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Abstract
InDelong [8]we investigate an exponential utilitymaximization problem for an insurer
who faces a streamof non-hedgeable claims.We assume that the insurer’s risk aversion
coefficient consists of a constant risk aversion and a small amount of wealth-dependent
risk aversion.We apply perturbation theory and expand the equilibrium value function
of the optimization problem on the parameter ε controlling the degree of the insurer’s
risk aversion depending on wealth. We derive a candidate for the first-order approx-
imation to the equilibrium investment strategy. In this paper we formally show that
the zeroth-order investment strategy π∗

0 postulated by Delong (Math Methods Oper
Res 89:73–113, 2019) performs better than any strategy π0 when we compare the
asymptotic expansions of the objective functions up to order O(1) as ε → 0, and the
first-order investment strategy π∗

0 + π∗
1 ε postulated by Delong (Math Methods Oper

Res 89:73–113, 2019) is the equilibrium strategy in the class of strategies π∗
0 + π1ε

when we compare the asymptotic expansions of the objective functions up to order
O(ε2) as ε → 0, where ε denotes the parameter controlling the degree of the insurer’s
risk aversion depending on wealth.
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1 Introduction

InDelong [8]we investigate an exponential utilitymaximization problem for an insurer
who faces a streamof non-hedgeable claims.We assume that the insurer’s risk aversion
coefficient changes in time and depends on the current insurer’s net asset value (the
excess of assets over liabilities). Since the optimization problem is time-inconsistent,
we follow the game-theoretic approach developed by Ekeland and Lazrak [10], Eke-
land and Pirvu [11], Björk and Murgoci [4] and Björk et al. [3]. We use the notion of
an equilibrium strategy and derive the HJB equation for the equilibrium value func-
tion. In order to solve the HJB equation, we use perturbation theory. We assume that
the insurer’s risk aversion coefficient consists of a constant risk aversion and a small
amount ofwealth-dependent risk aversion. The equilibriumvalue function is expanded
on the parameter ε controlling the degree of the insurer’s risk aversion depending on
wealth. We derive candidates for the first-order approximations to the equilibrium
value function and the equilibrium investment strategy.

Delong [8] proves a lot of results which are essential to characterize the first-
order approximation to the equilibrium investment strategy and justify the choice of
his investment strategy as the first-order approximation. However, the order of the
error of approximating the true equilibrium investment strategy with the candidate
first-order approximate solution has not been proved. In this paper we formally study
an asymptotic optimality of the investment strategy postulated by Delong [8]. More
precisely, we show that the zeroth-order investment strategy π∗

0 postulated by Delong
[8] performs better than any strategy π0 when we compare the asymptotic expansions
of the objective functions up to order O(1) as ε → 0, and the first-order investment
strategy π∗

0 + π∗
1 ε postulated by Delong [8] is the equilibrium strategy in the class

of strategies π∗
0 + π1ε when we compare the asymptotic expansions of the objective

functions up to order O(ε2) as ε → 0, where ε denotes the parameter controlling the
degree of the insurer’s risk aversion depending on wealth. From mathematical point
of view, the results complete the results from Delong [8] and give a more rigorous
justification for the strategy derived in Delong [8]. From economic point of view, the
proof that the candidate strategy from Delong [8] is optimal (in some sense) is crucial
for applications and conclusions derived from the model.

The assumption of constant risk aversion is best known in economics, finance
and insurance. However, many empirical studies suggest that agents’ risk attitudes are
correlatedwith their wealth, see e.g. Shaw [21],Wik et al. [22], Anderson andGalinsky
[1], Bucciol andMiniaci [5], Courbage et al. [6]. Consequently, we should use wealth-
dependent risk aversion coefficients to model, and understand, economic decisions
of investors and insurance companies in risky environment. In practice, insurance
companies implement investment strategies for asset and liability management in
order to pay random claims and earn a profit. In this paper we study an optimality
of an investment strategy for a risk-averse insurer with a time-varying risk aversion
depending on the available wealth. The framework with stochastic risk preferences
should better reflect the risk attitude of an insurer trying to make optimal decisions in
financial markets. The investment strategy, which we derive in our theoretical model,
can be used as a reference point for developing investment strategies for asset and
liability management in real life.
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To the best of our knowledge, there are only two papers by Dong and Sircar [9] and
Delong [8] which study exponential utility maximization problems for investors with
wealth-dependent risk aversion coefficients. Moreover, the first-order approximation
to the equilibrium investment strategy postulated by Delong [8] is a new investment
strategy and its properties are worth investigating.

Perturbation techniques have been popularized in financial mathematics by Fouque
et al. [13], Fouque et al. [14], Fouque and Hu [12], Fouque et al. [15]. In particular, an
asymptotic optimality of a candidate strategy in the class of strategies given byπ0+π1ε

is investigated by Fouque and Hu [12] in a model where an investor maximizes an
expected utility in a market with stochastic volatility. The idea to study the asymptotic
expansions of the objective function up to orders O(1),O(ε),O(ε2) as ε → 0 and
an asymptotic optimality of the candidate strategy in the class of strategies given by
π0 + π1ε is taken from Fouque and Hu [12]. However, the techniques which we use
in this paper are different from the techniques used by Fouque and Hu [12], since the
models are different. Moreover, we deal with an equilibrium strategy, which is not the
optimal strategy in the Bellman’s sense, and we introduce a new asymptotic criterion
for the equilibrium in order to formalize our asymptotic results.

In Sects. 2 and 3 we briefly recall the model and the main results from Delong [8]
for reader’s convenience. The results from Delong [8] are used in the proofs in this
paper. In Sect. 4 we present the main result of this paper and we study the asymptotic
optimality, in an appropriate sense, of the investment strategy from Delong [8]. The
proofs can be found in Sect. 5.

In the sequel, the conditional expected value will be denoted byEy[·] = E[·|Y (t) =
y] where Y denotes the stochastic process which is used in the conditional expected
value. We will use functions of order O(εθ ). Let us recall that

zε(x) ∼ O(εθ ) as ε → 0 i f |zε(x)| ≤ K εθ , 0 ≤ ε ≤ ε0, (1.1)

for some ε0 > 0, where K is independent of ε but may depend on (x, ε0).

2 The Financial and InsuranceModel

We deal with a probability space (Ω,F,P) with a filtration F = (Ft )0≤t≤T and a
finite time horizon T < ∞. On the probability space (Ω,F,P) we define a standard
two-dimensional Brownian motion (W , B) = (W (t), B(t), 0 ≤ t ≤ T ) and a càdlàg
(right-continuous with left limits) counting process N = (N (t), 0 ≤ t ≤ T ). We
assume that

(A1) The filtration Ft = ⋂
ε>0

(
FW ,B

t+ε ∨ FN
t+ε

)
, 0 ≤ t ≤ T , where FW ,B

t =
σ(W (u), B(u), u ∈ [0, t]), FN

t = σ(N (u), u ∈ [0, t]). Moreover, FW ,B
t and

FN
t are independent.

The filtration F is right-continuous and completed with sets of measure zero.
The financial market consists of a risk-free deposit D = (D(t), 0 ≤ t ≤ T ) and

two risky indices: S = (S(t), 0 ≤ t ≤ T ), P = (P(t), 0 ≤ t ≤ T ). The value of the
risk-free deposit is constant, i.e.:
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D(t) = 1, 0 ≤ t ≤ T . (2.1)

The prices of the risky indices are modelled with correlated geometric Brownian
motions:

d S(t)

S(t)
= μdt + σdW (t), 0 ≤ t ≤ T ,

S(0) = s0, (2.2)
d P(t)

P(t)
= adt + b

(
ρdW (t) +

√
1 − ρ2d B(t)

)
, 0 ≤ t ≤ T ,

P(0) = p0, (2.3)

where μ, a, σ, b are positive constants which denote drifts and volatilities, and ρ ∈
[−1, 1] denotes the correlation coefficient between the log-returns of S and P . The
insurance company can invest in the deposit D and in the index S. The index P is not
available for trading. The index P is the underlying investment fund for the insurance
contracts sold by the insurance company, see below for a detailed description.

The insurance company keeps a homogeneous portfolio consisting of n unit-linked
policies. The counting process N is used to count the number of deaths in the insur-
ance portfolio. We assume that the lifetimes of the policyholders are independent and
exponentially distributed, i.e. we assume that

(A2)
(

N (t) − ∫ t
0 (n − N (s−))λds, 0 ≤ t ≤ T

)
is an F-martingale, where λ > 0.

Parameter λ denotes the mortality intensity in the population of the policyholders. We
will use the process

J (t) = n − N (t), 0 ≤ t ≤ T ,

which counts the number of policies in force in the insurance portfolio. We remark
that (A1) means that we assume that the insurance risk is independent of the financial
risk under the real-world measure P.

The insurer faces a stream of non-hedgeable claims which is modelled with the
process C = (C(t), 0 ≤ t ≤ T ) given by the equation

C(t) =
∫ t

0
J (s−)α(P(s))ds +

∫ t

0
β(P(s))d N (s)

+J (T )η(P(T ))1t=T , 0 ≤ t ≤ T . (2.4)

Each policyholder in the insurance portfolio is entitled to three types of benefits:
annuity α paid as long as the policyholder lives, life insurance benefit β paid if the
policyholder dies and endowment benefit η paid if the policyholder survives till the
terminal time T . The benefits α, β, γ are contingent on the non-tradeable index P .
We assume that

(A3) the functions α, β, η : (0,∞) 	→ [0,∞) are bounded and Lipschitz continuous.
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In order to fulfill the future liabilities, the insurer must hold a reserve. The reserve
is set for the policies in force. The reserve is defined by

Fk(t, p) = E
Q̃
t,p,k

[
C(T ) − C(t)

]
,

(t, p, k) ∈ [0, T ] × (0,∞) × {0, 1, . . . , n}, (2.5)

where Q̃ denotes a pricing measure for C . Here, by reserve we mean an amount of
money which the insurer sets aside to cover the future claims. In practice, the insurer
can use best estimate, market-consistent or first-order assumptions to calculate the
reserve, see e.g Chapter 2 in Møller and Steffensen [18]. The pricing and reserving
assumptions are reflected in the measure Q̃, under which the real-world dynamics of
the risk factors are modified in accordance with the assumptions. We don’t make any
assumptions on the pricing measure Q̃ in (2.5). However, we assume that

(A4) Fk(t, p) = k F1(t, p), (t, p, k) ∈ [0, T ]×(0,∞)×{0, . . . , n}, and the function
F1 : [0, T ] × (0,∞) 	→ [0,∞) is C1,2([0, T ] × (0,∞)).

In most cases, the insurance risk would be assumed to be independent of the financial
risk under the pricing measure Q̃. If (A1) also holds under Q̃, then (A4) is satisfied.
In the sequel, the reserve for one policy in force F1 is simply denoted by F .

For a detailed description of the financial and insurance model and a motivation for
the optimization problem we refer to Delong [8].

3 The Optimization Problem and the Candidate First-Order
Approximate Strategy

Let π := (π(t), 0 ≤ t ≤ T ) denote an investment strategy which specifies the amount
of money that the insurer invests in the index S. The wealth process of the insurer,
denoted by Xπ = (Xπ (t), 0 ≤ t ≤ T ), satisfies the SDE:

d Xπ (t) = π(t)
(
μdt + σdW (t)

)

−J (s−)α(P(s))ds + β(P(s))d J (s), 0 ≤ t ≤ T ,

X(0) = x . (3.1)

where x > 0 denotes the initial wealth. The survival benefits η are subtracted from
Xπ (T ) at the terminal time T .

We study the time-inconsistent optimization problem:

sup
π

E

[
− e−Γ

(
Xπ (t)−J (t)F(t,P(t))

)
·
(

Xπ (T )−J (T )η(P(T ))
)

|Ft

]
, 0 ≤ t ≤ T , (3.2)

whereΓ denotes a time-varying risk aversion coefficient which value at time t depends
on the process

R(t) = Xπ (t) − J (t)F(t, P(t)), 0 ≤ t ≤ T .
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The process R is interpreted as the insurer’s net asset value - the excess of the insurer’s
assets over his liabilities. By the liability we mean the value of the reserve (2.5). The
optimization problem (3.2) is called an exponential utility maximization problemwith
wealth-dependent risk aversion. We assume that the risk aversion coefficient in (3.2)
satisfies the condition:

(A5) Γ : R 	→ (0,∞) is bounded, decreasing, Lipschitz continuous and C2(R).

Let us introduce the set of admissible investment strategies for our optimization
problem (3.2).

Definition 3.1 A strategy π = (π(t), 0 ≤ t ≤ T ) is called admissible, π ∈ A, if it
satisfies the following conditions:

1. π : [0, T ] × Ω → R is an F-predictable process determined with a measur-
able mapping π : [0, T ] × R × (0,∞) × {0, . . . , n} 	→ R such that π(t) =
π J (t−)(t, Xπ (t−), P(t)),

2. The process
( ∫ t

0 π(s)dW (s), 0 ≤ t ≤ T
)
is a B M O(F)-martingale,

3. The stochastic differential equation (3.1) has a unique solution Xπ on [0, T ],
4. E

[
e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

|Ft

]
< ∞, for all t ∈ [0, T ] and all r ∈ R, including

Γ (−∞) = supr∈R Γ (r) and Γ (+∞) = infr∈R Γ (r).

We can now define the objective function for (3.2):

vk,π (t, x, p)

= Et,x,p,k

[
− e−Γ

(
x−k F(t,p)

)(
Xπ (T )−J (T )η(P(T ))

)]
,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, π ∈ A. (3.3)

We will also need the auxiliary objective function:

wk,π (t, x, p, r)

= Et,x,p,k

[
− e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)]
,

(t, x, p, r , k) ∈ [0, T ] × R × (0,∞) × R × {0, 1, . . . , n}, π ∈ A. (3.4)

Due to time-inconsistency caused by the wealth-dependent risk aversion, we cannot
find a strategy π which maximizes the objective function (3.3) and is optimal in the
Bellman’s sense. We look for the sub-game perfect Nash equilibrium in the game with
the reward given by (3.3), see e.g. Björk et al. [3].

Definition 3.2 Let us consider an admissible strategy π∗ ∈ A. Fix an arbitrary point
(t, x, p, k) ∈ [0, T )×R×R×{0, 1, . . . , n} and choose an admissible strategyπ ∈ A.
For δ > 0 we define a new admissible strategy

πδ(s) =
{

π(s), t ≤ s ≤ t + δ,

π∗(s), t + δ < s ≤ T .
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If

lim
δ→0

1

δ

(
vk,π∗

(t, x, p) − vk,πδ

(t, x, p)
)

≥ 0, (3.5)

for all (t, x, p, k) ∈ [0, T )×R×R×{0, 1, . . . , n} and all π ∈ A, then π∗ is called the
equilibrium strategy and vk,π∗

is called the equilibrium value function corresponding
to the equilibrium strategy π∗.

We consider a special structure of the wealth-dependent risk aversion coefficient
Γ . We choose

Γ (r) = γ0 + γ1(r)ε, r ∈ R, ε > 0. (3.6)

In this paper we assume that the insurer’s risk aversion coefficient Γ consists of a
constant risk aversion γ0 > 0 and a small amount ε > 0 of wealth-dependent risk
aversion γ1. Similar to (A5), we impose the condition:

(A6) The function γ1 : R 	→ R is bounded, decreasing, Lipschitz continuous and
C2(R). Moreover, γ1(0) = 0.

The assumption (3.6) allows us to apply perturbation theory and find the first-order
approximation to the true solution to the optimization problem (3.2) for small ε > 0.

We can apply perturbation theory since our problem (3.2) can be formulated by
adding a small term to parameter of a related and exactly solvable problem. In our
case, the exactly solvable problem is (3.2) with Γ (r) = γ0. We expect that the solu-
tion to the time-inconsistent exponential utility maximization problem (3.2) with the
wealth-dependent risk aversion coefficient Γ (r) = γ0+γ1(r)ε should be expanded in
powers of ε around the solution to the time-consistent exponential utilitymaximization
problem with the constant risk aversion γ0.

Let us describe the first-order approximate solution to (3.2). For details we refer to
Delong [8]. We consider two systems of PDEs:

hk
t (t, p) +

(
a − μbρ

σ

)
phk

p(t, p) + 1

2
b2 p2hk

pp(t, p) + kα(p) − μ2

2σ 2γ
− kλ

γ

+eγβ(p)eγ hk−1(t,p)

γ
kλe−γ hk (t,p)

+1

2
γ (1 − ρ2)b2 p2(hk

p(t, p))2 = 0, (t, p) ∈ [0, T ) × (0,∞),

hk(T , p) = kη(p), p ∈ (0,∞), k ∈ {0, . . . , n}, (3.7)

and

gk
t (t, p) +

(
a − μbρ

σ
+ γ (1 − ρ2)b2 phk

p(t, p)
)

pgk
p(t, p) + 1

2
b2 p2gk

pp(t, p)

− eγ
(
β(p)+hk−1(t,p)−hk (t,p)

)

kλgk(t, p)

123



656 Applied Mathematics & Optimization (2021) 84:649–682

+ μ2

2σ 2γ 2 + 1

2
(1 − ρ2)b2 p2

(
hk

p(t, p)
)2

+
eγ

(
β(p)+hk−1(t,p)−hk (t,p)

)(
γ
(
β(p) + hk−1(t, p) − hk(t, p)

)
− 1

)
+ 1

γ 2 kλ

+eγ
(
β(p)+hk−1(t,p)−hk (t,p)

)

kλgk−1(t, p) = 0, (t, p) ∈ [0, T ) × (0,∞),

gk(T , p) = 0, p ∈ (0,∞), k ∈ {0, . . . , n}. (3.8)

By Proposition 5.1 presented in the next section, there exist unique solutions
(hk, gk)n

k=0 ∈ C([0, T ] × (0,∞)) ∩ C1,2([0, T ) × (0,∞)) to (3.7)–(3.8). We assume
that

(A7) There exist mixed derivatives (hk
tp)

n
k=0 ∈ C([0, T ) × (0,∞)).

We define the strategies:

π
k,∗
0 (t, p) = μ

σ 2γ0
+ hk,γ0

p (t, p)bpρ

σ
, (3.9)

π
k,∗
1 (t, x, p) = −μγ1(x − k F(t, p))

σ 2γ 2
0

+ gk,γ0
p (t, p)γ1(x − k F(t, p))bpρ

σ
,

(3.10)

and the functions:

vk
0(t, x, p) = −e−γ0x eγ0hk,γ0 (t,p), (3.11)

vk
1(t, x, p) = γ1(x − k F(t, p))

×
(

x − hk,γ0(t, p) − γ0gk,γ0(t, p)
)

e−γ0x eγ0hk,γ0 (t,p). (3.12)

We remark that hk,γ0 , gk,γ0 in (3.9)–(3.12) denote the solutions to the PDEs (3.7)–(3.8)
with γ = γ0.

Theorem 3.1 (Theorem 6.1 from Delong [8]) Let (A1)–(A7) hold. Let us introduce the
investment strategy

π̂k,∗(t, x, p) = π
k,∗
0 (t, p) + π

k,∗
1 (t, x, p)ε, (3.13)

and the function

v̂k,∗(t, x, p) = vk
0(t, x, p) + vk

1(t, x, p)ε. (3.14)

1. For a sufficiently small ε > 0, the investment strategy (3.13) is admissible, i.e.
π̂∗ = (π̂k,∗)n

k=0 ∈ A.
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2. The investment strategy (3.13) and the function (3.14) are candidate asymptotic
first-order approximations, respectively, to the equilibrium investment strategy
and the equilibrium value function for the optimization problem (3.2) with the
wealth-dependent risk aversion coefficient Γ (r) = γ0 + γ1(r)ε as ε → 0.

4 TheMain Result: Asymptotic Optimality of the Candidate
First-Order Approximate Strategy

First,we specify the class of investment strategies inwhichwe show that the investment
strategy (3.13) is asymptotically optimal for our optimization problem (3.2) with the
wealth-dependent risk aversion coefficient Γ (r) = γ0 + γ1(r)ε as ε → 0. Next, we
formalize and explain what we mean by the asymptotic optimality of (3.13) in our
optimization problem. Finally, we present the main result of this paper.

Definition 4.1 Let us consider the utility maximization problem (3.2) with the wealth-
dependent risk aversion coefficient Γ (r) = γ0 + γ1(r)ε with ε > 0. A strategy
π := (π(t), 0 ≤ t ≤ T ) is in the class B if

1. π : [0, T ] × Ω → R is an F-predictable process determined with a measur-
able mapping π : [0, T ] × R × (0,∞) × {0, . . . , n} 	→ R such that π(t) =
π J (t−)(t, Xπ (t−), P(t)) and π has the representation:

πk(t, x, p) = πk
0 (t, x, p) + πk

1 (t, x, p)ε,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, (4.1)

2. The mappings x 	→ πk
i

(
t, x, P(t, ω)

)
satisfy the Lipschitz conditions:

∣
∣πk

i

(
t, x, P(t, ω)

) − πk
i

(
t, x ′, P(t, ω)

)∣
∣ ≤ H(t, ω)

∣
∣x − x ′∣∣, i = 0, 1,

(t, x, ω, k), (t, x ′, ω, k) ∈ [0, T ] × R × Ω × {0, 1, . . . , n},
where H : [0, T ] × Ω 	→ [0,∞) is a continuous process, adapted to the filtration
σ(P(u), u ∈ [0, T ]), such that (∫ t

0 H(s)dW (s), 0 ≤ t ≤ T ) is a B M O-martingale
and

H(t, ω) ≤ K
(
1 + P(t, ω)

)
, (t, ω) ∈ [0, T ] × Ω,

3. The mappings x 	→ πk
i

(
t, x, P(t, ω)

)
satisfy the growth conditions:

∣
∣πk

i

(
t, x, P(t, ω)

)∣
∣ ≤ H̃(t, ω), i = 0, 1,

(t, x, ω, k) ∈ [0, T ] × R × Ω × {0, 1, . . . , n},
where H̃ : [0, T ] × Ω 	→ [0,∞) is a continuous process, adapted to the filtration
σ(P(u), u ∈ [0, T ]), such that (∫ t

0 H̃(s)dW (s), 0 ≤ t ≤ T ) is a B M O-martingale
and

H̃(t, ω) ≤ K
(
1 + P(t, ω)

)
, (t, ω) ∈ [0, T ] × Ω,
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4. E
[
e−Γ (r)

(
Xπ0 (T )−J (T )η(P(T ))

)

|Ft

]
< ∞, for all t ∈ [0, T ] and all r ∈ R, including

Γ (−∞) = supr∈R Γ (r) and Γ (+∞) = infr∈R Γ (r).

We remark that the amount of π1 added to π0, in order to define the admissible
strategy (4.1), is controlled with the parameter ε which represents the degree of the
insurer’s risk aversion depending onwealth. If we chooseπ1 = 0, thenwe can consider
strategies independent of the parameter ε within the class B. Finally, the processes
H and H̃ , which appear in the Lipschitz and growth conditions, may depend on the
strategies π0, π1.

Sinceweuse perturbation techniques, the idea ofwhich is to expand the true solution
in powers of the small parameter ε, it is natural to consider the investment strategies
of the form (4.1) in point 1 of Definition 4.1, see also Fouque and Hu [12]. Points 2–4
from Definition 4.1 are closely related to points 2–4 from Definition 3.1. Points 2-3
from Definition 4.1 describe in more details the measurable mapping (t, x, p, k) 	→
πk(t, x, p) which characterizes the investment strategy. In particular, points 2–3 from
Definition 4.1 imply that points 2–3 from Definition 3.1 are satisfied. They are rather
standard in the theory of stochastic differential equations and backward stochastic
differential equations with B M O-martingales, see Chapter V.3 in Protter [20] and
Ankirchner et al. [2]. Finally, since we add a small amount ε of π1 to π0 in order to
define the strategy π ∈ B in (4.1), we expect that point 4 from Definition 3.1 should
only be needed for π0 (which is point 4 fromDefinition 4.1). In Proposition 5.2 below,
we show that B ⊂ A and the candidate first-order approximation to the equilibrium
strategy π̂∗ ∈ B for a sufficiently small ε > 0. Although Definition 4.1 may look
technical, we believe that it describes a very reasonable class of investment strategies
which are important for our exponential utility maximization problem (3.2) with a
small amount ε of wealth-dependent risk aversion and does not exclude any relevant
strategies.

We now present the main theorem of this paper.

Theorem 4.1 We assume that (A1)–(A7) hold. The strategies π∗
0 = (π

k,∗
0 )n

k=0, π
∗
1 =

(π
k,∗
1 )n

k=0 are given by (3.9)–(3.10), and the functions (vk
0)

n
k=0, (v

k
1)

n
k=0 are given by

(3.11), (3.12). Let (vk,π
ε )n

k=0 and (wk,π
ε )n

k=0 denote the objective functions (3.3)–(3.4)
for the utility maximization problem (3.2) with the wealth-dependent risk aversion
coefficient Γ (r) = γ0 + γ1(r)ε with ε > 0 when the strategy π is applied. We
allow for strategies π = (πk)n

k=0 ∈ B such that (vk,π
ε )n

k=0 ∈ C([0, T ] × R ×
(0,∞)) ∩ C1,2,2([0, T ) × R × (0,∞)) and (wk,π

ε )n
k=0 ∈ C([0, T ] × R × (0,∞) ×

R) ∩ C1,2,2,2([0, T ) ×R× (0,∞) ×R). We fix (t, x, p, k) ∈ [0, T ) ×R× (0,∞) ×
{0, 1, . . . , n}.
(i) For any strategy π0, we have the asymptotic zeroth-order approximation to the

objective function:

vk,π0
ε (t, x, p) = V k,π0(t, x, p) + O(ε), ε → 0, (4.2)

where V k,π0 denotes the objective function for the time-consistent optimization
problem (3.3) with Γ (r) = γ0 under the strategy π0.
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(ii) The strategy π∗
0 performs better than any strategy π0 when we compare the

asymptotic approximations to the objective functions up to order O(1), i.e.

lim
ε→0

(
v

k,π∗
0

ε (t, x, p) − vk,π0
ε (t, x, p)

) ≥ 0. (4.3)

The equality in (4.3) holds only for π0 = π∗
0 .

(iii) For any strategy π∗
0 + π1ε, we have the asymptotic first-order approximation to

the objective function:

v
k,π∗

0 +π1ε
ε (t, x, p) = vk

0(t, x, p) + vk
1(t, x, p)ε + O(ε2), ε → 0, (4.4)

(iv) The strategy π∗
0 + π∗

1 ε is the equilibrium strategy in the class of strategies
π∗
0 + π1ε when we compare the asymptotic approximations to the objective

functions up to order O(ε2), i.e.

lim
δ→0

1

δ

(

lim
ε→0

v
k,π∗

0 +π∗
1 ε

ε (t, x, p) − v
k,π∗

0 +πδ
1 ε

ε (t, x, p)

ε2

)

≥ 0, (4.5)

where, for δ ∈ [0, T − t], we define

πδ
1 (s) =

{
π1(s), t ≤ s ≤ t + δ,

π∗
1 (s), t + δ < s ≤ T .

(4.6)

The equality in (4.5) holds only for πδ
1 = π∗

1 .

Remark 4.1 (a) The function v
k,π0
ε depends on ε since we use Γ (r) = γ0 + γ1(r)ε.

The function v
k,π0+π1ε
ε depends on ε since we use π = π0 + π1ε and Γ (r) =

γ0 + γ1(r)ε. The subscript ε in (vk
ε )

n
k=0 will be omitted in the sequel.

(b) If we use Γ (r) = γ0, then π∗
0 is the optimal investment strategy for the

time-consistent exponential utility maximization problem (3.2) with the constant
risk aversion coefficient γ0, and the functions (vk

0)
n
k=0 define the correspond-

ing optimal value function, see Proposition 5.1 in Delong [8]. We note that
(vk

0)
n
k=0 ∈ C([0, T ] × R × (0,∞)) ∩ C1,2,2([0, T ) × R × (0,∞)) by Propo-

sition 5.1 below.
(c) The objective function V k,π in (4.2) is given by

V k,π (t, x, p) = Et,x,p,k

[
− e−γ0

(
Xπ (T )−J (T )η(P(T ))

)]
.

By point b above, supπ∈A V k,π (t, x, p) = V k,π∗
0 (t, x, p) = vk

0(t, x, p).
(d) We consider a class of strategies which is potentially smaller than the class B

since we require that the objective functions (3.3)–(3.4) are smooth for the strate-
gies considered in Theorem 4.1. This assumption is reasonable since in this paper
we work with smooth (classical) solutions to HJB equations and PDEs. In Theo-
rem 3.1 we assume that the equilibrium value function (i.e. the objective function
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for our optimization problem for the equilibrium strategy) is a smooth solution to
HJB equations. In Proposition 5.1 below we prove that the candidate first-order
approximation to the equilibrium value function is a smooth solution to PDEs.
Finally, Remark b shows that the optimal value function for the time-consistent
optimization problem with constant risk aversion (i.e. the objective function for
our optimization problem with ε = 0) is also smooth.

Theorem 4.1 gives a more rigorous justification for the investment strategy derived
in Delong [8]. The assertions (i)–(ii) from Theorem 4.1 are intuitively clear in the
view of Remark 4.1.b. The zeroth-order investment strategy π∗

0 postulated in Theo-
rem 3.1 and by Delong [8] performs better than any strategy π0 when we compare
the asymptotic expansions of the objective functions up to order O(1) as ε → 0. If
we want to study investment strategies which are series expansions in powers of ε,
then, by perturbation theory and Remark 4.1.b., it is natural to consider expansions
around the strategy π∗

0 . The most interesting are the assertions (iii)–(iv) from Theo-
rem 4.1 where we show that the first-order investment strategy π∗

0 + π∗
1 ε postulated

in Theorem 3.1 and by Delong [8] is the equilibrium strategy in a reasonable class of
strategies π∗

0 +π1ε when we compare the asymptotic approximations to the objective
functions up to orderO(ε2) as ε → 0. The criterion (4.5) is a modification of the well-
established criterion (3.5) for the equilibrium in continuous-time models. In (3.5) we
compare the objective functions for the exponential utility maximization problemwith
the risk aversion coefficient Γ (r) = γ0 + γ1(r)ε for the strategies π∗ and πδ . In (4.5)
we use the asymptotic expansions (4.4) of the objective functions for the exponential
utility maximization problem with the risk aversion coefficient Γ (r) = γ0 + γ1(r)ε

for the strategies π∗
0 + π∗

1 ε and π∗
0 + πδ

1ε and compare the terms in these expansions
up to order O(ε2). To the best of our knowledge the criterion (4.5) is new and has
not been investigated in the literature. We point out that (4.5) is not related to ε-
equilibrium.

5 The Proof of theMain Result

First, we introduce operators associated with the continuous parts of the processes
(Xπ , P, R).

Definition 5.1 Let Lπ
k and Mπ

k denote second order differential operators given by

Lπ
k φ(t, x, p) = φx (t, x, p)

(
πμ − kα(p)

) + 1

2
φxx (t, x, p)π2σ 2

+φpx (t, x, p)πbpσρ + φp(t, x, p)ap + 1

2
φpp(t, x, p)b2 p2,

Mπ
k φ(t, x, p, r) = Lπ

k φ(t, x, p, r)

+φr (t, x, p, r)
(
πμ − kα(p) − k Ft (t, p) − k Fp(t, p)ap − 1

2
k Fpp(t, p)b2 p2

)

+ 1

2
φrr (t, x, p, r)

(
π2σ 2 + (k Fp(t, p))2b2 p2 − 2πk Fp(t, p)bpσρ

)
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+φr p(t, x, p, r)
(
πbpσρ − k Fp(t, p)b2 p2

)

+φr x (t, x, p, r)
(
π2σ 2 − πk Fp(t, p)bpσρ

)
.

The operators Lπ
k and Mπ

k are defined, respectively, for φ ∈ C1,2,2([0, T ] × R ×
(0,∞)) and φ ∈ C1,2,2,2([0, T ] × R × (0,∞) × R). The operator Lπ

k φ(t, x, p, r)

only acts on (t, x, p) and r is kept as a constant.

Next, we briefly recall some results fromDelong [8]whichwewill use in the sequel.

Proof of Theorem 3.1 By Theorem 3.1 from Delong [8], the equilibrium strategy and
the equilibrium value function for (3.2) are characterized with the system of HJB
equations:

vk
t (t, x, p) + sup

π

{
Lπ

k vk(t, x, p) − Mπ
k wk(t, x, p, x − k F(t, p))

+Lπ
k wk(t, x, p, x − k F(t, p))

}
+

(
vk−1(t, x − β(p), p) − vk(t, x, p)

)
kλ

+
(
wk−1(t, x − β(p), p, x − k F(t, p))

−wk−1(t, x − β(p), p, x − β(p) − (k − 1)F(t, p))
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk(T , x, p) = −e−Γ (x−kη(p))(x−kη(p)), (x, p) ∈ R × (0,∞),

πk,∗ = arg supπ

{
Lπ

k vk(t, x, p) − Mπ
k wk(t, x, p, x − k F(t, p))

+Lπ
k wk(t, x, p, x − k F(t, p))

}
,

(t, x, p) ∈ [0, T ] × R × (0,∞), (5.1)

and

wk
t (t, x, p, r) + Lπk,∗

k wk(t, x, p, r)

+
(
wk−1(t, x − β(p), p, r) − wk(t, x, p, r)

)
kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞), r ∈ R,

wk(T , x, p, r) = −e−Γ (r)(x−kη(p)), (x, p) ∈ R × (0,∞), r ∈ R, (5.2)

for k ∈ {0, 1, . . . , n}. If we assume the risk aversion coefficient Γ (r) = γ0 + γ1(r)ε

with small ε > 0, then we can postulate the following first-order expansions for the
solutions to the HJB equations (5.1)–(5.2):

vk(t, x, p) = vk
0(t, x, p) + vk

1(t, x, p)ε + O(ε2), ε → 0,

(t, p, k) ∈ [0, T ] × (0,∞) × {0, 1, . . . , n}, (5.3)

wk(t, x, p, r) = wk
0(t, x, p) + wk

1(t, x, p, r)ε + O(ε2), ε → 0,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}. (5.4)

123



662 Applied Mathematics & Optimization (2021) 84:649–682

We also assume that derivatives of (vk)n
k=0, (w

k)n
k=0 satisfy the first-order expansions

of the same form (5.3)–(5.4). From equation (5.1), we can now deduce the first-order
expansion for the equilibrium strategy:

πk,∗(t, x, p) = π
k,∗
0 (t, x, p) + π

k,∗
1 (t, x, p)ε + O(ε2), ε → 0,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, (5.5)

where

π
k,∗
0 (t, x, p) = −

vk
0,x (t, x, p)μ + vk

0,px (t, x, p)bpσρ

vk
0,xx (t, x, p)σ 2

, (5.6)

π
k,∗
1 (t, x, p) =

vk
0,x (t, x, p)μ + vk

0,px (t, x, p)bpσρ

(vk
0,xx (t, x, p))2σ 2

×
(
vk
1,xx (t, x, p) − wk

1,rr (t, x, p, x − k F(t, p)) − 2wk
1,xr (t, x, p, x − k F(t, p))

)

−
(
vk
1,x (t, x, p) − wk

1,r (t, x, p, x − k F(t, p))
)
μ

vk
0,xx (t, x, p)σ 2

−
(
vk
1,px (t, x, p) − wk

1,pr (t, x, p, x − k F(t, p))
)

bpσρ

vk
0,xx (t, x, p)σ 2

−
(
wk
1,rr (t, x, p, x − k F(t, p)) + wk

1,xr (t, x, p, x − k F(t, p))
)

k Fp(t, p)bpσρ

vk
0,xx (t, x, p)σ 2

.

(5.7)

We substitute the expansions for (vk)n
k=0, (wk)n

k=0 and (πk,∗)n
k=0 into the system of

HJB equations (5.1)–(5.2). We collect the terms of order O(1),O(ε),O(ε2) and set
them to zero. We can derive the system of PDEs:

vk
0,t (t, x, p) + Lπ

k,∗
0

k vk
0(t, x, p) +

(
vk−1
0 (t, x − β(p), p) − vk

0(t, x, p)
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk
0(T , x, p) = −e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞), (5.8)

vk
1,t (t, x, p) + Lπ

k,∗
0

k vk
1(t, x, p) − Mπ

k,∗
0

k wk
1(t, x, p, x − k F(t, p))

+Lπ
k,∗
0

k wk
1(t, x, p, x − k F(t, p)) +

(
vk−1
1 (t, x − β(p), p) − vk

1(t, x, p)
)

kλ

+
(
wk−1
1 (t, x − β(p), p, x − k F(t, p))

−wk−1
1 (t, x − β(p), p, x − β(p) − (k − 1)F(t, p))

)
kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

vk
1(T , x, p) = γ1(x − kη(p))(x − kη(p))e−γ0(x−kη(p)), (x, p) ∈ R × (0, ∞), (5.9)

wk
0,t (t, x, p) + Lπ

k,∗
0

k wk
0(t, x, p) +

(
wk−1
0 (t, x − β(p), p) − wk

0(t, x, p)
)

kλ = 0,
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(t, x, p) ∈ [0, T ) × R × (0,∞),

wk
0(T , x, p) = −e−γ0(x−kη(p)), (x, p) ∈ R × (0, ∞), (5.10)

wk
1,t (t, x, p, r) + Lπ

k,∗
0

k wk
1(t, x, p, r)

+
(
wk−1
1 (t, x − β(p), p, r) − wk

1(t, x, p, r)
)

kλ = 0

(t, x, p) ∈ [0, T ) × R × (0,∞), r ∈ R,

wk
1(T , x, p, r) = γ1(r)(x − kη(p))e−γ0(x−kη(p)), (x, p) ∈ R × (0, ∞), r ∈ R,

(5.11)

for k = 0, 1, . . . , n. We can find the solutions to the PDEs (5.8)–(5.11). These
solutions are given by

vk
0(t, x, p) = −e−γ0x eγ0hk,γ0 (t,p), (5.12)

wk
0(t, x, p) = −e−γ0x eγ0hk,γ0 (t,p), (5.13)

vk
1(t, x, p) = γ1(x − k F(t, p))

×
(

x − hk,γ0(t, p) − γ0gk,γ0(t, p)
)

e−γ0x eγ0hk,γ0 (t,p), (5.14)

wk
1(t, x, p, r) = γ1(r)

(
x − hk,γ0(t, p) − γ0gk,γ0(t, p)

)
e−γ0x eγ0hk,γ0 (t,p), (5.15)

where the functions (hk)n
k=0 and (gk)n

k=0 solve the PDEs (3.7) and (3.8). The first-
order approximation to the equilibrium strategy (5.5) is determined with (3.9)-(3.10).

��
Proposition 5.1 (Propositions 5.1–5.4 from Delong [8]) Let (A1)–(A3) hold.

1. There exist unique solutions (hk)n
k=0 ∈ C([0, T ]×(0,∞))∩C1,2([0, T )×(0,∞))

to the system of PDEs (3.7). Moreover, the functions (hk)n
k=0 : [0, T ]× (0,∞) 	→

R are uniformly bounded in (t, p), and Lipschitz continuous in p uniformly in t .
2. In addition, assume that

(A7) There exist mixed derivatives (hk
tp)

n
k=0 ∈ C([0, T ) × (0,∞)).

There exist unique solutions (gk)n
k=0 ∈ C([0, T ]×(0,∞))∩C1,2([0, T )×(0,∞))

to the system of PDEs (3.8). Moreover, the functions (gk)n
k=0 : [0, T ]× (0,∞) 	→

R are uniformly bounded in (t, p), and Lipschitz continuous in p uniformly in t .
3. Let us define

Z(t) =
n∑

k=0

hk
p(t, P(t))P(t)1{J (t−) = k}, 0 ≤ t ≤ T ,

Z(t) =
n∑

k=0

gk
p(t, P(t))P(t)1{J (t−) = k}, 0 ≤ t ≤ T .

The processes (
∫ t
0 Z(s)dW (s), 0 ≤ t ≤ T ), (

∫ t
0 Z(s)dW (s), 0 ≤ t ≤ T ) are

B M O-martingales.
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4. There exist solutions (vk
0, v

k
1, w

k
0)

n
k=0 ∈ C([0, T ] ×R× (0,∞)) ∩ C1,2,2([0, T ) ×

R × (0,∞)) and (wk
1)

n
k=0 ∈ C([0, T ] × R × (0,∞) × R) ∩ C1,2,2([0, T ) × R ×

(0,∞) × R) to the PDEs (5.8)–(5.11) given by (5.12)–(5.15).

We are now heading towards the proof of our main result. We prove Theorem 4.1
by using series of lemmas and propositions.

Proposition 5.2 Let us consider the utility maximization problem (3.2)with the wealth-
dependent risk aversion coefficient Γ (r) = γ0+γ1(r)ε with a sufficiently small ε > 0.

(i) Any strategy π = π0 + π1ε ∈ B is in the class A.
(ii) The strategies π∗

0 and π̂∗ = π∗
0 + π∗

1 ε are in the class B.

Proof Assertion (i) We choose π = π0 + π1ε ∈ B from Definition 4.1. We will show
that all points from Definition 3.1 are satisfied. Point 1 is obvious. Point 2 follows
from the growth conditions for π0 and π1. Point 3 can be deduced from Theorem V.7
in Protter [20] since π0 and π1 are process Lipschitz. We are left with point 4. Let us
introduce the process

Y (t) = J (T )η(P(T )) −
∫ T

t

( μ2

2σ 2γ
− J (s−)α(P(s)) + μ

σ
Z1(s) − 1

2
γ (Z2(s))

2

−eγ (β(P(s))+Q(s)) − 1

γ
J (s−)λ

)
ds

−
∫ T

t
Z1(s)dW (s) −

∫ T

t
Z2(s)d B(s) −

∫ T

t
Q(s)d N (s), 0 ≤ t ≤ T . (5.16)

The process Y is used to define the solution to the exponential utility maximization
problem (3.2) with the constant risk aversion coefficientΓ (r) = γ0 = γ , see Theorem
5.1 in Delong [8]. We can show that

vk
0(t, x, p) = −e−γ x eγ hk (t,p) = −e−γ x eγ Y (t)|P(t)=p,J (t)=k, (5.17)

where vk
0(t, x, p) is the optimal value function for the time-consistent exponential

utility maximization problem for the initial point (t, x, p, k).
We choose r ∈ R and set γ1 := γ1(r). We choose t ∈ [0, T ]. We have the following
decomposition:

(γ0 + γ1ε)
(
Xπ (T ) − J (T )η(P(T ))

)

= γ0

(
Xπ (t) +

∫ T

t
π0(s)μds +

∫ T

t
π0(s)σdW (s)

−
∫ T

t
J (s−)α(P(s))ds +

∫ T

t
β(P(s))d J (s) − Y (T )

)

+ γ0

( ∫ T

t
π1(s)μds +

∫ T

t
π1(s)σdW (s)

)
ε
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+ γ1ε
(

Xπ (t) +
∫ T

t
(π0(s) + π1(s)ε)μds

+
∫ T

t
(π0(s) + π1(s)ε)σdW (s)

−
∫ T

t
J (s−)α(P(s))ds +

∫ T

t
β(P(s))d J (s) − J (T )η(P(T ))

)

= (γ0 + γ1ε)Xπ (t) − γ0Y (t)

+ γ0

( ∫ T

t
π0(s)μds +

∫ T

t
π0(s)σdW (s)

−
∫ T

t
J (s−)α(P(s))ds +

∫ T

t
β(P(s))d J (s) − (Y (T ) − Y (t))

)

+ ε
( ∫ T

t
π̃(s)μds +

∫ T

t
π̃(s)σdW (s)

)

− γ1ε
( ∫ T

t
J (s−)α(P(s))ds −

∫ T

t
β(P(s))d J (s) + J (T )η(P(T ))

)
,

(5.18)

where we introduce the strategy

π̃(s) = γ1π0(s) + (γ0 + γ1ε)π1(s), 0 ≤ s ≤ T .

From point 3 from Definition 4.1 and (A6), we deduce that the process( ∫ t
0 π̃(s)dW (s), 0 ≤ t ≤ T

)
is a B M O-martingale, and

∥
∥
∥

∫ T

0
π̃(s)dW (s)

∥
∥
∥
2

B M O

≤ K
(∥
∥
∥

∫ T

0
π0(s)dW (s)

∥
∥
∥
2

B M O
+

∥
∥
∥

∫ T

0
π1(s)dW (s)

∥
∥
∥
2

B M O

)
< ∞.

(5.19)

We now study the expected value:

E

[
e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

|Ft

]

= e−(γ0+γ1ε)Xπ (t)+γ0Y (t)
E

[
e−γ0

(
Xπ0 (T )−Xπ0 (t)−(Y (T )−Y (t))

)

×e−ε
( ∫ T

t π̃(s)μds+∫ T
t π̃(s)σdW (s)

)

×eγ1ε
( ∫ T

t J (s−)α(P(s))ds−∫ T
t β(P(s))d J (s)+J (T )η(P(T ))

)

|Ft

]
. (5.20)
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By Hölder’s inequality and boundedness of α, β, η, we can derive

E

[
e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

|Ft

]

≤ K e−(γ0+γ1ε)Xπ (t)+γ0Y (t)
(
E

[
e−γ0q1

(
Xπ0 (T )−Xπ0 (t)−(Y (T )−Y (t))

)

|Ft

]) 1
q1

×
(
E

[
e−q∗

1 ε
( ∫ T

t π̃(s)μds+∫ T
t π̃(s)σdW (s)

)

|Ft

]) 1
q∗
1 , (5.21)

for a sufficiently small q1 > 1 and its conjugate q∗
1 > 1. We can choose a sufficiently

small q1 > 1 such that γ0q1 = γ0 + γ1(r)ε = Γ (r), if a sufficiently small ε > 0 is
used. Consequently, by point 4 from Definition 4.1, the first expected value in (5.21)
is finite. As far as the second expected value is concerned, we introduce the process

M(s) = e− ∫ s
t q∗

1 επ̃(u)σdW (u)− 1
2

∫ s
t |q∗

1 επ̃(u)σ |2du, t ≤ s ≤ T .

The process M is an exponential martingale generated by a B M O-martingale since
(5.19) holds. Consequently, applying Hölder inequality and reverse Hölder inequality
to the exponential martingale, see Theorem 3.1 in Kazamaki [19], we get

E

[
e−q∗

1 ε
( ∫ T

t π̃(s)μds+∫ T
t π̃(s)σdW (s)

)

|Ft

]

≤
(
E

[|M(T )|q2 |Ft
]) 1

q2

×
(
E

[
e
1
2

∫ T
t q∗

2 |q∗
1 επ̃(s)σ |2ds−∫ T

t q∗
2q∗

1 επ̃(s)μds |Ft

]) 1
q∗
2

≤ K
(
E

[
e
1
2

∫ T
t q∗

2 |q∗
1 επ̃(s)σ |2ds−∫ T

t q∗
2q∗

1 επ̃(s)μds |Ft

]) 1
q∗
2 , (5.22)

for a sufficiently small q2 > 1 and its conjugate q∗
2 > 1. We remark that the constant

q2 depends on
∥
∥
∥

∫ T
0 q∗

1 επ̃(s)σdW (s)
∥
∥
∥

B M O
. Finally, for a sufficiently small ε, we have

the inequality

E

[
e
1
2

∫ T
t q∗

2 |q∗
1 επ̃(s)σ |2ds−∫ T

t q∗
2q∗

1 επ̃(s)μds |Ft

]

≤ K1E

[
eK2ε

2
∫ T

t |π̃(s)|2ds |Ft

]

≤ K1

1 − K2ε2
∥
∥
∥

∫ T
0 π̃(s)dW (s)

∥
∥
∥
2

B M O

< ∞, (5.23)

by (5.19) and John–Nirenberg inequality, see Theorem 2.2 in Kazamaki [19]. Collect-
ing (5.21) and (5.23), we can conclude that the expected value (5.20) is a.s. finite and
our strategy π satisfies point 4 from Definition 3.1. Hence, π ∈ B implies that π ∈ A.
Assertion (ii) Point 1 from Definition 4.1 is obvious. Points 2-3 can be deduced from
(A6) and the properties specified in Proposition 5.1. In particular, the properties that
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the mapping p 	→ hk(t, p) is Lipschitz continuous on (0,∞) uniformly in t ∈ [0, T ]
and hk ∈ C([0, T ]×(0,∞))∩C1,2([0, T )×(0,∞)) imply that the derivative (t, p) 	→
hk

p(t, p) is uniformly bounded and jointly continuous on [0, T )×(0,∞). In the defini-
tion of the investment strategy (3.13) we choose the left limit limt 	→T − hk

p(t, P(t, ω))

and we have a continuous, finite mapping t 	→ hk
p(t, P(t, ω))P(t, ω) on [0, T ] for

a.a ω. The same arguments hold for gk
p(t, p). We have to prove point 4. In fact, we

only have to prove that the first expected value in (5.21) is finite if π∗
0 is used. By

Remark 4.1.b. the strategy π∗
0 is the optimal investment strategy for the optimization

problem (3.2) with constant risk aversion, see also Theorems 5.1, 6.1 in Delong [8].
From properties of the optimal value function (5.17) for the time-consistent exponen-
tial utility maximization problem (3.2) with the constant risk aversion Γ (r) = γ0, we
can deduce that

M(s) = e−γ0

(
Xπ∗

0 (s)−Xπ∗
0 (t)−(Y (s)−Y (t))

)

, t ≤ s ≤ T ,

is an exponentialmartingale generated by a B M O-martingale, see eq. (8.12) inDelong
[8] or a general theory in Hu et al. [16]. Hence, by reverse Hölder inequality, we can
choose a sufficiently small q1 > 1 such that

E
[|M(T )|q1 |Ft

] ≤ K . (5.24)

We can now use the same arguments as in the first part of the proof. ��
Lemma 5.1 Let π ∈ A denote an admissible strategy for the utility maximization
problem (3.2) with the wealth-dependent risk aversion coefficient Γ (r) = γ0+γ1(r)ε

with ε > 0, and let (vk
0, v

k
1, w

k
0, w

k
1)

n
k=0 denote the solutions to the PDEs (5.8)–(5.11).

The families

{
v

J (T )
i (T , Xπ (T ), P(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
w

J (T )
i (T , Xπ (T ), P(T ), R(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
w

J (T )
i (T , Xπ (T ), P(T ), r), T is an F − stopping time, T ∈ [0, T ]

}
, r ∈ R,

are uniformly integrable, for i = 0, 1.

Proof The solutions to (5.8)–(5.11) are given by (5.12)–(5.15). By Proposition 5.1,
the functions (hk)n

k=0, (g
k)n

k=0 are bounded in (t, p, k). Since γ1 is bounded by
(A6), it is sufficient to prove that {e−γ0Xπ (T ), T is an F − stopping time} and
{e−γ0Xπ (T ) Xπ (T ), T is an F − stopping time} are uniformly integrable for any
π ∈ A.
We choose π ∈ A. Points 2 and 4 from Definition 3.1 and the assumption (A6) that

γ1(0) = 0 imply that the family
{

e−γ0Xπ (T ), T is an F−stopping time
}
is uniformly

integrable, see Remark 8 in Hu et al. [16]. We now consider the second family. We
choose a sufficiently small q > 1. We have the inequality
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sup
t∈[0,T ]

E

[∣
∣e−γ0Xπ (t) Xπ (t)

∣
∣q

]

≤
(

sup
t∈[0,T ]

E

[
e−γ0κq Xπ (t)

]) 1
κ ×

(
sup

t∈[0,T ]
E

[
|Xπ (t)|κ∗q

]) 1
κ∗

, (5.25)

where we choose a sufficiently small κ > 1, and κ∗ denotes its conjugate. Since
we can set γ0κq = γ0 + γ1(r)ε = Γ (r) for some r ∈ R and sufficiently small
ε > 0, κ > 1, q > 1, the first term in (5.25) is finite by uniform integrability of
{e−γ0κq Xπ (T ), T is an F − stopping time} (by points 2 and 4 from Definition 3.1
and the arguments from above). As far as the second term in (5.25) is concerned, let
us recall the dynamics (3.1) for the process Xπ . For any κ∗ > 1 and q > 1, we have
the inequalities

sup
t∈[0,T ]

E

[
|Xπ (t)|κ∗q

]
≤ K

(
1 + E

[∣
∣
∣

∫ T

0
|π(s)|2ds

∣
∣
∣

κ∗q
2

]

+E

[
sup

t∈[0,T ]

∣
∣
∣

∫ t

0
π(s)dW (s)

∣
∣
∣
κ∗q])

≤ K
(
1 + E

[∣
∣
∣

∫ T

0
|π(s)|2ds

∣
∣
∣

κ∗q
2

])

≤ K
(
1 +

∥
∥
∥

∫ T

0
π(s)dW (s)

∥
∥
∥
2[ κ∗q

2 ]+2

B M O

)
< ∞, (5.26)

where we use the Burholder–Davis–Gundy inequality and the energy inequality (see
e.g. page 29 in Kazamaki [19]. ��
Lemma 5.2 Let π ∈ A denote an admissible strategy and (vk,π , wk,π )n

k=0 denote
the corresponding objective functions (3.3)–(3.4) for the utility maximization problem
(3.2) with the wealth-dependent risk aversion coefficient Γ (r) = γ0 + γ1(r)ε with
ε > 0. The families

{
v J (T ),π (T , Xπ (T ), P(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
w J (T ),π (T , Xπ (T ), P(T ), R(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
w J (T ),π (T , Xπ (T ), P(T ), r), T is an F − stopping time, T ∈ [0, T ]

}
, r ∈ R,

are uniformly integrable.

Proof This is a modification of a well-known result which concerns uniform integra-
bility of conditional expectations. We choose π ∈ A.

Step 1 Let us consider the family

w J (T ),π (T , Xπ (T ), P(T ), R(T )) = E

[
e−Γ (R(T ))

(
Xπ (T )−J (T )η(P(T ))

)

|FT
]
, (5.27)
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indexed with stopping times T . We can observe that

e−Γ (R(T ))
(

Xπ (T )−J (T )η(P(T ))
)

≤ e−(γ0+γ1(−∞)ε)
(

Xπ (T )−J (T )η(P(T ))
)

+e−(γ0+γ1(+∞)ε)
(

Xπ (T )−J (T )η(P(T ))
)

:= U , (5.28)

where γ1(−∞) = supr∈R γ1(r) and γ1(+∞) = infr∈R γ1(r). From point 4 from
Definition 3.1, we conclude that E[U] < ∞. We can establish the first property:

sup
T

E
[
w J (T ),π (T , Xπ (T ), P(T ), R(T ))

]

= sup
T

E

[
e−Γ (R(T ))

(
Xπ (T )−J (T )η(P(T ))

)]
≤ E[U] < ∞. (5.29)

Step 2 By Markov’s inequality and (5.29), we derive the inequality

Pr
(
w J (T ),π (T , Xπ (T ), P(T ), R(T )) > C

)

≤ E
[
w J (T ),π (T , Xπ (T ), P(T ), R(T ))

]

C
≤ E[U]

C
.

Consequently, for any δ > 0, we can choose a sufficiently large C such that

Pr
(
w J (T ),π (T , Xπ (T ), P(T ), R(T )) > C

)
< δ.

Step 3 Since the random variable U defined in (5.28) is trivially uniformly integrable,
then for any δ0 > 0, we can choose δ such that

Pr(A) < δ ⇒ E[U1A] < δ0.

By Step 2, for any δ0 > 0, we can choose δ and C such that

Pr
(
w J (T ),π (T , Xπ (T ), P(T ), R(T )) > C

)
< δ ⇒

E
[
U1wJ (T ),π (T ,Xπ (T ),P(T ),R(T ))>C

]
< δ0.

Step 4 By (5.27)–(5.28) and the property of conditional expectations, we get the
inequality

E
[
w J (T ),π (T , Xπ (T ), P(T ), R(T ))1wJ (T ),π (T ,Xπ (T ),P(T ),R(T ))>C

]

≤ E
[
U1wJ (T ),π (T ,Xπ (T ),P(T ),R(T ))>C

]
.

Consequently, by Step 3, for any δ0 > 0, we can choose δ and C such that

Pr
(
w J (T ),π (T , Xπ (T ), P(T ), R(T )) > C

)
< δ ⇒
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E[w J (T ),π (T , Xπ (T ), P(T ), R(T ))1wJ (T ),π (T ,Xπ (T ),P(T ),R(T ))>C ] < δ0.

Weconclude that the familyw J (T ),π (T , Xπ (T ), P(T ), R(T )) indexedwith stopping
times T is uniformly integrable. The remaining families of random variables can be
studied in the exactly the same way. ��

Proposition 5.3 Let π ∈ A. We consider functions (ϑk)n
k=0 ∈ C([0, T ]×R×(0,∞))∩

C1,2,2([0, T )×R×(0,∞)), (ϕk)n
k=0 ∈ C([0, T ]×R×(0,∞)×R)∩C1,2,2,2([0, T )×

R × (0,∞) × R) such that the families

{
ϑ J (T )(T , Xπ (T ), P(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
ϕ J (T )(T , Xπ (T ), P(T ), R(T )), T is an F − stopping time, T ∈ [0, T ]

}
,

{
ϕ J (T )(T , Xπ (T ), P(T ), r), T is an F − stopping time, T ∈ [0, T ]

}
, r ∈ R,

are uniformly integrable, and (ϑk)n
k=0, (ϕk)n

k=0 satisfy the PDEs:

ϑk
t (t, x, p) + Lπ

k ϑk(t, x, p) − Mπ
k ϕk(t, x, p, x − k F(t, p))

+Lπ
k ϕk(t, x, p, x − k F(t, p)) +

(
ϑk−1(t, x − β(p), p) − ϑk(t, x, p)

)
kλ

+
(
ϕk−1(t, x − β(p), p, x − k F(t, p))

−ϕk−1(t, x − β(p), p, x − β(p) − (k − 1)F(t, p))
)

kλ

+Ψ k(t, x, p, x − k F(t, p)) = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

ϑk(T , x, p) = Φk(x, p, x − k F(t, p)), (x, p) ∈ R × (0,∞), (5.30)

and

ϕk
t (t, x, p, r) + Lπ

k ϕk(t, x, p, r)

+
(
ϕk−1(t, x − β(p), p, r) − ϕk(t, x, p, r)

)
kλ + Ψ k(t, x, p, r) = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞), r ∈ R,

ϕk(T , x, p, r) = Φk(t, x, r), (x, p) ∈ R × (0,∞), r ∈ R, (5.31)

for k ∈ {0, 1, . . . , n}. Moreover, we assume that the functions (Ψ k)n
k=0, (Φ

k)n
k=0

satisfy the integrability conditions:

E

[ ∫ T

0

∣
∣Ψ J (s)(s, Xπ (s), P(s), r)

∣
∣ds

]
< ∞, r ∈ R,
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E

[ ∫ T

0

∣
∣Ψ J (s)(s, Xπ (s), P(s), R(s))

∣
∣ds

]
< ∞,

E

[
|Φ J (T )(Xπ (T ), P(T ), r)

∣
∣
]

< ∞, r ∈ R,

E

[∣
∣Φ J (T )(Xπ (T ), P(T ), R(T ))

∣
∣
]

< ∞.

We have the representations:

ϕk(t, x, p, r)

= Et,x,p,k

[
Φ J (T )(Xπ (T ), P(T ), r) +

∫ T

t
Ψ J (s)(s, Xπ (s), P(s), r)ds

]
,

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}, r ∈ R,

and

ϑk(t, x, p) = ϕk(t, x, p, x − k F(t, p)),

(t, x, p, k) ∈ [0, T ] × R × (0,∞) × {0, 1, . . . , n}.

Proof Let (τm)∞m=0 denote a localizing sequence of stopping times for (Xπ , P, R).
We fix (t, x, p, k, r) ∈ [0, T ) × R × (0,∞) × {0, . . . , n} × R and choose π ∈ A.
Applying Itô’s formula to ϕ, with r fixed, and using equation (5.31), we can deduce
that

Et,x,p,k
[
ϕ J (τm )(τm, Xπ (τm), P(τm), r)

] − ϕk(t, x, p, r)

= Et,x,p,k

[
−

∫ τm

t
Ψ J (s)(s, Xπ (s), P(s), r)ds

]
.

We take τm → T . Since the jumps of the process J are totally inaccessible, then
J (T −) = J (T ), a.s.. By uniform integrability and dominated convergence theorem,
we derive that

ϕk(t, x, p, r)

= Et,x,p,k

[
− e−Γ (r)

(
Xπ (T )−J (T )η(P(T ))

)

+
∫ T

t
Ψ J (s)(s, Xπ (s), P(s), r)ds

]
.

Applying Itô’s formula to ϑ and using equation (5.30), we can show that

Et,x,p,k
[
ϑ J (τm)(τm , Xπ (τm), P(τm))] − ϑk(t, x, p)

= Et,x,p,k

[ ∫ τm

t

{
Mπ

J (s)ϕ
J (s)(s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))

)

−Lπ
J (s)ϕ

J (s)(s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))
)

−
(
ϕ J (s)−1(s, Xπ (s) − β(P(s)), P(s), Xπ (s) − J (s)F(s, P(s))

)
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−ϕ J (s)−1(s, Xπ (s) − β(P(s)), P(s), Xπ (s) − β(P(s)) − (J (s) − 1)F(s, P(s))
))

J (s)λ

−Ψ J (s)(s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))
)}

ds
]
.

Since the PDEs (5.31) also hold for r = x − k F(t, p), we conclude that

Et,x,p,k
[
ϑ J (τm )(τm, Xπ (τm), P(τm))] − ϑk(t, x, p)

= Et,x,p,k

[ ∫ τm

t

{
ϕ

J (s)
t

(
s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))

)

+Mπ
J (s)ϕ

J (s)(s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))
)

+
(
ϕ J (s)−1(s, Xπ (s) − β(P(s)), P(s), Xπ (s) − β(P(s)) − (J (s) − 1)F(s, P(s))

)

−ϕ J (s)(s, Xπ (s), P(s), Xπ (s) − J (s)F(s, P(s))
))

J (s)λ
}

ds
]

= Et,x,p,k
[
ϕ J (τm )(τm, Xπ (τm), P(τm), R(τm))

] − ϕk(t, x, p, x − k F(t, p)),

where the last term follows from Itô’s formula applied to ϕ. We take τm → T . By
uniform integrability, we arrive at ϑk(t, x, p) = ϕk(t, x, p, x − k F(t, p)). ��

Proof of Theorem 4.1 First, we present detailed proofs of the assertions (iii) and (iv).
At the end, we give a sketch of the proof for the assertions (i)–(ii). Let ε0 denote
a sufficiently small positive constant. We consider ε ∈ (0, ε0]. By K we denote a
constant which may change from line to line.

Step 1 We choose π1 so that π = π∗
0 + π1ε ∈ B. By Proposition 5.2, π ∈ A.

Let (vk,π )n
k=0, (w

k,π )n
k=0 denote the corresponding objective functions (3.3)–(3.4)

for the optimization problem with the wealth-dependent risk aversion (3.6). By our
assumption, (vk,π )n

k=0 ∈ C([0, T ] ×R× (0,∞)) ∩ C1,2,2([0, T ) ×R× (0,∞)) and
(wk,π )n

k=0 ∈ C([0, T ] × R × (0,∞) × R) ∩ C1,2,2,2([0, T ) × R × (0,∞) × R). We
will use the following four properties:

Step 1a From (3.3)–(3.4) we deduce that vk,π (t, x, p) = wk,π (t, x, p, x − k F(t, p)).
We have the following relations for the derivatives:

vk,π
x (t, x, p) = wk,π

x (t, x, p, x − k F(t, p)) + wk,π
r (t, x, p, x − k F(t, p)),

vk,π
xp (t, x, p) = wk,π

xp (t, x, p, x − k F(t, p)) + wk,π
r p (t, x, p, x − k F(t, p))

−wk,π
xr (t, x, p, x − k F(t, p))k Fp(t, p)

−wk,π
rr (t, x, p, x − k F(t, p))k Fp(t, p),

vk,π
xx (t, x, p) = wk,π

xx (t, x, p, x − k F(t, p)) + wk,π
rr (t, x, p, x − k F(t, p))

+2wk,π
xr (t, x, p, x − k F(t, p)). (5.32)
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Step 1b Since π∗
0 is determined by (5.6) and vk

0(t, x, p) = wk
0(t, x, p) [see (5.12)–

(5.13)], we can also use the strategy

π
k,∗
0 (t, x, p) = −wk

0,x (t, x, p)μ + wk
0,px (t, x, p)bpσρ

wk
0,xx (t, x, p)σ 2

,

and the equation

wk
0,x (t, x, p)μ + wk

0,px (t, x, p)bpσρ + π
k,∗
0 (t, x, p)wk

0,xx (t, x, p)σ 2 = 0. (5.33)

The terms on the left hand side of (5.33) can be added to any equationwithout changing
this equation. It is obvious that (5.33) also holds if we replace wk

0 with vk
0.

Step 1c We claim that the mapping ε 	→ Xπ∗
0 +π1ε(., ω) is continuous in the topology

of uniform convergence on [0, ε0] × [0, T ] for a.a. ω. By Theorem V.7 from Protter
[20] and points 2–3 from Definition 4.1, there exists a unique solution Xπ∗

0 +π1ε to the
SDE (3.1) for any ε ∈ [0, ε0]. We have the dynamics:

d
(
Xπ∗

0 +π1ε(t) − Xπ∗
0 +π1ε

′
(t)

)

=
{
π

J (t−),∗
0 (t, Xπ∗

0 +π1ε(t), P(t)) − π
J (t−),∗
0 (t, Xπ∗

0 +π1ε
′
(t), P(t))

+ ε
(
π

J (t−)
1 (t, Xπ∗

0 +π1ε(t), P(t)) − π
J (t−)
1 (t, Xπ∗

0 +π1ε
′
(t), P(t))

)

+ (
ε − ε′)π J (t−)

1 (t, Xπ∗
0 +π1ε

′
(t), P(t))

} (
μdt + σdW (t)

)
.

Let us recall the continuous processes H and H̃ from points 2–3 of Definition 4.1 and
we define the stopping times τn = inf{t ∈ [0, T ] : H(t) + H̃(t) ≥ n} for n ∈ N.
Standard estimates for SDEs lead us to the inequality:

E

[
sup

t∈[0,τn ]
∣
∣Xπ∗

0 +π1ε(t) − Xπ∗
0 +π1ε

′
(t)

∣
∣q

]
≤ Kε0,n|ε − ε′|q , q ≥ 2.

ByKolmogorov’s lemma, our claim holds on [0, ε0]×[0, τn] for a.a. ω. The continuity
of the mapping ε 	→ Xπ∗

0 +π1ε(., ω) on [0, ε0] × [0, T ] for a.a. ω follows from the
arguments from the proofs of Theorems V.7 and V.37 in Protter [20].

Step 1d We improve the estimates (5.20)–(5.23). Let us choose sufficiently small
q > 1, κ > 1, ι > 1, and let q∗, κ∗, ι∗ denote their conjugates. We introduce the
martingales:

M(t) = e−γ0(Xπ∗
0 (t)−Y (t)), 0 ≤ t ≤ T ,

M(t) = e− ∫ t
0 qκ∗εγ0π1(s)σdW (s)− 1

2

∫ t
0 |qκ∗εγ0π1(s)σ |2ds, 0 ≤ t ≤ T .
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We note that

∥
∥
∥

∫ T

0
qκ∗εγ0π1(s)σdW (s)

∥
∥
∥

B M O
≤ K

∥
∥
∥

∫ T

0
π1(s)dW (s)

∥
∥
∥

B M O
,

for all ε ∈ [0, ε0], and the constant K is independent of ε. Consequently, by Theorem
3.1 from Kazamaki [19], for all ε ∈ [0, ε0] we can find a universal, sufficiently small
ι > 1 such that all stochastic exponentials of

∫ t
0 qκ∗εγ0π1(s)σdW (s) satisfy the

reverse Hölder inequality with the common power ι. The reverse Hölder inequality
gives us the estimate

E
[∣
∣M(t)

∣
∣l
] ≤ K ,

all ε ∈ [0, ε0], and the constant K depends on ι but is independent of ε. Using the
arguments from the proof of Proposition 5.2 together with Doob’s inequality, we can
now conclude that

E

[
sup

t∈[0,T ]
∣
∣e−γ0Xπ∗

0+π1ε
(t)

∣
∣q

]
≤ K1

(
E

[
sup

t∈[0,T ]
∣
∣M(t)

∣
∣qκ

]) 1
κ
(
E

[
sup

t∈[0,T ]
∣
∣M(t)

∣
∣l
]) 1

κ∗ι

×
(
E

[
eK2ε

2
∫ T
0 |π1(s)|2ds

]) 1
κ∗ι∗

≤ K1
(
1 − K2ε2

∥
∥
∥

∫ T
0 π1(s)dW (s)

∥
∥
∥
2

B M O

) 1
r

, (5.34)

with some r > 1, for all ε ∈ [0, ε0]. The constants K1, K2, r in (5.34) are independent
of ε. We show, in this step and in the sequel, that our constants are independent of
ε since in Steps 3–4 we prove that the approximation error is of order O(ε2), where
O(ε2) is defined by (1.1) and the constant K for the approximation error in (1.1) must
be independent of ε.
We also improve the estimate (5.26). Let us choose any q > 1. Applying Burkholder–
Davis–Gundy inequality as in the proof of Lemma 5.1, we can show that

E

[
sup

t∈[0,T ]
|Xπ∗

0 +π1ε(t)|q
]

≤ K
(
1 + εr

∥
∥
∥

∫ T

0
π1(s)dW (s)

∥
∥
∥

r

B M O

)
, (5.35)

with some r ≥ 2, for all ε ∈ [0, ε0]. The constants K , r in (5.35) are independent of ε.

We remark that the constants in (5.34) depend on
∥
∥
∥

∫ T
0 π1(s)dW (s)

∥
∥
∥

B M O
. However,

the dependence of constants on the applied strategies will not be pointed out if this
dependence is not needed for the proof.

Step 2 Let us introduce the functions:

Qk(t, x, p, r) = wk,π (t, x, p, r) − wk
0(t, x, p) − wk

1(t, x, p, r)ε,

U k(t, x, p) = vk,π (t, x, p) − vk
0(t, x, p) − vk

1(t, x, p)ε.
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The functions quantify the approximation errors which we want to study. In this step
we derive probabilistic representations for (Qk)n

k=0 and (U k)n
k=0. Since Lemma 5.2

holds and we assume that (vk,π )n
k=0 ∈ C([0, T ] × R × (0,∞)) ∩ C1,2,2([0, T ) ×

R × (0,∞)), (wk,π )n
k=0 ∈ C([0, T ] × R × (0,∞) × R) ∩ C1,2,2,2([0, T ) × R ×

(0,∞)×R), we can apply Proposition 5.3 and derive PDEs for (vk,π )n
k=0, (w

k,π )n
k=0.

Using the PDEs (5.8)–(5.11) for (vk
0, v

k
1, w

k
0, w

k
1)

n
k=0, we can next derive the PDEs

for (Qk)n
k=0, (U

k)n
k=0:

Qk
t (t, x, p, r) + Lπ

k Qk(t, x, p, r) +
(

Qk−1(t, x − β(p), p, r) − Qk(t, x, p, r)
)

kλ

+(Lπ
k − Lπ∗

0
k

)(
wk
0(t, x, p) + wk

1(t, x, p, r)ε
) = 0,

Qk(T , x, p, r) = −e−Γ (r)(x−kη(p))

+e−γ0(x−kη(p)) − γ1(r)(x − kη(p))e−γ0(x−kη(p))ε, (5.36)

and

U k
t (t, x, p) + Lπ

k U k(t, x, p) − Mπ
k Qk(t, x, p, x − k F(t, p))

+Lπ
k Qk(t, x, p, x − k F(t, p)) +

(
U k−1(t, x − β(p), p) − U k(t, x, p)

)
kλ

+
(

Qk−1(t, x − β(p), p, x − k F(t, p))

−Qk−1(t, x − β(p), p, x − β(p) − (k − 1)F(t, p))
)

kλ

+ (
Lπ

k − Lπ∗
0

k

)(
vk
0(t, x, p) + vk

1(t, x, p)ε
)

−(
Mπ

k − Lπ
k − Mπ∗

0
k + Lπ∗

0
k

)
wk
1(t, x, p, x − k F(t, p))ε = 0

U k(T , x, p) = −e−Γ (x−kη(p))(x−kη(p)) + e−γ0(x−kη(p))

−γ1(x − kη(p))(x − kη(p))e−γ0(x−kη(p))ε. (5.37)

Recalling Definition 5.1, the strategy π = π∗
0 + π1ε and using (5.32)–(5.33), we can

show that

(
Lπ

k − Lπ∗
0

k

)(
wk
0(t, x, p) + wk

1(t, x, p, r)ε
)

= πk(t, x, p)
(
wk
0,x (t, x, p) + wk

1,x (t, x, p, r)ε
)
μ

−π
k,∗
0 (t, x, p)

(
wk
0,x (t, x, p) + wk

1,x (t, x, p, r)ε
)
μ

+ 1

2
|πk(t, x, p)|2(wk

0,xx (t, x, p) + wk
1,xx (t, x, p, r)ε

)
σ 2

− 1

2
|πk,∗

0 (t, x, p)|2(wk
0,xx (t, x, p) + wk

1,xx (t, x, p, r)ε
)
σ 2

+πk(t, x, p)
(
wk
0,px (t, x, p) + wk

1,px (t, x, p, r)bpσρε
)
bpσρ

−π
k,∗
0 (t, x, p)

(
wk
0,px (t, x, p) + wk

1,px (t, x, p, r)bpσρε
)
bpσρ

−πk
1 (t, x, p)

(
wk
0,x (t, x, p)μ
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+wk
0,px (t, x, p)bpσρ + π

k,∗
0 (t, x, p)wk

0,xx (t, x, p)σ 2
)
ε

= πk
1 (t, x, p)

(
wk
1,x (t, x, p, r)μ + wk

1,px (t, x, p, r)bpσρ
)
ε2

+π
k,∗
0 (t, x, p)πk

1 (t, x, p)wk
1,xx (t, x, p, r)σ 2ε2

+ 1

2
|πk

1 (t, x, p)|2(wk
0,xx (t, x, p) + wk

1,xx (t, x, p, r)ε
)
σ 2ε2

:= Ψ k,π1(t, x, p, r), (5.38)

and

(
Lπ

k − Lπ∗
0

k

)(
vk
0(t, x, p) + vk

1(t, x, p)ε
)

−(
Mπ

k − Lπ
k − Mπ∗

0
k + Lπ∗

0
k

)
wk
1(t, x, p, x − k F(t, p))ε

= Ψ k,π1(t, x, p, x − k F(t, p)). (5.39)

We investigate the function Ψ k,π1 . We can calculate derivatives of wk
0, w

k
1 since the

explicit solutions (5.13), (5.15) are available. By the properties of (hk)n
k=0, (g

k)n
k=0

specified in Proposition 5.1, point 3 of Definition 4.1 and (A6), we can derive the
estimates:

|wk
1,x (t, x, p, r)| ≤ K e−γ0x (1 + |x |), |wk

1,px (t, x, p, r)| ≤ K e−γ0x (1 + |x |),
|wk

1,xx (t, x, p, r)| ≤ K e−γ0x (1 + |x |), |wk
0,xx (t, x, p)| ≤ K e−γ0x ,

|πk,∗
0 (t, x, p)| ≤ K (1 + p),

which lead us to the following estimate for the function Ψ k,π1 :

|Ψ k,π1(t, x, p, r)|
≤ K

(
|πk

1 (t, x, p)|2e−γ0x + |πk
1 (t, x, p)|e−γ0x(1 + |x |)(1 + p

))
ε2

+K |πk
1 (t, x, p)|2e−γ0x(1 + |x |)ε3

≤ K e−γ0x(1 + |x |)(1 + p
)2(

ε2 + ε3
)
, (5.40)

Applying Hölder’s inequality and using (5.34)-(5.35) together with

E
[

sup
t∈[0,T ]

|P(t)|q]
< ∞, f or all q ≥ 1, (5.41)

we can deduce that

E

[ ∫ T

0
|Ψ J (s),π1(s, Xπ , P(s), r)|ds

]
< ∞,

E

[ ∫ T

0
|Ψ J (s),π1(s, Xπ , P(s), R(s))|ds

]
< ∞. (5.42)
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Finally, using the above results, Proposition 5.1, Lemmas 5.1–5.2 and the assumption
that (vk,π )n

k=0 ∈ C([0, T ]×R× (0,∞))∩C1,2,2([0, T )×R× (0,∞)), (wk,π )n
k=0 ∈

C([0, T ]×R×(0,∞)×R)∩C1,2,2,2([0, T )×R×(0,∞)×R), we can apply Proposi-
tion 5.3 and establish probabilistic representations for the functions (Qk)n

k=0, (U
k)n

k=0.
We derive the key representation for the approximation error:

U k(t, x, p) = Et,x,p,k

[
− e−Γ (x−kη(p))

(
Xπ (T )−J (T )η(P(T ))

)

+e−γ0

(
Xπ (T )−J (T )η(P(T ))

)

−γ1(x − kη(p))
(
Xπ (T ) − J (T )η(P(T ))

)
e−γ0

(
Xπ (T )−J (T )η(P(T ))

)

ε
]

+Et,x,p,k

[ ∫ T

t
Ψ J (s),π1(s, Xπ (s), P(s), x − k F(t, p))ds

]

:= U k
1 (t, x, p) + U k

2 (t, x, p), (5.43)

where U k
1 (t, x, p) denotes the first expected value in (5.43), and U k

2 (t, x, p) denotes
the second expected value in (5.43). In Steps 3–4 below we derive estimates for the
functions U k

1 (t, x, p), U k
2 (t, x, p), and for the approximation error U k(t, x, p).

Step 3 We fix t ∈ [0, T ) and δ ∈ [0, T − t]. From now on, we consider π = π∗
0 +πδ

1ε,
whereπδ

1 is defined in (4.6).We chooseπ1 so thatπ∗
0 +πδ

1ε ∈ B for any δ ∈ [0, T −t].
By Proposition 5.2 and point 3 from Definition 4.1, we note that

∥
∥
∥

∫ T

t
πδ
1 (s)dW (s)

∥
∥
∥
2

B M O

≤ 2
(∥
∥
∥

∫ T

t
π∗
1 (s)dW (s)

∥
∥
∥
2

B M O
+

∥
∥
∥

∫ T

t
π1(s)dW (s)

∥
∥
∥
2

B M O

)
≤ K , (5.44)

for all δ ∈ [0, T − t]. The constant K in (5.44) is independent of δ.
We study the first expected value in (5.43). Let γ1 := γ1(x − kη(p)). We investigate
the random variable

−e−(γ0+γ1ε)
(

Xπ (T )−J (T )η(P(T ))
)

+ e−γ0

(
Xπ (T )−J (T )η(P(T ))

)

−γ1
(
Xπ (T ) − J (T )η(P(T ))

)
e−γ0

(
Xπ (T )−J (T )η(P(T ))

)

ε

= −γ 2
1

∫ 1

0

∣
∣Xπ (T ) − J (T )η(P(T ))

∣
∣2e−γ0

(
Xπ (T )−J (T )η(P(T ))

)

× e−γ1εz
(

Xπ (T )−J (T )η(P(T ))
)

(1 − z)dzε2. (5.45)

Let us choose z ∈ [0, 1]. As in the proof of Proposition 5.2 and Step 1d of this proof,
we can observe that
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e−(γ0+γ1εz)
(

Xπ (T )−J (T )η(P(T ))
)

= e−(γ0+γ1εz)Xπ (t)+γ0Y (t)M(T )M(T )

× eγ1εz
( ∫ T

t J (s−)α(P(s))ds−∫ T
t β(P(s))d J (s)+J (T )η(P(T ))

)

,

where we introduce the strategy

π̃z(s) = γ1zπ∗
0 (s) + (γ0 + γ1εz)πδ

1 (s), t ≤ s ≤ T ,

and the exponential martingales

M(s) = e−γ0

(
Xπ∗

0 (s)−Xπ∗
0 (t)−(Y (s)−Y (t))

)

, t ≤ s ≤ T ,

M(s) = e−ε
( ∫ s

t π̃z(u)μdu+∫ s
t π̃z(u)σdW (u)

)

t ≤ s ≤ T .

By point 3 from Definition 4.1, Proposition 5.2, the properties (5.44) and (A6), we
have the estimate

∥
∥
∥

∫ T

t
π̃z(s)dW (s)

∥
∥
∥
2

B M O
≤ K , (5.46)

for all z ∈ [0, 1], ε ∈ [0, ε0] and δ ∈ [0, T − t]. Moreover, the constant K is
independent of (z, ε, δ).
We choose q = 1, or a sufficiently small q > 1, and a sufficiently small κ > 1. Using
(5.44), (5.46) and the same arguments which led us to (5.20)–(5.23), (5.34)–(5.35)),
we can deduce the estimate

Et,x,p,k

[∣
∣Xπ (T ) − J (T )η(P(T ))

∣
∣2q

e−q(γ0+γ1εz)
(

Xπ (T )−J (T )η(P(T ))
)]

≤
(
Et,x,p,k

[∣
∣Xπ (T ) − J (T )η(P(T ))

∣
∣2qκ∗]) 1

κ∗ (
E

[
e−qκ(γ0+γ1εz)

(
Xπ (T )−J (T )η(P(T ))

)]) 1
κ

≤
K1

(
1 + εr1 || ∫ T

t πδ
1 (s)dW (s)||r1B M O

) 1
r2

(
1 − K2ε2||

∫ T
t π̃z(s)dW (s)||2B M O

) 1
r3

≤ K , (5.47)

with some r1 ≥ 2, r2 > 1, r3 > 1, for all z ∈ [0, 1], ε ∈ [0, ε0], δ ∈ [0, T − t]. The
final constant K in (5.47) is independent of (z, ε, δ). Let us remark that in Step 1d we
concluded that the constants in (5.34) depend on the investment strategy. However, due
to (5.44), (5.46), we can indeed conclude that the constants in (5.47) are independent
of (ε, δ), but they depend on π1 used for πδ

1 .
By Fubini’s theorem and (5.45)–(5.47), we can write

U k
1 (t, x, p) = −γ 2

1

∫ 1

0
Et,x,p,k

[∣
∣Xπ∗

0 +πδ
1 ε(T ) − J (T )η(P(T ))

∣
∣2

·e−(γ0+γ1εz)
(

Xπ∗
0+πδ

1 ε
(T )−J (T )η(P(T ))

)]
(1 − z)dzε2. (5.48)
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From (5.47) we conclude that

|U k
1 (t, x, p)| ≤ K ε2, (5.49)

for all ε ∈ [0, ε0], δ ∈ [0, T − t], and the constant K is independent of (ε, δ). By Step
1c, Lebesgue’s dominated convergence theorem and uniform integrability (justified
with (5.47)), we can prove the limit:

lim
ε→0

U k
1 (t, x, p)

ε2

= −1

2
γ 2
1 Et,x,p,k

[∣
∣Xπ∗

0 (T ) − J (T )η(P(T ))
∣
∣2e−γ0

(
Xπ∗

0 (T )−J (T )η(P(T ))
)]

,

(5.50)

where the right hand side of (5.50) only depends on π∗
0 , and is independent of πδ

1 .

Step 4 We study the second expected value in (5.43). Recalling (5.38), we deal with

Ψ k,π1(t, x, p, r) = Ψ
k,π1
1 (t, x, p, r)ε2 + Ψ

k,π1
2 (t, x, p, r)ε3, (5.51)

where

Ψ
k,π1
1 (t, x, p, r) = πk

1 (t, x, p)
(
wk
1,x (t, x, p, r)μ + wk

1,px (t, x, p, r)bpσρ

+π
k,∗
0 (t, x, p)wk

1,xx (t, x, p, r)σ 2
)

+ 1

2
|πk

1 (t, x, p)|2wk
0,xx (t, x, p)σ 2,

Ψ
k,π1
2 (t, x, p, r) = 1

2
|πk

1 (t, x, p)|2wk
1,xx (t, x, p, r)σ 2.

Let us choose q = 1, or a sufficiently small q > 1. Using the upper bound (5.40), the
estimates (5.34), (5.35), (5.41) and (5.44), we can deduce the estimate:

Et,x,p,k

[
sup

s∈[t,T ]
∣
∣Ψ

J (s),πδ
1

1 (s, Xπ∗
0 +πδ

1 ε(s), P(s), x − k F(t, p))
∣
∣q

]

≤
K1

(
1 + εr1 || ∫ T

t πδ
1 (s)dW (s)||r1B M O

) 1
r2

(
1 − K2ε2||

∫ T
t πδ(s)dW (s)||2B M O

) 1
r3

≤ K , (5.52)

with some r1 ≥ 2, r2 > 1, r3 > 1, for all ε ∈ [0, ε0], δ ∈ [0, T − t]. The constant K

is independent of (ε, δ). We have the same estimate for Ψ
k,πδ

1
2 . Consequently, we can

conclude that

|U k
2 (t, x, p)| ≤ K ε2, (5.53)
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for all ε ∈ [0, ε0], δ ∈ [0, T − t], and the constant K is independent of (ε, δ). By
(5.51)-(5.52), we can also calculate the limit:

lim
ε→0

U k
2 (t, x, p)

ε2

= Et,x,p,k

[ ∫ T

t
Ψ

J (s),πδ
1

1 (s, Xπ∗
0 (s), P(s), x − k F(t, p))ds

]
, (5.54)

where we use the property that (wk
0)

n
k=0 ∈ C([0, T ] × R × (0,∞) × R) ∩

C1,2,2,2([0, T ) × R × (0,∞) × R), (wk
1)

n
k=0 ∈ C([0, T ] × R × (0,∞) × R) ∩

C1,2,2,2([0, T ) × R × (0,∞) × R), point 2 from Definition 4.1 and similar argu-
ments which led us to the limit (5.50). We note that the right hand side of (5.54)

depends on π∗
0 and π1, since Ψ

k,πδ
1

1 depends on πδ
1 .

Step 5 Assertion (iii) follows from (1.1), (5.43), (5.49), (5.53) and δ = T − t . We
prove assertion (iv). Recalling (5.50), (5.54) and the definition of πδ

1 , we have to study
the limit:

lim
δ→0

1

δ

(
Et,x,p,k

[ ∫ t+δ

t
Ψ

J (s),π∗
1

1 (s, Xπ∗
0 (s), P(s), x − k F(t, p))ds

−
∫ t+δ

t
Ψ

J (s),π1
1 (s, Xπ∗

0 (s), P(s), x − k F(t, p))ds
])

.

By (5.52), Lebesgue’s dominated convergence theorem and differentiation theorem,
we derive

lim
δ→0

1

δ

(
Et,x,p,k

[ ∫ t+δ

t
Ψ

J (s),π∗
1

1 (s, Xπ∗
0 (s), P(s), x − k F(t, p))ds

∫ t+δ

t
Ψ

J (s),π1
1 (s, Xπ∗

0 (s), P(s), x − k F(t, p))ds
])

= Ψ
k,π∗

1
1 (t, x, p, x − k F(t, p)) − Ψ

k,π1
1 (t, x, p, x − k F(t, p)). (5.55)

Sincewk
0,xx (t, x, p) < 0by (5.13),we canfindπk

1 whichmaximizesΨ k,π1
1 (t, x, p, x−

k F(t, p)). The optimal strategy takes the form

π̃
k,∗
1 (t, x, p) = −π∗

0 (t, x, p)
wk
1,xx (t, x, p, x − k F(t, p))

wk
0,xx (t, x, p, x − k F(t, p))

−wk
1,x (t, x, p, x − k F(t, p))μ + wk

1,px (t, x, p, x − k F(t, p))bpσρ

wk
0,xx (t, x, p, x − k F(t, p))σ 2

.

Using (5.6) and (5.32), we can confirm (5.7). Consequently, the optimal π̃
k,∗
1 , which

maximizes Ψ
k,π1
1 (t, x, p, x − k F(t, p)), is given by (3.10) and coincides with π

k,∗
1 .
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Hence, we conclude that

Ψ
k,π∗

1
1 (t, x, p, x − k F(t, p)) − Ψ

k,π1
1 (t, x, p, x − k F(t, p)) ≥ 0,

and the equality holds only for πk
1 = π

k,∗
1 . Since the limit (5.55) holds, the assertion

(iv) is proved.

Step 6 We prove assertions (i)–(ii). We consider the PDEs (5.8) and (5.10) where we
replace π∗

0 with π0 ∈ B. By Remark 4.1.c, the objective functions (V k,π0)n
k=0 satisfy

the PDEs:

V k,π0
0,t (t, x, p) + Lπk

0
k V k,π0(t, x, p)

+
(

V k−1,π0(t, x − β(p), p) − V k,π0(t, x, p)
)

kλ = 0,

(t, x, p) ∈ [0, T ) × R × (0,∞),

V k,π0(T , x, p) = −e−γ0(x−kη(p)), (x, p) ∈ R × (0,∞),

We proceed in the same way as in Steps 1–4, and we can establish the zeroth-order
expansion:

vk,π0(t, x, p) = V k,π0(t, x, p) + O(ε), ε → 0.

By Remark 4.1.b, the strategy π∗
0 is the optimal strategy for the time-consistent expo-

nential utility maximization problem. Consequently, V k,π0(t, x, p) ≤ V k,π∗
0 (t, x, p)

and the equality holds only for π0 = π∗
0 . We can now show that

lim
ε→0

(
vk,π∗

0 (t, x, p) − vk,π0(t, x, p)
)

= lim
ε→0

(
V k,π∗

0 (t, x, p) − V k,π0(t, x, p) + O(ε)
) ≥ lim

ε→0
O(ε) = 0,

and the equality holds only for π0 = π∗
0 . ��
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