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Abstract

We consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by
the sum of a p-Laplacian (with p > 2) and a Laplacian (a two phase equation). The
reaction consists of a parametric (p — 1)-superlinear term and a (p — 1)-sublinear
perturbation. We show that for all A > 0 big, the problem has at least three nontriv-
ial smooth solutions, all with sign information. Also we determine their asymptotic
behaviour as the parameter A — 0o. When we strengthen the regularity of the pertur-
bation term, we produce a second nodal solution, for a total of four solutions, all with
sign information.
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1 Introduction

Let @ c RY be a bounded domain with a C2-boundary 9<2. In this paper we study
the following parametric (p, 2)-equation (two-phase problem):
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_ _ _ r—2 :
{ Apu(z) — Au(z) = AMu()|"*u(z) + f(z,u(z)) in€, P

ulgo=0,2<p<r<p*, A>0,

where p* is the critical Sobolev exponent corresponding to p, namely

N .
o = N—fp if p<N,
400 if p>N,

and forevery g € (1, 00) by A, we denote the g-Laplace differential operator defined
by

Aqu = div(|Dul!"2Du) Vu € Wy ().

when g = 2, we have the usual Laplace differential operator and so we write Ay = A.
In our problem (P;) the differential operator is nonhomogeneous and this is a source
of difficulties in its analysis. In the reaction we have two terms. One is parametric
and (p — 1)-superlinear (since 2 < p < r) with A > 0 being the parameter. The
perturbation f(z, x) is a Carathéodory function (that is, for all x € R, z — f(z, x)
is measurable and for a.a. z € @, x — f(z, x) is continuous) which is (p — 1)-
sublinear. Using variational tools from the critical point theory together with suitable
truncation and comparison techniques and critical groups (Morse theory), we show
that for all A > 0 big, problem (P,) has at least three nontrivial smooth solutions all
with sign information (two of constant sign and the third nodal (sign changing)). If we
strengthen the regularity of f(z, -), we prove the existence of a second nodal solution,
for a total of four nontrivial smooth solutions, all with sign information.

We mention that (p, 2)-equations and more generally two phase problems arise
in many mathematical models of physical phenomena. In this direction we men-
tion the works of Zhikov [36,37] on elasticity theory and of Cherfils-I1’yasov [4] on
reaction-diffusion systems. Recently there have been some existence and multiplic-
ity results for different classes of parametric (p, 2)-equations. We mention works
of Chorfi-Radulescu [5], Gasinski-Papageorgiou [9,10,12,13,16], Papageorgiou-
Rédulescu [25], Papageorgiou-Rédulescu-Repovs [27], Papageorgiou-Scapellato [29,
30], Yang-Bai [35].

Finally such sensitivity analysis for parametric equations is also important in the
study of optimization and control problems. It provides information about the tolerance
of the systems on the variation of the parameter and in which range we expect to find
optimal solutions (see Papageorgiou [22,23] and Sokotowski [32]).

2 Mathematical Background

In the analysis of problem (P, ) we will use the Sobolev space W(} 'P(Q) and the Banach
space C3(Q) = {u € C'(Q) : ulye = 0}. By || - || we will denote the norm of the
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Sobolev space WOl "P(L). On account of the Poincaré inequality, we have
lull = 1 Dull, Yu e Wy ().
The Banach space Cé () is ordered with positive (order) cone
Ci={ue Cé(ﬁ) cu(z) > Oforall z € Q).

This cone has a nonempty interior given by
. ou
ntCy=queCq:u(z)>0 forall z €, 8—|ag <0¢,
n

with n being the outward unit normal vector on 9Q2. For ¢ € (1,00), let
Ag: W) — w (@) = wY(Q)* (; + 7 = 1 be the nonlinear map
defined by

(Ag(u), h) =/ |Du|?"2(Du, Dh)gy dz Vu,h € Wol*f’(sz).
Q

From Gasinski-Papageorgiou [11, Problem 2.192], we have the following properties
of Ay.

Proposition 2.1 The map A, is bounded (that is, maps bounded sets to bounded sets),
continuous, strictly monotone (thus maximal monotone too) and of type (S)+ (that

is, if uy s uin Wol’q(Q) and lim sup(A, (u,), u, — u) < 0, then u, — u in

n—-+400
1,
Wy ().
Note that forg = 2, we have Ay = A € ﬁ(H(} (Q); H1(Q)).
Let
= L ifp <N,
4+oo fN<p

(the critical Sobolev exponent corresponding to p) and let fy: 2 x R — R be a
Carathéodory function such that

| fo(z, x)| < ap(x)(1 + |x|77") foraa.z € Q, allx € R,
withag € L*°(Q)+ and 1 < g < p*. We set

Fo(z, x) = / fol(z, s)ds
0
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and consider the C'-functional gy : WOl "P(Q) — R defined by
1 1
wo(u) = ;IIDullﬁ + EIIDuH% —/ Fo(z,u)dz Vu € Wé’p(Q)-
Q

The next proposition is a particular case of a more general result proved by Gasifiski-
Papageorgiou [8] (subcritical case) and Papageorgiou-Radulescu [26] (critical case).
The result is an outgrowth of the nonlinear regularity theory of Lieberman [19,20].
Related regularity results can be found in the more recent works of Ragusa—Tachikawa
[33,34].

Proposition 2.2 [fug € Wol'p(Q) isalocal Cé (2)-minimizer of po, that is, there exists
00 > 0 such that

@o(uo) < @olug +h) Vh € C}(), IIhIIC(;@ < 00,

then ug € Cé’a Q) for some o € (0, 1) and it is a local Wé’p(Q)—minimizer of o,
that is, there exists o1 > 0 such that

@o(o) < go(uo +h) Vh e WyP(Q), |kl < or.

As we already mentioned in the Introduction our methods involve comparison
arguments. In this direction, useful will be the following strong comparison principle,
which is a special case of a more general result due to Gasiriski-Papageorgiou [14,
Proposition 3.2]. First we introduce the following notation. Given i1, hy € L*° (),
we write 11 < hy if for every K C 2 compact, we can find ¢ = ¢(K) > 0 such that

h1(z) +& <hy(z) foraa.zecK.

Ifhi,hy € C(R) and h1(z) < hy(z) forall z € , then hy < hy.

Proposition 2.3 Ifg >0, hi,hy € L®(RQ), hy < hp andu € Cé(ﬁ), v € intCy
satisfy

—Apu — Au +§|u|p_2u =h1inQ,
—Apv — Av +Ev”_1 =hyin 2,

thenv —u € int Cy.

Next let us recall some basic facts about the spectrum of (—A, H& (€2)) which
we will need in the sequel. We know that the spectrum & (2) consists of a sequence
{/):k(Z)}kzl of distinct eigenvalues such that’):k (2) > +ooask — +oo. Also forevery
k € N,by E ():k (2)) we denote the corresponding eigenspace. Standard regularity
theory implies that

E((2)) € C{(Q) Vk eN.
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We know that/)cl (2) > 0 and it is simple, that is, dim E (/):1 (2)) = 1. Also we have the
following variational characterization for A1(2) > O:

2
[ Dull3

luell

Xl(z)zinf{ Cu e H} (), u;éO}.

This infimum is realized on E (/):1 (2)) and from this expression it is easy to see that
the element of E(A;(2)) C(% () do not change sign. Indeed note that in the above
expression we can replace u by |u| (see also Gasifniski-Papageorgiou [7, Theorem
6.1.21, p. 716]). By @1 (2) we denote the positive, L2-normalized (that is, |71 (2)||» =
1) eigenfunction corresponding to Kl (2) > 0. The strong maximum principle implies
that 77 (2) € int C. Note that all the other eigenvalues have nodal eigenfunctions.
These properties lead to the following simple lemma (see Gasiriski-Papageorgiou [11,
Problem 5.67]).

Lemma 2.4 If 99 € LX(Q), 90(z) < A (2) for a.a. z € Q, 99 % A1(2), then there
exists co > 0 such that

collul® < | Dull3 —/ Po()u*dz Vu € Hy ().
Q

We will also consider a weighted eigenvalue problem for (—A, HOI(Q)). So, let
¥ € L®(RQ),0 < 9(z) foraa. z € Q, 9 # 0. We consider the following linear
eigenvalue problem

{ —Ay(2) = A (2)y(z) in Q,
ylae =0.

The spectrum of this problem is a sequence of distinct eigenvalues {Ak 2, N h=1
which have the same properties as the sequence (O (2) = (2, D}k>1. In particular
Al (2, %) > 0, itis simple and has eigenfunctions in C (Q) of constant sign. All other
eigenvalues have nodal eigenfunctions. These properties lead to the following mono-
tonicity property for the map  —— 712, 9) (see Motreanu-Motreanu-Papageorgiou
[21, Proposition 9.47]).

Lemma25 If v, 192 € L*®(Q),0 < 91(z) < % (z) fora.a. 7z € Q, ¥ # 0, V1 # Uy,
then )»1(2 ) < )»1(2 7).

Next let us recall some basic definitions and facts concerning critical groups which
we will be used in our proofs.

Let X be a Banach space, ¢ € C! (X; R) and ¢ € R. We introduce the following
sets

Ky, ={u € X : ¢'(u) = 0} (the critical set of ),
K(Z ={ueky: o) =cj,
- ={ueX: o) <c}
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Let (Y1, Y2) be a topological pair such that Y, € Y; C X. For every k € Ny by
Hi (Y1, Y2) we denote the k-th relative singular homology group with integer coeffi-
cients. Suppose that u € K, is isolated and ¢(u) = ¢ (thatis, u € K (2). The critical
groups of ¢ at u are defined by

Cr(p,u) = Hi (¢ NU, 9" NU\{u}) Vk € No.

Here U is a neighbourhood of u such that K, N ¢“ N U = {u}. The excision property
of singular homology, implies that the above definition is independent of the particular
choice of the neighbourhood U'.

Suppose thatp € C 1(X: R) satisfies the Palais-Smale condition (the P S-condition
for short; see Gasinski-Papageorgiou [7, Definition 5.1.5]) and that inf ¢ (K,) > —o0.
Let ¢ < inf ¢(Ky). Then the critical groups of ¢ at infinity are defined by

Ci(p, 00) = Hi(X, ¢°) Vk € No.

The definition is independent of the choice of the level ¢ < inf ¢(K). Indeed, let
¢’ < ¢ < inf ¢(K,). From Corollary 5.3.13 of Papageorgiou-Rédulescu-Repovs [28],
we have that <pc/ is a strong deformation retract of ¢¢. Then Corollary 6.1.24 of [28]
implies that

Hi(X, ¢°) = He(X, ¢%) Vk € N,
Suppose that K, is finite. We introduce the following quantities:

M(t,u) =) rank Cy(p. w)t* Vi € R, u € K,
k>0

P(t, 00) = Zrank Cr(p, 00)tk Vi e R.
k>0

The Morse relation says that

Y Mt u) = P(1,00) + (140 Q@), @1

ueky,

where Q(1) = Y ,Bktk is a formal series in # € R with nonnegative coefficients.
k>0
Finally we fix our notation. For x € R, we let x* = max{+x, 0} and for u €

Wol’p(Q) we define u* (z) = u(z)* for all z € . We know that

1 _ _
uiEWO'p(Q), u=ut—u", |u|=u++u .

Also, given a measurable function g: 2 x R — R (for example a Carathéodory
function), we set

Ne)() = g(,u(-)) Vu e Wyl (Q)

@ Springer



Applied Mathematics & Optimization (2021) 83:1523-1545 1529

(the Nemytski map corresponding to g). By &;; we denote the Kronecker symbol
defined by

s |1 ifk=i.
M=10 ifk#£i.

Finally, if u, v € W&’p(SZ), v < u, then we define
[v,ul ={y € Wol’p(Q) s v(z) < y(z) <u(z) fora.a.ze Q}.

Also by intcé @ [v, u] we define the interior in the Cé (€2)-norm topology of [v, u] N
Cl(S).

3 Three Solutions with Sign Information

In this section without assuming any differentiability properties of f(z,-) we show
that for all A > 0 big, problem (P,) has at least three nontrivial smooth solutions all
with sign information.

The assumptions on the perturbation term f(z, x) are the following:
H(f)1 f: Q2 x R — R is a Carathéodory function such that f(z,0) = O for a.a.
z € Qand

(i) there exist functions 50, Y9 € L°°(L2) such that
0 < Do(z) < Vo(z) <A1(2) foraa.zeQ, Do £0, 9y £ r1(2),

fz,x) < lim sup f(z,x)
X

x—0 X

§o(z) < lim i(r)lf < ¥9(z) uniformly for a.a. z € Q.
X—>

(i) f(z,x)
x—*+o0 |x|P*2x
(iii) f(z,x)x >0foraa.z € Q,allx e R.

= 0 uniformly for a.a. 7z € Q;

EVidently/Ehe function f(z,x) = ¥(z)x with ¥ € L*(Q),0 < 9#(z) < 3:1 2),
¥ £ 0, ¥ #£ A1(2) satisfies hypotheses H(f)1.
We let F(z,x) = [y f(z,)ds.

Proposition 3.1 If hypotheses H(f)1 hold, then for all A > 0 big, problem (P,) has
at least two constant sign solutions u; € int C4 and v; € —int C,..

Proof First we produce the positive solution.
Let o : W(}’P (Q) — R be the C!-functional defined by

1 1 A 1
NS ;uDunﬁ + §||Du||% - ;||u+||: —f F(z,uT)dz VYu e Wy"(Q).
Q
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On account of hypotheses H(f)1(i), (ii), given ¢ > 0, we can find c; = ci(¢) > 0
such that

1
F(z,%) = 5(00() + e)x* +cilx|". 3.1

Assuming that A > 1, using (3.1), Lemma 2.4, for all u € Wol’p(Q), we have

1 1 2 2 2
o (u) > ;Ilullp + z(llDullz - fQ Do(2)u” dz — EIIMIIHol(Q) — Acallull”
> c3llull? = reallull” = (3 — reallull™P) lull” (3.2)
for some ¢7, ¢3 > 0 (by choosing ¢ > 0 small). So, if g;, € (0, -=>), then for ||u|| = ;.

> A2
we have
of ) >mf >0 VYul = o, (3.3)

with 05, — 0T as A — oo. Lett € (0, 1) and i € int C. We have

B P 2 o
o5 (1) < ;IIDuollﬁ + EIIDMOII% = A—lliolly < cat® — hest” (3.4)

for some c4, c5 > 0 (see hypothesis H(f)(iii) and recall~that te€(0,1),2 < p).
For fixed ¢t € (0, 1), from (3.3) we see that we can find A > 1 such that

o (1) <0 VA > 7, (3.5)

and
ltioll > o (3.6)

(recall that g;, — 0" as L — o0).
Hypothesis H(f)(ii) implies that given ¢ > 0, we can find M = M(¢) > 1 such

that c c
F(z,x) < ;|x|p < ;|x|r fora.a.z € @, all |[x| > M > 1. 3.7

We consider the Carathéodory function
ki(z.0) = Alxl" 2+ £z 0).

We set K (z, x) = fox k) (z,s)ds and let g € (p, r). We have

A
0K ) < 2y + X x foraazeq, alllx| > M (3.8)
r r

(see (3.7)). Also using hypothesis H(f)1(iii) we have
ky(z,x)x > Alx|" foraa.z € @, allx € R. (3.9)
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From (3.8) and (3.9), we see that by choosing ¢ € (0, A(r — ¢q)), we have
0<gK;(z,x) <ky(z,x)x foraa.ze Q, all |x|> M. (3.10)

Using (3.10) (essentially the Ambrosetti—-Rabinowitz condition; see Motreanu-
Motreanu-Papageorgiou [21]), we can easily check that

(,0):|r satisfies the Palais-Smale condition. (3.11D)

Then (3.3), (3.5), (3.6) and (3.11) permit the use of the mountain pass theorem on the
functional go;L for all A > . So, we can find u; € WOl P (2) such that

u, € K+ and @ (0) =0 <m) <o) (3.12)
(see (3.3)). From (3.12) it follows that u; #% 0 and
(@) (up) =0,

SO

(Ap(up), h) + (A(up), h) :/ (@HP + f@ uh))hdz Vh e Wg”’(sz).
Q

(3.13)
In (3.13) we choose h = —u, € Wé’p(Q). We have
I Du; |, <0,
o)
uy >0, u 75 0.
From (3.13) we have
—Apu(z) — Auz (2) = dhup (@) "+ f(z,un(z)) foraa. z € Q,
(3.14)
up o = 0.

From (3.14) and Theorem 7.1 of Ladyzhenskaya-Ural’tseva [18, p. 286], we have that
u; € L°°(£2). Then applying Theorem 1 of Lieberman [19], we infer that

u) € Cy\ {0}
From (3.14) and hypothesis H (f)(iii), we have
Apu(2) + Auy(z) <0 foraa.z € Q,

so u;, € int Cy (see Pucci-Serrin [31, pp. 111, 120]).
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For the negative solution, we consider the C!-functional @, : WOl Q) — R
defined by

- 1 p 1 2 A - Lp
@ (M)=;llDullp-i-zllDullz—;llu lp— | Flz,—u")dz Yue Wy ().
Q

Reasoning as above, using this time the functional ¢, , we produce a negative solution
v, € —int C4 for all A > A (increasing A > 1 if necessary). O

The next result determines the asymptotic behaviour of the two constant sign solu-
tions as A — 0o.

Proposition 3.2 If hypotheses H(f)1 hold, then u;, v, — 0 in C}(Q) as . — oc.

Proof Recall that u; € int Cy is a critical point of <p;f of mountain pass type (see the
proof of Proposition 3.1). So, we have

+ Fop
u < max Stu
o, () < 05s51('0’\( 0)

< Sp Dt p 52 Dt ’ )\,Sr - ,
= gnax ;ll (tuo)llp + E” (tup)|l5 — T|| tioll"
< s2(Dt‘)”+ DG)IR) — 2 ol
< max | = (IDCE) I, + 1 Do) II2) — == liholl;
2 r
2c6 \ 72 2c6 \ 2
= max (C6S2 — )\C7Sr) = C¢ 6 _ )\,07 6
0=s=1 AcTr rcyr
2
2¢ =2 =2 c
rcyr r Al

with ¢ = $(ID(ttip) ||l + I D(tiig)|13) > 0, ¢7 = Littip|lZ > 0 and some cg > 0
(see hypothesis H(f)(iii) and recall that s € [0, 1], 2 < p).
We have

qo; (uy) = %Ilux||p+%||DuA||%—/ qK. (2. uy) dz (3.16)
Q
and
0= — (g ), uz) = —luzl|” — || Du 13 + / ko ouwdz. (3.17)
Q

We add (3.16) and (3.17) and use (3.15). Then

qc8

4
AT—2

(% - 1)||Mxllp + /Q(kx(zy wuy), — qK;(z,u;))dz <

(since 2 < gq), so

— P (&
lupll? < —5 +co,

A2
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for some cg > 0 (see (3.10)), thus
the sequence {”)\}Azi c W&’p(Q) is bounded. (3.18)

Since u; € int C4 is a solution of (P;), we have

I I1? + 1 Dusll3 = Allus |l + /Q f(z upuydz,
)
Mulll <o YA =%
for some c19 > 0 (see hypothesis H(f)1(iii) and (3.18)), thus
up, —> 0 inL"(Q)asr— 0T, (3.19)
We know that

{ —Apup(2) — Ay (2) = hup(2) " + f(z,u(2)) foraa. z € Q, (3.20)

wlag =0, A > A.

From (3.18), (3.20) and Theorem 7.1 of Ladyzhenskaya-Ural’tseva [18, p. 286], we
see that we can find ¢;; > 0 such that

luplloo < c11 VA =K.
Invoking Theorem 1 Lieberman [19], we infer that there exist @ € (0, 1) and ¢12 > 0

such that

u € Co @), Nuillgirg < e Vi zi. (3.:21)

From (3.21), the compactness of the embedding Cg’“(ﬁ) C C}(Q) and (3.19), we
conclude that

u, — 0 in C{(Q) asr — +o0.
In a similar fashion, working this time with ¢, , we show that
vy —> 0 in CH(R) as r — +oo.

O

Next we will show that for all A > A problem (P,) has extremal constant sign
solutions, that is, there is a smallest positive solution and a biggest negative solution.
To this end, we introduce the following two sets

S;r - set of positive solutions for (P;),
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S, - set of negative solutions for (Py).
We know (see Proposition 3.1) that
0 #S5CintCy and @ # S, € —intCy VA > L.

Proposition 3.3 If hypotheses H(f)1 hold, then for all » > 0 big, problem (P)) has
e a smallest positive solution ujf eintCy;
e a biggest negative solution vi € —int C .

Proof From Filippakis-Papageorgiou [6], we know that the set Szr is downward
directed (that is, if uq, up € St then there exists u € S;' such that u < uy, u < u).
Then invoking Lemma 3.10 of Hu-Papageorgiou [17, p. 178], we can find a decreasing
sequence {u,}p>1 C S;' such that

inf u, =inf S, 0<u, <u; VneN. (3.22)

n>1

We have

(Ap(un), 1)+ {AGun)., b = Af u ' dz +/ Gz umhdz
Q Q
Vi e Wy (Q), neN. (3.23)

Choosing h = u,, € W&’p(Q) and using (3.22), we infer that the sequence {u,},>1 C

W(} "P() is bounded. So, by passing to a suitable subsequence if necessary, we may
assume that

Uy =5 uf inWyP(Q) and u, — ul in L' (Q). (3.24)

In (3.23) we choose h = u, — uj € Wé’p(Q), pass to the limit as n — oo and use
(3.24). We obtain

lim ((Ap(un), U, — uK) + (A(un), U, — u}i)) =0,

n——+00

SO

tim sup ((Ap (). — )+ (A@}). up — ) <0

n—-+o00

(from the monotonicity of A), thus

lim sup <Ap(un), U, — ui) <0
n——+00

(see (3.24)) and hence we get
wy —> uf in Wyl(Q) (3.25)
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(see Proposition 2.1). Suppose that u} = 0. Then from (3.25) we have
lupll — O asn — oo. (3.26)

We set y, = 2, forn € N. We have ||y, || = 1 for all n € N. From (3.23), we have

= uall”

)»u:’l—l N Nf(un))hd
llunll llun |l

ln 1P =2 (An(ya), B) + (Ayn), ) =/Q<

forall i € Wy'? (), alln € N, so

—lunllP 72D pyn () = Aya(2) = pqun @™ + g £z, un(2))
fora.a.z € Q, (3.27)
uplag = 0.

. / r—1 ,
Note that {*E™0), 1 © LP'(Q) and (42,21 € L (Q) (see (3.22)). So, from

Mot T
(3.27) as before using the nonlinear regulzfrity theory (see Ladyzhenskaya-Ural’tseva

[18] and Lieberman [19]), at least for a subsequence, we can have

yo —> y inCH(Q) asn — +o0. (3.28)
We have
)\M:;71 w . '
= B0 in LT (Q) (3.29)
llean
and N )
”f ”|T 9y in LP(Q), (3.30)
Un

with {9\0(1) < 9¥(z) < V9(z) a.e. on Z (see hypothesis H(f)1(i) and (3.26)). So, if in
(3.26) we pass to the limit as n — oo and use (3.26), (3.28), (3.29) and (3.30), we
have

{—Ay(z) = 1(2)y(z) fora.a. z € , (3.31)
yloe = 0.
Using (3.30) and Lemma 2.5, we have
1=712,210) <1@2,9),
so y = 0 (see (3.31)). This is a contradiction since ||y,| = 1 for all » € N and we

have (3.28).
Therefore u} # 0 and then using (3.25) we see that

uy € Sy and uj = inf S}.
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The set S, is upward directed (that is, if vi, v2 € S, we can find v € §; such that
v1 < v, vy < v; see Filippakis-Papageorgiou [6]). Reasoning as above, we produce

vy €S, and vy =supS; .

Using these extremal constant sign solutions, we can produce a nodal solution.

Proposition 3.4 Ifhypotheses H(f)1 hold, then for all . > 0 big, problem ( Py) admits
a nodal solution

| =
ya € [v3, u31N Co ().
Proof Using the two extremal constant sign solutions u} € int Cy and v} € —int C

produced in Proposition 3.3, we introduce the following truncation of the reaction in
problem (Py):

R M @) 20 (@) + fz,vi () if x < vf,
k(2 %) = § Al 2x + f(z, %) ifof(x) =x <uj@).  (3.32)
(@) 4 f(zul(2) if uf(z) < x.
We also consider the positive and negative truncations of B(z, -), namely the

Carathéodory functions R R
K (2, x0) = ka(z, £x7). (333)

We set K. (z, x) = f(ﬁc\x(z, s)ds, I/(\f(z, x) = [y Eit(z, s) ds and consider the C!-
functionals @, @7 : WO1 "P(Q) — R defined by

_ 1 1 .

0. (u) = ;IIDMIIZ + EIIDuH% —/ K;(z,u)dz Vu e Wol"’(Q),
Q

N 1 1 _ X

ofw) = ;||Du||§ + 5||Du||% —[ K (z,u)dz Yu e Wy "(Q).
Q

Using (3.32) and (3.33) and the nonlinear regularity theory (see Ladyzhenskaya-
Ural’tseva [18] and Lieberman [19]), we easily check that

Kg, C v, ul1n (), Ko+ S10,u31NCy. Kpm S [v7, 01N (=Cy).
The extremality of u} and v} implies that

From (3.32) and (3.33) we see that {5{ is coercive. Also using the Sobolev embedding
theorem, we have that Zﬁ; is sequentially weakly lower semicontinuous. So, by the
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Weierstrass-Tonelli theorem, we can find EI € WP such that

~t e~ . 1,

gy =inf {@) () : u e W' ()} (3.35)
Let up € int C1. Using Proposition 4.1.22 of Papageorgiou-Radulescu-Repovs [28],

we can find r € (0, 1) small such that 0 < ruy < ujz Then using (3.32), (3.33) and
hypothesis H(f)1(iii), we have

—~— T N S
@, (tug) < — || Dupll), + EllDuollz —)»7||M0||r
< c13t2 — hcyat”,

for some ¢13, c14 > 0 (recall that ¢ € (0, 1), 2 < p).
Fixing ¢t € (0, 1), from the above inequality we see that for A > 1 big, we have

@ (tug) < 0,
SO
Py @) <0=29,(0)

(see (3.35)) and thus
uy #0. (3.36)

Note that #} € K o (see (3.35)). Then from (3.34) and (3.36) we infer that

u; =uj €intCy. (3.37)
From (3.32) and (3.33) it is clear that

Gile, =0 ey
so uj is a local Cé (Q)-minimizer of @;, (see (3.37)), and by Proposition 2.2, we get

that
u} is alocal W,'? (Q)-minimizer of 3. (3.38)

Similarly, using this time the functional @7, we show that
vf is a local W,’? ()-minimizer of 3. (3.39)
We may assume that
@.(v}) < . (u3).

The reasoning is the same if the opposite inequality holds, using this time (3.39) instead
of (3.38).
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On account of (3.34) we see that we may assume that
K3, is finite. (3.40)
Otherwise on account of the extremality of 1} and v}, we see that we already have an
infinity of smooth nodal solutions (see (3.34)) and we are done.

From (3.38), (3.40) and Theorem 5.7.6 of Papageorgiou-Radulescu-Repovs [28],
we can find ¢ € (0, 1) small such that

91(v}) = Ga(uy) < inf{@a(u) = llu —ujll = o} =m;, vy —ujll >0 (341

Note that @y is coercive (see (3.32)). Then Proposition 5.1.15 of Papageorgiou-
Rédulescu-Repovs [28] implies that

;. satisfies the Palais-Smale condition. (3.42)

From (3.41) and (3.42) we see that we can apply the mountain pass theorem. So, there
exists y;, € Wé’p(Q) such that

v € Ko, SIvf,uf1NCo(Q) and ity < §.(3). (3.43)

From (3.41) and (3.43) we see that

v ¢ {u, v} (3.44)

So, if we show that y;, # 0, then y, will be the desired nodal solution. Since y, is a
critical point of @ of mountain pass type, we have

C1(@r,y) #0 (3.45)

(see Papageorgiou-Radulescu-Repovs [28, Theorem 6.5.8]).
From hypotheses H(f)1(i), (ii), we see that given ¢ > 0, we can find cj5 =
c15(¢) > 0 such that

1
F(z,x) < E(ﬁo(z) + zs))c2 + ci5|x|” foraa.z € , allx € R. (3.46)

Then taking A > 1 and using (3.46), for u € Wol’p(Q), we have

v

=~ 1 p 1 2 24, _ 2\ _ r
@ (u) » | Dullp + 2 | Dull3 Vo(2)u” dz — ecigllull Aer|ull
Q

v

1 1

—llull? + = (co — ecie) ull® = Aerzflul”
p 2

for some cy¢, c17 > 0 (see Lemma 2.4).
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Choosing ¢ € (0, cCTOa)’ we see that
—~ 1 » -
0. (u) = ;||M|| —Acrrllull”.

Since r > p, we can find g, € (0, §) such that
@) =0 Vull <o,
SO
u = 0 is a local minimizer of @,

thus
Cr (@, 0) = 8k.0Z Vk € Ny. (3.47)

From (3.47), (3.45) and (3.44), we infer that

v & {0, u}, vy},
50y € [V}, uf1N CY(RQ) (see (3.43)) is nodal. o

If we strengthen the hypotheses on the perturbation f(z,-) we can improve the
conclusion of Proposition 2.2. The new hypotheses on f are the following:
H(f)> f: Q x R — R is a Carathéodory function such that f(z,0) = 0 for a.a.
z € @, hypotheses H(f)2(i), (ii), (iii) are the same as the corresponding hypotheses
hypotheses H(f)1(i), (ii), (iii) and

(iv) for every o > 0, there exists Eg > 0 such that for a.a. z € €2, the function
x> f(z,x)+ Sglxlp’zx is nondecreasing on [—p, o].

Remark 3.5 Evidently hypothesis H (/)2 (iv) implies a lower local Lipschitz condition
for f(z, -).

Proposition 3.6 If hypotheses H(f)2 hold, then for all . > 0 big, problem (P,) has
a nodal solution

Vi € intcé@)[v;f, u:{]

Proof From Proposition 3.4, we know that for all A > 0 big, problem (P;) has a nodal
solution

yi € v, uf1N CH(Q). (3.48)
Let o = max{ﬂul‘”oﬁ, ||v;‘||oo} and let EQ > 0 be as postulated by hypotheses

H(f)2(iv). Let &, > &,. We have

—8pyn = Ays+ Iyl o
<A TN+ foud) +EHPT + Gy — g P!
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< —Apui — Aui +E,wHP! foraazeQ (3.49)

(see hypothesis H (f)2(iv) and (3.48)).
Leta: RY — RY be defined by

ay) =" 2y +y VyeRV.

Evidently a € C'(RY; RV) (recall that 2 < p) and

Va(y) = Iyl”z(idJr (p— 2)y|j>2y> +id ¥y e RN,
SO
(Va()§, €)gn = 7 Vy, & e RV,
Note that

diva(Du) = Apu+ Au Vu € Wy'"(Q).
So, invoking the tangency principle of Pucci-Serrin [31, Theorem 2.5.2], we obtain
w(z) <ui(z) VzeQ.
Since y;,, uj € Cé (), we have
E =& P = G —Ewpr.
Then using Proposition 2.3, we have
uy —y, €intCy.
Similarly we show that
yir — v} €intCy.
We conclude that

V) € il’ltcé(ﬁ)[l};t, uﬁ]

We can now state our first multiplicity theorem.
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Theorem 3.7 (a) If hypotheses H ()| hold, then for all . > 0 big, problem (P) has
at least three nontrivial solutions

u) €intCyq, vy € —intCy, y) €[vi,u)]N C(l)(ﬁ) nodal

and uy, vy, y) — 0in Cé(ﬁ) as A — +oo.
(b) If hypotheses H ()2 hold, then for all A > 0 big, problem (P)) has at least three
nontrivial solutions

up, €intCy, vy € —intCy, Yy, € intcé@)[v;\, u; | nodal

and uy, vy, yp — 0in Cé(ﬁ) as A — +oo.

4 Four Solutions with Sign Information

In this section by strengthening the regularity of f(z, -), we can improve the above
multiplicity theorem and produce a second nodal solution, for a total of four nontrivial
smooth solutions, all with sign information.

The new hypotheses on the perturbation f(z, x) are the following:
H(f); f: Q2 x R — R is a measurable function such that f(z,0) =0, f(z,-) €
C'(R) fora.a. z € Q and

() £z, x)] < ao(x)(1 + |x|971) foraa. z € Q,all x € R, with ap € L®(Q),
1 <q < p% .
(i) f/(z.0) = lim £&2 uniformly for a.a. z € Q and
x—0

0< fl(z,0) <2 foraa.z € Q, fl(0)£0, fl(-,0) # A1 (2);

e . f(z,x)
iy liy, 63,

(iv) f(z,x)x >0fora.a.z € 2, allx € R;
(v) for every ¢ > 0, there exists §, > 0 such that for a.a. z € Q the function
x+— f(z,x)+ SQ|x|1”2x is nondecreasing on [—p, Q].

= 0 uniformly for a.a. z € ;

Evidently the fungtion fz,x) =0@)x+ |x|q_2x with 0 < ¥ (z) < /):1 (2) for a.a.
7€ Q2,0 #0,0 #A1(2) and 2 < g < p, satisfies hypotheses H(f)3.

Proposition 4.1 If hypotheses H(f)3 hold, then for all . > 0 big, problem (P,) has
at least two nodal solutions

Vi Y € intc(l)(ﬁ)[v;tv u:]
Proof From Theorem 3.7(b), we already have a nodal solution
Vi € intcé@)[v;f, usl. 4.1
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We consider the energy (Euler) functional ¥y : Wol’p (2) — R for problem (P;)
defined by

1 p 1 2 A r I,p
on(u) = ;IIDullp + §||Du”2 - ;Ilullr — | F(z,u)dz Yu € Wy"(Q).
Q

Also, we consider the function @;, : Wol’p (2) —> R from the proof of Proposition 3.4.
Hypotheses H (f)3 imply that

0. € CC(Wy " (@), @€ C Wy (). “.2)
We consider the homotopy
h(t,u) = (1 —)ga(u) +t@a(w) Vi €[0,1], allu € Wol’p(SZ).
Suppose we could find {#,},>1 € [0, 1] and {u,},>1 € Wol‘p(Q) such that

ty —> tin[0, 11, u, —> y, in Wy'P(Q) and &, (ty, u,) = O forall n € N.
(4.3)
From the equality in (4.3), we have

(Ap(un), h) + (Aun), h) +/ ((1 = 1)k (z, up) + tnk (2, un))h dz
Q

Vh e WyP(Q), alln € N
(see the proofs of Propositions 3.1 and 3.4 ), so

{ —Apup(2) — Auy(z2) = (1 — Dk (z, up(2)) + tk(z, un(z)) foraa.z e Q,
uylagg =0, foralln € N.

4.4)
As before (see the proof of Proposition 3.2), from (4.4), (4.3) and the nonlinear regu-
larity theory, we have

U, — y, in Cé(ﬁ) asn — +00,

SO
up € [V, uf1NCYH(R) ¥n > ny. (4.5)

Again without any loss of generality we assume that K3, is finite (see (3.40)). Then
finiteness of K, and (4.5), (3.32) lead to a contradiction. So, (4.3) cannot occur and
then the homotopy invariance property of the critical groups (see Theorem 6.3.8 of
Papageorgiou-Radulescu-Repovs [28]) implies that

Cr (¢, y2.) = Ck(@, y») Vk € Np. (4.6)
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Recall that C1 (@5, y1) # 0 (see (3.45)). Hence C;(¢;., y5.) # 0 (see (4.6)). Then (4.2)
and Claim 3 of Papageorgiou-Radulescu [24, p. 412], imply that

Ci (@, 1) = k14 Yk € Ny,

SO
Cr (@, y1) = 8k,1Z Vk € Ny 4.7
(see (4.6)). We know that u}, v}, 0 are local minimizers of @) (see (3.38), (3.39),
(3.39)). Hence we have
C(@3., u3) = Cr(@i, v3) = Cr (@2, 0) = 8k 0Z Yk € Ny. (4.8)
Since @, is coercive, we have

Cr (@3, 00) =0 Vk e Ny (4.9)

(see Papageorgiou-Réddulescu-Repovs [28, Proposition 6.2.24]).
If Kg, = {0, u}, v}, y}, then from (4.7), (4.8), (4.9) and the Morse reaction (see
(2.1)) with t = —1, we have

3=+ (-1 = (D",

so (—1)% = 0, a contradiction. So, there exists y; € K3, . € {0, uf, v, y»}. Then
V5. € Cé (Q) is a second nodal solution of (P;) (see (3.34)) district from ¥,.. Moreover,
using Proposition 2.3, we have v, € intcé @) [v}, u}] (see the proof of Proposition 3.6).

O

Now we can state our second multiplicity theorem for problem (P;).

Theorem 4.2 [f hypotheses H(f)3 hold, then for all » > 0 big, problem (P,) has at
least four nontrivial solutions

u, €intCy, v; € —intCy, yi, M € intcé@)[v;“ uy | nodal

and uy, vy, vy, y). — 0in C&(ﬁ) as » — +oo.

Remark 4.3 It will be interesting to extend the results of this work to problems with con-
vection (that is, f depends also on Du). Helpful in that respect can be the recent work
of Bai-Gasinski-Papageorgiou [2] (see also Bai-Gasinski-Papageorgiou [1], Candito-
Gasiniski-Papageorgiou [3] and Gasifiski-Papageorgiou [15]).
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