest positive solution.

Proposition 3.14 If hypotheses H(a) and H( f ) hold and if λ ∈ L = (0, λ∗], then
problem (Pλ) has a smallest positive solution u∗

λ ∈ int
(
C1
0(�)+

)
.
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Proof Applying Lemma 3.10 of Hu–Papageorgiou [12, p. 178] we can find a decreas-
ing sequence {un}n≥1 ⊆ Sλ such that

inf
n≥1

un = inf Sλ.

It is clear that {un}n≥1 ⊆ W 1,p
0 (�) is bounded. Then, applying Proposition 2.1, we

obtain

un → u∗
λ in W 1,p

0 (�).

Since ũλ ≤ un for all n ∈ N it holds u∗
λ ∈ Sλ and u∗

λ = inf Sλ. ��
We examine the map λ → u∗

λ from L into C1
0(�).

Proposition 3.15 If hypotheses H(a) and H( f ) hold, then the map λ → u∗
λ from L

into C1
0(�) is

(a) strictly increasing, that is, 0 < μ < λ ≤ λ∗ implies u∗
λ − u∗

μ ∈ int
(
C1
0(�)+

)
;

(b) left continuous.

Proof (a) Let 0 < μ < λ ≤ λ∗ and let u∗
λ ∈ int

(
C1
0(�)+

)
be the minimal positive

solution of problem (Pλ), see Proposition 3.14. According to Proposition 3.9 we can
find uμ ∈ Sμ ⊆ int

(
C1
0(�)+

)
such that u∗

λ − u∗
μ ∈ int

(
C1
0(�)+

)
. Since u∗

μ ≤ uμ

we have u∗
λ − u∗

μ ∈ int
(
C1
0(�)+

)
and so, we have proved that λ → u∗

λ is strictly
increasing.

(b) Let {λn}n≥1 ⊆ L = (0, λ∗] be such that λn ↗ λ as n → ∞. We have

ũλ1 ≤ u∗
λ1

≤ u∗
λn

≤ u∗
λ∗ for all n ∈ N.

Thus,

{u∗
λn

}n≥1 ⊆ W 1,p
0 (�) is bounded

and so

{u∗
λn

}n≥1 ⊆ L∞(�) is bounded,

seeGuedda–Véron [10, Proposition 1.3]. Therefore,we canfindβ ∈ (0, 1) and c19 > 0
such that

u∗
λn

∈ C1,β
0 (�) and ‖u∗

λn
‖
C1,β
0 (�)

≤ c19 for all n ∈ N,

see Lieberman [15]. The compact embedding of C1,β
0 (�) into C1

0(�) and the mono-
tonicity of {u∗

λn
}n≥1, see part (a), imply that

u∗
λn

→ û∗
λ in C1

0(�). (3.55)
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If û∗
λ 
= u∗

λ, then there exists x0 ∈ � such that

u∗
λ(x0) < û∗

λ(x0) for all n ∈ N.

From (3.55) we then conclude that

u∗
λ(x0) < û∗

λn
(x0) for all n ∈ N,

which contradicts part (a). Therefore, û∗
λ = u∗

λ and sowehaveproved the left continuity
of λ → u∗

λ. ��
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