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Abstract
We consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by
the sum of a p-Laplacian (with p > 2) and a Laplacian (a two phase equation). The
reaction consists of a parametric (p − 1)-superlinear term and a (p − 1)-sublinear
perturbation. We show that for all λ > 0 big, the problem has at least three nontriv-
ial smooth solutions, all with sign information. Also we determine their asymptotic
behaviour as the parameter λ → ∞. When we strengthen the regularity of the pertur-
bation term, we produce a second nodal solution, for a total of four solutions, all with
sign information.
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critical groups

Mathematics Subject Classification 35J20 · 35J60 · 58E05

1 Introduction

Let � ⊂ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following parametric (p, 2)-equation (two-phase problem):
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{−�pu(z) − �u(z) = λ|u(z)|r−2u(z) + f (z, u(z)) in �,

u|∂� = 0, 2 < p < r < p∗, λ > 0,
(Pλ)

where p∗ is the critical Sobolev exponent corresponding to p, namely

p∗ =
{

Np
N−p if p < N ,

+∞ if p ≥ N ,

and for every q ∈ (1,∞) by�q we denote the q-Laplace differential operator defined
by

�qu = div (|Du|q−2Du) ∀u ∈ W 1,q
0 (�).

when q = 2, we have the usual Laplace differential operator and so we write�2 = �.
In our problem (Pλ) the differential operator is nonhomogeneous and this is a source
of difficulties in its analysis. In the reaction we have two terms. One is parametric
and (p − 1)-superlinear (since 2 < p < r ) with λ > 0 being the parameter. The
perturbation f (z, x) is a Carathéodory function (that is, for all x ∈ R, z 	−→ f (z, x)
is measurable and for a.a. z ∈ �, x 	−→ f (z, x) is continuous) which is (p − 1)-
sublinear. Using variational tools from the critical point theory together with suitable
truncation and comparison techniques and critical groups (Morse theory), we show
that for all λ > 0 big, problem (Pλ) has at least three nontrivial smooth solutions all
with sign information (two of constant sign and the third nodal (sign changing)). If we
strengthen the regularity of f (z, ·), we prove the existence of a second nodal solution,
for a total of four nontrivial smooth solutions, all with sign information.

We mention that (p, 2)-equations and more generally two phase problems arise
in many mathematical models of physical phenomena. In this direction we men-
tion the works of Zhikov [36,37] on elasticity theory and of Cherfils-Il’yasov [4] on
reaction-diffusion systems. Recently there have been some existence and multiplic-
ity results for different classes of parametric (p, 2)-equations. We mention works
of Chorfi-Rădulescu [5], Gasiński-Papageorgiou [9,10,12,13,16], Papageorgiou-
Rădulescu [25], Papageorgiou-Rădulescu-Repovš [27], Papageorgiou-Scapellato [29,
30], Yang-Bai [35].

Finally such sensitivity analysis for parametric equations is also important in the
study of optimization and control problems. It provides information about the tolerance
of the systems on the variation of the parameter and in which range we expect to find
optimal solutions (see Papageorgiou [22,23] and Sokołowski [32]).

2 Mathematical Background

In the analysis of problem (Pλ)wewill use the Sobolev spaceW
1,p
0 (�) and theBanach

space C1
0(�) = {u ∈ C1(�) : u|∂� = 0}. By ‖ · ‖ we will denote the norm of the
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Sobolev space W 1,p
0 (�). On account of the Poincaré inequality, we have

‖u‖ = ‖Du‖p ∀u ∈ W 1,p
0 (�).

The Banach space C1
0(�) is ordered with positive (order) cone

C+ = {u ∈ C1
0(�) : u(z) ≥ 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n
|∂� < 0

}
,

with n being the outward unit normal vector on ∂�. For q ∈ (1,∞), let
Aq : W 1,q

0 (�) −→ W−1,q ′
(�) = W 1,q

0 (�)∗ ( 1q + 1
q ′ = 1) be the nonlinear map

defined by

〈Aq(u), h〉 =
∫

�

|Du|q−2(Du, Dh)RN dz ∀u, h ∈ W 1,p
0 (�).

From Gasiński-Papageorgiou [11, Problem 2.192], we have the following properties
of Aq .

Proposition 2.1 The map Aq is bounded (that is, maps bounded sets to bounded sets),
continuous, strictly monotone (thus maximal monotone too) and of type (S)+ (that

is, if un
w−→ u in W 1,q

0 (�) and lim sup
n→+∞

〈Aq(un), un − u〉 ≤ 0, then un −→ u in

W 1,q
0 (�)).

Note that for q = 2, we have A2 = A ∈ L(H1
0 (�); H−1(�)).

Let

p∗ =
{

Np
N−p if p < N ,

+∞ if N ≤ p

(the critical Sobolev exponent corresponding to p) and let f0 : � × R −→ R be a
Carathéodory function such that

| f0(z, x)| ≤ a0(z)(1 + |x |q−1) for a.a. z ∈ �, all x ∈ R,

with a0 ∈ L∞(�)+ and 1 < q ≤ p∗. We set

F0(z, x) =
∫ x

0
f0(z, s) ds
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and consider the C1-functional ϕ0 : W 1,p
0 (�) −→ R defined by

ϕ0(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 −

∫
�

F0(z, u) dz ∀u ∈ W 1,p
0 (�).

The next proposition is a particular case of a more general result proved by Gasiński-
Papageorgiou [8] (subcritical case) and Papageorgiou-Rădulescu [26] (critical case).
The result is an outgrowth of the nonlinear regularity theory of Lieberman [19,20].
Related regularity results can be found in themore recent works of Ragusa–Tachikawa
[33,34].

Proposition 2.2 If u0 ∈ W 1,p
0 (�) is a local C1

0(�)-minimizer of ϕ0, that is, there exists
�0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) ∀h ∈ C1
0(�), ‖h‖C1

0 (�) < �0,

then u0 ∈ C1,α
0 (�) for some α ∈ (0, 1) and it is a local W 1,p

0 (�)-minimizer of ϕ0,
that is, there exists �1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) ∀h ∈ W 1,p
0 (�), ‖h‖ < �1.

As we already mentioned in the Introduction our methods involve comparison
arguments. In this direction, useful will be the following strong comparison principle,
which is a special case of a more general result due to Gasiński-Papageorgiou [14,
Proposition 3.2]. First we introduce the following notation. Given h1, h2 ∈ L∞(�),
we write h1 � h2 if for every K ⊆ � compact, we can find ε = ε(K ) > 0 such that

h1(z) + ε ≤ h2(z) for a.a. z ∈ K .

If h1, h2 ∈ C(�) and h1(z) < h2(z) for all z ∈ �, then h1 � h2.

Proposition 2.3 If ξ̂ ≥ 0, h1, h2 ∈ L∞(�), h1 � h2 and u ∈ C1
0(�), v ∈ intC+

satisfy

{−�pu − �u + ξ̂ |u|p−2u = h1 in �,

−�pv − �v + ξ̂ v p−1 = h2 in �,

then v − u ∈ intC+.

Next let us recall some basic facts about the spectrum of (−�, H1
0 (�)) which

we will need in the sequel. We know that the spectrum σ̂ (2) consists of a sequence
{̂λk(2)}k≥1 of distinct eigenvalues such that λ̂k(2) → +∞ as k → +∞. Also for every
k ∈ N, by E (̂λk(2)) we denote the corresponding eigenspace. Standard regularity
theory implies that

E (̂λk(2)) ⊆ C1
0(�) ∀k ∈ N.

123



Applied Mathematics & Optimization (2021) 83:1523–1545 1527

We know that λ̂1(2) > 0 and it is simple, that is, dim E (̂λ1(2)) = 1. Also we have the
following variational characterization for λ̂1(2) > 0:

λ̂1(2) = inf

{‖Du‖22
‖u‖22

: u ∈ H1
0 (�), u �= 0

}
.

This infimum is realized on E (̂λ1(2)) and from this expression it is easy to see that
the element of E (̂λ1(2)) ⊆ C1

0(�) do not change sign. Indeed note that in the above
expression we can replace u by |u| (see also Gasiński-Papageorgiou [7, Theorem
6.1.21, p. 716]). By û1(2) we denote the positive, L2-normalized (that is, ‖û1(2)‖2 =
1) eigenfunction corresponding to λ̂1(2) > 0. The strong maximum principle implies
that û1(2) ∈ intC+. Note that all the other eigenvalues have nodal eigenfunctions.
These properties lead to the following simple lemma (see Gasiński-Papageorgiou [11,
Problem 5.67]).

Lemma 2.4 If ϑ0 ∈ L∞(�), ϑ0(z) ≤ λ̂1(2) for a.a. z ∈ �, ϑ0 �≡ λ̂1(2), then there
exists c0 > 0 such that

c0‖u‖2 ≤ ‖Du‖22 −
∫

�

ϑ0(z)u
2 dz ∀u ∈ H1

0 (�).

We will also consider a weighted eigenvalue problem for (−�, H1
0 (�)). So, let

ϑ ∈ L∞(�), 0 ≤ ϑ(z) for a.a. z ∈ �, ϑ �≡ 0. We consider the following linear
eigenvalue problem

{−�y(z) = λϑ(z)y(z) in �,

y|∂� = 0.

The spectrum of this problem is a sequence of distinct eigenvalues {̃λk(2, ϑ)}k≥1
which have the same properties as the sequence {̂λk(2) = λ̃k(2, 1)}k≥1. In particular
λ̃1(2, ϑ) > 0, it is simple and has eigenfunctions in C1

0(�) of constant sign. All other
eigenvalues have nodal eigenfunctions. These properties lead to the following mono-
tonicity property for the map ϑ 	−→ λ̃1(2, ϑ) (see Motreanu-Motreanu-Papageorgiou
[21, Proposition 9.47]).

Lemma 2.5 If ϑ1, ϑ2 ∈ L∞(�), 0 ≤ ϑ1(z) ≤ ϑ2(z) for a.a. z ∈ �, ϑ1 �≡ 0, ϑ1 �≡ ϑ2,
then λ̃1(2, ϑ2) < λ̃1(2, ϑ1).

Next let us recall some basic definitions and facts concerning critical groups which
we will be used in our proofs.

Let X be a Banach space, ϕ ∈ C1(X;R) and c ∈ R. We introduce the following
sets

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c},

ϕc = {u ∈ X : ϕ(u) ≤ c}.

123



1528 Applied Mathematics & Optimization (2021) 83:1523–1545

Let (Y1,Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X . For every k ∈ N0 by
Hk(Y1,Y2) we denote the k-th relative singular homology group with integer coeffi-
cients. Suppose that u ∈ Kϕ is isolated and ϕ(u) = c (that is, u ∈ Kc

ϕ). The critical
groups of ϕ at u are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U , ϕc ∩U \ {u}) ∀k ∈ N0.

Here U is a neighbourhood of u such that Kϕ ∩ ϕc ∩U = {u}. The excision property
of singular homology, implies that the above definition is independent of the particular
choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X;R) satisfies the Palais-Smale condition (the PS-condition
for short; see Gasiński-Papageorgiou [7, Definition 5.1.5]) and that inf ϕ(Kϕ) > −∞.
Let c < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X , ϕc) ∀k ∈ N0.

The definition is independent of the choice of the level c < inf ϕ(Kϕ). Indeed, let
c′ < c < inf ϕ(Kϕ). From Corollary 5.3.13 of Papageorgiou-Rădulescu-Repovš [28],
we have that ϕc′

is a strong deformation retract of ϕc. Then Corollary 6.1.24 of [28]
implies that

Hk(X , ϕc) = Hk(X , ϕc′
) ∀k ∈ N0.

Suppose that Kϕ is finite. We introduce the following quantities:

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk ∀t ∈ R, u ∈ Kϕ,

P(t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk ∀t ∈ R.

The Morse relation says that

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), (2.1)

where Q(t) = ∑
k≥0

βk tk is a formal series in t ∈ R with nonnegative coefficients.

Finally we fix our notation. For x ∈ R, we let x± = max{±x, 0} and for u ∈
W 1,p

0 (�) we define u±(z) = u(z)± for all z ∈ �. We know that

u± ∈ W 1,p
0 (�), u = u+ − u−, |u| = u+ + u−.

Also, given a measurable function g : � × R −→ R (for example a Carathéodory
function), we set

Ng(u)(·) = g(·, u(·)) ∀u ∈ W 1,p
0 (�)
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(the Nemytski map corresponding to g). By δki we denote the Kronecker symbol
defined by

δki =
{
1 if k = i,
0 if k �= i .

Finally, if u, v ∈ W 1,p
0 (�), v ≤ u, then we define

[v, u] = {y ∈ W 1,p
0 (�) : v(z) ≤ y(z) ≤ u(z) for a.a. z ∈ �}.

Also by intC1
0 (�)[v, u] we define the interior in the C1

0(�)-norm topology of [v, u] ∩
C1
0(�).

3 Three Solutions with Sign Information

In this section without assuming any differentiability properties of f (z, ·) we show
that for all λ > 0 big, problem (Pλ) has at least three nontrivial smooth solutions all
with sign information.

The assumptions on the perturbation term f (z, x) are the following:
H( f )1 f : � × R −→ R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ � and

(i) there exist functions ϑ̂0, ϑ0 ∈ L∞(�) such that

0 ≤ ϑ̂0(z) ≤ ϑ0(z) ≤ λ̂1(2) for a.a. z ∈ �, ϑ̂0 �≡ 0, ϑ0 �≡ λ̂1(2),

ϑ̂0(z) ≤ lim inf
x→0

f (z, x)

x
≤ lim sup

x→0

f (z, x)

x
≤ ϑ0(z) uniformly for a.a. z ∈ �.

(ii) lim
x→±∞

f (z, x)

|x |p−2x
= 0 uniformly for a.a. z ∈ �;

(iii) f (z, x)x ≥ 0 for a.a. z ∈ �, all x ∈ R.

Evidently the function f (z, x) = ϑ(z)x with ϑ ∈ L∞(�), 0 ≤ ϑ(z) ≤ λ̂1(2),
ϑ �≡ 0, ϑ �≡ λ̂1(2) satisfies hypotheses H( f )1.

We let F(z, x) = ∫ x
0 f (z, s) ds.

Proposition 3.1 If hypotheses H( f )1 hold, then for all λ > 0 big, problem (Pλ) has
at least two constant sign solutions uλ ∈ intC+ and vλ ∈ −intC+.

Proof First we produce the positive solution.
Let ϕ+

λ : W 1,p
0 (�) −→ R be the C1-functional defined by

ϕ+
λ (u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 − λ

r
‖u+‖rr −

∫
�

F(z, u+) dz ∀u ∈ W 1,p
0 (�).
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On account of hypotheses H( f )1(i), (i i), given ε > 0, we can find c1 = c1(ε) > 0
such that

F(z, x) ≤ 1

2
(ϑ0(z) + ε)x2 + c1|x |r . (3.1)

Assuming that λ ≥ 1, using (3.1), Lemma 2.4, for all u ∈ W 1,p
0 (�), we have

ϕ+
λ (u) ≥ 1

p
‖u‖p + 1

2

(
‖Du‖22 −

∫
�

ϑ0(z)u
2 dz − ε‖u‖2

H1
0 (�)

)
− λc2‖u‖r

≥ c3‖u‖p − λc2‖u‖r = (c3 − λc2‖u‖r−p)‖u‖p (3.2)

for some c2, c3 > 0 (by choosing ε > 0 small). So, if �λ ∈ (0, c3
λc2

), then for ‖u‖ = �λ

we have
ϕ+

λ (u) ≥ m+
λ > 0 ∀‖u‖ = �λ, (3.3)

with �λ → 0+ as λ → ∞. Let t ∈ (0, 1) and u0 ∈ intC+. We have

ϕ+
λ (tu0) ≤ t p

p
‖Du0‖p

p + t2

2
‖Du0‖22 − λ

tr

r
‖u0‖rr ≤ c4t

2 − λc5t
r (3.4)

for some c4, c5 > 0 (see hypothesis H( f )1(i i i) and recall that t ∈ (0, 1), 2 < p).
For fixed t ∈ (0, 1), from (3.3) we see that we can find λ̃ ≥ 1 such that

ϕ+
λ (tu0) < 0 ∀λ ≥ λ̃, (3.5)

and
‖t ũ0‖ > �λ (3.6)

(recall that �λ → 0+ as λ → ∞).
Hypothesis H( f )1(i i) implies that given ε > 0, we can find M = M(ε) ≥ 1 such

that
F(z, x) ≤ ε

p
|x |p ≤ ε

p
|x |r for a.a. z ∈ �, all |x | ≥ M ≥ 1. (3.7)

We consider the Carathéodory function

kλ(z, x) = λ|x |r−2x + f (z, x).

We set Kλ(z, x) = ∫ x
0 kλ(z, s) ds and let q ∈ (p, r). We have

qKλ(z, x) ≤ λq

r
|x |r + εq

r
|x |r for a.a. z ∈ �, all |x | ≥ M (3.8)

(see (3.7)). Also using hypothesis H( f )1(i i i) we have

kλ(z, x)x ≥ λ|x |r for a.a. z ∈ �, all x ∈ R. (3.9)
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From (3.8) and (3.9), we see that by choosing ε ∈ (0, λ(r − q)), we have

0 < qKλ(z, x) ≤ kλ(z, x)x for a.a. z ∈ �, all |x | ≥ M . (3.10)

Using (3.10) (essentially the Ambrosetti–Rabinowitz condition; see Motreanu-
Motreanu-Papageorgiou [21]), we can easily check that

ϕ+
λ satisfies the Palais-Smale condition. (3.11)

Then (3.3), (3.5), (3.6) and (3.11) permit the use of the mountain pass theorem on the
functional ϕ+

λ for all λ ≥ λ̃. So, we can find uλ ∈ W 1,p
0 (�) such that

uλ ∈ Kϕ+
λ

and ϕ+
λ (0) = 0 < m+

λ ≤ ϕ+
λ (uλ) (3.12)

(see (3.3)). From (3.12) it follows that uλ �= 0 and

(ϕ+
λ )′(uλ) = 0,

so

〈Ap(uλ), h〉 + 〈A(uλ), h〉 =
∫

�

(
λ(u+

λ )p−1 + f (z, u+
λ )

)
h dz ∀h ∈ W 1,p

0 (�).

(3.13)
In (3.13) we choose h = −u−

λ ∈ W 1,p
0 (�). We have

‖Du−
λ ‖p ≤ 0,

so

uλ ≥ 0, uλ �= 0.

From (3.13) we have

{−�puλ(z) − �uλ(z) = λuλ(z)r−1 + f (z, uλ(z)) for a.a. z ∈ �,

uλ|∂� = 0.
(3.14)

From (3.14) and Theorem 7.1 of Ladyzhenskaya-Ural’tseva [18, p. 286], we have that
uλ ∈ L∞(�). Then applying Theorem 1 of Lieberman [19], we infer that

uλ ∈ C+ \ {0}.

From (3.14) and hypothesis H( f )1(i i i), we have

�puλ(z) + �uλ(z) ≤ 0 for a.a. z ∈ �,

so uλ ∈ intC+ (see Pucci-Serrin [31, pp. 111, 120]).
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For the negative solution, we consider the C1-functional ϕ−
λ : W 1,p

0 (�) −→ R

defined by

ϕ−
λ (u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 − λ

r
‖u−‖p

p −
∫

�

F(z,−u−) dz ∀u ∈ W 1,p
0 (�).

Reasoning as above, using this time the functional ϕ−
λ , we produce a negative solution

vλ ∈ −intC+ for all λ ≥ λ̃ (increasing λ̃ ≥ 1 if necessary). ��
The next result determines the asymptotic behaviour of the two constant sign solu-

tions as λ → ∞.

Proposition 3.2 If hypotheses H( f )1 hold, then uλ, vλ → 0 in C1
0(�) as λ → ∞.

Proof Recall that uλ ∈ intC+ is a critical point of ϕ+
λ of mountain pass type (see the

proof of Proposition 3.1). So, we have

ϕ+
λ (uλ) ≤ max

0≤s≤1
ϕ+

λ (stu0)

≤ max
0≤s≤1

(
s p

p
‖D(tu0)‖p

p + s2

2
‖D(tu0)‖22 − λsr

r
‖tu0‖rr

)

≤ max
0≤s≤1

(
s2

2

(‖D(tu0)‖p
p + ‖D(tu0)‖22

) − λsr

r
‖tu0‖rr

)

= max
0≤s≤1

(c6s
2 − λc7s

r ) = c6

(
2c6
λc7r

) 2
r−2 − λc7

(
2c6
λc7r

) r
r−2

=
(

2c6
λc7r

) 2
r−2

c6
r − 2

r
= c8

λ
q

r−2
, (3.15)

with c6 = 1
2 (‖D(tu0)‖p

p + ‖D(tu0)‖22) > 0, c7 = 1
r ‖tu0‖rr > 0 and some c8 > 0

(see hypothesis H( f )1(i i i) and recall that s ∈ [0, 1], 2 < p).
We have

qϕ+
λ (uλ) = q

p
‖uλ‖p + q

2
‖Duλ‖22 −

∫
�

qKλ(z, uλ) dz (3.16)

and

0 = −〈(ϕ+
λ )(uλ), uλ〉 = −‖uλ‖p − ‖Duλ‖22 +

∫
�

kλ(z, uλ)uλ dz. (3.17)

We add (3.16) and (3.17) and use (3.15). Then

(
q

p
− 1

)
‖uλ‖p +

∫
�

(kλ(z, uλ)uλ − qKλ(z, uλ)) dz ≤ qc8

λ
q

r−2

(since 2 < q), so

q − p

p
‖uλ‖p ≤ c8

λ
q

r−2
+ c9,
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for some c9 > 0 (see (3.10)), thus

the sequence {uλ}λ≥̃λ ⊆ W 1,p
0 (�) is bounded. (3.18)

Since uλ ∈ intC+ is a solution of (Pλ), we have

‖uλ‖p + ‖Duλ‖22 = λ‖uλ‖rr +
∫

�

f (z, uλ)uλ dz,

so

λ‖uλ‖rr ≤ c10 ∀λ ≥ λ̃

for some c10 > 0 (see hypothesis H( f )1(i i i) and (3.18)), thus

uλ −→ 0 in Lr (�) as λ → 0+. (3.19)

We know that
{−�puλ(z) − �uλ(z) = λuλ(z)r−1 + f (z, uλ(z)) for a.a. z ∈ �,

uλ|∂� = 0, λ ≥ λ̃.
(3.20)

From (3.18), (3.20) and Theorem 7.1 of Ladyzhenskaya-Ural’tseva [18, p. 286], we
see that we can find c11 > 0 such that

‖uλ‖∞ ≤ c11 ∀λ ≥ λ̃.

Invoking Theorem 1 Lieberman [19], we infer that there exist α ∈ (0, 1) and c12 > 0
such that

uλ ∈ C1,α
0 (�), ‖uλ‖C1,λ

0 (�)
≤ c12 ∀λ ≥ λ̃. (3.21)

From (3.21), the compactness of the embedding C1,α
0 (�) ⊆ C1

0(�) and (3.19), we
conclude that

uλ −→ 0 in C1
0(�) as λ → +∞.

In a similar fashion, working this time with ϕ−
λ , we show that

vλ −→ 0 in C1
0(�) as λ → +∞.

��
Next we will show that for all λ ≥ λ̃ problem (Pλ) has extremal constant sign

solutions, that is, there is a smallest positive solution and a biggest negative solution.
To this end, we introduce the following two sets

S+
λ - set of positive solutions for (Pλ),
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S−
λ - set of negative solutions for (Pλ).

We know (see Proposition 3.1) that

∅ �= S+
λ ⊆ intC+ and ∅ �= S−

λ ⊆ −intC+ ∀λ ≥ λ̃.

Proposition 3.3 If hypotheses H( f )1 hold, then for all λ > 0 big, problem (Pλ) has
• a smallest positive solution u∗

λ ∈ intC+;
• a biggest negative solution v∗

λ ∈ −intC+.

Proof From Filippakis-Papageorgiou [6], we know that the set S+
λ is downward

directed (that is, if u1, u2 ∈ S+
λ , then there exists u ∈ S+

λ such that u ≤ u1, u ≤ u2).
Then invoking Lemma 3.10 of Hu-Papageorgiou [17, p. 178], we can find a decreasing
sequence {un}n≥1 ⊆ S+

λ such that

inf
n≥1

un = inf S+
λ , 0 ≤ un ≤ u1 ∀n ∈ N. (3.22)

We have

〈Ap(un), h〉 + 〈A(un), h〉 = λ

∫
�

ur−1
n h dz +

∫
�

f (z, un)h dz

∀h ∈ W 1,p
0 (�), n ∈ N. (3.23)

Choosing h = un ∈ W 1,p
0 (�) and using (3.22), we infer that the sequence {un}n≥1 ⊆

W 1,p
0 (�) is bounded. So, by passing to a suitable subsequence if necessary, we may

assume that

un
w−→ u∗

λ in W 1,p
0 (�) and un −→ u∗

λ in Lr (�). (3.24)

In (3.23) we choose h = un − u∗
λ ∈ W 1,p

0 (�), pass to the limit as n → ∞ and use
(3.24). We obtain

lim
n→+∞

(〈
Ap(un), un − u∗

λ

〉 + 〈
A(un), un − u∗

λ

〉) = 0,

so

lim sup
n→+∞

(〈
Ap(un), un − u∗

λ

〉 + 〈
A(u∗

λ), un − u∗
λ

〉) ≤ 0

(from the monotonicity of A), thus

lim sup
n→+∞

〈
Ap(un), un − u∗

λ

〉 ≤ 0

(see (3.24)) and hence we get

un −→ u∗
λ in W 1,p

0 (�) (3.25)
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(see Proposition 2.1). Suppose that u∗
λ = 0. Then from (3.25) we have

‖un‖ −→ 0 as n → ∞. (3.26)

We set yn = un‖un‖ , for n ∈ N. We have ‖yn‖ = 1 for all n ∈ N. From (3.23), we have

‖un‖p−2〈An(yn), h〉 + 〈A(yn), h〉 =
∫

�

(
λur−1

n

‖un‖ + N f (un)

‖un‖
)
h dz

for all h ∈ W 1,p
0 (�), all n ∈ N, so

⎧⎨
⎩

−‖un‖p−2�p yn(z) − �yn(z) = λ
‖un‖un(z)

r−1 + 1
‖un‖ f (z, un(z))

for a.a. z ∈ �,

un|∂� = 0.
(3.27)

Note that { N f (un)
‖un‖ }n≥1 ⊆ L p′

(�) and {λur−1
n‖un‖ }n≥1 ⊆ L p′

(�) (see (3.22)). So, from
(3.27) as before using the nonlinear regularity theory (see Ladyzhenskaya-Ural’tseva
[18] and Lieberman [19]), at least for a subsequence, we can have

yn −→ y in C1
0(�) as n → +∞. (3.28)

We have
λur−1

n

‖un‖
w−→ 0 in Lr ′

(�) (3.29)

and
N f (un)

‖un‖
w−→ ϑ y in L p′

(�), (3.30)

with ϑ̂0(z) ≤ ϑ(z) ≤ ϑ0(z) a.e. on Z (see hypothesis H( f )1(i) and (3.26)). So, if in
(3.26) we pass to the limit as n → ∞ and use (3.26), (3.28), (3.29) and (3.30), we
have {−�y(z) = ϑ(z)y(z) for a.a. z ∈ �,

y|∂� = 0.
(3.31)

Using (3.30) and Lemma 2.5, we have

1 = λ̃1(2, λ̂1(2)) < λ̃1(2, ϑ),

so y = 0 (see (3.31)). This is a contradiction since ‖yn‖ = 1 for all n ∈ N and we
have (3.28).

Therefore u∗
λ �= 0 and then using (3.25) we see that

u∗
λ ∈ S∗

λ and u∗
λ = inf S∗

λ.
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The set S−
λ is upward directed (that is, if v1, v2 ∈ S−

λ we can find v ∈ S−
λ such that

v1 ≤ v, v2 ≤ v; see Filippakis-Papageorgiou [6]). Reasoning as above, we produce

v∗
λ ∈ S−

λ and v∗
λ = sup S−

λ .

��
Using these extremal constant sign solutions, we can produce a nodal solution.

Proposition 3.4 If hypotheses H( f )1 hold, then for all λ > 0 big, problem (Pλ) admits
a nodal solution

yλ ∈ [v∗
λ, u∗

λ] ∩ C1
0(�).

Proof Using the two extremal constant sign solutions u∗
λ ∈ intC+ and v∗

λ ∈ −intC+
produced in Proposition 3.3, we introduce the following truncation of the reaction in
problem (Pλ):

k̂λ(z, x) =
⎧⎨
⎩

λ|v∗
λ(z)|r−2v∗

λ(z) + f (z, v∗
λ(z)) if x < v∗

λ,

λ|x |r−2x + f (z, x) if v∗
λ(z) ≤ x ≤ u∗

λ(z),
λu∗

λ(z)
r−1 + f (z, u∗

λ(z)) if u∗
λ(z) < x .

(3.32)

We also consider the positive and negative truncations of k̂λ(z, ·), namely the
Carathéodory functions

k̂±
λ (z, x) = k̂λ(z,±x±). (3.33)

We set K̂λ(z, x) = ∫ x
0 k̂λ(z, s) ds, K̂

±
λ (z, x) = ∫ x

0 k̂±
λ (z, s) ds and consider the C1-

functionals ϕ̂λ, ϕ̂
±
λ : W 1,p

0 (�) −→ R defined by

ϕ̂λ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 −

∫
�

K̂λ(z, u) dz ∀u ∈ W 1,p
0 (�),

ϕ̂±
λ (u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 −

∫
�

K̂±
λ (z, u) dz ∀u ∈ W 1,p

0 (�).

Using (3.32) and (3.33) and the nonlinear regularity theory (see Ladyzhenskaya-
Ural’tseva [18] and Lieberman [19]), we easily check that

Kϕ̂λ ⊆ [v∗
λ, u∗

λ] ∩ C1
0(�), Kϕ̂+

λ
⊆ [0, u∗

λ] ∩ C+, Kϕ̂−
λ

⊆ [v∗
λ, 0] ∩ (−C+).

The extremality of u∗
λ and v∗

λ implies that

Kϕ̂+
λ

= {0, u∗
λ}, Kϕ̂−

λ
= {0, v∗

λ}. (3.34)

From (3.32) and (3.33) we see that ϕ̂+
λ is coercive. Also using the Sobolev embedding

theorem, we have that ϕ̂+
λ is sequentially weakly lower semicontinuous. So, by the
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Weierstrass-Tonelli theorem, we can find ũ∗
λ ∈ W 1,p, such that

ϕ̃+
λ (̃u∗

λ) = inf
{
ϕ̂+

λ (u) : u ∈ W 1,p
0 (�)

}
. (3.35)

Let u0 ∈ intC+. Using Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovš [28],
we can find t ∈ (0, 1) small such that 0 ≤ tu0 ≤ u∗

λ. Then using (3.32), (3.33) and
hypothesis H( f )1(i i i), we have

ϕ̂+
λ (tu0) ≤ t p

p
‖Du0‖p

p + t2

2
‖Du0‖22 − λ

tr

r
‖u0‖rr

≤ c13t
2 − λc14t

r ,

for some c13, c14 > 0 (recall that t ∈ (0, 1), 2 < p).
Fixing t ∈ (0, 1), from the above inequality we see that for λ ≥ 1 big, we have

ϕ̂+
λ (tu0) < 0,

so

ϕ̂+
λ (̃u∗

λ) < 0 = ϕ̂+
λ (0)

(see (3.35)) and thus
ũ∗

λ �= 0. (3.36)

Note that ũ∗
λ ∈ Kϕ̂+

λ
(see (3.35)). Then from (3.34) and (3.36) we infer that

ũ∗
λ = u∗

λ ∈ intC+. (3.37)

From (3.32) and (3.33) it is clear that

ϕ̂λ|C+ = ϕ̂+|C+ ,

so u∗
λ is a local C1

0(�)-minimizer of ϕ̂λ (see (3.37)), and by Proposition 2.2, we get
that

u∗
λ is a local W 1,p

0 (�)-minimizer of ϕ̂λ. (3.38)

Similarly, using this time the functional ϕ̂−
λ , we show that

v∗
λ is a local W 1,p

0 (�)-minimizer of ϕ̂λ. (3.39)

We may assume that

ϕ̂λ(v
∗
λ) ≤ ϕ̂λ(u

∗
λ).

The reasoning is the same if the opposite inequality holds, using this time (3.39) instead
of (3.38).
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On account of (3.34) we see that we may assume that

Kϕ̂λ is finite. (3.40)

Otherwise on account of the extremality of u∗
λ and v∗

λ, we see that we already have an
infinity of smooth nodal solutions (see (3.34)) and we are done.

From (3.38), (3.40) and Theorem 5.7.6 of Papageorgiou-Rădulescu-Repovš [28],
we can find � ∈ (0, 1) small such that

ϕ̂λ(v
∗
λ) ≤ ϕ̂λ(u

∗
λ) < inf{ϕ̂λ(u) : ‖u − u∗

λ‖ = �} = m̂λ, ‖v∗
λ − u∗

λ‖ > �. (3.41)

Note that ϕ̂λ is coercive (see (3.32)). Then Proposition 5.1.15 of Papageorgiou-
Rădulescu-Repovš [28] implies that

ϕ̂λ satisfies the Palais-Smale condition. (3.42)

From (3.41) and (3.42) we see that we can apply the mountain pass theorem. So, there
exists yλ ∈ W 1,p

0 (�) such that

yλ ∈ Kϕ̂λ ⊆ [v∗
λ, u∗

λ] ∩ C1
0(�) and m̂λ ≤ ϕ̂λ(yλ). (3.43)

From (3.41) and (3.43) we see that

yλ /∈ {u∗
λ, v

∗
λ} (3.44)

So, if we show that yλ �= 0, then yλ will be the desired nodal solution. Since yλ is a
critical point of ϕ̂λ of mountain pass type, we have

C1(ϕ̂λ, yλ) �= 0 (3.45)

(see Papageorgiou-Rădulescu-Repovš [28, Theorem 6.5.8]).
From hypotheses H( f )1(i), (i i), we see that given ε > 0, we can find c15 =

c15(ε) > 0 such that

F(z, x) ≤ 1

2
(ϑ0(z) + ε)x2 + c15|x |r for a.a. z ∈ �, all x ∈ R. (3.46)

Then taking λ ≥ 1 and using (3.46), for u ∈ W 1,p
0 (�), we have

ϕ̂λ(u) ≥ 1

p
‖Du‖p

p + 1

2

(
‖Du‖22 −

∫
�

ϑ0(z)u
2 dz − εc16‖u‖2

)
− λc17‖u‖r

≥ 1

p
‖u‖p + 1

2
(c0 − εc16)‖u‖2 − λc17‖u‖r

for some c16, c17 > 0 (see Lemma 2.4).
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Choosing ε ∈ (0, c0
c16

), we see that

ϕ̂λ(u) ≥ 1

p
‖u‖p − λc17‖u‖r .

Since r > p, we can find �λ ∈ (0, δ) such that

ϕ̂λ(u) ≥ 0 ∀‖u‖ ≤ �λ,

so

u = 0 is a local minimizer of ϕ̂λ,

thus
Ck(ϕ̂λ, 0) = δk,0Z ∀k ∈ N0. (3.47)

From (3.47), (3.45) and (3.44), we infer that

yλ /∈ {0, u∗
λ, v

∗
λ},

so yλ ∈ [v∗
λ, u∗

λ] ∩ C1
0(�) (see (3.43)) is nodal. ��

If we strengthen the hypotheses on the perturbation f (z, ·) we can improve the
conclusion of Proposition 2.2. The new hypotheses on f are the following:
H( f )2 f : � × R −→ R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ �, hypotheses H( f )2(i), (i i), (i i i) are the same as the corresponding hypotheses
hypotheses H( f )1(i), (i i), (i i i) and

(iv) for every � > 0, there exists ξ̂� > 0 such that for a.a. z ∈ �, the function
x 	−→ f (z, x) + ξ̂�|x |p−2x is nondecreasing on [−�, �].

Remark 3.5 Evidently hypothesis H( f )2(iv) implies a lower local Lipschitz condition
for f (z, ·).
Proposition 3.6 If hypotheses H( f )2 hold, then for all λ > 0 big, problem (Pλ) has
a nodal solution

yλ ∈ intC1
0 (�)[v∗

λ, u∗
λ].

Proof From Proposition 3.4, we know that for all λ > 0 big, problem (Pλ) has a nodal
solution

yλ ∈ [v∗
λ, u∗

λ] ∩ C1
0(�). (3.48)

Let � = max{‖u∗
λ‖∞, ‖v∗

λ‖∞} and let ξ̂� > 0 be as postulated by hypotheses
H( f )2(iv). Let ξ̃� > ξ̂�. We have

−�p yλ − �yλ + ξ̃�|yλ|p−2yλ
≤ λ(u∗

λ)
r−1 + f (z, u∗

λ) + ξ̂�(u∗
λ)

p−1 + (̃ξ� − ξ̂�)(u∗
λ)

p−1
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≤ −�pu
∗
λ − �u∗

λ + ξ̃�(u∗
λ)

p−1 for a.a. z ∈ � (3.49)

(see hypothesis H( f )2(iv) and (3.48)).
Let a : RN −→ R

N be defined by

a(y) = |y|p−2y + y ∀y ∈ R
N .

Evidently a ∈ C1(RN ;RN ) (recall that 2 < p) and

∇a(y) = |y|p−2
(
id + (p − 2)

y ⊗ y

|y|2
)

+ id ∀y ∈ R
N ,

so

(∇a(y)ξ, ξ
)
RN ≥ |ξ |2 ∀y, ξ ∈ R

N .

Note that

div a(Du) = �pu + �u ∀u ∈ W 1,p
0 (�).

So, invoking the tangency principle of Pucci-Serrin [31, Theorem 2.5.2], we obtain

yλ(z) < u∗
λ(z) ∀z ∈ �.

Since yλ, u∗
λ ∈ C1

0(�), we have

(̃ξ� − ξ̂�)(yλ)
p−2yλ � (̃ξ� − ξ̂�)(u∗

λ)
p−1.

Then using Proposition 2.3, we have

u∗
λ − yλ ∈ intC+.

Similarly we show that

yλ − v∗
λ ∈ intC+.

We conclude that

yλ ∈ intC1
0 (�)[v∗

λ, u∗
λ].

��
We can now state our first multiplicity theorem.
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Theorem 3.7 (a) If hypotheses H( f )1 hold, then for all λ > 0 big, problem (Pλ) has
at least three nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+, yλ ∈ [vλ, uλ] ∩ C1
0(�) nodal

and uλ, vλ, yλ −→ 0 in C1
0(�) as λ → +∞.

(b) If hypotheses H( f )2 hold, then for all λ > 0 big, problem (Pλ) has at least three
nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+, yλ ∈ intC1
0 (�)[vλ, uλ] nodal

and uλ, vλ, yλ −→ 0 in C1
0(�) as λ → +∞.

4 Four Solutions with Sign Information

In this section by strengthening the regularity of f (z, ·), we can improve the above
multiplicity theorem and produce a second nodal solution, for a total of four nontrivial
smooth solutions, all with sign information.

The new hypotheses on the perturbation f (z, x) are the following:
H( f )3 f : � × R −→ R is a measurable function such that f (z, 0) = 0, f (z, ·) ∈
C1(R) for a.a. z ∈ � and

(i) | f ′
x (z, x)| ≤ a0(z)(1 + |x |q−1) for a.a. z ∈ �, all x ∈ R, with a0 ∈ L∞(�),

1 < q < p∗;
(ii) f ′

x (z, 0) = lim
x→0

f (z,x)
x uniformly for a.a. z ∈ � and

0 ≤ f ′
x (z, 0) ≤ λ̂1(2) for a.a. z ∈ �, f ′

x (·, 0) �≡ 0, f ′
x (·, 0) �≡ λ̂1(2);

(iii) lim
x→±∞

f (z,x)
|x |p−2x

= 0 uniformly for a.a. z ∈ �;

(iv) f (z, x)x ≥ 0 for a.a. z ∈ �, all x ∈ R;
(v) for every � > 0, there exists ξ̂� > 0 such that for a.a. z ∈ � the function

x 	−→ f (z, x) + ξ̂�|x |p−2x is nondecreasing on [−�, �].
Evidently the function f (z, x) = ϑ(z)x + |x |q−2x with 0 ≤ ϑ(z) ≤ λ̂1(2) for a.a.

z ∈ �, ϑ �≡ 0, ϑ �≡ λ̂1(2) and 2 < q < p, satisfies hypotheses H( f )3.

Proposition 4.1 If hypotheses H( f )3 hold, then for all λ > 0 big, problem (Pλ) has
at least two nodal solutions

yλ, ŷλ ∈ intC1
0 (�)[v∗

λ, u∗
λ].

Proof From Theorem 3.7(b), we already have a nodal solution

yλ ∈ intC1
0 (�)[v∗

λ, u∗
λ]. (4.1)
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We consider the energy (Euler) functional ψλ : W 1,p
0 (�) −→ R for problem (Pλ)

defined by

ϕλ(u) = 1

p
‖Du‖p

p + 1

2
‖Du‖22 − λ

r
‖u‖rr −

∫
�

F(z, u) dz ∀u ∈ W 1,p
0 (�).

Also, we consider the function ϕ̂λ : W 1,p
0 (�) −→ R from the proof of Proposition 3.4.

Hypotheses H( f )3 imply that

ϕλ ∈ C2(W 1,p
0 (�)), ϕ̂λ ∈ C2−0(W 1,p

0 (�)). (4.2)

We consider the homotopy

h(t, u) = (1 − t)ϕλ(u) + t ϕ̂λ(u) ∀t ∈ [0, 1], all u ∈ W 1,p
0 (�).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p
0 (�) such that

tn −→ t in [0, 1], un −→ yn in W 1,p
0 (�) and h′

u(tn, un) = 0 for all n ∈ N.

(4.3)
From the equality in (4.3), we have

〈Ap(un), h〉 + 〈A(un), h〉 +
∫

�

(
(1 − tn)kλ(z, un) + tn k̂λ(z, un)

)
h dz

∀h ∈ W 1,p
0 (�), all n ∈ N

(see the proofs of Propositions 3.1 and 3.4 ), so

{−�pun(z) − �un(z) = (1 − t)kλ(z, un(z)) + t k̂(z, un(z)) for a.a. z ∈ �,

un|∂� = 0, for all n ∈ N.

(4.4)
As before (see the proof of Proposition 3.2), from (4.4), (4.3) and the nonlinear regu-
larity theory, we have

un −→ yλ in C1
0(�) as n → +∞,

so
un ∈ [v∗

λ, u∗
λ] ∩ C1

0(�) ∀n ≥ n0. (4.5)

Again without any loss of generality we assume that Kϕ̂λ is finite (see (3.40)). Then
finiteness of Kϕ̂λ and (4.5), (3.32) lead to a contradiction. So, (4.3) cannot occur and
then the homotopy invariance property of the critical groups (see Theorem 6.3.8 of
Papageorgiou-Rădulescu-Repovš [28]) implies that

Ck(ϕλ, yλ) = Ck(ϕ̂λ, yλ) ∀k ∈ N0. (4.6)
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Recall that C1(ϕ̂λ, yλ) �= 0 (see (3.45)). Hence C1(ϕλ, yλ) �= 0 (see (4.6)). Then (4.2)
and Claim 3 of Papageorgiou-Rădulescu [24, p. 412], imply that

Ck(ϕλ, yλ) = δk,1Z ∀k ∈ N0,

so
Ck(ϕ̂λ, yλ) = δk,1Z ∀k ∈ N0 (4.7)

(see (4.6)). We know that u∗
λ, v

∗
λ, 0 are local minimizers of ϕ̂λ (see (3.38), (3.39),

(3.39)). Hence we have

Ck(ϕ̂λ, u
∗
λ) = Ck(ϕ̂λ, v

∗
λ) = Ck(ϕ̂λ, 0) = δk,0Z ∀k ∈ N0. (4.8)

Since ϕ̂λ is coercive, we have

Ck(ϕ̂λ,∞) = 0 ∀k ∈ N0 (4.9)

(see Papageorgiou-Rădulescu-Repovš [28, Proposition 6.2.24]).
If Kϕ̂λ = {0, u∗

λ, v
∗
λ, yλ}, then from (4.7), (4.8), (4.9) and the Morse reaction (see

(2.1)) with t = −1, we have

3(−1)0 + (−1)1 = (−1)0,

so (−1)0 = 0, a contradiction. So, there exists ŷλ ∈ Kλ̂λ
, ŷλ /∈ {0, u∗

λ, v
∗
λ, yλ}. Then

ŷλ ∈ C1
0(�) is a second nodal solution of (Pλ) (see (3.34)) district from yλ. Moreover,

using Proposition 2.3, we have ŷλ ∈ intC1
0 (�)[v∗

λ, u∗
λ] (see the proof of Proposition 3.6).��

Now we can state our second multiplicity theorem for problem (Pλ).

Theorem 4.2 If hypotheses H( f )3 hold, then for all λ > 0 big, problem (Pλ) has at
least four nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+, yλ, ŷλ ∈ intC1
0 (�)[vλ, uλ] nodal

and uλ, vλ, yλ, ŷλ −→ 0 in C1
0(�) as λ → +∞.

Remark 4.3 Itwill be interesting to extend the results of thiswork to problemswith con-
vection (that is, f depends also on Du). Helpful in that respect can be the recent work
of Bai-Gasiński-Papageorgiou [2] (see also Bai-Gasiński-Papageorgiou [1], Candito-
Gasiński-Papageorgiou [3] and Gasiński-Papageorgiou [15]).
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12. Gasiński, L., Papageorgiou, N.S.: Asymmetric (p, 2)-equations with double resonance. Calc. Var.
Partial Differ. Equ. 56(3), 1–23 (2017). Art. 88
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