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Abstract
The value function associated with an optimal control problem subject to the Navier–
Stokes equations in dimension two is analyzed. Its smoothness is established around
a steady state, moreover, its derivatives are shown to satisfy a Riccati equation at the
order two and generalized Lyapunov equations at the higher orders. An approximation
of the optimal feedback law is then derived from the Taylor expansion of the value
function. A convergence rate for the resulting controls and closed-loop systems is
demonstrated.
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1 Introduction

In this work we continue our investigations of the value function associated with
infinite-horizon optimal control problems of partial differential equations, that we ini-
tiated in [15,17]. We consider a stabilization problem of the Navier–Stokes equations
in dimension two and focus on the regularity of the value function and its charac-
terization as a solution to a Hamilton–Jacobi–Bellman (HJB) equation. This task has
been the subject of tremendous research, for optimal control problems of a general
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structure, in general associated with finite-dimensional dynamical systems. The use
of the notion of viscosity solutions has allowed to deal with the low regularity of the
value function. In the present paper, to the contrary, we show that the value function
is smooth and that the HJB equation is satisfied in the strict sense, in a neighborhood
of the steady state. Moreover, we show that the derivatives of the value function, at
the steady state, are solutions to an algebraic Riccati equation (for the order 2) and
to linear equations, called generalized Lyapunov equations, for the higher orders. The
main interest of these results is the fact that polynomial feedback laws can be derived
from Taylor approximations of the value function. Moreover their efficiency can be
analyzed.

From a methodological point of view, we mainly follow the techniques that we
laid out for bilinear optimal control problems (such as control problems of the
Fokker–Planck equation) in [15,17]. The Navier–Stokes control system considered
here requires a different functional analytic treatment. In fact, the involved nonlinear
terms must be tackled with different estimates, to guarantee, for example, the well-
posedness of the closed-loop system. They also lead to different generalized Lyapunov
equations.Moreover, from the point of view of open-loop control of theNavier–Stokes
equation, this paper contains results on infinite-horizon optimal control which are not
readily available elsewhere.

Feedback stabilization of the Navier–Stokes equations has been and still is an active
topic of research. Among the numerous works, we refer to, e.g., [6,7,10,24,38], and the
references therein. For literature concerning open-loop optimal control of the Navier–
Stokes equations, we can only cite a small selection [13,18,19,21,22,27,30,42].

The technique of approximation of the value function with a Taylor expansion
dates back to [3,35], where optimal control problems associated to finite-dimensional
control systems were investigated. We also quote follow-up work, for instance in
[2,8,36]. For infinite-dimensional problems, we are only aware of [15,17]. In [16], the
numerical solvability of the Lyapunov equations has been addressed. Model reduc-
tion techniques based on balanced truncation have been used in this reference to
cope with the curse of dimensionality encountered when dealing with PDE controlled
systems.

Let us next specify the problemwhichwill be investigated in this paper. Throughout
� ⊂ R

2 denotes a bounded domain with Lipschitz boundary �. Given two vector
valued functions ϕ and ψ , we consider a solution (z̄, q̄) of the stationary Navier–
Stokes equations

−ν�z̄+ (z̄ · ∇)z̄+∇q̄ = ϕ in �,

div z̄ = 0 in �,

z̄ = ψ on �.

(1)

Our goal is to find a control u such that the solution (z, q) to the transientNavier–Stokes
equations
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∂z
∂t

= ν�z− (z · ∇)z− ∇q + ϕ + B̃u in � × (0, T ),

div z = 0 in � × (0, T ),

z = ψ on � × (0, T ),

z(0) = z̄+ y0

(2)

is stabilized around z̄, i.e., lim
t→∞ z(t) = z̄ provided the initial perturbation y0 is small

in an appropriate sense. The control operator B̃ will be defined below. Throughout this
work,we assume that div y0 = 0.Our results are concernedwith feedback stabilization
of (2) and for this purpose, we consider new state variables (y, p) := (z, q) − (z̄, q̄)

which satisfy the following generalized Navier–Stokes equations

∂y
∂t

= ν�y− (y · ∇)z̄− (z̄ · ∇)y− (y · ∇)y− ∇ p + B̃u in � × (0, T ),

div y = 0 in � × (0, T ),

y = 0 on � × (0, T ),

y(0) = y0.

(3)

The following sections are structured as follows. The problem statement and fun-
damental results on the state-equation on the time interval [0,∞) are given in Sect. 2.
Section 3 contains the existence theory of optimal controls, the adjoint equation, sen-
sitivity analysis, and differentiability of the value function. The characterization of all
higher order derivatives of the value as solutions to generalized Lyapunov equations
are provided in Sect. 4. Section 5 contains the Taylor expansion of the value function,
and estimates for convergence rates between the optimal solution and its approxima-
tion on the basis of feedback solutions obtained from derivatives of the value function.
The paper closes with a very short outlook.

Notation ForHilbert spacesV ⊂ Y with dense and compact embedding,we consider
theGelfand tripleV ⊂ Y ⊂ V ′whereV ′ denotes the topological dual ofV with respect
to the pivot space Y . Given T ∈ R we consider the space

W (0, T ) =
{
y ∈ L2(0, T ; V )

∣∣ d

dt
y ∈ L2(0, T ; V ′)

}
.

For T = ∞, the space W (0, T ) will be denoted by W∞. For vector-valued functions
f ∈ (L2(�))2, we use the notation f ∈ L

2(�). Elements f ∈ L
2(�) will be denoted in

boldface and are distinguished from real-valued functions g ∈ L2(�). Similarly, we
useH2(�) for the space (H2(�))2 andH1

0(�) for (H1
0 (�))2. Given a closed, densely

defined linear operator (A,D(A)) in Y , its adjoint (again considered as an operator in
Y ) will be denoted with (A∗,D(A∗)).

Let us introduce some notation that will be needed for the description of polynomial
mappings. For δ ≥ 0 and a Hilbert space Y , we denote by BY (δ) the closed ball in Y
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with radius δ and center 0. For k ≥ 1, we make use of the following norm:

‖(y1, . . . , yk)‖Y k = max
i=1,...,k

‖yi‖Y . (4)

Given a Hilbert space Z , we say that T : Y k → Z is a bounded multilinear
mapping (or bounded multilinear form when Z = R) if for all i ∈ {1, . . . , k}
and for all (z1, . . . , zi−1, zi+1, . . . , zk) ∈ Y k−1, the mapping z ∈ Y �→
T (z1, . . . , zi−1, z, zi+1, . . . , zk) ∈ Z is linear and

‖T ‖ := sup
y∈BYk (1)

‖T (y)‖Z < ∞. (5)

The set of bounded multilinear mappings on Y k will be denoted by M(Y k, Z). For
all T ∈ M(Y k, Z) and for all (z1, . . . , zk) ∈ Y k ,

‖T (z1, . . . , zk)‖Z ≤ ‖T ‖
k∏

i=1

‖zi‖Y .

Given a bounded multilinear form T and z2, . . . , zk ∈ Y k−1, we denote by
T (·, z2, . . . , zk) the bounded linear form z1 ∈ Y �→ T (z1, . . . , zk) ∈ R. It will
be very often identified with its Riesz representative. Note that

‖T (·, z2, . . . , zk)‖Y = sup
z1∈BY (1)

T (z1, . . . , zk) ≤ ‖T ‖
k∏

i=2

‖zi‖Y . (6)

Bounded multilinear mappings T ∈ M(Y k, Z) are said to be symmetric if for all
z1, . . . , zk ∈ Y k and for all permutations σ of {1, . . . , k},

T (zσ(1), . . . , zσ(k)) = T (z1, . . . , zk).

Finally, given two multilinears mappings T1 ∈ M(Y k, Z) and T2 ∈ M(Y 	, Z), we
denote by T1 ⊗ T2 the bounded multilinear form defined by

T1 ⊗ T2(z1, . . . , zk+	) = 〈T1(z1, . . . , zk), T2(zk+1, . . . , zk+	)〉Z .

Throughout the manuscript, we use M as a generic constant that might change its
value between consecutive lines.

2 Problem Formulation

2.1 Abstract Cauchy Problem

In this section, we formulate system (3) as an abstract Cauchy problem on a suitable
Hilbert space and, subsequently, define the stabilization problem of interest. This
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procedure is quite standard, see, for instance, [6,7,24,38,40] for details. We introduce
the spaces

Y :=
{
y ∈ L

2(�) | div y = 0, y · �n = 0 on �
}

,

V :=
{
y ∈ H

1
0(�) | div y = 0

}
.

It is well-known that Y is a closed subspace of L2(�). Moreover, we have the orthog-
onal decomposition

L
2(�) = Y ⊕ Y⊥, (7)

where

Y⊥ =
{
z = ∇ p | p ∈ H1(�)

}
, (8)

see, e.g., [40, p. 15]. By P we denote the Leray projector P : L2(�) → Y which is
the orthogonal projector in L

2(�) onto Y . Following, e.g., [6], we define a trilinear
form s by

s(u, v,w) :=
∫

�

2∑
i, j=1

uiw j
∂v j

∂xi
dx = 〈(u · ∇)v,w〉L2(�), ∀u, v,w ∈ V (9)

and a nonlinear operator F : V → V ′ by

〈F(y),w〉V ′,V := s(y, y,w), ∀w ∈ V . (10)

For the bilinear mapping associated with the linearization of F , we introduce the
operator

N : V × V → V ′, 〈N (y, z),w〉V ′,V := s(y, z,w). (11)

The Oseen-Operator is then defined by

A0 : V × V → V ′, 〈A0(y, z),w〉V ′,V := 〈N (y, z) + N (z, y),w〉V ′,V . (12)

The following well-known results (see, e.g., [6], [40, Lemma III.3.4]) concerning s
and N will be used frequently throughout the paper.

Proposition 1 The following properties hold for N and s:

(i) ‖N (y, z)‖V ′ ≤ M‖y‖
1
2
Y ‖z‖

1
2
Y ‖y‖

1
2
V ‖z‖

1
2
V , for all y, z ∈ V ,

(ii) s(y, z,w) = −s(y,w, z), for all y, z,w ∈ V .

With the previous result, we obtain similar properties for time-varying functions
y, z,w.
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Lemma 2 Let T ∈ (0,∞]. For all y ∈ W (0, T ), for all z ∈ W (0, T ), and for all
w ∈ L2(0, T ; V ),

〈N (y, z),w〉L2(0,T ;V ′),L2(0,T ;V )

≤ M‖y‖
1
2
L∞(0,T ;Y )

‖y‖
1
2
L2(0,T ;V )

‖z‖
1
2
L∞(0,T ;Y )

‖z‖
1
2
L2(0,T ;V )

‖w‖L2(0,T ;V ).

Moreover, if w ∈ L∞(0, T ; V ),

〈N (y, z),w〉L2(0,T ;V ′),L2(0,T ;V )

≤ M‖y‖
1
2
L2(0,T ;Y )

‖y‖
1
2
L2(0,T ;V )

‖z‖
1
2
L2(0,T ;Y )

‖z‖
1
2
L2(0,T ;V )

‖w‖L∞(0,T ;V ),

where M is the constant given by Proposition 1.

Proof Using Proposition 1 and Cauchy–Schwarz inequality (two times), we obtain
that

〈N (y, z),w〉L2(0,T ;V ′),L2(0,T ;V ) ≤ M
∫ T

0
‖y(t)‖

1
2
Y ‖y(t)‖

1
2
V ‖z(t)‖

1
2
Y ‖z(t)‖

1
2
V ‖w(t)‖V dt

≤ M‖y‖
1
2
L2(0,T ;V )

‖z‖
1
2
L2(0,T ;V )

( ∫ T

0
‖y(t)‖Y ‖z(t)‖Y ‖w(t)‖2V

) 1
2
.

The two inequalities easily follow. ��
Corollary 3 There exists M > 0 such that for all y and z ∈ W∞,

‖N (y, z)‖L2(0,∞;V ′) ≤ M‖y‖W∞‖z‖W∞ .

For z̄ ∈ V , we further introduce the Stokes-Oseen operator A via

D(A) = H
2(�) ∩ V , Ay = P(ν�y− (y · ∇)z̄− (z̄ · ∇)y). (13)

Considered as operator in L2(�) the adjoint A∗, as operator in L2(�), can be charac-
terized by (see, e.g., [38])

D(A∗) = H
2(�) ∩ V , A∗p = P(ν�p− (∇ z̄)Tp+ (z̄ · ∇)p). (14)

We note that as a consequence of Proposition 1, the operator A can be extended to a
bounded linear operator from V to V ′ in the following manner:

〈Ay,w〉V ′,V = −ν〈∇y,∇w〉L2(�) − 〈A0(z̄, y),w〉V ′,V .

Note that this extension is consistent, since by definition of the Leray projector P , we
have 〈Py,w〉Y = 〈y,w〉Y for all y ∈ L

2(�) and for all w ∈ V . Similarly, A∗ can be
extended to a bounded linear operator from V to V ′.
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The control operator is chosen to satisfy B̃ ∈ L(U ,L2(�)). We further define
B := P B̃ ∈ L(U ,Y ). The controlled state Eq. (3) can now be formulated as the
abstract control system

ẏ(t) = Ay− F(y) + Bu, y(0) = y0, (15)

where the pressure p is eliminated. We can finally formulate the stabilization problem
as an infinite-horizon optimal control problem:

inf
y∈W∞

u∈L2(0,∞;U )

J (y, u), subject to: e(y, u) = (0, y0), (P)

where J : W∞×L2(0,∞;U ) → R and e : W∞×L2(0,∞;U ) → L2(0,∞; V ′)×Y
are defined by

J (y, u) =1

2

∫ ∞

0
‖y‖2Y dt + α

2

∫ ∞

0
‖u(t)‖2U dt (16)

e(y, u) =(ẏ− (Ay− F(y) + Bu), y(0)
)
. (17)

Let us note that e : W∞ × L2(0,∞;U ) → L2(0,∞; V ′) × Y is well-defined by
Corollary 3.

2.2 Assumptions and First Properties

Throughout the article we assume that the following assumptions hold true.

Assumption A1 The stationary solution satisfies z̄ ∈ V .

Assumption A2 There exists an operator K ∈ L(Y ,U ) such that the semigroup
e(A−BK )t is exponentially stable on Y .

Assumption A2 concerning the exponential feedback stabilizability of the Stokes-
Oseen operator is well investigated. We refer e.g. to [6] where finite-dimensional
feedback operators are constructed on the basis of spectral decomposition or alter-
natively by Riccati theory. In this case A2 can be satisfied with U = R

m , for
m appropriately large. Alternatively, we can rely on exact controllability results as
obtained in [23]. They imply that the finite cost criterion holds. We can then rely on
classical results, see, e.g., [37] which guarantee the existence of a stabilizing feedback
operator.

Let us discuss some important consequences of the above definitions and assump-
tions.

Consequence C1 There exists λ ≥ 0 and θ > 0 such that

〈(λI − A)v, v〉Y ≥ θ‖v‖2V , for all v ∈ V . (18)
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Hence, A generates an analytic semigroup eAt on Y , see [12, Part II, Chapter 1,
Theorem 2.12].

Consequence C2 For all y0 ∈ Y , for all f ∈ L2(0,∞; V ′), and for all T > 0, there
exists a unique solution y ∈ W (0, T ) to the system

ẏ = Ay+ f, y(0) = y0.

This solution satisfies

‖y‖W (0,T ) ≤ c(T )(‖y0‖Y + ‖f‖L2(0,∞;V ′))

with a continuous function c. Assuming that y ∈ L2(0,∞; Y ), we consider the equiv-
alent equation

ẏ = (A − λI )︸ ︷︷ ︸
Aλ

y+ λy+ f︸ ︷︷ ︸
fλ

, y(0) = y0,

where fλ ∈ L2(0,∞; V ′). By (18), the operator Aλ generates an analytic, exponen-
tially stable, semigroup on Y satisfying ‖eAλt‖Y ≤ e−δt for some δ > 0 independent
of t ≥ 0, see [12, Theorem II.1.2.12]. It follows that y ∈ W∞ and there exists Mλ such
that with

‖y‖W∞ ≤ Mλ(‖y0‖Y + ‖fλ‖L2(0,∞;V ′)). (19)

This estimate is obtained by adapting [12, Corollary II.3.2.1] and [12, Theorem
II.3.2.2] from the temporal domain (0, T ) to (0,∞), which can be achieved using
the exponential stability of eAλt .

Lemma 4 There exists a constant C > 0 such that for all δ ∈ [0, 1] and for all y and
z ∈ W∞ with ‖y‖W∞ ≤ δ and ‖z‖W∞ ≤ δ, it holds that

‖F(y) − F(z)‖L2(0,∞;V ′) ≤ δC‖y− z‖W∞ .

Proof We have

‖F(y) − F(z)‖L2(0,∞;V ′) = ‖N (y, y) − N (z, z)‖L2(0,∞;V ′)
≤ ‖N (y− z, y)‖L2(0,∞;V ′) + ‖N (z, y− z)‖L2(0,∞;V ′).

The assertion now easily follows from Corollary 3. ��
The following lemma is formulated for an abstract generator As of an analytic

semigroup on Y . It will subsequently be used to address the asymptotic behavior of
the nonlinear system (15). We point out that the statement is similar to [38, Theorem
6.1] which, since it addresses the boundary control case, assumes a slightly more
regular initial condition y0 ∈ H

ε(�) ∩ Y .
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Lemma 5 Let As be the generator of an exponentially stable analytic semigroup eAs t

on Y such that (18) holds. Let C denote the constant from Lemma 4. Then there exists
a constant Ms such that for all y0 ∈ Y and f ∈ L2(0,∞; V ′) with

γ := ‖y0‖Y + ‖f‖L2(0,∞;V ′) ≤
1

4CM2
s

the system

ẏ = Asy− F(y) + f, y(0) = y0 (20)

has a unique solution y in W∞, which moreover satisfies

‖y‖W∞ ≤ 2Msγ.

Proof We follow the line of argumentation provided in the proof [38, Theorem 6.1].
Since the semigroup eAs t is exponentially stable on Y , it follows that for all (y0, g) ∈
Y × L2(0,∞; V ′) the system

ż = Asz+ g, z(0) = y0

has a unique solution z ∈ W∞. Moreover, there exists a constant Ms such that

‖z‖W∞ ≤ Ms(‖y0‖Y + ‖g‖L2(0,∞;V ′)). (21)

Without loss of generality we can assume that Ms ≥ 1
2C . We claim that the

constant Ms is the one announced in the assertion. This will be shown by a fixed-
point argument applied to the system (20). For this purpose, let us define M ={
y ∈ W∞ | ‖y‖W∞ ≤ 2Msγ

}
and let us define the mapping Z : M � y �→ z =

Z(y) ∈ W∞, where z is the unique solution of

ż = Asz− F(y) + f, z(0) = y0.

If there exists a unique fixed point of Z , then it is a unique solution of (20) in M.
With C and Ms given, we shall use Lemma 4 with δ = 2Msγ ≤ 1

2CMs
≤ 1. Together

with (21), it follows that

‖z‖W∞ ≤ Ms(‖F(y)‖L2(0,∞;V ′) + ‖f‖L2(0,∞;V ′) + ‖y0‖Y )

≤ Ms

(
1

2Ms
‖y‖W∞ + γ

)
≤ 2Msγ.

This impliesZ(M) ⊆ M. For y1, y2 ∈ M consider now z = Z(y1)−Z(y2) solving

ż = Asz− F(y1) + F(y2), z(0) = 0.
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Again by (21) and Lemma 4 we obtain

‖Z(y1) − Z(y2)‖W∞ = ‖z‖W∞ ≤ Ms(‖F(y1) − F(y2)‖L2(0,∞;V ′))

≤ MsδC‖y1 − y2‖W∞ ≤ 1

2
‖y1 − y2‖W∞ .

In other words, Z is a contraction in M and therefore, there exists a unique y ∈ M
such thatZ(y) = y. Regarding uniqueness inW∞, consider two solutions y, z ∈ W∞.
For the difference e := y− z it then holds

ė = Ase− F(y) + F(z), e(0) = 0.

Multiplying with e and taking inner products yields

1

2

d

dt
‖e‖2Y = 〈Ase, e〉Y − 〈F(y) − F(z), e〉V ′,V .

Since As satisfies an inequality of the form (18), we have

1

2

d

dt
‖e‖2Y ≤ α‖e‖2Y − β‖e‖2V + ‖F(y) − F(z)‖V ′ ‖e‖V ,

where α ≥ 0 and β > 0. Using Proposition 1 and Young’s inequality we further obtain

1

2

d

dt
‖e‖2Y ≤ α‖e‖2Y − β‖e‖2V + M

(
‖e‖

1
2
Y ‖y‖

1
2
Y ‖e‖

1
2
V ‖y‖

1
2
V

+ ‖e‖
1
2
Y ‖z‖

1
2
Y ‖e‖

1
2
V ‖z‖

1
2
V

)
‖e‖V

≤ α‖e‖2Y − β‖e‖2V + M

ι
‖e‖2V + Mι

2
‖e‖V (‖e‖Y ‖y‖Y ‖y‖V

+ ‖e‖Y ‖z‖Y ‖z‖V )

≤ α‖e‖2Y − β‖e‖2V + M

ι
‖e‖2V + Mι

2κ
‖e‖2V + Mικ

4

(
‖e‖2Y ‖y‖2Y ‖y‖2V

+ ‖e‖2Y ‖z‖2Y ‖z‖2V
)

.

Taking ι and κ sufficiently large, it holds that

1

2

d

dt
‖e‖2Y ≤

(
α + Mικ

4

(
‖y‖2Y ‖y‖2V + ‖z‖2Y ‖z‖2V

))
‖e‖2Y .

Since y, z ∈ W∞ and e(0) = 0, with Gronwall’s inequality, we conclude that e(t) = 0
for all t ≥ 0. Hence, y = z showing the uniqueness of the solution in W∞. ��

The following two corollaries are consequences of Lemmas 4 and 5. The constant
C which is employed is the one given by Lemma 4.
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Corollary 6 There exists a constant MK > 0 such that for all y0 ∈ Y and for all
f ∈ L2(0,∞; V ′) with

γ := ‖y0‖Y + ‖f‖L2(0,∞;V ′) ≤
1

4CM2
K

there exists a control u ∈ L2(0,∞;U ) such that the system

ẏ = Ay+ Bu − F(y) + f, y(0) = y0 (22)

has a unique solution y ∈ W∞ satisfying

‖y‖W∞ ≤ 2MK γ and ‖u‖L2(0,∞;U ) ≤ 2‖K‖L(Y )MK γ.

Proof ByAssumptionA2, there exists K such that A−BK generates an exponentially
stable, analytic semigroup on Y . The result then follows by applying Lemma 5 to the
system

ẏ = (A − BK )y− F(y) + f, y(0) = y0.

and by defining u = −Ky. ��
In the following corollary, we assume without loss of generality that the constant

Mλ given by Consequence C2 is such that Mλ ≥ 1
2C .

Corollary 7 Let (y0, f) ∈ Y × L2(0,∞; V ′) let u ∈ L2(0,∞;U ) be such that the
system

ẏ = Ay− F(y) + Bu + f, y(0) = y0

has a solution y ∈ L2(0,∞; Y ). If

γ := ‖y0‖Y + ‖f + λy+ Bu‖L2(0,∞;V ′) ≤
1

4CM2
λ

,

then y ∈ W∞ and it holds that

‖y‖W∞ ≤ 2Mλγ.

Proof Since y ∈ L2(0,∞; Y ), we can apply Lemma 5 to the equivalent system

ẏ = (A − λI )y− F(y) + f̃,

where f̃ = f + λy+ Bu. This shows the assertion. ��
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3 Differentiability of the Value Function

In this section we perform a sensitivity analysis for the stabilization problem. The
main purpose is to analyze the dependence of solutions to (P) with respect to the
initial condition y0 and to show the differentiability of the associated value function,
defined by

V(y0) = inf
y∈W∞

u∈L2(0,∞;U )

J (y, u), subject to: e(y, u) = (0, y0).

3.1 Existence of a Solution and Optimality Conditions

In Lemma 8 we prove the existence of a solution (ȳ, u) to problem (P), assuming
that ‖y0‖Y is sufficiently small. We derive then in Proposition 10 first-order necessary
optimality conditions.

Lemma 8 There exists δ1 > 0 such that for all y0 ∈ BY (δ1), problem (P) possesses a
solution (ȳ, ū). Moreover, there exists a constant M > 0 independent of y0 such that

max(‖ū‖L2(0,∞;U ), ‖ȳ‖W∞) ≤ M‖y0‖Y . (23)

Proof Let us set, for the moment, δ1 = 1
4CM2

K
, where C is as in Lemma 4 and MK

denotes the constant fromCorollary 6. Applying this corollary (with f = 0), we obtain
that for y0 ∈ BY (δ1), there exists a control u ∈ L2(0,∞;U ) with associated state y
satisfying

max(‖u‖L2(0,∞;U ), ‖y‖W∞) ≤ M‖y0‖Y ,

where M = 2MK max(1, ‖K‖L(Y )). We can thus consider a minimizing sequence
(yn, un)n∈N with J (yn, un) ≤ M2‖y0‖2Y (1+ α). We therefore have for all n ∈ N that

‖yn‖L2(0,∞;Y ) ≤
√
2M‖y0‖Y

√
1+ α and ‖un‖L2(0,∞;U ) ≤

√
2M‖y0‖Y

√
1+ α√

α
.

Possibly after further reduction of δ1, we eventually obtain that

‖y0‖Y + ‖λyn + Bun‖L2(0,∞;Y ) ≤
[
1+ M

√
2(1+ α)

(
λ + ‖B‖L(U ,Y )√

α

)]
δ1

≤ 1

4CM2
λ

,

where Mλ is as in Corollary 7. It then follows that the sequence (yn)n∈N is bounded in
W∞ with supn∈N ‖yn‖W∞ ≤ 2Mλ‖y0‖Y . Extracting if necessary a subsequence, there
exists (ȳ, ū) ∈ W∞× L2(0,∞;U ) such that (yn, un)⇀(ȳ, ū) ∈ W∞× L2(0,∞;U ),
and (ȳ, ū) satisfies (23).
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Let us prove that (ȳ, ū) is feasible and optimal. For any T > 0 let us consider an
arbitrary z ∈ H1(0, T ; V ). For all n ∈ N, we have

∫ T

0
〈ẏn(t), z(t)〉V ′,V dt =

∫ T

0
〈Ayn(t) − F(yn(t)) + Bun(t), z(t)〉V ′,V dt . (24)

Since ẏn⇀ ˙̄y in L2(0, T ; V ′), we can pass to the limit in the l.h.s. of the above equality.
Moreover, since Ayn⇀Aȳ ∈ L2(0, T ; V ′),

∫ T

0
〈Ayn(t), z(t)〉V ′,V dt −→

n→∞

∫ T

0
〈Aȳ(t), z(t)〉V ′,V dt .

Analogously, we obtain that

∫ T

0
〈Bun(t), z(t)〉V ′,V dt −→

n→∞

∫ T

0
〈Bū(t), z(t)〉V ′,V dt .

We also have

∣∣∣∣
∫ T

0
〈F(yn(t)) − F(ȳ(t)), z(t)〉V ′,V dt

∣∣∣∣
=
∣∣∣∣
∫ T

0
〈N (yn(t), yn(t)) − N (ȳ(t), ȳ(t)), z(t)〉V ′,V dt

∣∣∣∣ .

By Lemma 2, it then follows that

∣∣∣∣
∫ T

0
〈F(yn(t)) − F(ȳ(t)), z(t)〉V ′,V dt

∣∣∣∣
≤ M‖z‖L∞(0,T ;V )‖yn‖

1
2
L2(0,T ;Y )

‖yn−ȳ‖
1
2
L2(0,T ;Y )

‖yn‖
1
2
L2(0,T ;V )

‖yn−ȳ‖
1
2
L2(0,T ;V )

+ M‖z‖L∞(0,T ;V )‖ȳ‖
1
2
L2(0,T ;Y )

‖yn − ȳ‖
1
2
L2(0,T ;Y )

‖ȳ‖
1
2
L2(0,T ;V )

‖yn − ȳ‖
1
2
L2(0,T ;V )

.

Since V is compactly embedded in Y , we obtain that ‖yn − ȳ‖L2(0,T ;Y ) −→
n→∞ 0 with

the Aubin-Lions lemma. We can pass to the limit in (24) and obtain

∫ T

0

〈 ˙̄y(t), z(t)〉V ′,V dt =
∫ T

0
〈Aȳ(t) − F(ȳ(t)) + Bū(t), z(t)〉V ′,V dt .

Density of H1(0, T ; V ) in L2(0, T ; V ) implies that e(ȳ, ū) = (0, y0). Finally, by
weak lower semi-continuity of norms it follows that J (ȳ, ū) ≤ lim infn→∞ J (yn, un),
which proves the optimality of (ȳ, ū).
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Consider now an arbitrary solution (ỹ, ũ) to (P). It then holds that J (ỹ, ũ) ≤
M2‖y0‖2Y (1+ α) from which we obtain that

‖ỹ‖L2(0,∞;Y ) ≤
√
2M‖y0‖Y

√
1+ α and ‖ũ‖L2(0,∞;U ) ≤

√
2M‖y0‖Y

√
1+ α√

α
.

The estimate (23) for ‖ỹ‖W∞ can now be shown by applying the same arguments as
above. ��

For the derivation of the optimality system for (P) we need the following technical
lemma.

Lemma 9 [15, Lemma 2.5] Let G ∈ L(W∞, L2(0,∞; V ′)) be such that ‖G‖ < 1
MK

,

where ‖G‖ denotes the operator norm of G. Then, for all f ∈ L2(0,∞; V ′) and
y0 ∈ Y , there exists a unique solution to the following system:

ẏ = (A − BK )y(t) + (Gy)(t) + f(t), y(0) = y0.

Moreover,

‖y‖W∞ ≤ MK

1− MK ‖G‖ (‖f‖L2(0,∞;V ′) + ‖y0‖Y ).

First-order optimality conditions for finite-horizon optimal control problems have
been addressed several times in the literature, we mention e.g. [1,29–31]. The finite-
horizon case, and in particular the decay properties of the state, the costate, and the
optimal control, require independent treatment, whichwe provide next. For an analysis
of the linear infinite-horizon problem, we additionally refer to [38].

Proposition 10 There exists δ2 ∈ (0, δ1] such that for all y0 ∈ BY (δ2), for all solutions
(ȳ, ū) of (P), there exists a unique costate p ∈ L2(0,∞; V ) satisfying

−ṗ− A∗p− (ȳ · ∇)p+ (∇ȳ)Tp = ȳ (in (W 0∞)′), (25)

αū + B∗p = 0. (26)

Moreover, there exists a constant M > 0, independent of (ȳ, ū), such that

‖p‖L2(0,∞;V ) ≤ M‖y0‖Y . (27)

Remark 11 Note that (25) is a formal expression for

〈−ṗ− A∗p− (ȳ · ∇)p+ (∇ȳ)Tp− ȳ, z〉(W 0∞)′,W 0∞
= 〈p, ż− Az+ (z · ∇)ȳ+ (ȳ · ∇)z〉L2(0,∞;V ),L2(0,∞;V ′)

− 〈ȳ, z〉L2(0,∞;Y ), ∀z ∈ W 0∞,

(28)

where W 0∞ := {z ∈ W∞ | z(0) = 0}.
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Proof of Proposition 10 Let us set δ2 = δ1. By Lemma 8, problem (P) has a solution
(ȳ, ū). In the first part of the proof, we derive abstract optimality conditions, by proving
that the mapping e (used for formulating the constraints) has a surjective derivative.
For proving the differentiability of e, we only need to consider the nonlinear term.
We have F(y) = N (y, y) and we know that N is a bounded bilinear mapping from
W∞ × W∞ to L2(0,∞; V ′), by Lemma 2. Thus N and F are Fréchet differentiable,
and so is e, with

De(y, u) : W∞ × L2(0,∞;U ) → L2(0,∞; V ′) × Y

De(y, u)(z, v) = (ż− (Az− N (y, z) − N (z, y) + Bv), z(0)).

Let us show that De(ȳ, ū) is surjective if δ2 is sufficiently small. Let (r, s) ∈
L2(0,∞; V ′) × Y and consider the system

ż− (Az− N (ȳ, z) − N (z, ȳ) + Bv) = r, z(0) = s.

Observe that by Corollary 3

‖N (ȳ, z) + N (z, ȳ)‖L2(0,∞;V ′) ≤ M‖ȳ‖W∞ ‖z‖W∞ .

By Lemma 8, it further holds that

‖N (ȳ, z) + N (z, ȳ)‖L2(0,∞;V ′) ≤ Mδ2‖z‖W∞ . (29)

For sufficiently small δ2, the operator G ∈ L(W∞, L2(0,∞; V ′)) defined by

(Gz)(t) := DF(ȳ(t))(z(t)) = N (ȳ(t), z(t)) + N (z(t), ȳ(t)) (30)

satisfies ‖G‖ ≤ 1
2MK

< 1
MK

. By Lemma 9 there exists a unique solution z ∈ W∞ to
the system

ż− (A − BK )z+ N (ȳ, z) + N (z, ȳ) = r, z(0) = s.

Setting v = −K z ∈ L2(0,∞;U ) proves the surjectivity of De(ȳ, ū). Note that

‖z‖W∞ ≤ M
(‖r‖L2(0,∞;V ′) + ‖s‖L2(0,∞;V ′)

)
, (31)

for some constant M independent of (r, s) and y0.
From the surjectivity of De(ȳ, ū) and Lagrange multiplier theory it follows that

there exists a unique pair (p, μ) ∈ L2(0,∞; V ) × Y such that for all (z, v) ∈ W∞ ×
L2(0,∞;U ),

DJ (ȳ, ū)(z, v) − 〈(p, μ), De(ȳ, ū)(z, v)〉L2(0,∞;V )×Y ,L2(0,∞;V ′)×Y = 0. (32)
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Using (32) we derive in the second part of the proof the costate equation (25) and
relation (26). As can be easily verified, J is differentiable with

DJ (ȳ, ū)(z, v) = 〈ȳ, z〉L2(0,∞;Y ) + α〈ū, v〉L2(0,∞;U ) (33)

Moreover, for all (z, v) ∈ W∞ × L2(0,∞;U )

〈(p, μ), De(ȳ, ū)(z, v)〉L2(0,∞;V )×Y ,L2(0,∞;V ′)×Y

= 〈p, ż〉L2(0,∞;V ),L2(0,∞;V ′) − 〈p, Az− Gz〉L2(0,∞;V ),L2(0,∞;V ′)
− 〈p, Bv〉L2(0,∞;Y ) + 〈μ, z(0)〉Y .

(34)

Taking z = 0 and letting v vary in L2(0,∞;U ), we deduce from (32), (33) and (34)
that

αū + B∗p = 0 in L2(0,∞;U ),

which proves (26). Taking now v = 0, we obtain that

〈p, ż〉L2(0,∞;V ),L2(0,∞;V ′) = 〈p, Az− Gz〉L2(0,∞;V ),L2(0,∞;V ′)

+〈ȳ, z〉L2(0,∞;Y ), ∀z ∈ W 0∞. (35)

It remains to bound p in L2(0,∞; V ). Let r ∈ L2(0,∞; V ′) and let (z, v) satisfy
De(ȳ, ū)(z, v) = (r, 0) and the bound (31) (with s = 0). Using the optimality condi-
tion (32), the expression (33) of DJ (ȳ, ū), estimate (31), and estimate (23) on (ȳ, ū),
we obtain the following inequalities:

〈p, r〉L2(0,∞;V ),L2(0,∞;V ′)
= 〈(p, μ), (r, 0)〉L2(0,∞;V )×Y ,L2(0,∞;V ′)×Y

= 〈De(ȳ, ū)′(p, μ), (z, v)〉W ′∞×L2(0,∞;U ),W∞×L2(0,∞;U )

= DJ (ȳ, ū)(z, v)

≤ M
(‖ȳ‖L2(0,∞;Y ) + ‖ū‖L2(0,∞;U )

)(‖z‖L2(0,∞;Y ) + ‖v‖L2(0,∞;U )

)
≤ M‖y0‖Y ‖r‖L2(0,∞;V ′).

Since rwas arbitrary and sinceM does not depend on r, we obtain that ‖p‖L2(0,∞;V ) ≤
M‖y0‖Y . ��
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3.2 Sensitivity Analysis

We define a mapping � via

� : W∞ × L2(0,∞;U ) × L2(0,∞; V ) → Y × L2(0,∞; V ′) × (W 0∞)′

× L2(0,∞;U ) =: X ,

�(y, u,p) =

⎛
⎜⎜⎝

y(0)
ẏ− Ay+ F(y) − Bu

−ṗ− A∗p− (y · ∇)p+ (∇y)Tp− y
αu + B∗p

⎞
⎟⎟⎠ ,

(36)

where the third line again has to be understood formally, see Remark 11. We endow
the space X with the l∞-product norm. The well-posedness of � follows from the
considerations on e(y, u) and the costate Eq. (25) that have been given in the proof of
Proposition 10.

Lemma 12 There exist δ3 > 0, δ′3 > 0, and three C∞-mappings

y0 ∈ BY (δ3) �→
(
Y(y0),U(y0),P(y0)

) ∈ W∞ × L2(0,∞;U ) × L2(0,∞; V )

such that for all y0 ∈ BY (δ3), the triplet
(
Y(y0),U(y0),P(y0)

)
is the unique solution

to

�(y, u,p) = (y0, 0, 0, 0), max
(‖y‖W∞ , ‖u‖L2(0,∞;U ), ‖p‖L2(0,∞;V )

) ≤ δ′3
(37)

in W∞× L2(0,∞;U )× L2(0,∞; V ). Moreover, there exists a constant M > 0 such
that for all y0 ∈ BY (δ3),

max
(‖Y(y0)‖W∞ , ‖U(y0)‖L2(0,∞;U ), ‖P(y0)‖L2(0,∞;V )

) ≤ M‖y0‖Y . (38)

Proof The result is a consequence of the inverse function theorem. Since � contains
only linear terms and three bilinear terms, it is infinitely differentiable. We also have
�(0, 0, 0) = (0, 0, 0, 0). It remains to prove that D�(0, 0, 0) is an isomorphism. Let
(w1,w2,w3, w4) ∈ X and let (y, u,p) ∈ W∞ × L2(0,∞;U ) × L2(0,∞; V ). We
have the following equivalence

D�(0, 0, 0)(y, u,p) = (w1,w2,w3, w4) ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(0) = w1

ẏ− Ay− Bu = w2

−ṗ− A∗p− y = w3

αu + B∗p = w4.

(39)

It can be proved with the same techniques as for [15, Proposition 3.1, Lemma 4.4] that
the linear system on the left-hand side has a unique solution (y, u,p), moreover,

‖(y, u,p)‖W∞×L2(0,∞;U )×L2(0,∞;V ) ≤ M‖(w1,w2,w3, w4)‖X .
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This proves that D�(0, 0, 0) is an isomorphism. The inverse function theorem ensures
the existence of δ3 > 0, δ′3 > 0, and C∞-mappings Y , U , and P with the properties
announced in (37).

It remains to prove (38). Reducing if necessary δ3, we can assume that the norms
of the derivatives of the three mappings are bounded on BY (δ3) by some constant
M > 0. The three mappings are therefore Lipschitz continuous with modulus M .
Estimate (38) follows, since

(
Y(0),U(0), (P(0)

) = (0, 0, 0). ��
Proposition 13 There exists δ4 ∈ (0,min(δ2, δ3)] such that for all y0 ∈ BY (δ4), the
pair (Y(y0),U(y0)) is the unique solution to (P) with initial condition y0. Moreover,
P(y0) is the unique associated costate.

Proof Let us set δ4 = min(δ2, δ3) for the moment. Let y0 ∈ BY (δ4). By Lemma 8 and
Proposition 10, there exist a solution (ȳ, ū) to (P) with associated costate p̄ which
necessarily satisfies

max(‖ȳ‖W∞ , ‖ū‖L2(0,∞;U ), ‖p̄‖L2(0,∞;V )) ≤ M‖y0‖Y .

By further reduction of δ4, we obtain that

max(‖ȳ‖W∞ , ‖ū‖L2(0,∞;U ), ‖p̄‖L2(0,∞;V )) ≤ δ′3.

Since �(ȳ, ū, p̄) = (y0, 0, 0, 0), Lemma 12 implies that (ȳ, ū, p̄) = (Y(y0),
U(y0),P(y0)). The proposition is proved. ��
Corollary 14 The value function V is infinitely differentiable on BY (δ4).

Proof The cost function J is clearly infinitely differentiable. Since V(y0) =
J (Y(y0),U(y0)), V is then the composition of infinitely differentiable mappings,
which shows the assertion. ��

3.3 Additional Regularity for p

We next assert that for small initial data y0 the adjoint state is more regular than
p ∈ L2(0,∞; V ). For this, we need more smoothness of the boundary �.

Assumption A3 Let � ⊂ R
2 denote a bounded domain with smooth boundary �.

Proposition 15 There exists δ̃4 ∈ (0, δ4] such that for all y0 ∈ BY (δ̃4), for all solutions
(ȳ, ū) of (P), there exists a unique costate p ∈ W∞ satisfying

−ṗ− A∗p− (ȳ · ∇)p+ (∇ȳ)Tp = ȳ (in L2(0,∞; V ′)). (40)

Moreover, there exists a constant M > 0, independent of (ȳ, ū), such that

‖p‖W∞ ≤ M‖y0‖Y . (41)

The proof is given in the Appendix.
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4 Derivatives of the Value Function

By standard arguments, we can derive a Hamilton-Jacobi-Bellman equation which
provides an optimal feedback control based on the derivative of the value function.

All along the section, the first-order derivative DV(y0) is either seen as a linear
form on Y or is identified with its Riesz representative in Y . The identification is done
for example in the term ‖B∗DV(y0)‖2U appearing in the HJB equation below.

Proposition 16 There exists δ5 ∈ (0, δ̃4] such that for all y0 ∈ BY (δ5) ∩ D(A), the
following Hamilton-Jacobi-Bellman equation holds:

DV(y0)(Ay0 − F(y0)) + 1

2
‖y0‖2Y − 1

2α
‖B∗DV(y0)‖2U = 0. (42)

Moreover,

ū(t) = − 1

α
B∗DV(ȳ(t)), for all t ≥ 0, (43)

where (ȳ, ū) = (Y(y0),U(y0)).

Remark 17 Note that by, e.g., [6, Proposition 1.7], we have that F : D(A)×D(A) → Y
and, as a consequence, the term DV(y0)F(y0) is well-defined.

Proof Let us set δ5 = δ4. Let y0 ∈ BY (δ5) ∩ D(A). Let us consider the Hamiltonian
of the system, defined by

H(y0, u,p) = 1

2
‖y‖2Y + α

2
‖u‖2U + 〈p, Ay− F(y)

+ Bu〉Y , ∀(y, u,p) ∈ D(A) ×U × Y .

Using the arguments provided in the proof of [17, Proposition 9], one can prove that

min
u∈U H(y0, u, DV(y0)) = 0,

from which (42) derives. One can also prove that

ū(0) = arg minu∈U H(y0, u, DV(y0)),

which proves (43) for t = 0. Let us emphasize that the assumptions which are required
in [17, Proposition 9] are satisfied. In particular, the optimality condition ū(t) =
− 1

α
B∗p̄(t) which holds in L2(0,∞;U ) implies that ū is almost everywhere equal to

a continuous function. We can thus assume that ū is continuous. For proving (43) for
all t ≥ 0, one has first to reduce δ5 so that ‖ȳ(t)‖Y ≤ δ4, for all t ≥ 0. For a given
t ≥ 0, we have by dynamic programming that (ȳ(t + ·), ū(t + ·)) is the solution to
(P) with initial condition ȳ(t) and thus (43) holds true at t . ��
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For deriving a Taylor series expansion of V , let us follow the approach from [3]
and differentiate (42) in some direction z1 ∈ D(A). To alleviate the calculations, we
denote the variable y0 in (42) by y. We then obtain

D2V(y) (Ay− F(y), z1) + DV(y) (Az1 − A0(y, z1)) + 〈y, z1〉Y
− 1

α
〈B∗D2V(y)(·, z1), B∗DV(y)〉U = 0.

A second differentiation in the directions (z1, z2) ∈ D(A)2 yields the equation

D3V(y) (Ay− F(y), z1, z2) + D2V(y) (Az2 − A0(y, z2), z1)

+ D2V(y) (Az1 − A0(y, z1), z2)

− DV(y) (A0(z2, z1)) + 〈z2, z1〉Y − 1

α
〈B∗D3V(y) (·, z1, z2) , B∗DV(y)〉U

− 1

α
〈B∗D2V(y) (·, z1) , B∗D2V(y) (·, z2)〉U = 0.

Since V(0) = 0 and V(y) ≥ 0 for all y ∈ Y , it follows that DV(0) = 0. We can thus
evaluate the last equation for y = 0 to obtain

D2V(0) (Az2, z1) + D2V(0) (Az1, z2) + 〈z2, z1〉Y
− 1

α
〈B∗D2V(0) (·, z1) , B∗D2V(0) (·, z2)〉U = 0.

(44)

We recall that D2V(0) ∈ M(Y × Y ,R) is a bounded and symmetric bilinear form on
Y and thus can be represented (see, e.g., [32, Chapter 5, Section 2]) by an operator
� ∈ L(Y ) such that

D2V(0)(y, z) = 〈�y, z〉Y , for all y, z ∈ Y .

As a consequence, we can formulate (44) as

〈z2, A∗�z1〉Y + 〈�Az1, z2〉Y + 〈z2, z1〉Y − 1

α
〈B∗�z1, B∗�z2〉U = 0. (45)

Equation (45) is the well-known algebraic operator Riccati equation which has been
studied in detail in, e.g., [20,33]. From the stabilizability Assumption A2, and the fact
that the pair (A, id) is exponentially detectable as a consequence of (18), we conclude
that (45) has a unique stabilizing solution � ∈ L(Y ). In the discussion below, we
denote by

Aπ := A − 1

α
BB∗�
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the closed-loop operator associated with the linearized stabilization problem. In par-
ticular, let us mention that Aπ generates an analytic exponentially stable semigroup
eAπ t on Y . Hence, for trajectories of the form ỹ = eA·y, y ∈ Y it follows that ỹ ∈ W∞.

For higher order derivatives of V , we follow the exposition from [17]. For this
purpose, let us briefly recall the symmetrization technique introduced there. Let i and
j ∈ N, consider

Si, j =
{
σ ∈ Si+ j | σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(i + j)

}
,

where Si+ j is the set of permutations of {1, . . . , i + j}. A permutation σ ∈ Si, j
is uniquely defined by the subset {σ(1), . . . , σ (i)}, therefore, the cardinality of Si, j
is equal to the number of subsets of cardinality i of {1, . . . , i + j}, that is to say
|Si, j | =

(i+ j
i

)
. For a multilinear mapping T of order i + j , we set

Symi, j (T )(z1, . . . , zi+ j ) =
(
i + j

i

)−1
⎡
⎣ ∑

σ∈Si, j
T (zσ(1), . . . , zσ(i+ j))

⎤
⎦ . (46)

The following proposition is a generalization of the Leibniz formula for the differen-
tiation of the product of two functions.

Proposition 18 Let Z be a Hilbert space. Let f : Y → Z and g : Y → Z be two
k-times continuously differentiable functions. Then, for all k ≥ 1, for all y ∈ Y and
(z1, . . . , zk) ∈ Y k,

Dk[〈 f (y), g(y)〉Z ](z1, . . . , zk)

=
k∑

i=0

(
k

i

)
Symi,k−i (D

i f (y) ⊗ Dk−i g(y))(z1, . . . , zk).

Proof The proof is analogous to the one given in [17, Lemma 10] for Z = R. ��
Theorem 19 Let k ≥ 3. For all z1, . . . , zk ∈ D(A),

k∑
i=1

DkV(0)(z1, . . . , zi−1, Aπzi , zi+1, . . . , zk) = Rk(z1, . . . , zk), (47)

where the multilinear formRk : D(A)k → R is given by

Rk(z1, . . . , zk) = 1

2α

k−2∑
i=2

(
k
i

)
Sym
i,k−i

(
Ci ⊗ Ck−i

)
(z1, . . . , zk)

+ k(k − 1)

2
Sym
k−2,2

(
Dk−1V(0) ⊗ D2F(0)

)
(z1, . . . , zk)

with Ci (z1, . . . , zi ) = B∗Di+1V(0)(·, z1, . . . , zi ) and D2F(0)(z1, z2) = A0(z1, z2).
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Proof The proof relies on successive differentiations of (42). For a bilinear control
problem, a similar result has been obtained in [17, Theorem 12]. In particular, it was
shown that

(
Dk[V(y)(Ay)]y=0

)
(z1, . . . , zk) =

k∑
i=1

DkV(0)(z1, . . . , zi−1, Azi , zi+1, . . . , zk).

(48)

Obviously, for k ≥ 3, we have Dk( 12‖y‖2Y ) = 0. Let us discuss the structure of the
derivatives of the remaining terms appearing in (42). Applying Proposition 18 to the
term ‖B∗DV(y)‖2U , we obtain

Dk‖B∗DV(y)‖2U =
k∑

i=0

(
k
i

)
Symi,k−i (D

i (B∗DV(y)) ⊗ Dk−i (B∗DV(y))).

Since V has a minimum at the origin, we have DV(0) = 0 and the terms for i = 0 and
i = k vanish when evaluated in y = 0. By definition of the Sym-operator, for i = 1
we obtain

(
k
1

)
Sym1,k−1(D(B∗DV(y)) ⊗ Dk−1(B∗DV(y)))(z1, . . . , zk)

∣∣∣∣
y=0

=
∑

σ∈S1,k−1

〈B∗D2V(0)(·, zσ(1)), B
∗DkV(0)(·, zσ(2), . . . , zσ(k))〉U

=
∑

σ∈S1,k−1

〈BB∗D2V(0)(·, zσ(1)), D
kV(0)(·, zσ(2), . . . , zσ(k))〉Y

=
∑

σ∈S1,k−1

DkV(0)(BB∗D2V(0)(·, zσ(1)), zσ(2), . . . , zσ(k))

As explained previously, we can represent D2V(0) in terms of the solution � of the
algebraic operator Riccati equation. This shows

(
k
1

)
Sym1,k−1(D(B∗DV(y)) ⊗ Dk−1(B∗DV(y)))(z1, . . . , zk)

∣∣∣∣
y=0

=
∑

σ∈S1,k−1

DkV(0)(BB∗�zσ(1), zσ(2), . . . , zσ(k))

=
k∑

i=1

DkV(0)(z1, . . . , zi−1, BB
∗zi , zi+1, . . . , zk).

(49)

A similar relation can be derived for i = k − 1. Finally we consider the term
Dk(DV(y)F(y)). By Proposition 18, we get
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Dk(DV(y)F(y))(z1, . . . , zk)

= Dk〈DV(y), F(y)〉Y (z1, . . . , zk)

=
k∑

i=0

(
k
i

)
Sym
i,k−i

(
Di+1V(y) ⊗ Dk−i F(y)

)
(z1, . . . , zk).

Since D3+	F(y) = 0 for all 	 ≥ 0, the previous equation simplifies as follows

Dk(DV(y)F(y))(z1, . . . , zk)

=
k∑

i=k−2

(
k
i

)
Sym
i,k−i

(
Di+1V(y) ⊗ Dk−i F(y)

)
(z1, . . . , zk).

Evaluating the last expression in y = 0 yields

(
Dk[DV(y)F(y)]y=0

)
(z1, . . . , zk)

= k(k − 1)

2
Sym
k−2,2

(
Dk−1V(0) ⊗ D2F(0)

)
(z1, . . . , zk), (50)

since F(0) and DF(0) are both null. Combining (48), (49) and (50) proves the asser-
tion. ��

5 Polynomial Feedback Laws

5.1 Estimates for the Velocity

In this section we analyze the polynomial feedback law ud derived from the Taylor
series approximation of the value function

Vd(y) :=
d∑

k=2

1

k!D
kV(0)(y, . . . , y),

for a given d ≥ 2. The feedback ud : Y → U is obtained by approximating V with Vd

in formula (43), that is

ud(y) = − 1

α
B∗DVd(y) = − 1

α

d∑
k=2

1

(k − 1)! B
∗DkV(0)(·, y, . . . , y).

The associated closed-loop system is given by

ẏd = Ayd − F(yd) + Bud(yd), yd(0) = y0. (51)
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Below we will also derive an estimate for the open-loop control, i.e., the function
defined by

ud : [0,∞) → U , t �→ ud(t) := ud(yd(t)) (52)

which is obtained via closed-loop dynamics here. With slight abuse of notation, the
open-loop control ud(t) as well as its closed-loop interpretation ud(yd(t)) will both
be denoted with ud .

We begin with some local Lipschitz continuity estimates for the nonlinear part of
the feedback law. For this purpose, we set

Gk(y) := − 1

α(k − 1)! BB
∗DkV(0)(·, y, . . . , y), (53)

for all k ≥ 3. The closed-loop system can be reformulated as follows:

ẏd = Aπyd − F(yd) − 1

α

d∑
k=3

1

(k − 1)! BB
∗DkV(0)(·, yd , . . . , yd)

= Aπyd − F(yd) +
d∑

k=3

Gk(yd). (54)

Lemma 20 For all k ≥ 3, there exists a constant C(k) > 0 such that for all y and
z ∈ Y ,

‖Gk(y) − Gk(z)‖Y ≤ C(k)‖y− z‖Y max(‖y‖Y , ‖z‖Y )k−2.

Moreover, for all δ ∈ [0, 1], for all y and z ∈ W∞ such that ‖y‖W∞ ≤ δ and
‖z‖W∞ ≤ δ,

‖Gk(y) − Gk(z)‖L2(0,∞;V ′) ≤ C(k)δ‖y− z‖W∞ .

Proof We have the identity

DkV(0)(·, y, . . . , y) − DkV(0)(·, z, . . . , z) = DkV(0)(·, y− z, y, . . . , y)

+ DkV(0)(·, z, y− z, . . . , y) + · · · + DkV(0)(·, z, . . . , z, y − z).

The first inequality easily follows, with C(k) = 1
α(k−2)! ‖B‖2L(U ,Y )

‖DkV(0)‖ and

‖DkV(0)‖ as defined in (5). We also obtain that for all y and z ∈ W∞,

‖Gk(y) − Gk(z)‖L2(0,∞;V ′) ≤ C(k)‖y− z‖W∞ max(‖y‖W∞ , ‖z‖W∞)k−2.

The second inequality follows, since k ≥ 3 and δ ≤ 1. ��
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Thewell-posedness of the closed-loop system can be now establishedwith the same
tools as those used in Lemma 5.

Theorem 21 Let d ≥ 2. Let C and C(k) denote the constants from Lemmas 4 and 20.
There exists a constant Mcls such that for all y0 ∈ Y with

‖y0‖Y ≤ 1

4(C +∑d
k=3 C(k))M2

cls

,

the closed-loop system (51) has a unique solution yd in W∞, which satisfies

‖yd‖W∞ ≤ 2Mcls‖y0‖Y . (55)

Proof The existence of a solution y ∈ W∞, satisfying (55), can be obtained exactly
as in Lemma 5. Thus we only discuss uniqueness. Let y and z denote two solutions to
(51) in W∞. Let us set e = y− z. Arguing as in the proof of Lemma 5, one can prove
the existence of M > 0 such that

1

2

d

dt
‖e‖2Y ≤ M

(
1+ ‖y‖2Y ‖y‖2V + ‖z‖Y ‖2z‖2V

+
d∑

k=3

C(k)2 max(‖y‖Y , ‖z‖Y )2(k−2)
)
‖e‖2Y ,

for all t ≥ 0. Since y and z ∈ W∞ and e(0) = 0, we obtain with Gronwall’s inequality
that e = 0, which proves the uniqueness of the solution to the closed-loop system. ��
Theorem 22 Let d ≥ 2. There exist δ6 > 0 and M > 0 such that for all y0 ∈ BY (δ6),
it holds that

‖ȳ− yd‖W∞ ≤ M‖y0‖dY ,

max
(‖ū − ud‖L2(0,∞;U ), ‖ū − ud‖L∞(0,∞;U )

) ≤ M‖y0‖dY ,

where (ȳ, ū) = (Y(y0),U(y0)), yd is the solution of the closed-loop system (51) with
initial condition y0, and ud is as defined in (52).

Proof Let us fix δ6 = min
(
δ5, (4(C +∑d

k=3 C(k))M2
cls)

−1
)
, so that Proposition 16

and Theorem 21 apply for y0 ∈ BY (δ6). By Taylor’s theorem, see, e.g., [43, Theorem
4A], there exists δ > 0 such that for all y ∈ BY (δ),

DV(y) =
d∑

k=2

1

(k − 1)!D
kV(0)(·, y, . . . , y) + Rd(y), (56)

where the remainder term Rd satisfies

‖Rd(y)‖Y ≤ M‖y‖dY ,
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for some constant M independent of y. Reducing if necessary δ6, we have that
‖ȳ(t)‖Y ≤ δ for all t ≥ 0. Combining then (43) and the Taylor expansion (56),
we obtain that

˙̄y = Aȳ− F(ȳ) − 1

α
BB∗DV(ȳ) = Aπ ȳ− F(ȳ) +

d∑
k=3

Gk(ȳ) − 1

α
BB∗Rd(ȳ).

(57)

Let us now consider the error dynamics e := ȳ− yd . We have e(0) = 0, moreover by
(54) and (57),

ė = Aπe − F(ȳ) + F(yd) +
d∑

k=3

(Gk(ȳ) − Gk(yd)) − 1

α
BB∗Rd(ȳ).

Alternatively, e can be expressed as the solution of the system

ė = Aπe+ f, e(0) = 0, (58)

where the source term f is given by

f = −F(ȳ) + F(yd) +
d∑

k=3

(Gk(ȳ) − Gk(yd)) − 1

α
BB∗Rd(ȳ).

Consider δ̃ ∈ (0, 1]. The precise value of δ̃ will be fixed later. By Lemma 12 and
Theorem 21, we can reduce δ6 so that max(‖ȳ‖W∞ , ‖yd‖W∞) ≤ δ̃. We first observe
that

∥∥∥ 1
α
BB∗Rd(ȳ)

∥∥∥
L2(0,∞;V ′)

≤ M‖ȳ‖d−1
L∞(0,∞;Y )

‖ȳ‖L2(0,∞;Y ) ≤ M‖y0‖dY .

Applying further Lemmas 4 and 20, we obtain

‖f‖L2(0,∞;V ′) ≤ M
(
‖F(ȳ) − F(yd)‖L2(0,∞;V ′)

+
d∑

k=3

‖Gk(ȳ) − Gk(yd)‖L2(0,∞;V ′) + ‖y0‖dY
)

≤ M(δ̃‖e‖W∞ + ‖y0‖dY ).

For the solution of system (58) we thus obtain the estimate

‖e‖W∞ ≤ M‖f‖L2(0,∞;V ′) ≤ M(δ̃‖e‖W∞ + ‖y0‖dY ).

The constant M > 0 in the above estimate is independent of δ̃. We can now define
δ̃ = min

(
1, 1

2M

)
. The first estimate on ‖ȳ− yd‖W∞ follows.
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Let us estimate ū−ud . By (43) and by definition of the generated open-loop control
ud , we have that

ū − ud = − 1

α
B∗(DV(ȳ) − DVd(yd)

) = − 1

α
B∗(Rd(ȳ) + DVd(ȳ) − DVd(yd)

)
.

Let us estimate the two terms of the right-hand side. It is easy to check that

max
(‖Rd(ȳ)‖L∞(0,∞;Y ), ‖Rd(ȳ)‖L2(0,∞;Y )

) ≤ M‖y0‖dY .

Using the techniques of Lemma 20 and the estimate on ‖ȳ − yd‖W∞ , we also obtain
that

max
(‖DVd(ȳ) − DVd(yd)‖L2(0,∞;Y ), ‖DVd(ȳ) − DVd(yd)‖L∞(0,∞;Y )

)
≤ M‖ȳ− yd‖W∞ ≤ M‖y0‖dY .

The second estimate on ū − ud follows. ��

5.2 Estimates for the Pressure

It is well-known that for y0 ∈ Y , the pressure term that can be associated to the
Navier–Stokes equations is a distribution only (see, e.g., [39], [40, Chapter III-§3]).
In the following, we redemonstrate this fact and we argue that a result analogous
to Theorem 22 also holds for the pressure, provided the latter is considered in
W−1,∞(0,∞; L2

0(�)) = W 1,1
0 (0,∞; L2

0(�))′ with

W 1,1
0 (0,∞; L2

0(�)) =
{
v ∈ W 1,1(0,∞; L2

0(�)) | v(0) = 0
}

and

L2
0(�) =

{
v ∈ L2(�) |

∫
�

v(x) dx = 0

}
.

We define similarly W 1,1
0 (0,∞;H1

0(�)). We recall here that W 1,1
0 (0,∞;H1

0(�))

embeds continuously into L∞(0,∞;H1
0(�)) ∩ L2(0,∞;H1

0(�)). Further the ele-

ments φ of W 1,1
0 (0,∞;H1

0(�)) can be identified a.e. with continuous functions on
[0,∞) and satisfy limt→∞ ‖φ(t)‖

H
1
0(�) = 0. We use the properties of Banach-space

valued functions as summarized in [14, Chapter II-§5].

Lemma 23 Let (y, u) ∈ W∞× L2(0,∞;U ) be such that ẏ = Ay− F(y)+ Bu. Then,
there exists a unique p ∈ W−1,∞(0,∞; L2

0(�)) such that

ẏ = Ay− F(y) + Bu − ∇ p in W 1,1(0,∞;H1
0(�))′,
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that is,

−
∫ ∞

0
〈y(t), φ̇(t)〉Y dt =

∫ ∞

0

〈
Ay(t) − F(y(t)) + Bu(t),φ(t)

〉
H−1(�),H1

0(�)
dt

+ 〈p, divφ〉W−1,∞(0,∞,L2
0(�)),W 1,1

0 (0,∞;L2
0(�))

, (59)

for all φ ∈ W 1,1
0 (0,∞;H1

0(�)). Moreover,

‖p‖W−1,∞(0,∞,L2
0(�)) ≤ M

(‖y‖W∞ + ‖y‖2W∞ + ‖u‖L2(0,∞;U )

)
, (60)

for a constant M independent of (y, u).

Proof We follow the technique consisting in integrating the state equation, see, e.g.,
[14, Chapter V-§1] and introduce

G(t) = y(t)−y0 +
∫ t

0
g(s) ds, with: g(s) = Ay(s) − F(y(s)) + Bu(s). (61)

It can be easily shown that g ∈ L2(0,∞;H−1(�)) and that there exists a constant
M > 0 independent of (y, u) such that

‖g‖L2(0,∞;H−1(�)) ≤ M
(‖y‖W∞ + ‖y‖2W∞ + ‖u‖L2(0,∞;U )

)
. (62)

This estimate can be obtained with the Cauchy-Schwarz inequality and Proposi-
tion 1(i), which also holds true in H

−1(�) (in place of V ′). Since y ∈ W∞, it further
follows that G is a continuous function of time with values in H

−1(�). Moreover,
〈G(t),ψ〉

H−1(�),H1
0(�) = 0 for all t ∈ [0,∞) and ψ ∈ V . Hence for all t ∈ [0,∞),

there exists a unique P(t) ∈ L2
0(�) such that G(t) = −∇P(t), see, e.g., [14, Theo-

rem IV.2.3]. Let us prove that P ∈ C([0,∞), L2
0(�)). Recall first that there exists an

operator K ∈ L(L2
0(�),H1

0(�)) with the property that

div(Kρ) = ρ, ∀ρ ∈ L2
0(�),

see [14, Theorem IV.3.1]. Let ρ ∈ L2
0(�) be arbitrary and let φ = Kρ. For all t and

τ in [0,∞), we have

〈P(t) − P(τ ), ρ〉L2
0(�) = −〈∇P(t) −∇P(τ ),φ〉

H−1(�),H1
0(�)

= 〈G(t) −G(τ ),φ〉
H−1(�),H1

0(�)

≤ ‖K‖L(L2
0(�),H1

0(�))‖G(t) −G(τ )‖H−1(�)‖ρ‖L2
0(�).

It follows that ‖P(t) − P(τ )‖L2
0(�) ≤ M‖G(t) −G(τ )‖H−1(�), which concludes the

proof of continuity of P . We now introduce the distributional derivative p = d
dtP and
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establish that p ∈ W−1,∞(0,∞; L2
0(�)). Let ρ ∈ C∞c (0,∞; L2

0(�)) be arbitrary and
set φ(t) = Kρ(t). Note that φ ∈ C∞c (0,∞;H1

0(�)). We have

〈p, ρ〉 = −
∫ ∞

0
〈P(t), ρ̇(t)〉L2

0(�) dt = −
∫ ∞

0
〈P(t), div φ̇(t)〉L2

0(�) dt

=
∫ ∞

0
〈∇P(t), φ̇(t)〉

H−1(�),H1
0(�) dt

= −
∫ ∞

0
〈y(t)−y0 −

∫ t
0g(s) ds, φ̇(t)〉

H−1(�),H1
0(�) dt

= −
∫ ∞

0
〈y(t)−y0, φ̇(t)〉

H−1(�),H1
0(�) + 〈g(t),φ(t)〉

H−1(�),H1
0(�) dt .

Recalling the embedding ofW 1,1
0 (0,∞;H1

0(�)) in L2(0,∞;H1
0(�)), we deduce that

〈p, ρ〉 ≤ M
(‖y‖L∞(0,∞;H−1(�)) + ‖g‖L2(0,∞;H−1(�))

)‖φ‖W 1,1
0 (0,∞;H1

0(�))
.

Using then estimate (62), we obtain that p can be extended to an element of
W−1,∞(0,∞; L2

0(�)) satisfying estimate (60).

With the samecalculations as above,wecan show that for allφ∈W 1,1
0 (0,∞;H1

0(�)),

〈p, divφ〉 = −
∫ ∞

0
〈y(t), φ̇(t)〉

H−1(�),H1
0(�) + 〈g(t),φ(t)〉

H−1(�),H1
0(�) dt,

which proves that p satisfies (59). Let us prove the uniqueness. Let p̃ ∈
W−1,∞(0,∞; L2

0(�)) satisfy (59). Let ρ ∈ W 1,1
0 (0,∞; L2

0(�)) be arbitrary and let
us set φ = Kρ. Then, by (59), we have

0 = 〈p − p̃, divφ〉W−1,∞(0,∞;L2
0(�)),W 1,1

0 (0,∞;L2
0(�))

= 〈p − p̃, ρ〉W−1,∞(0,∞;L2
0(�),W 1,1

0 (0,∞;L2
0(�))

,

which proves that p = p̃ and concludes the proof. ��
We have the following result, extending Theorem 22.

Proposition 24 Let d ≥ 2. There exists M > 0 such that for all y0 ∈ Y with ‖y0‖Y ≤
δ6,

‖ p̄ − pd‖W−1,∞(L2
0)
≤ M‖y0‖dY ,

where p̄ and pd denote the pressure terms associated with (ȳ, ū) and (yd , ud) respec-
tively.

Proof We have introduced in the proof of Lemma 23 the term g associated with a
feasible pair (y, u). Let us denote by ḡ and gd the corresponding terms associated
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Fig. 1 Geometry and non uniform grid

with (ȳ, ū) and (yd , ud). One can verify that as a consequence of Theorem 22, ‖ḡ −
gd‖L2(0,∞;H−1(�)) ≤ M‖y0‖dY . Proposition 24 follows then with similar calculations
to those performed in the proof of Lemma 23. ��

6 A Numerical Example

In this section, we present numerical simulations for the two-dimensional Navier–
Stokes equations and computed feedback laws of order 2 and 3. The discretization
procedure and the example setups are classical and are taken from [9]. The main
purpose is to show that the computation of higher order feedback laws is possible and,
depending on the chosen parameters, visible differences to a Riccati-based feedback
law can be observed.

6.1 Setup and Discretization

Webriefly summarize the numerical implementation provided in [9]. Therein a Taylor-
Hood P2-P1 finite element discretization for a two dimensional wake behind a cylinder
is discussed. The computational domain � = (0, 2.2) × (0, 0.41) as well as a non
uniform grid are shown in Fig. 1. For all simulations, we use the Reynolds number
Re := 1

ν
= 90 and the parabolic inflow profile discussed in [9]. For the upper and

lower end of the geometry, no slip boundary conditions are employed. The outflow is
modeled by do nothing boundary conditions on the right end of the geometry. For the
desired stabilization, we utilize a distributed, separable control acting in the control
domain �c := [0.27, 0.32] × [0.15, 0.25]. In particular, the control operator is of the
form

Bu =
3∑

	=1

[
0

w	(x2)

]
u	(t) +

[
w	(x2)

0

]
u	+3(t),

where the control shape functionsw1, w2 andw3 are piecewise linear functions which
are constant along the x1-direction.

The finite element discretization is computed in FEniCS and the resulting matrices
associated with the spatial semidiscretization are exported to MATLAB. As described
in detail in [9], the (spatially) discrete system takes the form
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Fig. 2 The steady state and a snapshot of the transient flow regime

Eż(t) = −Kz(t) + H(z(t) ⊗ z(t)) + Bu(t) + Gq(t) + fz,

0 = GT z(t) + fq ,
(63)

where E, K ∈ R
nv×nv are the mass and stiffness matrices, GT ∈ R

n p×nv represents
the discrete divergence operator, the tensor matricization H ∈ R

nv×n2v represents the
trilinear form (9) and B ∈ R

nv×6 is the discrete control operator. Note that H can be
constructed in such away that H(z1⊗z2) = H(z2⊗z1) for any z1, z2 ∈ R

nv . The time
invariant vectors fz ∈ R

nv and fq ∈ R
n p are due to the elimination of the boundary

nodes. The following results correspond to a discretization level with nv = 9356 and
n p = 1289. The velocity profile of the unstable steady state solution z̄ shown in Fig. 2
is obtained by a Picard iteration applied to the uncontrolled stationary system, i.e.,
system (63) with ż(t) = 0 and u(t) = 0. To illustrate that the controller stabilizes
this steady state solution, we start the transient simulations of the closed-loop systems
from the slightly randomly perturbed steady state z(0) = z̄ + ‖z̄‖2

2000 · randn(nv, 1).

6.2 Reformulation as an ODE System

System (63) is a system of differential-algebraic equations (DAEs) and hence the
results from above are not readily applicable. While a thorough analysis in the frame-
work of control ofDAEs is certainly of interest, at this pointwe employ a reformulation
initially proposed in [28] that allows to rewrite the dynamics as a set of ODEs for the
velocity vector z. As in (3), we consider the shifted variables y = z− z̄ and p = q− q̄ ,
respectively. Consequently, we obtain

E ẏ(t) = Ay(t) + H(y(t) ⊗ y(t)) + Bu(t) + Gp(t),

0 = GT y(t),
(64)
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where A = −K + H(z̄ ⊗ I + I ⊗ z̄). Let us note that the second equation implies
GT ẏ(t) = 0. Following [28, Section 3], from the first equation, we thus obtain

0 = GT ẏ(t) = GT E−1 (Ay(t) + H(y(t) ⊗ y(t)) + Bu(t) + Gp(t)) .

We can now eliminate the pressure from (64) using the relation

p(t) = −(GT E−1G)−1GT E−1 (Ay(t) + H(y(t) ⊗ y(t)) + Bu(t)) .

With the notation P = I − G(GT E−1G)−1GT E−1 this yields the system

E ẏ(t) = PAy(t) + PH(y(t) ⊗ y(t)) + PBu(t).

In fact, as has been discussed in [11], the matrix P = P2 as a discrete realization of
the Leray projector. Since GT y = 0, we have PT y(t) = y(t) so that we can multiply
the last equation by P to obtain

(PEPT )ẏ(t) = (PAPT )y(t) +
(
PH PT ⊗ PT

)
(y(t) ⊗ y(t)) + (PB)u(t).

Finally, by means of a decomposition P = �	�
T
r with �T

	 �r = I we can project
onto the nv − n p dimensional subspace range(P) and arrive at the ODE system

(�T
r E�r )︸ ︷︷ ︸
Ẽ

˙̃y(t) = (�T
r A�r )︸ ︷︷ ︸
Ã

ỹ(t) + (�T
r H�r ⊗ �r )︸ ︷︷ ︸

H̃

ỹ(t) ⊗ ỹ(t) + (�T
r B)︸ ︷︷ ︸
B̃

u(t),

(65)

where ỹ = �T
	 y(t). For the initialization, we use ỹ(0) = �T

	 y0. At this point, we
emphasize that the explicit formulas yield dense matrices and thus are rather a theo-
retical tool. In particular, an explicit computation of H̃ is infeasible for the problem
dimension considered here. As a remedy, weworkwith an implementation that applies
the above operations whenever a matrix vector multiplication is needed.

6.3 Computing the Feedback Gain

With the previous considerations in mind, we focus on the stabilization problem

inf
u∈L2(0,∞;R6)

J (ỹ0, u), subject to: e(ỹu, u) = (0, ỹ0) (66)

where

J (ỹu, u) = 1

2

∫ ∞

0
‖�r ỹu(t)‖2Rnv dt + α

2

∫ ∞

0
‖u(t)‖2

R6 dt

e(ỹu, u) = (Ẽ ˙̃yu − ( Ã ỹu + H̃(ỹu ⊗ ỹu) + B̃u), ỹ(0)
)
.
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We illustrate the effect of higher order feedback laws by computing the first two
non trivial derivatives D2V(0) and D3V(0), respectively. For the computation of
D2V(0) ≡ � ∈ R

(nv−n p)×(nv−n p), we have to solve the algebraic matrix Riccati
equation

ÃT�Ẽ + ẼT� Ã − ẼT�B̃ B̃T�Ẽ + �T
r �r = 0,

which in our case was done by means of the MATLAB function care. For the third
order tensor D3V(0) ≡ X ∈ R

(nv−n p)
3
we have to solve a linear system of the form

ATX = F where

A = Ẽ ⊗ Ẽ ⊗ Ãπ + Ẽ ⊗ Ãπ ⊗ Ẽ + Ãπ ⊗ Ẽ ⊗ Ẽ, Ãπ = Ã − 1

α
B̃ B̃T�Ẽ,

F = −2
(
H̃ T ⊗ ẼT + ẼT ⊗ H̃ T + (I ⊗ PT )(H̃ T ⊗ ẼT )

)
π,

(67)

where π = vec(�) denotes the vectorization of � and the permutation matrix P is
given by

P = [I ⊗ e1, . . . , I ⊗ env−n p

] ∈ R
(nv−n p)

2×(nv−n p)
2
.

Let us emphasize thatF is the discrete realization of the termR3 in (47). In particular,
the tensorF is symmetric. Note that computing a solutionX toATX = F is infeasible
without using further tools such as model order reduction or tensor calculus as storing
the vector X ∈ R

(nv−n p)
3
already requires more than 4 TB of data. As a remedy, we

aim for a direct computation of the corresponding feedback gain

K̃ = (ẼT ⊗ ẼT ⊗ B̃T )X (68)

without explicitly computing X . With this in mind, we proceed as in [16] and utilize
a quadrature-based approximation that has been analyzed in [25]. From [25, Lemma
3], it follows that

A−1 = −
∫ ∞

0

(
et Ẽ

−1 Ãπ Ẽ−1
)
⊗
(
et Ẽ

−1 Ãπ Ẽ−1
)
⊗
(
et Ẽ

−1 Ãπ Ẽ−1
)
dt .

As shown in [25, Theorem 9], the previous integral can be well approximated by a
tensor sum of the form

A−1 ≈ −
r∑

j=−r

2w j

λ

(
e
t j
λ
Ẽ−1 Ãπ Ẽ−1

)
⊗
(
e
t j
λ
Ẽ−1 Ãπ Ẽ−1

)
⊗
(
e
t j
λ
Ẽ−1 Ãπ Ẽ−1

)

(69)

where t j and w j are suitable quadrature points and weights and λ denotes a constant
determined by the spectrum of thematrix pencil (Ẽ, Ã). Combining the representation
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in (67), (68) and (69), we obtain the following approximation formula for the feedback
gain

K̃ = −
r∑

j=−r

2w j

λ

(
(e

t j
λ
Ẽ−1 Ãπ )T

)
⊗
(

(e
t j
λ
Ẽ−1 Ãπ )T

)
⊗
(
B̃T Ẽ−T (e

t j
λ
Ẽ−1 Ãπ )T

)
F

=
r∑

j=−r

4w j

λ

(
(e

t j
λ
Ẽ−1 Ãπ )T

)
⊗
(

(e
t j
λ
Ẽ−1 Ãπ )T

)
⊗
(
B̃T Ẽ−T (e

t j
λ
Ẽ−1 Ãπ )T

)

×
(
H̃ T ⊗ ẼT + ẼT ⊗ H̃ T + (I ⊗ PT )(H̃ T ⊗ ẼT )

)
π,

with r = 30 in the numerical examples. By use of algebraic manipulations such as
reshaping and transposition of matrices, the computation of the permutation matrix
P as well as computation of the dense matricization H̃ can be avoided. As a conse-
quence, we obtain an approximation of K̃ ∈ R

6(nv−n p)
2
whose storage requires less

than 4 GB of data. Let us point out that the above considerations do not fully break
the curse of dimensionality but nevertheless allow us to compute a third order feed-
back law even for a spatially discretized PDE. For the simulation of the time-varying
systems, we make use of the MATLAB function ode23 with the standard relative
error tolerance 10−3. In each time step, the control laws u2(ỹ) and u3(ỹ) are obtained
via

u2(ỹ) = − 1

α
B̃T�Ẽ ỹ,

u3(ỹ) = − 1

α
B̃T�Ẽ ỹ − 1

α

(
I6 ⊗ ỹT ⊗ ỹT

)
K̃ ,

where I6 denotes the identity matrix for the control space R6.

6.4 Results

Below, we present a numerical comparison for two different values of α. In Fig. 3,
the control laws corresponding to (66) with α = 1 are shown. We observe that both
feedback laws u2 and u3, respectively, exhibit a similar behavior and create vortices
which induce the desired control. Indeed, the control velocities in x1-direction are
of opposite sign (with the centered velocitiy field being negligible) while the control
velocities in x2-direction all have the same sign.

For α = 10−4, Fig. 4 shows more visible differences between the control laws.
It would certainly be of interest to investigate the numerical convergence behavior

as the order of the control laws increases. At the moment, however this is out of
reach, and could be based on model reduction techniques in an independent numerical
endeavor. In Fig. 4, we observe that the amplitudes of the u3 controls decay more
rapidly than those of the u2 controls. This is consistent with Fig. 5, where we compare
the dynamical behavior of ‖u2‖22 and ‖u3‖22. Let us emphasize that for α = 10−4, for
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Fig. 4 Control laws in x2 (left) and x1-direction (right) for α = 10−4

all t , the norm of the control law u3(t) is smaller than the one of u2(t). For the values
of the cost functionals, we obtain

J (ỹu2 , u2) = 0.9546, J (ỹu3 , u3) = 0.8432, for α = 1,

J (ỹu2 , u2) = 0.0128, J (ỹu3 , u3) = 0.0125, for α = 10−4,

which indicates that higher order feedback laws can be of interest for feedback stabi-
lization.

7 Outlook

In the present paperwedemonstrated that the approach thatwe carried out for obtaining
Taylor approximations to the value function of optimal control problems related to the
Fokker-Planck equation, is also applicable for optimal control of the Navier–Stokes
equations in dimension two. The question arises to which extent analogous results
can be obtained for dimension three and for boundary control problems. In dimension
three the situation will be significantly different from that of the current paper. It will
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Fig. 5 Dynamical behavior of the control norms for α = 1 and α = 10−4

not be possible to work with weak variational solutions. Rather one has to resort to
strong variational solutions, and thus one can expect at best that the value function is
smooth on V rather than on Y . This leads to difficulties for the operator representations
of the derivatives of the value function. Alternatively one can start by analyzing (47) as
equations for abstract multilinear forms DkV(0), which are not necessarily obtained
of derivatives of V . This is an approach which we plan to follow.

Acknowledgements Open access funding provided by University of Graz. This work was partly supported
by the ERC advanced Grant 668998 (OCLOC) under the EU’s H2020 research program. The authors would
like to thank Jan Heiland for making available his finite element based code for solving the state equation
as well as many helpful and interesting discussions on the numerical examples.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

The appendix is dedicated to the proof of Proposition 15.
We follow the notation from, e.g., [5] and define the following spaces

V s
n := {y ∈ H

s(�) | div y = 0, y · �n = 0 on �
}
, s ≥ 0,

V s
0 := V s

n , s ∈ [0, 1
2
),

V s
0 := {y ∈ H

s(�) | div y = 0, y = 0 on �
}
, s >

1

2
.

Moreover, we consider Aα := A− α I where A is the Stokes-Oseen operator and α is
such that Aα generates an exponentially stable and contractive semigroup on Y . From
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[5, Theorem 20], let us recall that

D((−A∗
α)θ ) = [V 2

0 ,Y ]1−θ = V 2θ
0 , ∀θ ∈ [0, 1], θ  = 1

4
.

While not needed for our purposes, let us emphasize that the case θ = 1
4 is also

included in [5, Theorem 20].
Using the above notation, for ε ∈ (0, 1

2 ) let us consider the space

W∞(V 1+ε
0 , (V 1−ε

0 )′) :=
{
y ∈ L2(0,∞; V 1+ε

0 ) | d

dt
y ∈ L2(0,∞; (V 1−ε

0 )′)
}

As mentioned in, e.g., [4], it holds that

[V 1+ε
0 , (V 1−ε

0 )′] 1
2
=
[
D((−A∗

α)
1+ε
2 ),D((−A∗

α)
ε−1
2 )
]
1
2

= D((−A∗
α)

ε
2 ) = V ε

0 .

From [34, Theorem 4.2], we thus conclude that

W∞(V 1+ε
0 , (V 1−ε

0 )′) ↪→ Cb([0,∞); V ε
0 ),

where Cb denotes the space of continuous and bounded functions.
Before we continue, let us cite the following result from [26].

Proposition 25 [26, B.1] Let λ,μ, ω ∈ R. One has for f ∈ Hλ+μ(�) and g ∈
Hλ+ω(�) (where � is a smooth open subset of Rn):

‖ f g‖Hλ(�) ≤ C‖ f ‖Hλ+μ(�)‖g‖Hλ+ω(�),

provided that

(i) μ + ω + λ ≥ n
2 , and

(ii) μ ≥ 0, ω ≥ 0, 2λ ≥ −μ − ω, and
(iii) μ + ω + λ > n

2 if equality holds somewhere in (ii).

These estimates allow us to bound the coupling terms appearing in the adjoint
equation.

Lemma 26 Let ε ∈ (0, 1
2 ). Let ȳ ∈ W∞ and p ∈ W∞(V 1+ε

0 , (V 1−ε
0 )′). Then

∥∥∥(∇ȳ)Tp
∥∥∥
L2(0,∞;(V 1−ε

0 )′)
≤ M1‖ȳ‖L2(0,∞;V )‖p‖W∞(V 1+ε

0 ,(V 1−ε
0 )′)

‖(ȳ · ∇)p‖L2(0,∞;(V 1−ε
0 )′) ≤ M2‖ȳ‖L∞(0,∞;Y )‖p‖W∞(V 1+ε

0 ,(V 1−ε
0 )′).
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Proof For the first assertion, consider pi
∂ ȳ j
∂xk

with i, j, k ∈ {1, 2}. Set λ = ε − 1, μ =
1, ω = 1− ε. Then

μ + ω + λ = 1+ (1− ε) + (ε − 1) = 1 ≥ n

2
,

μ > 0, ω > 0, 2λ + μ + ω = 2(ε − 1) + 1+ (1− ε) = ε > 0.

Applying Proposition 25 with f = pi and g = ∂ ȳ j
∂xk

yields

∫ ∞

0
‖ f g‖2H ε−1(�)

dt ≤ M
∫ ∞

0
‖pi‖2H ε(�)

∥∥∥∥∂ ȳ j

∂xk

∥∥∥∥
2

L2(�)

dt

which shows the first statement. For the second statement, set f = yi , g = ∂p j
∂xk

, λ =
ε − 1, μ = 1− ε and ω = 1. ��

The following lemma is formulated for an abstract generator Ã of an analytic
exponentially stable semigroup on Y . It will subsequently be applied with Ã = Aα .

Lemma 27 Let Ã ∈ L(V , V ′) generate an exponentially stable semigroup on Y and
assume that there exists M ≥ 0 such that for every f ∈ L2(0,∞; V ′) there exists a
unique y ∈ W∞ satisfying

ẏ = Ãy+ f on [0,∞), y(0) = 0, ‖y‖W∞ ≤ M‖f‖L2(0,∞;V ′).

Then there exists M̃ such that for all � ∈ L2(0,∞; V ′) there exists a unique r ∈ W∞
such that

−ṙ = Ã∗r + �, ‖r‖W∞ ≤ M̃‖�‖L2(0,∞;V ′).

Proof Step 1. Let us define T : W 0∞ → L2(0,∞; V ′) by T y = ẏ − Ãy. Considering
the adjoint T ∗ : L2(0,∞; V ) → (W 0∞)′ we have:

〈T ∗ϕ, y〉(W 0∞)′,W 0∞ := 〈ϕ, T y〉L2(0,∞;V ),L2(0,∞;V ′)

= 〈ϕ, ẏ− Ãy〉L2(0,∞;V ),L2(0,∞;V ′).

Since, by assumption, T is a homeomorphism it is in particular surjective and injective
and by the closed range theorem there exists a constant C such that

‖ϕ‖L2(0,∞;V ) ≤ C‖T ∗ϕ‖(W 0∞)′ , ∀ϕ ∈ L2(0,∞; V ). (70)

Step 2. Let� ∈ L2(0,∞; V ′) be arbitrary. Then there exists a unique r ∈ L2(0,∞; V )

such that T ∗r = �, and by (70) we have ‖r‖L2(0,∞;V ) ≤ C‖�‖(W 0∞)′ ≤
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C‖�‖L2(0,∞;V ′). Since T
∗r = � we have for all y ∈ W 0∞

〈�, y〉L2(0,∞;V ′),L2(0,∞;V ) = 〈r, T y〉L2(0,∞;V ),L2(0,∞;V ′)
= 〈r, ẏ〉L2(0,∞;V ),L2(0,∞;V ′)

− 〈 Ã∗r, y〉L2(0,∞;V ′),L2(0,∞;V ).

This implies that the time derivative of r, in the sense of distributions, can be extended
to a linear form on W 0∞ with the formula:

〈ṙ, y〉(W 0∞)′,W 0∞ = − 〈r, ẏ〉L2(0,∞;V ),L2(0,∞;V ′)

= − 〈� + Ã∗r, y〉L2(0,∞;V ′),L2(0,∞;V ), ∀y ∈ W 0∞. (71)

We estimate

〈� + Ã∗r, y〉L2(0,∞;V ′),L2(0,∞;V ) ≤ ‖� + Ã∗r‖L2(0,∞;V )‖y‖L2(0,∞;V )

≤ ‖�‖L2(0,∞;V ′)‖y‖L2(0,∞;V )

+ C‖�‖L2(0,∞;V ′)‖y‖L2(0,∞;V )

= (1+ C)‖�‖L2(0,∞;V ′)‖y‖L2(0,∞;V ).

Together with (71) and recalling that W 0∞ is dense in L2(0,∞; V ), we obtain that ṙ
can be extended to a bounded linear form on L2(0,∞; V ), i.e., ṙ can be extended to
an element of L2(0,∞; V ′), moreover,

‖ṙ‖L2(0,∞;V ′) ≤ (1+ C)‖�‖L2(0,∞;V ′).

It follows that r ∈ W∞. Moreover,

‖r‖W∞ ≤ 2(1+ C)‖�‖L2(0,∞;V ′) and − ṙ − Ã∗r = � in L2(0,∞; V ′).

��
Corollary 28 Let ε ∈ (0, 1

2 ). For all � ∈ L2(0,∞; (V 1−ε
0 )′), the system

−ṙ = A∗
αr + �

has a unique solution r ∈ W∞(V 1+ε
0 , (V 1−ε

0 )′). Moreover, there exists a constant
Mα > 0 independent of � such that

‖r‖W∞(V 1+ε
0 ,(V 1−ε

0 )′) ≤ Mα‖�‖L2(0,∞;(V 1−ε
0 )′). (72)

Proof We appy Lemma 27 to ż = A∗
αz+ � with � = (−A∗

α)
ε
2 � ∈ L2(0, T ; V ′), to

obtain ‖z‖W∞ ≤ M̃‖�‖L2(0,∞;V ′). Setting r := (−A∗
α)− ε

2 z and using that (−A∗
α)− ε

2
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is an isomorphism from V to V 1+ε
0 and from V ′ to (V 1−ε

0 )′, [41, Section 1.15.2, p.
101], the claim follows.

��
Proof of Proposition 15 Only regularity has to be shown. Let us fix ε ∈ (0, 1

2 ) and let
Mα be given by Corollary 28.

Let us define

M :=
{
q ∈ W∞(V 1+ε

0 , (V 1−ε
0 )′) | ‖q‖W∞(V 1+ε

0 ,(V 1−ε
0 )′) ≤ 2Mαγ

}
,

γ := α‖p‖L2(0,∞;V ) + ‖ȳ‖L2(0,∞;V ).

Let us then choose δ̃4 > 0 such that

‖ȳ‖L2(0,∞;V ) ≤ M‖y0‖Y ≤ M δ̃4 ≤ 1

2(M1 + M2)Mα

,

where M1 and M2 are given by Lemma 26. Further consider the mapping Z defined
by

Z : M � q �→ r ∈ W∞(V 1+ε
0 , (V 1−ε

0 )′),

where r is the unique solution of

−ṙ = A∗
αr + (ȳ · ∇)q− (∇ȳ)Tq+ αp+ ȳ

according to Lemma 26 and Corollary 28. Given q ∈ M, it holds that

‖r‖W∞(V 1+ε
0 ,(V 1−ε

0 )′) ≤ Mα

(
‖(ȳ · ∇)q− (∇ȳ)Tq+ αp+ ȳ‖L2(0,∞;(V 1−ε

0 )′)

)

≤ Mα

(
(M1 + M2)‖ȳ‖L2(0,∞;V )‖q‖W∞(V 1+ε

0 ,(V 1−ε
0 )′) + γ

)

≤ Mα

(
1

2Mα

‖q‖W∞(V 1+ε
0 ,(V 1−ε

0 )′) + γ

)
≤ 2Mαγ.

We obtain that Z(M) ⊆ M. Consider q1,q2 ∈ Z and let r = Z(q1) −Z(q2). Note
that r solves

−ṙ = A∗
αr + (ȳ · ∇)(q1 − q2) − (∇ȳ)T (q1 − q2)

so that we obtain

‖Z(q1) − Z(q2)‖W∞(V 1+ε
0 ,(V 1−ε

0 )′) = ‖r‖W∞(V 1+ε
0 ,(V 1−ε

0 )′)

≤ Mα(M1 + M2)‖ȳ‖W∞‖q1 − q2‖W∞(V 1+ε
0 ,(V 1−ε

0 )′)

≤ 1

2
‖q1 − q2‖W∞(V 1+ε

0 ,(V 1−ε
0 )′).
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Thus by the Banach fixed point theorem we conclude that there exists r ∈
W∞(V 1+ε

0 , (V 1−ε
0 )′) ⊂ W∞ which is a solution of

−ṙ = A∗
αr + (ȳ · ∇)r − (∇ȳ)T r + αp+Ny.

It remains to show that r solves (25). For this, we define e := r − p ∈ L2(0,∞; V )

and observe that e satisfies

T ∗e = G∗e in (W 0∞)′,

where the operator G ∈ L(W∞, L2(0,∞; V ′)) is defined in (30). It follows from (70)
that

‖e‖L2(0,∞;V ) ≤ M‖T ∗e‖(W 0∞)′ ≤ M‖G∗‖L(L2(0,∞;V ),(W∞)′)‖e‖L2(0,∞;V ).

As a consequence of (29), δ̃4 can be reduced so that ‖G∗‖ = ‖G‖ < 1
M . Hence, we

obtain e = 0 and thus r = p showing that p ∈ W∞(V 1+ε
0 , (V 1−ε

0 )′) ⊂ W∞. ��
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