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Abstract
The topological derivative method is used to solve a pollution sources reconstruction
problemgoverned by a steady-state convection-diffusion equation. To bemore precise,
we are dealing with a shape optimization problem which consists of reconstruction
of a set of pollution sources in a fluid medium by measuring the concentration of
the pollutants within some subregion of the reference domain. The shape functional
measuring the misfit between the known data and solution of the state equation is
minimized with respect to a set of ball-shaped geometrical subdomains representing
the pollution sources. The necessary conditions for optimality are derived with the
help of the topological derivative method which consists in expanding the shape func-
tional asymptotically and then truncate it up to the second order term. The resulting
expression is trivially minimized with respect to the parameters under consideration
which leads to a noniterative second-order reconstruction algorithm. Two different
cases are considered. Firstly, when the velocity of the leakages is given and we recon-
struct the support of the unknown sources, including their locations and sizes. In the
second case, we consider the size of the pollution sources to be known and find out the
mean velocity of the leakages and their locations. Numerical examples are presented
showing the capability of the proposed algorithm in reconstructing multiple pollution
sources in both cases.

Keywords Pollution sources reconstruction · Shape optimization · Topological
derivative method · Inverse problem

1 Introduction

The topic addressed in this article belongs to a class of inverse problemswhere themain
objective is to identify the location and size of pollution sources. In this area of research,
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the rate of impurity emission from the pollution sources using themeasurements of the
concentration of the pollutants in some monitoring region is also an interesting issue
to investigate. In general, the associated forward problems are governed by a parabolic
advection-dispersion-reaction equation in one [15] or more spatial dimensions [3,24,
34]. Such inverse problems are motivated from many physical phenomena and real-
life events such as leakages in nuclear plants, refinery and chemical laboratories; and
fire outbreaks in buildings and forests, for example. However, most of the practical
applications reported in the literature concern themonitoring thewater quality of rivers
and groundwater [3,15,24] and the air quality in large cities [34].

In this paper, we reconstruct a set of pollution sources in a fluid medium by mea-
suring the concentration of the pollutants within a subregion of the domain. To be
more precise, we consider a two dimensional fluid domain where the impurities are
getting injected with an unknown velocity through finitely many distributed unrecog-
nized sources localized in a compactly supported region. The main idea is to measure
the concentration of the pollutant away from their sources and use this information
to completely characterize the sources and the intensity of the pollution, i.e. to deter-
mine the number of sources, their locations, their sizes and the velocity of impurity
integration. It is not a difficult task to produce numerical results which show that if all
these variables are unknown the uniqueness of the problem is lost and hence the well-
posedness. This motivates us to consider two different inverse problems. In the first
problem, we assume that the velocity field is given and reconstruct the topology of the
pollution sources by recovering their locations and sizes. In the second one, the sizes
of the pollution sources are assumed to be known and we determine their locations and
the mean velocity of the respective leakages. In our simplified mathematical setting,
we are dealing with an inverse reconstruction problem whose forward counterpart is
governed by a steady-state convection-diffusion equation.

In this case, since the pollutant concentration is known in a small subregion of the
fluid domain, the inverse problem can be written in the form of an over-determined
boundary value problem. Following the classical well-known strategy, we rewrite our
inverse problem as an optimization problem which consists in minimizing the misfit
between the knownmeasurement and the solution to themodel problemwith respect to
the parameters related to the unknown sources of pollution. One can see [5,6,22] where
the inverse problems associated with the reconstruction of geometrical subdomains
are reformulated as topology optimization problems. A quite general approach to deal
with such problems is based on the concept of topological derivatives [28], which
can be seen as a particular case of the broader class of asymptotic methods. The
bibliography is quite exhaustive, but for a general idea on the subject, readers may
refer to [1,7,10–12].

The topological derivative is defined as the first term (correction) of the asymp-
totic expansion of a given shape functional with respect to a small parameter that
measures the size of singular domain perturbations, such as holes, inclusions, defects,
source-terms and cracks. This relatively newconcept has applications inmanydifferent
fields such as shape and topology optimization, inverse problems, image processing,
multi-scale material design and mechanical modeling including damage and frac-
ture evolution phenomena. The topological derivative was rigorously introduced by
Sokołowski and Żochowski [31] and developed later bymany authors [18,27,30,33]. It
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can be seen as a particular case of the broader class of asymptotic methods fully devel-
oped in the book by Ammari and Kang [2], for instance. One can refer to the books by
Maz’ya et al. [25] and Nazarov and Plamenevskij [26] for similar topics and discus-
sions. In addition, one can also cite the paper by Sokołowski and Żochowski [32]where
the domain decomposition method was proposed in the domain of topological deriva-
tives.More recently, the concept of second-order topological derivativewas introduced
in [14], which has been successfully used for solving a class of inverse reconstruction
problems. A variety of applications of the topological derivative method in topology
optimization, inverse imaging problem and inverse reconstruction problems can be
found in the complementary book by Novotny, Sokołowski and Żochowski [29]. Fol-
lowing the original ideas introduced in [16], in the current article, the second-order
topological derivative is applied in the context of the proposed pollution sources recon-
struction problem. The two main challenges in this article, in comparison to [16] are
as follows: (i) the presence of the convective term in the governing forward equation,
leading to a non-symmetric and non-coercive bilinear form; and (ii) the reconstruc-
tion of a vector quantity representing the mean velocity of a pollutant substance that
escapes of a confined region characterizing a pollution source to be determined.

The outline of this paper is as follows. The inverse problem is reformulated as a
topology optimization problem in Sect. 2. Such reformulation of the problem allows
to solve it through a topological derivatives-based approach. Thus, we introduce some
tools from the theory of topological derivatives in the beginning of the Sect. 3, namely,
the functionals associated to the unperturbed and perturbed domains, the ansatz for
a scalar field of interest and some auxiliary boundary value problems. In Sect. 4, we
state the main result of this paper which consists of the asymptotic expansion of the
shape functional. Estimates of the remainders, obtained in Sect. 4, are presented in
Appendix A. Numerical results are presented in Sect. 5 where two reconstruction
algorithms are devised from the asymptotic expansion of the shape functional. In
addition, numerical experiments are conducted in order to test the capabilities of each
of the proposed algorithms. Some concluding remarks are inferred in Sect. 6.

2 Problem Formulation

Let Ω ⊂ R2 be an open and bounded domain with smooth boundary ∂Ω . Measure-
ments of the pollutant concentration field are collected in a subdomain Ωo ⊂ Ω .
We assume that there may be an unknown number (N∗ ∈ Z+) of isolated pollution
sources ω∗

i within the domain Ω . See Fig. 1a. Therefore, there is a set ω∗ = ∪N∗
i=1ω

∗
i ,

whose components ω∗
i satisfy ω∗

i ∩ ω∗
j = ∅ for i �= j and ω∗

i ∩ ∂Ω = ∅ for each
i, j ∈ {1, . . . , N∗}.

We assume that the polluting substance is leaking in an incompressible flow with
velocity V ∈ C(Ω,R2), such that V �= (0, 0) at each ω∗

i ⊂ Ω , i = 1, . . . , N∗. For
a given Dirichlet data g imposed on ∂Ω , the resulting pollutant concentration z in
Ω is observed in the subdomain Ωo. In this set up, the inverse problem consists in
finding χω∗ such that the pollutant concentration z satisfies the following boundary
value problem
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Fig. 1 Domain Ω with (a) and without (b) the set of isolated pollution sources ω∗

{−Δz + χω∗V · ∇z = 0 in Ω,

z = g on ∂Ω,
(1)

where the parameter χω∗ is defined as

χω∗ =
{
0 in Ω \ ω∗,
1 in ω∗

i , i = 1, . . . , N∗ (2)

and the velocity V is considered as a null divergence vector field, namely, div V = 0
in ω∗

i , for i = 1, . . . , N∗. Without loss of generality, we are considering only one
boundary data g on ∂Ω . The extension to several boundary data is trivial. See [16]
for further detail. Here, function g is a purely synthetic data used to produce the
observation of z in Ωo. The realistic problem of pollution source reconstruction is
much more complicated and requires further investigation.

Now, for an initial guess χω of χω∗ , we consider the pollutant concentration field
u to be the solution to the boundary value problem

{−Δu + χωV · ∇u = 0 in Ω,

u = g on ∂Ω,
(3)

where

χω =
{
0 in Ω \ ω,

1 in ωi , i = 1, . . . , N .
(4)

The characteristic function χω∗ is unknown and hence z but we assume that z can
be measured in Ωo. Thus, if we look for an appropriate χω∗ , then we wish u to agree
with z in Ωo, i.e., we want u = z|Ωo

. In addition, in such a problem, we assume that
the velocity field V is known and then we reconstruct the support of ω∗ from partial
measurements of the scalar field z taken on Ωo.

The inverse problem under investigation is written in the form of an ill-posed and
over-determined boundary value problem. It is well known that such difficulty can be
overcome by rewriting the inverse problem in the form of an optimization problem.
In particular, if the velocity field V is a known data and we reconstruct the support of
each ω∗

i , i = 1, . . . , N∗, then the inverse problem of finding χω∗ can be rewritten as
a topology optimization problem, namely
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Minimize
ω⊂Ω

Jω(u) =
∫

Ωo

(u − z)2, (5)

where z andu are the solutions of the boundary value problems (1) and (3), respectively,
corresponding to the Dirichlet data g.

3 Topological Derivatives-Based Approach

The inverse reconstruction problemof Sect. 2 has beenwritten in the formof a topology
optimization problem (5). A quite general approach for solution of such class of
problems is basedon the concept of topological derivativewhich requires the expansion
of the shape functionalJω(u)with respect to the parameters depend upon a set of small
perturbations. Since the topological derivative does not depend on the initial guess of
the unknown topology ω∗, we start with the unperturbed domain by setting ω = ∅.
See Fig. 1b. More precisely, we consider

J (u0) =
∫

Ωo

(u0 − z)2 , (6)

where u0 be the solution of the unperturbed boundary value problem

{−Δu0 = 0 in Ω,

u0 = g on ∂Ω.
(7)

In this article, we are considering the topology optimization problem (5) for the
ball-shaped pollution sources and hencewe define the topologically perturbed counter-
part of (7) by introducing N ∈ Z+ number of small circular pollution sources Bεi (xi )
with center at xi ∈ Ω and radius εi for i = 1, . . . , N . The respective geometric set
can be denoted as

Bε(ξ) =
N⋃
i=1

Bεi (xi ), (8)

where ξ = (x1, . . . , xN ) and ε = (ε1, . . . , εN ). Moreover, we assume that Bε ∩∂Ω =
∅, Bε ∩Ωo = ∅ and Bεi (xi )∩ Bε j (x j ) = ∅ for each i �= j and i, j ∈ {1, . . . , N }. The
shape functional associated with the topologically perturbed domain is written as

J (uε) =
∫

Ωo

(uε − z)2 (9)

with uε be the solution of the perturbed boundary value problem

{−Δuε + χεV · ∇uε = 0 in Ω,

uε = g on ∂Ω,
(10)
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where the parameter χε is defined as

χε =
{
0 in Ω \ Bε(ξ),

1 in Bε(ξ).
(11)

By construction, we consider that the velocity field V satisfies the additional condition
div V = 0 in Bε(ξ). Since we are interested in reconstructing the mean velocity of the
leakages, in order to simplify the analysis we assume that the velocity V is constant
in the neighborhood of Bεi (xi ), so that V (x) ≈ Vi := V (xi ), with x ∈ Bεi (xi ),
i = 1, . . . , N .

Asmentioned earlier, the topological derivativesmeasure the sensitivity of the shape
functional with respect to the parameters (ε, ξ) depending upon a set of small circular
pollution sources Bε(ξ). Therefore, our idea is to obtain the number, location and
radius of the components of the set Bε(ξ) in order to produce the best approximation
to the true set of pollution sources ω∗ by using the concept of topological derivatives.

In this article, we are interested in expanding the shape functional J (uε) defined
in (9) in power of ε. Therefore, we start by simplifying the difference between the
perturbed shape functional J (uε) and its unperturbed counter-part J (u0) defined in
(9) and (6), respectively, as follows

J (uε) − J (u0) =
∫

Ωo

[
2(uε − u0)(u0 − z) + (uε − u0)

2
]
. (12)

Since we are approximating the set of pollution sources to be reconstructed ω∗ by
a number of circular balls Bε(ξ), the idea is to expand the perturbed shape func-
tional J (uε) with respect to the Lebesgue measure (volume) of the two-dimensional
ball Bεi (xi ), namely, |Bεi (xi )| = πε2i , i = 1, . . . , N . To simplify the notation, we
introduce the vector

α = (α1, . . . , αN ) with αi = |Bεi (xi )|, (13)

and the characteristic function

χi =
{
0 in Ω \ Bεi (xi ),
1 in Bεi (xi ).

(14)

Additionally, for i = 1, . . . , N , let us define the linear operators f �→ ψ[ f ] satisfying
{

Δψ[ f ] = 0 in Ω,

ψ[ f ] = − f on ∂Ω,
(15)

and f �→ ψi [ f ] such that

{
Δψi [ f ] = α−1

i f χi in Ω,

ψi [ f ] = 0 on ∂Ω.
(16)
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For a positive real number R  ε, we consider the ball BR(xi ) such that Bεi (xi ) ⊂
Ω ⊂ BR(xi ) with xi ∈ Ω for i = 1, . . . , N . Then, we define the linear operator
f �→ ψ R

i [ f ] as follows
{

Δψ R
i [ f ] = α−1

i f χi in BR(xi ),
ψ R
i [ f ] = 0 on ∂BR(xi ).

(17)

By adopting the Einstein summation convention and taking into account the notation
introduced above, let us consider the following ansatz for the asymptotic expansion
of uε with respect to the parameters describing the small circular pollution sources as
presented in Sect. 2

uε = u0 + αi h
ε
i + αiα jv

ε
i j + αiα

2
jw

ε
i j + ũε, (18)

where

hε
i := ψi [Vi · ∇u0], vε

i j := ψi [Vi · ∇hε
j ] and wε

i j := ψi [Vi · ∇vε
i j ], (19)

for i, j = 1, . . . , N . The last term of the expansion (18), namely ũε, must satisfy the
problem

{−Δũε + χεV · ∇ũε = Φε in Ω,

ũε = 0 on ∂Ω,
(20)

with

Φε = Φε,1 + Φε,2 (21)

such that, for i, j, l = 1, . . . , N , one has

Φε,1 = −α jαl Vi · ∇vε
jl χi |l �= j

and Φε,2 = −α jα
2
l Vi · ∇wε

jl χi . (22)

In order to simplify further analysis, we write hε
i as a sum of three functions pε

i , qi
and h̃ε

i in the form

hε
i = (Vi · ∇u0(xi ))(p

ε
i + qi ) + h̃ε

i . (23)

The function pε
i is defined as

pε
i := ψ R

i [1] + 1

2π
ln R

=

⎧⎪⎨
⎪⎩

1

4πε2i
‖x − xi‖2 − 1

2π

(
1

2
− ln εi

)
in Bεi (xi ),

1

2π
ln ‖x − xi‖ in BR(xi ) \ Bεi (xi ).

(24)
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Building on the expression (24), we construct qi , i = 1, . . . , N , in order to compensate
for the discrepancies introduced by pε

i on ∂Ω . Therefore, we define

qi := 1

2π
ψ[ln ‖x − xi‖]. (25)

Additionally, the residual function h̃ε
i is given by

h̃ε
i := ψi [Vi · (∇u0 − ∇u0(xi ))]. (26)

Taking into account the decomposition (23) together with the expressions (24)–(26),
we introduce an alternative representation for the function hε

i outside the ball Bεi (xi ),
namely

hε
i = (Vi · ∇u0(xi ))hi + h̃ε

i in Ω \ Bεi (xi ), (27)

where

hi := pi + qi (28)

with

pi := 1

2π
ln ‖x − xi‖ and qi := ψ[pi ], (29)

that is, for i = 1, . . . , N , qi solves the homogeneous boundary value problem

{
Δqi = 0 in Ω,

qi = −pi on ∂Ω.
(30)

Now, building on the expression for h̃ε
i given by (26), we first define the vector

quantity Wi coming out from the Taylor expansion of the argument of ψi as

Wi := (∇2u0(xi ))Vi (31)

and then the function h̃ε
i can be split into the following sum

h̃ε
i = p̃ε

i + ε2i q̃i + ˜̃hε
i , (32)

where p̃ε
i is defined as
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p̃ε
i := ψ R

i [Wi · (x − xi )]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

8π

(
‖x − xi‖2 − ε2i

ε2i
− R2 − ε2i

R2

)
Wi · (x − xi ) in Bεi (xi ),

ε2i

8πR2

‖x − xi‖2 − R2

‖x − xi‖2 Wi · (x − xi ) in BR(xi ) \ Bεi (xi ),

(33)

the function q̃i is such that

q̃i := 1

8πR2ψ

[‖x − xi‖2 − R2

‖x − xi‖2 Wi · (x − xi )

]
(34)

and the residual term ˜̃hε
i is given by

˜̃hε
i := ψi [Ti (x)], (35)

where Ti (x) = O(‖x − xi‖2) in an appropriate norm.
Similarly to the decomposition proposed for the function hε

i in (23), we write the
function vε

i i as a sum of the functions pε
i i , qii and ṽε

i i in the form

vε
i i = (Vi · ∇u0(xi ))(p

ε
i i + qii ) + ṽε

i i . (36)

The function pε
i i is such that

pε
i i := ψ R

i [Vi · ∇ pε
i ]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

(4πεi )2

(
‖x − xi‖2 − ε2i

ε2i
− R2 − ε2i

R2

)
Vi · (x − xi ) in Bεi (xi ),

1

(4πR)2

‖x − xi‖2 − R2

‖x − xi‖2 Vi · (x − xi ) in BR(xi ) \ Bεi (xi ),

(37)

where we have used expression (24) to obtain

∇ pε
i (x) = x − xi

2πε2i
in Bεi (xi ). (38)

Additionally, the functions qii and h̃ε
i are given by

qii := 1

(4πR)2
ψ

[‖x − xi‖2 − R2

‖x − xi‖2 Vi · (x − xi )

]
(39)
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and

ṽε
i i := ψi [(Vi · ∇u0(xi ))(Vi · ∇qi ) + Vi · ∇h̃ε

i ], (40)

respectively.
Finally, in order to simplify further calculations related to the asymptotic develop-

ment of the topologically perturbed shape functional (9), we introduce an adjoint state
v to be the solution to the problem

{−Δv = (u0 − z)χΩo in Ω,

v = 0 on ∂Ω.
(41)

4 Asymptotic Expansion of the Shape Functional

Let us start by replacing (18) in (12) to obtain

J (uε) − J (u0) = 2αi

∫
Ωo

hε
i (u0 − z) + 2αiα j

∫
Ωo

vε
i j (u0 − z)

+2αiα
2
j

∫
Ωo

wε
i j (u0 − z) + αiα j

∫
Ωo

hε
i h

ε
j +

9∑
=1

E(ε), (42)

where

E1(ε) =
∫

Ωo

(2(u0 − z) + ũε)ũε, E2(ε) = 2αiα jαl

∫
Ωo

hε
i v

ε
jl ,

E3(ε) = 2αiα jα
2
l

∫
Ωo

hε
i w

ε
jl , (43)

E4(ε) = 2αi

∫
Ωo

hε
i ũε, E5(ε) = αiα jαlαp

∫
Ωo

vε
i jv

ε
lp,

E6(ε) = 2αiα jαlα
2
p

∫
Ωo

vε
i jw

ε
lp, (44)

E7(ε) = 2αiα j

∫
Ωo

vε
i j ũε, E8(ε) = αiα

2
jαlα

2
p

∫
Ωo

wε
i jw

ε
lp and

E9(ε) = 2αiα
2
j

∫
Ωo

wε
i j ũε. (45)

On the basis of the boundary value problem for the adjoint state (41) together with
the Green’s formula, we obtain

∫
Ωo

ψi [ f ](u0 − z) = −
∫

Ω

ψi [ f ]Δv = − 1

αi

∫
Bεi (xi )

f v. (46)
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The closed formula given by expression (46) allows to replace the first three integrals
over Ωo on the right-hand side of (42) by integrals over the ball Bεi (xi ). In fact, by
taking into account the notation introduced in (19) and choosing f in the form of the
scalar products Vi ·∇u0, Vi ·∇hε

j and Vi ·∇vε
i j in (46), expression (42) can be rewritten

as

J (uε) − J (u0) = −2
∫
Bεi (xi )

(Vi · ∇u0)v − 2α j

∫
Bεi (xi )

(Vi · ∇hε
j )v

−2α2
j

∫
Bεi (xi )

(Vi · ∇vε
j j )v + αiα j

∫
Ωo

hε
i h

ε
j +

9∑
=1

E(ε),

(47)

where the Einstein summation convention still holds. For the second and third integrals
on the right-hand side of the expansion (47), we first split the sum over j in the cases
when i = j and i �= j , then we replace hε

j and vε
j j by the decompositions (23)

and (36), respectively. Since the fourth integral in (47) is evaluated over Ωo, then
the functions hε

i (and also hε
j ) are replaced by expression given in (27). Thus, the

asymptotic expansion (47) can be expressed as

J (uε) − J (u0) = −2
∫
Bεi (xi )

(Vi · ∇u0)v − 2αi

∫
Bεi (xi )

(Vi · ∇ p̃ε
i )v

−2αi (Vi · ∇u0(xi ))
∫
Bεi (xi )

(Vi · ∇ pε
i )v − 2αi (Vi · ∇u0(xi ))

∫
Bεi (xi )

(Vi · ∇qi )v

−2α j (Vj · ∇u0(x j ))
∫
Bεi (xi )

(Vi · ∇h j )v|i �= j − 2α2
i (Vi · ∇u0(xi ))

∫
Bεi (xi )

(Vi · ∇ pε
i i )v

+αiα j (Vi · ∇u0(xi ))(Vj · ∇u0(x j ))
∫
Ωo

hi h j +
15∑

=1

E(ε). (48)

Here, the six new remainders are defined as

E10(ε) = −2αi

∫
Bεi (xi )

Vi · (ε2i ∇qi + ∇ ˜̃hε
i )v,

E11(ε) = −2α j

∫
Bεi (xi )

(Vi · ∇h̃ε
j )v|i �= j , (49)

E12(ε) = −2α2
j (Vj · ∇u0(x j ))

∫
Bεi (xi )

(Vi · ∇q j j )v,

E13(ε) = −2α2
j

∫
Bεi (xi )

(Vi · ∇ṽε
j j )v, (50)

E14(ε) = −2α2
j (Vj · ∇u0(x j ))

∫
Bεi (xi )

(Vi · ∇ pε
j j )v|i �= j (51)
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and

E15(ε) = αiα j

∫
Ωo

[(Vi · ∇u0(xi ))hi h̃
ε
j + (Vj · ∇u0(x j ))h j h̃

ε
i + h̃ε

i h̃
ε
j ]. (52)

In order to obtain the final form of the asymptotic expansion of the shape func-
tional J (uε) from (48) we use the explicit representation of the functions pε

i , p̃
ε
i and

pε
i i , given by (24), (33) and (37), respectively, to compute their gradients in Bεi (xi ).

Moreover, we also consider the Taylor’s expansions of the functions ∇u0, ∇qi , ∇h j

and v around the point xi up to produce a remainder of order o(|ε|4) as done in [16].
Thus, we get

J (uε) − J (u0) = −2αi (Vi · ∇u0(xi ))v(xi ) − 1

2π
α2
i Vi · ∇2u0(xi )∇v(xi )

+ 1

4π
α2
i Vi · (∇2u0(xi )Vi )v(xi ) − 1

4π
α2
i (Vi · ∇u0(xi ))(Vi · ∇v(xi ))

− 2α2
i (Vi · ∇u0(xi ))(Vi · ∇qi (xi ))v(xi ) + 1

8π
α2
i (Vi · ∇u0(xi ))‖Vi‖2v(xi )

−2αiα j (Vj · ∇u0(x j ))(Vi · ∇h j (xi ))v(xi )|i �= j

+αiα j (Vi · ∇u0(xi ))(Vj · ∇u0(x j ))
∫

Ωo

hi h j + E(ε), (53)

provided that u0 and v are harmonic in Ω \ Ωo, with

E(ε) = E0(ε) +
15∑

=1

E(ε). (54)

The new remainder E0(ε) contains the residual terms arising from different Taylor’s
expansions arguing in a similar fashion to get the remainders E10(ε)–E19(ε) in [16].

We are now in position to state the main result of this paper.

Theorem 1 Let u0, hi , qi and v be the functions defined in (7), (28), (30) and (41),
respectively, for i = 1, . . . , N. Additionally, let V be the null divergence velocity
field introduced in problem (1). Then, the asymptotic expansion for the topologically
perturbed shape functional J (uε) defined in (9), with respect to αi = |Bεi (xi )|,
i = 1, . . . , N, is given by (53), where the remaining terms, given by (54), are such
that |E(ε)| = o(|ε|4), whose justification can be found in Appendix A.

5 Numerical Experiments

This section consists of two reconstruction algorithms and their respective numerical
examples. Firstly, we propose the following contextualization of the inverse problem
in order to recall some of its characteristic elements. Let us consider a pipeline network
within a reference domain Ω which contains a N∗ number of leakage points through
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Fig. 2 Numerical scenario: a the
set Ωo (in gray color) as part of
the reference domain Ω and b
the set of admissible locations X

which a polluting substance escapes with a velocity V . Each leakage point ω∗
i (i =

1, . . . , N∗) can be imagined as a pollution source which has to be reconstructed by a
ball-shaped geometrical subdomain Bεi (xi ). Hence, it can be completely characterized
by the center xi and radius εi of Bεi (xi ), for i = 1, . . . , N∗. Moreover, the vector field
V at the point xi provides us an additional information about each leakage.

Since the asymptotic expansion (53) depends on (a) the number, (b) the locations,
(c) the sizes of the pollution sources and (d) the velocity of the pollution, we solve
two different problems keeping in mind the physical aspects of the current scenario.
In both problems to be considered, the number of pollution sources N∗ is assumed to
be given. In case it is not known, see Sect. 6.

In the first case, we assume that the velocity field V is given and we reconstruct the
topology of the pollution sources by recovering their locations ξ and sizes α. We deal
with this problem in Sect. 5.1 under the nomenclature support velocity reconstruction.
In Sect. 5.2, we consider the second case with the namemean velocity reconstruction.
Here, we assume that the sizes α of the pollution sources are known and determine
their locations ξ and respective velocities Vi of the leakages, i = 1, . . . , N .

Numerical experiments are conducted in the following scenario. The reference
geometrical domain is given by a square Ω = (- 0.5, 0.5) × (- 0.5, 0.5) which is
discretized with three-node finite elements. The mesh is generated from a grid of
160 × 160 squares. Each square is divided into four triangles which leads us to a
resultingmesh comprising 102400 elements and 51521 nodes.Measurements of scalar
fields of interest are taken in the subdomain Ωo which is a union of four small regions
in the neighborhood of the corners of the square domainΩ . See Fig. 2a. The boundary
∂Ω of the reference domain is excited by imposing different Dirichlet data, namely,
g1 = x , g2 = y and g3 = xy.

The auxiliary boundary value problems are solved over the resulting mesh. From
these solutions the topological derivatives can be numerically evaluated at any point
of the mesh. However, due the high complexity of the algorithm [23], a sub-grid X
consists of uniformly distributed points is extracted from the original mesh and then
used as a set of admissible locations where a combinatorial search is performed which
leads to the optimal solution defined in X . In the case of the examples presented below,
we consider a fixed sub-grid X comprising 165 points, as illustrated in Fig. 2b.

In order to obtain noisy synthetic data, the true target function z, corresponding to
the solution of the problem (1) for a given Dirichlet data g, is corrupted with white
Gaussian noise, where the resulting level of noise in the measurement of z is given by
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μ∗ = ‖zμ − z‖L2(Ωo)

‖z‖L2(Ωo)

× 100%, (55)

where zμ denotes the corrupted target function used as synthetic data.
In all our numerical results, we represent the (true and reconstructed) pollution

sources by black, the subdomain Ωo by gray and the remaining domain by white
colors.

5.1 Support Velocity Reconstruction

In this section, we present our first algorithm followed by two numerical examples
concerning the reconstruction of the topology of the pollution sources. The solution
algorithm is devised from the topological asymptotic expansion of the shape functional
J (uε) given by (53). After disregarding all terms of order o(|α|2) in (53), the resulting
truncated expansion, in its matrix form, is written as

δ J (α, ξ, N ) := α · d(ξ) + 1

2
H(ξ)α · α, (56)

where the entries of the vector d ∈ RN and the matrix H ∈ RN×N are given by

di := −2(Vi · ∇u0(xi ))v(xi ), (57)

and

Hii := − 1

π
Vi · ∇2u0(xi )∇v(xi ) + 1

2π
Vi · (∇2u0(xi ) Vi )v(xi )

− 1

2π
(Vi · ∇u0(xi ))(Vi · ∇v(xi ))

− 4(Vi · ∇u0(xi ))(Vi · ∇qi (xi ))v(xi ) + 1

4π
(Vi · ∇u0(xi ))‖Vi‖2v(xi )

+ 2(Vi · ∇u0(xi ))
2
∫

Ωo

h2i , (58)

Hi j := −4(Vj · ∇u0(x j ))(Vi · ∇h j (xi ))v(xi )

+ 2(Vi · ∇u0(xi ))(Vj · ∇u0(x j ))
∫

Ωo

hi h j , (59)

if i �= j , respectively, for i, j = 1, . . . , N . Here there is no summation in the repeated
indexes.

The truncated asymptotic expansion δ J (α, ξ, N ), given by (56), is a quadratic form
in α. Hence, in order to minimize (56), we proceed with the derivative of δ J (α, ξ, N )

with respect to the variable α to write the first-order optimality condition

〈Dαδ J , β〉 = [d(ξ) + Hs(ξ)α] · β = 0, ∀β ∈ RN , (60)
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Fig. 3 Example 1: Target (a) and results (b–d)

with Hs = (H + H�)/2, where H� denotes the transpose of the matrix H . From
(60), we obtain the linear system

α = −(Hs(ξ))−1d(ξ). (61)

Note that, the quantity α, solution of (61), becomes a function of the locations ξ , i.e.,
α = α(ξ). Let us replace α = α(ξ) in (56) to obtain

δ J (α(ξ), ξ, N ) = 1

2
d(ξ) · α(ξ). (62)

Therefore, the optimal locations and sizes of the pollution sources, given by the pair
of vectors (ξ�, α�), can be obtained by

ξ� := argmin
ξ∈X

δ J (α(ξ), ξ, N ) and α� := α(ξ�), (63)

where X denotes the set of admissible locations for the pollution sources. The above
procedure written in pseudo-code format can be found in [23].

5.1.1 Numerical Examples

Two numerical examples are presented below. The first one tests the robustness of
the reconstruction in the presence of noisy data while the second one analyses the
sensitivity of the reconstruction with respect to the number of measurements.

Example 1 reconstruction of a single leakage from noisy data. We consider a target
domain containing a single leakage ω∗ located at x∗ = (0.2, 0.1) whose radius is
ε∗ = 0.03, as shown in Fig. 3a. In addition, it is assumed that the pollution flows with
constant velocity V = (2, 2). The reconstruction of the topology of ω∗ is performed
from only one measurement by choosing g1 as Dirichlet data. In the absence of noise,
the proposed algorithm is able to find the exact center x∗ and size ε∗ ofω∗. In addition,
the pollution source is accurately reconstructed for levels of noise up to 0.1%. On the
other hand, the reconstruction degrades for a level of noise around 0.3%. These results
are reported in Fig. 3b–d.
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Fig. 4 Example 2: Target (a) and results (b–d)

Example 2 reconstruction of multiple leakages. In this example, the pipeline network
within the reference domain contains four leakages which are located at the points
x∗
1 = (0, 0.3), x∗

2 = (0.3, 0), x∗
3 = (0,−0.3) and x∗

4 = (−0.3, 0). The sizes of
the leakages are equal, namely, ε∗

i = 0.03, for i = 1, . . . , 4. We illustrate the target
domain in Fig. 4a. The pollution substance escapes from the pipeline network with
a velocity given by V = (1, 10x2). We start by considering only one measurement
associated with g1. After comparing Fig. 4a, b, we observe that the algorithm fails in
reconstructing the target domain. For a large number of pollution sources, the infor-
mation obtained from only one measurement is not sufficient to accurately reconstruct
them. Therefore, we increase the number of measurements by taking g1 and g2, whose
result is shown in Fig. 4c. Since the reconstruction still fails, we add one more excita-
tion, namely g1, g2 and g3. As we can observe in Fig. 4d, the pollution sources were
successfully reconstructed after considering three measurements. In this case, we have
obtained the exact location of the leakages while their sizes are approximately equal
to the true values, namely, ε�

i = 0.0299, for i = 1, . . . , 4.

5.2 MeanVelocity Reconstruction

Here, we present our second algorithm concerning the mean velocity reconstruction
for leakages whose sizes are known.We demonstrate the effectiveness of the algorithm
with a numerical example at the end of this section. Analogous to the mathematical
steps taken inSection 5.1,we start by considering the topological asymptotic expansion
of the shape functional J (uε) given by (53). Firstly, all the terms of order o(|α|2)
together with the sixth term on the right-hand side of (53) are disregarded. This
procedure allows us to obtain a linear system with respect to the variable of interest
similar to (61). Next, we take the resulting truncated expansion and rewrite the velocity
field in the form

Vi = αi
Vi
αi

= αi V i (64)

in order to work with the two-dimensional flow rate of the leakages at the points xi ,
i = 1, . . . , N . Taking into account these two steps, we obtain the truncated expansion

δ J (V , ξ, N ) := V · d(ξ) + 1

2
H(ξ)V · V , (65)
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where d, V ∈ R2N and H ∈ R2N×2N can be seen as the first-order topological
derivative, the mean flow of the leakages and the higher-order topological derivative,
respectively. More precisely, for a fixed number N of leakages to be reconstructed,
the unknown flow vector V ∈ R2N is given by V := (V 1, . . . , V N )� where each

entry V i is a vector in R2 written as V i := (V
1
i , V

2
i )

�, for i = 1, . . . , N . Thus, the

components of V i must be interpreted as follows: V
1
i and V

2
i are the flow rate of the

polluting substance at the point xi in the x- and y-directions, respectively. Similarly,
the vector d ∈ R2N is written as d := (d1, . . . , dN )� where each entry di is a vector
in R2 given by

di := −2α2
i ∇u0(xi )v(xi ) − 1

2π
α3
i ∇2u0(xi )∇v(xi ), (66)

for i = 1, . . . , N . Each entry Hi j ∈ R2×2 of the matrix H ∈ R2N×2N

H :=
⎛
⎜⎝

H11 · · · H1N
...

. . .
...

HN1 · · · HNN

⎞
⎟⎠ (67)

is given by

Hii := 1

2π
α4
i ∇2u0(xi )v(xi ) − 1

2π
α4
i ∇u0(xi ) ⊗ ∇v(xi )

− 4α4
i (∇u0(xi ) ⊗ ∇qi (xi ))v(xi ) + 2α4

i ∇u0(xi ) ⊗ ∇u0(xi )
∫

Ωo

h2i (68)

and

Hi j := −4α2
i α

2
j (∇u0(xi ) ⊗ ∇hi (x j ))v(x j ) + 2α2

i α
2
j∇u0(xi ) ⊗ ∇u0(x j )

∫
Ωo

hi h j ,

(69)

for i �= j with i, j = 1, . . . , N . Here there is no summation in the repeated indexes.
The truncated expansion δ J (V , ξ, N ), given by (65), is a quadratic form in V .

Hence, in order to minimize (65), we differentiate δ J (V , ξ, N ) with respect to V to
get the first-order optimality condition

〈DV δ J , β〉 = [d(ξ) + Hs(ξ)V ] · β = 0, ∀β ∈ R2N , (70)

with Hs = (H + H�)/2. From (70), we obtain the linear system

V = −(Hs(ξ))−1d(ξ). (71)
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Fig. 5 Example 3: Target (a) and
result (b)

Note that, the quantity V , solution of (71), becomes a function of the locations ξ , i.e.,
V = V (ξ). Let us replace V = V (ξ) in (65) to obtain

δ J (V (ξ), ξ, N ) = 1

2
d(ξ) · V (ξ). (72)

Therefore, the optimal locations and the velocity field of each leakage, given by the
pair (ξ�, V �), can be obtained by

ξ� := argmin
ξ∈X

δ J (V (ξ), ξ, N ) and V
� := V (ξ�), (73)

where X denotes the set of admissible locations for the pollution sources. Since the
quantity V

�
is obtained, the velocity field V � at the point ξ� can be calculated through

the formula introduced in (64), for each leakage ω∗
i , i = 1, . . . , N .

By construction, the resulting algorithm is analogous to the one developed in Sect.
5.1. The main difference between them is the reconstruction variable. In the first
algorithm, we have reconstructed the size of each leakage which is a scalar quantity.
In the second one, the unknown variable is a vector quantity, namely, the velocity at
the leakage points.

5.2.1 Numerical Example

A numerical example is presented below. In this case, we demonstrate the capability
of the algorithm in reconstructing the mean velocity field when multiple leakages are
considered in the target domain.

Example 3 reconstruction of the velocity field for multiple leakages. In this example,
the target domain contains two leakages of same size ε∗

1 = ε∗
2 = 0.03 whose locations

are given by the points x∗
1 = (−0.1, 0.3) and x∗

2 = (0.1,−0.2). See Fig. 5a. The
velocity of the leakage is given by the vector field V = (−5y2 + 5y, 1). Therefore,
the velocity evaluated at the center of each leakage is equal to V (x∗

1 ) = (1.05, 1) and
V (x∗

2 ) = (−1.2, 1), respectively. The reconstruction is obtained from three measure-
ments with the help of all Dirichlet data g1, g2 and g3. In this case, we successfully
reconstructed the center of each pollution source, as can be seen in Fig. 5b. The veloc-
ities of the leakages were accurately obtained, namely, V (x�

1) = (1.0418, 0.9972) and
V (x�

2) = (−1.1946, 0.9908).
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6 Conclusions

As concluding remarks concerning the proposed reconstruction algorithms, we high-
light some important points. Briefly, for a given velocity field V and number N of trial
pollution sources, the reconstruction algorithm is able to find their locations ξ� and
sizes α� = α(ξ�) in one step. The proposed method approximates the unknown set of
pollution sources by several balls which can be seen as a limitation of our approach.
However, it can be used to get a good initial guess for more sophisticated iterative
approaches based on level-sets methods [4,8,9,19–21], for instance. Similarly, in the
second algorithm, for a given number N of pollution sources whose sizes are assumed
to be known, the reconstruction algorithm returns their locations ξ� and velocities
V � = V (ξ�) in one step. In addition, such algorithms are independent of initial guess
and they are capable of reconstructing the pollution sources in the presence of noise
data. Finally, let us point out some interesting features/aspects of the type of algorithm
proposed above: (a) when the number N∗ of target subdomains is unknown, the algo-
rithm can be started based on an assumption that there exists N > N∗ subdomains
and then we should find a number (N − N∗) of trial balls with negligible sizes [17];
(b) if the center of the target subdomain does not belong to the set of nodes of the
sub-mesh, namely x∗ /∈ X , the algorithm returns a location x� which is the closest
to x∗ [17]; and (c) since a combinatorial search over all the n-points of the set X has
to be performed, this exhaustive search becomes rapidly infeasible for n  N as N
increases [23].
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A Justification for theMain Result

The justification for the result stated through Theorem 1 is presented in two steps.

Firstly, we prove a priori estimates related to the auxiliary states hε
i , h̃

ε
i ,

˜̃hε
i , v

ε
i j , ṽ

ε
i j ,

wε
i j and ũε for i, j = 1, . . . , N . Then, in the final part of this section, the previously

obtained results are used to estimate the remainders left in the asymptotic expansion
of the topologically perturbed cost functional. These estimates justify our topological
asymptotic expansion (53).

A.1 A Priori Estimates

In order to simplify the presentation, we denote all the constants independent of ε

and i as C for i = 1, . . . , N , whose value changes according to the place it is used.
Furthermore, we use the fact that αi ∼ ε2i , when necessary.

Lemma 1 Let Ω be an open and bounded domain inR2 and let Bε be a ball of radius
ε, such that Bε ⊂ Ω . Then, for a function ϕ ∈ H1(Ω), the following estimate holds
true

‖ϕ‖L2(Bε)
≤ Cεδ‖ϕ‖H1(Ω) , (74)

with 0 < δ < 1 and the constant C independent of the small parameter ε.

Proof From the Hölder inequality, we have

‖ϕ‖L2(Bε)
≤ Cε1/q‖ϕ‖L2p(Ω) , (75)

for all p, q ∈ [1,+∞] satisfying 1/p + 1/q = 1. By choosing q > 1 and p accord-
ingly, the Sobolev embedding theorem [13, Ch. IV, §8, Sec. 1.2, p. 140] implies
H1(Ω) ⊂ L2p(Ω) with a continuous embedding. Therefore, we have

‖ϕ‖L2(Bε)
≤ Cε1/q‖ϕ‖H1(Ω) , (76)

which leads to the result by setting δ = 1/q. ��
Lemma 2 For i = 1, . . . , N, let hε

i and h̃ε
i be the functions as defined in (19)1 and

(26), respectively. Then, there exists a positive constant C independent of ε such that

‖h̃ε
i ‖H1(Ω) ≤ Cε

δi
i , (77)

‖hε
i ‖L2(Ωo)

≤ C(1 + ε
δi
i ), (78)

‖hε
i ‖L2(Bεi )

≤ C(εi | log εi | + ε
2δi
i ), (79)

‖hε
i ‖L2(Bε j )

≤ C(ε j + ε
δi
i ε

δ j
j ), if i �= j, (80)

‖∇hε
i ‖L2(Bεi )

≤ C(1 + εi + ε
δi
i ), (81)
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‖∇hε
i ‖L2(Bε j )

≤ C(ε j + ε
δi
i ), if i �= j, (82)

‖hε
i ‖H1(Ω) ≤ C(| log εi |1/2 + ε

δi−1/2
i ), (83)

‖ ˜̃hε
i ‖H1(Ω) ≤ Cε

δi+1
i , (84)

‖∇ h̃ε
j‖L2(Bεi )

≤ C(εiε
2
j + ε

δ j+1
j ), if i �= j, (85)

for any 0 < δi , δ j < 1, with i, j = 1, . . . , N.

Proof By taking h̃ε
i as a test function in the weak formulation of (26), we get

∫
Ω

|∇h̃ε
i |2 = − 1

αi

∫
Bεi (xi )

[Vi · (∇u0 − ∇u0(xi ))] h̃
ε
i . (86)

From theCauchy–Schwarz inequality and the interior elliptic regularity of the function
u0, there exists a positive constant C independent of ε and i such that

∫
Ω

|∇h̃ε
i |2 ≤ Cε−2

i ‖Vi · (∇u0 − ∇u0(xi ))‖L2(Bεi )
‖h̃ε

i ‖L2(Bεi )

≤ Cε−2
i ‖x − xi‖L2(Bεi )

‖h̃ε
i ‖L2(Bεi )

≤ Cε
δi
i ‖h̃ε

i ‖H1(Ω), (87)

where we have used Lemma 1, with ϕ = h̃ε
i , to obtain the last inequality. From the

Poincaré inequality, we have

C‖h̃ε
i ‖2H1(Ω)

≤
∫

Ω

|∇ h̃ε
i |2. (88)

Combining the results obtained in (88) and (87), we get (77).
By considering the decomposition (23) aswell as the fact that pε

i andqi are independent
of ε in Ωo, we can write

‖hε
i ‖L2(Ωo)

≤ C + ‖h̃ε
i ‖L2(Ωo)

≤ C + ‖h̃ε
i ‖H1(Ω). (89)

From (77), we have (78).
From the decomposition (23) and the triangular inequality, we have

‖hε
i ‖L2(Bε j )

≤ C
(‖pε

i ‖L2(Bε j )
+ ‖qi‖L2(Bε j )

+ ‖h̃ε
i ‖L2(Bε j )

)
(90)

as well as

‖∇hε
i ‖L2(Bε j )

≤ C(‖∇ pε
i ‖L2(Bε j )

+ ‖∇qi‖L2(Bε j )
+ ‖∇h̃ε

i ‖L2(Bε j )
). (91)

By (24), simple calculation gives

‖pε
i ‖L2(Bεi )

≤ Cεi | log εi |, and ‖pε
i ‖L2(Bε j )

≤ Cε j , if i �= j; (92)
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‖∇ pε
i ‖L2(Bεi )

≤ C, and ‖∇ pε
i ‖L2(Bε j )

≤ Cε j , if i �= j . (93)

Notice that, we can use the estimate of Lemma 1 for ϕ = h̃ε
i together with the result

obtained in (77) to get

‖h̃ε
i ‖L2(Bε j )

≤ Cε
δi
i ε

δ j
j . (94)

Using the estimates (92) in (90), as well as the interior elliptic regularity of qi together
with (94), we obtain (79) and (80), respectively. From (91), we have

‖∇hε
i ‖L2(Bε j )

≤ C
(‖∇ pε

i ‖L2(Bε j )
+ ‖∇qi‖L2(Bε j )

+ ‖h̃ε
i ‖H1(Ω)

)
. (95)

Using the estimates (93) in (95), as well as the interior elliptic regularity of qi together
with (77), we obtain (81) and (82), respectively.
Now, let us take hε

i as a test function in the weak form of (19)1 to obtain

∫
Ω

|∇hε
i |2 = − 1

αi

∫
Bεi (xi )

(Vi · ∇u0)h
ε
i . (96)

From the Cauchy-Schwarz inequality and the interior elliptic regularity of the function
u0, there exists a positive constant C independent of ε and i such that

∫
Ω

|∇hε
i |2 ≤ Cε−2

i ‖Vi · ∇u0‖L2(Bεi )
‖hε

i ‖L2(Bεi )

≤ Cε−1
i ‖hε

i ‖L2(Bεi )
≤ C

(| log εi | + ε
2δi−1
i

)
, (97)

where we have used (79) to obtain the last inequality in (97). From the Poincaré
inequality, we have

C‖hε
i ‖2H1(Ω)

≤
∫

Ω

|∇hε
i |2. (98)

Combining the results obtained in (97) and (98), we get (83).

By taking ˜̃hε
i as a test function in the weak formulation of (35), we get

∫
Ω

|∇ ˜̃hε
i |2 = − 1

αi

∫
Bεi (xi )

Ti (x)
˜̃hε
i . (99)

From the Cauchy-Schwarz inequality, there exists a positive constant C independent
of ε and i such that

∫
Ω

|∇ ˜̃hε
i |2 ≤ Cε−2

i ‖Ti (x)‖L2(Bεi )
‖ ˜̃hε

i ‖L2(Bεi )
≤ Cεi‖ ˜̃hε

i ‖L2(Bεi )
, (100)
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where we have used the fact that Ti (x) = O(‖x − xi‖2) and the estimate

‖x− xi‖2L2(Bεi )
= O(ε3i ) to obtain the last inequality. Now, we set ϕ = ˜̃hε

i in Lemma 1

and we use the respective estimate to obtain, from (100), that

∫
Ω

|∇ ˜̃hε
i |2 ≤ Cε

δi+1
i ‖ ˜̃hε

i ‖H1(Ω). (101)

From the Poincaré inequality, we have

C‖ ˜̃hε
i ‖2H1(Ω)

≤
∫

Ω

|∇ ˜̃hε
i |2. (102)

Combining the results obtained in (101) and (102), we get the Result (84).
By considering the decomposition (32), we can write

‖∇ h̃ε
j‖L2(Bεi )

≤ C(‖∇ p̃ε
j‖L2(Bεi )

+ ε2j‖∇q j‖L2(Bεi )
+ ‖∇ ˜̃hε

j‖L2(Bεi )
)

≤ C(‖∇ p̃ε
j‖L2(Bεi )

+ ε2j‖∇q j‖L2(Bεi )
+ ‖ ˜̃hε

j‖H1(Ω)). (103)

From (33), simple calculation gives

‖∇ p̃ε
j‖L2(Bεi )

≤ Cεiε
2
j , if i �= j . (104)

The required Result (85) is obtained by taking into account the interior elliptic regu-
larity of the function q j as well as the estimates (84) and (104) in (103). ��
Lemma 3 For i, j = 1, . . . , N, letwε

i j , v
ε
i i and ṽε

i i be the functions as defined in (19)3,
(36) and (40), respectively. Then, there exists a positive constant C independent of ε

such that

‖ṽε
i i‖H1(Ω) ≤ C(ε

δi−1
i + ε

2δi−2
i ), (105)

‖vε
i i‖H1(Ω) ≤ Cε

δi−2
i (1 + εi + ε

δi
i ), (106)

‖vε
i j‖H1(Ω) ≤ C(ε

δi−1
i + ε

δi−2
i ε

δ j
j ), if i �= j, (107)

‖vε
i i‖L2(Ωo)

≤ C(1 + ε
δi−1
i + ε

2δi−2
i ), (108)

‖∇vε
i i‖L2(Bεi )

≤ C(ε−1
i + εi + ε

δi−1
i + ε

2δi−2
i ), (109)

‖∇vε
i i‖L2(Bε j )

≤ C(ε j + ε
δi−1
i + ε

2δi−2
i ), if i �= j, (110)

‖wε
i i‖H1(Ω) ≤ Cε

δi−1
i (1 + ε−2

i + ε
δi−2
i + ε

2δi−3
i ), (111)

‖wε
i j‖H1(Ω) ≤ Cε

δi−2
i (εi + ε

δ j−1
j + ε

2δ j−2
j ), if i �= j, (112)

for any 0 < δi , δ j < 1, with i, j = 1, . . . , N.
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Proof By taking ṽε
i i as a test function in the weak formulation of (40), we have

∫
Ω

|∇ṽε
i i |2 = − 1

αi

∫
Bεi (xi )

[(Vi · ∇u0(xi ))(Vi · ∇qi ) + Vi · ∇h̃ε
i ]ṽε

i i . (113)

From the Cauchy-Schwarz inequality, there exists a positive constant C independent
of ε and i such that

∫
Ω

|∇ṽε
i i |2 ≤ Cε−2

i (‖Vi · ∇qi‖L2(Bεi )
+ ‖Vi · ∇h̃ε

i ‖L2(Bεi )
)‖ṽε

i i‖L2(Bεi )

≤ Cε−2
i (‖Vi · ∇qi‖L2(Bεi )

+ ‖h̃ε
i ‖H1(Ω))‖ṽε

i i‖L2(Bεi )

≤ C(ε−1
i + ε

δi−2
i )‖ṽε

i i‖L2(Bεi )
, (114)

where we have used the interior elliptic regularity of the function qi and Lemma 2,
Result (77), to obtain the last inequality. By considering the estimate of Lemma 1 for
ϕ = ṽε

i i in (114), we get

∫
Ω

|∇ṽε
i i |2 ≤ C(ε

δi−1
i + ε

2δi−2
i )‖ṽε

i i‖H1(Ω). (115)

From the Poincaré inequality, we have

C‖ṽε
i i‖2H1(Ω)

≤
∫

Ω

|∇ṽε
i i |2. (116)

Combining the results obtained in (115) and (116), we get the Result (105).
By taking vε

i j in the weak formulation of (19)2, we obtain

∫
Ω

|∇vε
i j |2 = − 1

αi

∫
Bεi (xi )

(Vi · ∇hε
j )v

ε
i j . (117)

From the Cauchy-Schwarz inequality, there exists a positive constant C independent
of ε and i such that

∫
Ω

|∇vε
i j |2 ≤ Cε−2

i ‖Vi · ∇hε
j‖L2(Bεi )

‖vε
i j‖L2(Bεi )

. (118)

From (118), in the particular case where i = j , we have

∫
Ω

|∇vε
i i |2 ≤ Cε−2

i ‖Vi · ∇hε
i ‖L2(Bεi )

‖vε
i i‖L2(Bεi )

≤ Cε
δi−2
i (1 + εi + ε

δi
i )‖vε

i i‖H1(Ω), (119)

where we have used Lemma 2, Result (81), as well as the result of Lemma 1 with
ϕ = vε

i i , to obtain the last inequality. In addition, we also have from (118), for i �= j ,
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that
∫

Ω

|∇vε
i j |2 ≤ C(ε

δi−1
i + ε

δi−2
i ε

δ j
j )‖vε

i j‖H1(Ω), (120)

where we have used Lemma 2, Result (82), as well as the result of Lemma 1 with
ϕ = vε

i j . From the Poincaré inequality, we have

C‖vε
i j‖2H1(Ω)

≤
∫

Ω

|∇vε
i j |2. (121)

Combining the results obtained in (119) and (121), for i = j , we obtain the Result
(106). Analogously, we obtain the Result (107) from (120) and (121).
By considering the decomposition (36) as well as the fact that pε

i i and qii are inde-
pendent of ε in Ωo, we can write

‖vε
i i‖L2(Ωo)

≤ C + ‖ṽε
i i‖L2(Ωo)

≤ C + ‖ṽε
i i‖H1(Ω). (122)

From (105), we have (108).
From the decomposition (36) and the triangular inequality, we have

‖vε
i i‖L2(Bε j )

≤ C(‖∇ pε
i i‖L2(Bε j )

+ ‖∇qii‖L2(Bε j )
+ ‖∇ṽε

i i‖L2(Bε j )
)

≤ C(‖∇ pε
i i‖L2(Bε j )

+ ‖∇qii‖L2(Bε j )
+ ‖ṽε

i i‖H1(Ω)). (123)

By (37), simple calculation gives

‖∇ pε
i i‖L2(Bεi )

≤ Cε−1
i and ‖∇ pε

i i‖L2(Bε j )
≤ Cε j , if i �= j . (124)

Using the estimates (124) in (123), as well as the interior elliptic regularity of qii
together with (105), we obtain (109) and (110), respectively.
By taking wε

i j as a test function in the weak formulation of (19)3, we have

∫
Ω

|∇wε
i j |2 = − 1

αi

∫
Bεi (xi )

(Vi · ∇vε
j j )w

ε
i j . (125)

From the Cauchy-Schwarz inequality, there exists a positive constant C independent
of ε and i such that

∫
Ω

|∇wε
i j |2 ≤ Cε−2

i ‖Vi · ∇vε
j j‖L2(Bεi )

‖wε
i j‖L2(Bεi )

. (126)

From (126), in the particular case where i = j , we have

∫
Ω

|∇wε
i i |2 ≤ Cε−2

i ‖Vi · ∇vε
i i‖L2(Bεi )

‖wε
i i‖L2(Bεi )
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≤ Cε
δi−1
i (1 + ε−2

i + ε
δi−2
i + ε

2δi−3
i )‖wε

i i‖H1(Ω), (127)

where we have used (109) and the estimate of Lemma 1 with ϕ = wε
i i to obtain the

last inequality. In addition, we also have from (126), for i �= j , that

∫
Ω

|∇wε
i j |2 ≤ Cε

δi−2
i (εi + ε

δ j−1
j + ε

2δ j−2
j )‖wε

i j‖H1(Ω), (128)

where we have used (110) and the estimate of Lemma 1 with ϕ = wε
i j . From the

Poincaré inequality, we have

C‖wε
i j‖2H1(Ω)

≤
∫

Ω

|∇wε
i j |2. (129)

Combining the results obtained in (127) and (129), for i = j , we obtain the Result
(111). Analogously, we obtain the Result (112) from (128) and (129). ��
Lemma 4 Let ũε be the weak solution of the variational problem to find ũε ∈ H1

0 (Ω)

such that

∫
Ω

∇ũε · ∇η +
∫

Ω

χε(V · ∇ũε)η =
∫

Ω

Φεη, ∀η ∈ H1
0 (Ω). (130)

where Φε is given by (21)-(22). Then, there exists a positive constant C independent
of ε such that

‖ũε‖H1(Ω) ≤ C(1 + Cε)

[ N∑
i=1

N∑
j=1

ε
δi
i ε6j (ε

δ j−1
j + ε

δ j−3
j + ε

2δ j−3
j + ε

3δ j−4
j )

+
N∑
i=1

N∑
j=1

N∑
l=1
l �= j

ε
δi
i ε

δ j
j (ε jε

2
l + ε jε

4
l + ε

δl+2
l + ε

δl+3
l + ε

2δl+2
l )

]
,

(131)

for any 0 < δi , δ j , δl < 1 with ε = max{εδi
i }, for i, j, l = 1, . . . , N.

Proof By taking η = ũε as a test function in (130), we have

∫
Ω

|∇ũε|2 +
∫

Ω

χε(V · ∇ũε)ũε =
∫

Ω

Φεũε (132)

and from the definitions of χε and Φε given by (11) and (21)-(22), respectively, (132)
can be written as

∫
Ω

|∇ũε|2 = −α jαl

∫
Bεi (xi )

(Vi · ∇vε
jl)ũε| j �=l

− α jα
2
l

∫
Bεi (xi )

(Vi · ∇wε
jl)ũε
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−
∫
Bεi (xi )

(Vi · ∇ũε)ũε, (133)

where we are using the Einstein summation convention. From the Cauchy-Schwarz
inequality, we obtain

∫
Ω

|∇ũε|2 ≤ C
(
ε2jε

2
l ‖Vi · ∇vε

jl‖L2(Bεi )
‖ũε‖L2(Bεi )| j �=l

+ε6j‖Vi · ∇wε
j j‖L2(Bεi )

‖ũε‖L2(Bεi )

+ε2jε
4
l ‖Vi · ∇wε

jl‖L2(Bεi )
‖ũε‖L2(Bεi )| j �=l

+‖Vi · ∇ũε‖L2(Bεi )
‖ũε‖L2(Bεi )

)
(134)

and taking into account the estimates ‖Vi · ∇vε
jl‖L2(Bεi )

≤ C‖vε
jl‖H1(Ω),

‖Vi · ∇wε
jl‖L2(Bεi )

≤ C‖wε
jl‖H1(Ω) and ‖Vi · ∇ũε‖L2(Bεi )

≤ C‖ũε‖H1(Ω), we get

∫
Ω

|∇ũε|2 ≤ C
(
ε2jε

2
l ‖vε

jl‖H1(Ω)‖ũε‖L2(Bεi )| j �=l
+ ε6j‖wε

j j‖H1(Ω)‖ũε‖L2(Bεi )

+ε2jε
4
l ‖wε

jl‖H1(Ω)‖ũε‖L2(Bεi )| j �=l
+ ‖ũε‖L2(Bεi )

‖ũε‖H1(Ω)

)
. (135)

By considering the estimate of Lemma 1 for ϕ = ũε in (135), we get ‖ũε‖L2(Bεi )

≤ Cε
δi
i ‖ũε‖H1(Ω). We use such estimate in (135) to obtain

∫
Ω

|∇ũε|2 ≤ C
(
ε
δi
i ε2jε

2
l ‖vε

jl‖H1(Ω)‖ũε‖H1(Ω)| j �=l
+ ε

δi
i ε6j‖wε

j j‖H1(Ω)‖ũε‖H1(Ω)

+ε
δi
i ε2jε

4
l ‖wε

jl‖H1(Ω)‖ũε‖H1(Ω)| j �=l
+ ε

δi
i ‖ũε‖2H1(Ω)

)
, (136)

where ε
δi
i = ε

δ1
1 +· · ·+ ε

δN
N . We define the quantity ε := max{εδi

i }, for i = 1, . . . , N ,
and then the last inequality above can be rewritten as

∫
Ω

|∇ũε|2 ≤ C
(
ε
δi
i ε2jε

2
l ‖vε

jl‖H1(Ω)‖ũε‖H1(Ω)| j �=l
+ ε

δi
i ε6j‖wε

j j‖H1(Ω)‖ũε‖H1(Ω)

+ε
δi
i ε2jε

4
l ‖wε

jl‖H1(Ω)‖ũε‖H1(Ω)| j �=l
+ ε‖ũε‖2H1(Ω)

)
. (137)

From the Poincaré inequality, we obtain

C‖ũε‖2H1(Ω)
≤

∫
Ω

|∇ũε|2. (138)
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Combining the results obtained in (137) and (138), we get

‖ũε‖H1(Ω) ≤ C

(
1

1 − Cε

)(
ε
δi
i ε2jε

2
l ‖vε

jl‖H1(Ω)| j �=l
+ ε

δi
i ε6j‖wε

j j‖H1(Ω)

+ε
δi
i ε2jε

4
l ‖wε

jl‖H1(Ω)| j �=l

)
(139)

and taking into account that
1

1 − Cε
= 1 + Cε + O(ε2), we obtain

‖ũε‖H1(Ω) ≤ C(1 + Cε)
(
ε
δi
i ε2jε

2
l ‖vε

jl‖H1(Ω)| j �=l

+ε
δi
i ε6j‖wε

j j‖H1(Ω) + ε
δi
i ε2jε

4
l ‖wε

jl‖H1(Ω)| j �=l

)
. (140)

The required Result (131), for any 0 < δi , δ j , δl < 1with i, j, l = 1, . . . , N , is finally
obtained by considering Lemma 3, Results (107), (111) and (112). ��

A.2 Estimates of the Remainders

We will successively prove that |E(ε)| = o(|ε|4) for  = 1, . . . , 15, where |ε| :=
ε1+· · ·+εN . For simplicity, we use the symbolC to denote any constant independent
of ε. Remainder E0(ε) can be trivially bounded by using similar arguments as in [16],
leading to |E0(ε)| = o(|ε|4). The estimates of the other remainders are more involved
and will be presented in detail in what follows.

In order to obtain the estimate of each remainder, we start by using the Cauchy–
Schwarz inequality and then we use the appropriate lemmas of Sect. A.1 as well as
additional results related to some functions introduced in Section 3. Proceeding in this
way, we obtain

|E1(ε)| ≤ C‖2(u0 − z) + ũε‖L2(Ωo)
‖ũε‖L2(Ωo)

≤ C(1 + ‖ũε‖H1(Ω))‖ũε‖H1(Ω) = o(|ε|4), (141)

for any 2/3 < δ < 1, where we have used Lemma 4;

|E2(ε)| ≤ C |ε|6
N∑
i=1

‖hε
i ‖L2(Ωo)

[ N∑
j=1

‖vε
j j‖L2(Ωo)

+
N∑
j=1

N∑
l=1
l �= j

‖vε
jl‖H1(Ω)

]

= o(|ε|4), (142)
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for any 0 < δ < 1, where we have used Lemma 2, result (78), and Lemma 3, Results
(107) and (108);

|E3(ε)| ≤ C |ε|8
N∑
i=1

‖hε
i ‖L2(Ωo)

[ N∑
j=1

‖wε
j j‖H1(Ω) +

N∑
j=1

N∑
l=1
l �= j

‖wε
jl‖H1(Ω)

]

= o(|ε|4), (143)

for any 0 < δ < 1, where we have used Lemma 2, Result (78), and Lemma 3, Results
(111) and (112);

|E4(ε)| ≤ C |ε|2‖ũε‖H1(Ω)

N∑
i=1

‖hε
i ‖L2(Ωo)

= o(|ε|4), (144)

for any 0 < δ < 1, where we have used Lemma 2, Result (78), and Lemma 4;

|E5(ε)| ≤ C |ε|8
[ N∑

i=1

‖vε
i i‖L2(Ωo)

+
N∑
i=1

N∑
j=1
j �=i

‖vε
i j‖H1(Ω)

]

×
[ N∑

l=1

‖vε
ll‖L2(Ωo)

+
N∑
l=1

N∑
p=1
p �=l

‖vε
lp‖H1(Ω)

]
= o(|ε|4), (145)

for any 0 < δ < 1, where we have used Lemma 3, Results (107) and (108);

|E6(ε)| ≤ C |ε|10
[ N∑

i=1

‖vε
i i‖L2(Ωo)

+
N∑
i=1

N∑
j=1
j �=i

‖vε
i j‖H1(Ω)

]

×
[ N∑

l=1

‖wε
ll‖H1(Ω) +

N∑
l=1

N∑
p=1
p �=l

‖wε
lp‖H1(Ω)

]
= o(|ε|4), (146)

for any 1/6 < δ < 1, where we have used Lemma 3, Results (107), (108), (111) and
(112);

|E7(ε)| ≤ C |ε|4‖ũε‖H1(Ω)

[ N∑
i=1

‖vε
i i‖L2(Ωo)

+
N∑
i=1

N∑
j=1
j �=i

‖vε
i j‖H1(Ω)

]
= o(|ε|4),

(147)
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for any 0 < δ < 1, where we have used Lemma 3, Results (107)-(108), and Lemma 4;

|E8(ε)| ≤ C |ε|12
[ N∑

i=1

‖wε
i i‖H1(Ω) +

N∑
i=1

N∑
j=1
j �=i

‖wε
i j‖H1(Ω)

]

×
[ N∑

l=1

‖wε
ll‖H1(Ω) +

N∑
l=1

N∑
p=1
p �=l

‖wε
lp‖H1(Ω)

]
= o(|ε|4), (148)

for any 0 < δ < 1, where we have used Lemma 3, Results (111) and (112);

|E9(ε)| ≤ C |ε|6‖ũε‖H1(Ω)

[ N∑
i=1

‖wε
i i‖H1(Ω) +

N∑
i=1

N∑
j=1
j �=i

‖wε
i j‖H1(Ω)

]
= o(|ε|4),

(149)

for any 0 < δ < 1, where we have used Lemma 3, Results (111)-(112), and Lemma 4;

|E10(ε)| ≤ C |ε|2
N∑
i=1

(ε2i ‖Vi · ∇qi‖L2(Bεi )
+ ‖Vi · ∇ ˜̃hε

i ‖L2(Bεi )
)‖v‖L2(Bεi )

≤ C |ε|3
N∑
i=1

(ε3i + ‖ ˜̃hε
i ‖H1(Ω)) = o(|ε|4), (150)

for any 0 < δ < 1, where we have used the interior elliptic regularity of the functions v

and qi aswell as the estimate ‖Vi ·∇ ˜̃hε
i ‖L2(Bεi )

≤ C‖ ˜̃hε
i ‖H1(Ω) togetherwith Lemma2,

Result (84);

|E11(ε)| ≤ C |ε|2
N∑
i=1

N∑
j=1
j �=i

‖Vi · ∇ h̃ε
j‖L2(Bεi )

‖v‖L2(Bεi )
= o(|ε|4), (151)

for any 0 < δ < 1, where we have used the interior elliptic regularity of the function
v as well as Lemma 2, Result (85);

|E12(ε)| ≤ C |ε|4
N∑
i=1

N∑
j=1

‖Vi · ∇q j j‖L2(Bεi )
‖v‖L2(Bεi )

= O(|ε|6), (152)

where we have used the interior elliptic regularity of the functions q j j and v;

|E13(ε)| ≤ C |ε|4
N∑
i=1

N∑
j=1

‖Vi · ∇ṽε
j j‖L2(Bεi )

‖v‖L2(Bεi )
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≤ C |ε|5
N∑
j=1

‖ṽε
j j‖H1(Ω) = o(|ε|4), (153)

for any 1/2 < δ < 1, where we have used the interior elliptic regularity of the function
v as well as the estimate ‖Vi · ∇ṽε

j j‖L2(Bεi )
≤ C‖ṽε

j j‖H1(Ω) together with Lemma 3,
Result (105);

|E14(ε)| ≤ C |ε|4
N∑
i=1

N∑
j=1
j �=i

‖Vi · ∇ pε
j j‖L2(Bεi )

‖v‖L2(Bεi )
= O(|ε|6), (154)

where we have used the interior elliptic regularity of the function v and the explicit
solution of pε

j j , given by (37), to estimate ‖Vi · ∇ pε
j j‖L2(Bεi )

= O(εi ), for i �= j ;

|E15(ε)| ≤ C |ε|4
N∑
i=1

N∑
j=1

(‖hi‖L2(Ωo)
‖h̃ε

j‖L2(Ωo)
+ ‖h j‖L2(Ωo)

‖h̃ε
i ‖L2(Ωo)

+‖h̃ε
i ‖L2(Ωo)

‖h̃ε
j‖L2(Ωo)

)

≤ C |ε|4
N∑
i=1

N∑
j=1

(‖h̃ε
i ‖H1(Ω) + ‖h̃ε

j‖H1(Ω)

+‖h̃ε
i ‖H1(Ω)‖h̃ε

j‖H1(Ω)) = o(|ε|4), (155)

for any 0 < δ < 1, where we have used the fact that ‖hi‖L2(Ωo)
= O(1) and Lemma 2,

Result (77).
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